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Summary. Both dropout and death can truncate observation of a longitudinal outcome. Since
extrapolation beyond death is often not appropriate, it is desirable to obtain the longitudinal
outcome profile of a population given being alive.We propose a new likelihood-based approach
to accommodating informative dropout and death by jointly modelling the longitudinal outcome
and semicompeting event times of dropout and death, with an important feature that the condi-
tional longitudinal profile of being alive can be conveniently obtained in a closed form. We use
proposed methods to estimate different longitudinal profiles of CD4 cell count for patients from
the ‘HIV Epidemiology Research Study’.
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1. Introduction

1.1. Dropout mixed with death in longitudinal studies
In long-term longitudinal studies, both dropout (i.e. patients’ withdrawal due to reasons other
than death) and death can occur during the follow-up, which truncates the observation of the
longitudinal outcome of interest for a patient. For example, in a study of human immunodefi-
ciency virus (HIV), CD4 cell count as the primary outcome of disease progression is scheduled
to be repeatedly measured at planned follow-up visits, but both patients’ withdrawal and death
can terminate the observation of CD4 cell counts for a patient during the study period. This
‘dropout mixed with death’ problem started to attract attention in the literature a decade ago,
primarily driven by applications in studies of aging (Dufouil et al., 2004; Rajan and Leurgans,
2010). Depending on research aims, there are generally three classes of models that deal with
both dropout and death (Kurland et al., 2009).

Unconditional models, such as random-effects models fitted to the observed longitudinal data
only, are appropriate if deaths are independent of the longitudinal outcome. They can also be
used if deaths do not result in truncation because the longitudinal outcome is well defined after
death (e.g. medical costs). In these models, the longitudinal outcome may be implicitly imputed
beyond death and the targeted population is often termed an ‘immortal cohort’ (Dufouil et al.,
2004). In other words, the inference is for a hypothetical population that is free of death during
the study period. Using a multiple inverse probability weighting approach, Rajan and Leurgans
(2010) also developed an unconditional model to account for both dropout and death (Harel
and Demirtas, 2011).
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In fully conditional models, separate regression models can be specified for strata that are
defined by the time of death (Ribaudo et al., 2000; Pauler et al., 2003), similarly to pattern–
mixture models in the missing data literature, or the time of death can be included as a covariate.
The ‘principal stratification’ method, which is used to estimate the causal effect of a treatment,
is also a type of fully conditional models, where strata are based on the counterfactual survival
times under both treatment groups (Frangakis and Rubin, 2002; Rubin, 2006; Shardell et al.,
2015). Note that fully conditional models require exact times of death to be conditioned on.
Therefore censoring of survival information is not accommodated in these models.

Partly conditional models focus on the distribution of the longitudinal outcome conditionally
on being alive at a specific time point; therefore the targeted population is a dynamic cohort of
survivors or a ‘mortal cohort’. So far methods for fitting partly conditional models have been
based on weighted estimating equations (Dufouil et al., 2004; Kurland and Heagerty, 2005;
Shardell and Miller, 2008; Shardell et al., 2010), where most of them did not focus on informative
dropout, and censoring of survival information other than dropout as well as intermittent
missingness were not allowed.

In contrast, to the best of our knowledge, likelihood-based approaches that have the potential
to address these issues (informative dropout, censoring of survival information and intermittent
missingness) have not been developed for partly conditional models.

1.2. Joint modelling with longitudinal and semicompeting risks data
In this paper, we propose a new likelihood-based approach to dealing with both informative
dropout and death. Because dropout can be censored by death but the reverse is not true if
times of death are available from public records after dropout, we treat dropout and death as
semicompeting risks. Starting from an unconditional model for the immortal cohort, we build a
joint model (JM) for the longitudinal outcome and the semicompeting risks by using the general
framework of JMs of longitudinal and time-to-event data. The associations between the longi-
tudinal outcome and the two semicompeting risks are characterized by shared random effects.

Specifically, building on the JMs that were proposed in Barrett et al. (2015), we assume a
linear mixed model (LMM) for the longitudinal outcome in the immortal cohort. As the exact
time of dropout is often unavailable in practice, the timescale that we use for the time of dropout
is the times of scheduled visits for the longitudinal outcome and hence it is discrete. The exact
time of death is usually available from public records but discretized such that it has the same
timescale as the time of dropout. We assume two separate probit models for the discrete time
hazards of dropout and death. Linear combinations of the random effects in the submodel for
the longitudinal outcome are included in the submodels for dropout and death to characterize
the associations between the evolutions of the three outcomes over time.

Compared with existing moment-based methods for partly conditional models (Kurland and
Heagerty, 2005), our approach has the following advantages.

(a) Informative dropout and outcome-related death can be handled, whereas existing meth-
ods have focused on ignorable dropout.

(b) Existing methods have treated the dropout and death as competing risks and only allowed
death to be censored by dropout, whereas our approach treats them as semicompeting
risks and allows independent censoring of death before dropout.

(c) Intermittent missing data are allowed within the likelihood-based framework; in partic-
ular, we assume that the probability of intermittent missingness is independent of the
intermittent missing longitudinal outcome given observed data. Therefore, explicit mod-
elling of the indicator of intermittent missingness is not required.
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(d) Model assessment for the fit to the observed data is straightforward within the likelihood-
based framework. For example, with Bayesian estimation, we can use posterior predictive
checks based on replicated observed data as recommended in Daniels et al. (2012).

Compared with unconditional models (Rajan and Leurgans, 2010; Harel and Demirtas, 2011),
in addition to the inference for the unconditional model parameterized for the longitudinal
outcome, our approach can conveniently provide the conditional longitudinal outcome profile
given being alive (i.e. inferences for the mortal cohort) because the random effects conditional on
being alive at some time point follow a multivariate skew normal distribution. Compared with
fully conditional models (Ribaudo et al., 2000; Pauler et al., 2003), exact death time information
is not required in our approach; and our approach can conveniently provide inferences for both
the unconditional and the partly conditional longitudinal profiles, whereas fully conditional
models require numerical integration over the death time distribution to provide the conditional
longitudinal profile given being alive.

Our methods also contribute to the literature on joint modelling of longitudinal and time-
to-event data as it appears that semicompeting risks data have not been addressed, although
there are various models to deal with competing risks data in the joint modelling framework
(Elashoff et al., 2007, 2008; Williamson et al., 2008; Hu et al., 2009; Proust-Lima et al., 2016).

For estimation, both maximum likelihood and Bayesian approaches can be used. Maximum
likelihood estimates (MLEs) can be obtained by maximizing the marginal likelihood after inte-
grating over the random effects. Limitations of this approach are that the computation can be
very intensive and we need to sample from the asymptotic distribution of the MLE to obtain
confidence intervals for the estimated longitudinal profiles conditionally on being alive. In the
analysis that is presented in Section 4, we also discover some computational issues related to
calculating high dimensional multivariate normal probabilities in the maximum likelihood es-
timation. Details will be discussed in Sections 4 and 6. In contrast, the Bayesian approach does
not require the integration of random effects and can directly provide the posterior inferences
for longitudinal profiles conditionally on being alive since they are functions of the model pa-
rameters. In this paper, we implement both estimation approaches in our application in Section
4.

1.3. ‘HIV Epidemiology Research Study’
This work is motivated by data from the ‘HIV Epidemiology Research Study’ (HERS). The
HERS was a longitudinal study of 1310 women with, or at high risk for, HIV infection from
1993 to 2000 (Smith et al., 2003). During the study 12 visits were scheduled, where a variety of
clinical, behavioural and sociological outcomes were recorded approximately every 6 months.
We shall focus on the 850 women who were HIV positive and had a CD4 cell count measurement
at enrolment.

There were 106 HIV-related deaths during the study follow-up. In addition, censoring by
dropout also occurred, which was possibly related to the disease progression characterized by
the CD4 cell count outcome, as suggested by previous analyses of these data (Hogan et al., 2004).
In other words, the dropout is probably informative. Fig. 1 shows the data from four HERS
patients, and they represent the four scenarios of dropout and HIV-related death times in the
cohort, together with their observed CD4 cell count data over time (a square root transformation
is used to reduce the right skewness in these data). Previous analyses of the HERS data (Hogan
et al., 2004; Daniels and Hogan, 2008) did not distinguish between censoring by dropout and
death. As the CD4 cell count outcome is not appropriate beyond death, the mortal cohort
inference for these data is certainly of interest. In other words, it is desirable to impute missing
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CD4 cell counts after dropout but not to impute CD4 cell counts beyond death. Hence our aim
is to obtain the mortal cohort inference for the CD4 cell count outcome while dealing with both
informative dropout and death, which motivates our new likelihood-based approach.

The rest of the paper is organized as follows. In Section 2, we introduce our JM. Estimation and
inference are described in Section 3. In Section 4, we apply the proposed methods to the HERS
data and demonstrate the differences between the inferences for mortal and immortal cohorts.
A brief simulation study is performed in Section 5 to examine the finite sample performance of
the methods proposed. We conclude with a discussion in Section 6.

The programs that were used to analyse the data can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Joint model

Suppose that N independent patients are followed up over time. For the ith (i=1, : : : , N) patient,
longitudinal measurements Yi = .Yi1, : : : , YiM/T are scheduled to be taken over time in T = [0, T ],
where T is the total length of scheduled follow-up in the study. However, patients can withdraw
from the study (drop out) or die during the follow-up, which can both terminate the observation
of the longitudinal outcome Yi.

Let Di and Si denote the time of dropout and the time of death for the ith patient. Information
about the exact time of dropout is often not available in practice. Therefore Di is usually assumed
to be the number of the last follow-up visit and hence is treated as discrete. However, exact
survival information for the patients can often be obtained from public records during the
study follow-up, even after the patients drop out. Therefore we treat dropout and death as
semicompeting risks since death can terminate the dropout process but the reverse is not true.

For death time Si, instead of using the continuous timescale T = [0, T ], we assume a discrete
timescale S ={1, 2, : : : , M}. However, it is assumed that there is a surjection s.t/ from T to S;
for example, S might result from a partition of T . Then S is considered to be a series of time
intervals such that each of them contains a scheduled visit for Yi. Further, during the study
both Di and Si can be censored at Ci, the censoring time. We assume that Ci is independent
of Di and Si. For example, Ci = M if the patient completes the study and therefore both Di

and Si are administratively censored. The observed time of dropout is DÅ
i =min.Di, Si, Ci/ and

the indicator for dropout occurrence is δD
i = I.Di � Ci, Di � Si/. The observed time of death

is SÅ
i = min.Si, Ci/, and the indicator for death occurrence is δS

i = I.Si � Ci/. By definition
DÅ

i � SÅ
i and the observed longitudinal measurements after truncation by dropout and death

are Yo
i = .Yi1, : : : , Yini/

T and ni �DÅ
i .

We assume that the associations between the longitudinal outcome and the two semi-
competing risks are characterized by random effects bi and covariates. In our motivating
application, this is a reasonable assumption because the longitudinal outcome (e.g. CD4 cell
count) characterizes HIV disease progression, and HIV disease progression can influence both
the dropout and survival. Given bi and covariates, the complete longitudinal outcome Yi, the
dropout time Di and the death time Si are assumed to be independent.

2.1. Longitudinal submodel
We assume the following model for Yij (j =1, : : : , M):

Yij =xT
ijβ+ zT

ijbi + εij, .1/

where β is a p × 1 vector of regression coefficients associated with exogenous covariates xij

(fixed effects), bi is a q × 1 vector of random effects that are associated with covariates zij,
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εij is the measurement error that is independent of covariates xij and zij and .εi1, : : : , εiM/ ∼
N.0, Vi/, where Vi can be any positive definite covariance matrix. In the HERS application,
we assume that Vi =σ2

ε IM×M (I is an identity matrix) to account for measurement errors only
and the random effects are used to capture the serial correlations over time for longitudinal
data. In practice, other parametric models such as auto-regressive models can be used for Vi to
characterize the remaining serial correlations. bi are assumed normally distributed with mean 0
and covariance matrix Σ and are independent of εij and covariates xij and zij. Note that model
(1) is an unconditional model (i.e. unconditional on the time of death given the covariates) for
characterizing the longitudinal outcome in the immortal cohort.

2.2. Submodel for semicompeting risks
Following Barrett et al. (2015), we assume a probit model for the discrete time hazard of dropout
λD,ij =P.Di = j|Di � j, bi, xD,ij, WD,ij/ at the jth visit:

λD,ij =1−Φ{xT
D,ijα

D + .WD,ijbi/
TγD

j }, .2/

where Φ.·/ is the standard normal cumulative distribution function, xD,ij is a pD ×1 vector of
covariates (possibly time varying) with regression coefficients αD, WD,ij is a matrix for construct-
ing a qD ×1 vector of linear combinations of bi, WD,ijbi (for example, in the HERS application,
we have WD,ij = I and qD = 2), and γD

j is an association parameter vector that relates the lon-
gitudinal outcome and the dropout time via the random effects bi. If γD

j = 0 then the dropout
is ignorable given the observed data.

We also assume a probit model for the discrete time hazard of death λS,ij = P.Si = j|Si �
j, bi, xS,ij, WS,ij/ at the jth visit:

λS,ij =1−Φ{xT
S,ijα

S + .WS,ijbi/
TγS

j }, .3/

where xS,ij is a pS × 1 vector of covariates with regression coefficients αS . WS,ijbi is a qS × 1
vector of linear combinations of bi and γS

j is an association parameter vector that relates the
longitudinal outcome and the time of death. If γS

j =0, then the time of death is independent of
the longitudinal outcome and censoring by death is non-informative given the observed data.

3. Estimation and inference

3.1. Likelihood
In this section, we derive the complete-data likelihood conditioning on the random effects and
for simplicity of presentation we suppress the conditioning on the covariates xij, zij, xD,ij,
WD,ij, xS,ij and WS,ij. The observed data for the outcomes are {Yo

i , DÅ
i = d, δD

i , SÅ
i = s, δS

i }
(i=1, : : : , N), and the complete-data likelihood from the ith patient is

Li.θ|Yo
i , DÅ

i =d, δD
i , SÅ

i = s, δS
i , bi/=f.Yo

i |bi;θ/f.d, δD
i |bi;θ/f.s, δS

i |bi;θ/f.bi;θ/, .4/

where θ denotes all unknown parameters in the JM. Let Xi = .xi1, : : : , xini /
T and Zi = .zi1, : : : ,

zini /
T. The likelihood from the longitudinal part given the random effects is

f.Yo
i |bi;θ/= exp{− log.2π/ni=2− log.|Vi|/=2− .Yo

i −μi/
TV −1

i .Yo
i −μi/=2},

where μi =Xiβ+Zibi and for the HERS data we assume that Vi =σ2
ε Ini×ni .
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The likelihood from the dropout part given the random effects is

f.d, δD
i |bi;θ/=

[
d−1∏
j=1

Φ{xT
D,ijα

D + .WD,ijbi/
TγD

j }
]

[Φ{xT
D, idαD + .WD,idbi/

TγD
d }]1−δD

i

× [1−Φ{xT
D,idαD + .WD,idbi/

TγD
d }]δ

D
i : .5/

The likelihood from the survival part given the random effects is

f.s, δS
i |bi;θ/=

[
s−1∏
j=1

Φ{xT
S,ijα

S + .WS, ijbi/
TγS

j }
]

[Φ{xT
S, isα

S + .WS,isbi/
TγS

s }]1−δS
i

× [1−Φ{xT
S,isα

S + .WS,isbi/
TγS

s }]δ
S
i : .6/

The density f.bi;θ/ is that of the multivariate normal distribution N.0, Σ/.

3.2. Cholesky decomposition for covariance matrix of random effects
Let bik be the kth element of the random effects bi and k =1, : : : , q. We use a modified Cholesky
decomposition to parameterize the random-effects covariance matrix Σ to guarantee its positive
definiteness (Daniels and Zhao, 2003). Recall that the random effects bi ∼ N.0, Σ/. Following
Daniels and Zhao (2003), let b̃ik (k =1, : : : , q) be the linear least squares predictor of bik based
on its predecessors bi.k−1/, : : : , bi1, and let eik = bik − b̃ik be the prediction error with variance
σ2

k =var.eik/, i.e.

bik =
k−1∑
l=1

λklbil + eik, .7/

where λkl are referred to as generalized auto-regressive parameters and σ2
k as innovation vari-

ances. The special Cholesky decomposition of Σ is defined as LΣLT =G, where L is the lower
unit triangular matrix with −λkl as its .k, l/th entry and G=diag.σ2

1, : : : , σ2
q/. The only constraint

that is needed for Σ to be positive definite is that σ2
k > 0 for all k.

In the HERS analysis we assume a simple case of bi = .bi1, bi2/T, where bi1 is a random
intercept and bi2 is a random slope. Then equation (7) can be written in two parts:

bi1 = ei1,

bi2 =λ21bi1 + ei2,
.8/

where var.eik/=σ2
k , k =1, 2. The first equation corresponds to the marginal distribution of the

random intercepts, and the second equation describes the conditional distribution of random
slopes given random intercepts. Thus the covariance matrix Σ is

Σ=
(

σ2
1 λ21σ

2
1

λ21σ
2
1 λ2

21σ
2
1 +σ2

2

)
:

3.3. Estimation
The random effects in the likelihood (4) can be integrated out and the resulting marginal likeli-
hood can be written in a closed form with well-defined functions (Arnold, 2009; Barrett et al.,
2015). Details can be found in the on-line supplementary materials. It is straightforward to use
the maximum likelihood approach for estimation, and the Hessian matrix can be used to approx-
imate the standard errors. Specifically, obtaining the marginal likelihood involves calculating
the cumulative probabilities of multivariate normal distributions, which can be implemented in
R with the mnormt and mvtnorm packages.
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The maximum-likelihood-based approach, however, can be very challenging and time de-
manding when the multivariate normal probability calculation is of high dimension and the
number of parameters is large. For example, there were 12 scheduled visits in the HERS and as
a result the dimension of multivariate normal probability calculation can be up to 24. In such a
case, the Monte-Carlo-based approach (in the mvtnorm package) approximates the marginal
likelihood, which introduces Monte Carlo error and consequently causes convergence problems
and problems with the numerical evaluation of the Hessian matrix. More details will be provided
in Section 4 for the HERS analysis. In practice, given the necessary model building and selection
process, it is therefore more efficient to use a Bayesian approach when the multivariate normal
probability is of high dimension. We shall give details of the prior specification and posterior
inference in the HERS analysis. Computation for the Bayesian approach is implemented in the
WinBUGS package (Spiegelhalter et al., 2003). For the HERS data analysis, we demonstrate
both the maximum likelihood and the Bayesian approaches.

3.4. Marginal mean profile conditional on being alive
Recall that the population mean profile in model (1) is E.Yij|xij, zij/ = xT

ijβ. To obtain the
conditional mean profile given being alive, we can compute

E.Yij|Si � j, xij, zij/=xT
ijβ+ zT

ij E.bi|Si � j, xij, zij/: .9/

Although we assume that bi and xij and zij are independent a priori, after conditioning on
Si � j, they are no longer independent and E.bi|Si � j, xij, zij/ is a function of xij and zij.

It is easy to show that the conditional distribution of bi given Si � j and the covariates is
a multivariate skew normal distribution. Therefore we can calculate E.bi|Si � j, xij, zij/ as a
function of specified parameters and covariates. Details are given in the on-line supplementary
materials.

4. Unconditional and conditional longitudinal profiles of CD4 cell counts in the
‘HIV Epidemiology Research Study’

In this section, we use the proposed methods to estimate the unconditional and conditional
longitudinal profiles of CD4 cell counts as a function of baseline covariates (HIV viral load, HIV
symptom severity and antiviral treatment indicator) from the HERS data that were introduced
in Section 1 (Hogan et al., 2004). Of the 850 women who were HIV positive and had CD4 cell
count data at baseline, we exclude 23 women from the analysis because their baseline covariate
measurements were missing.

Attrition in the HERS is substantial, like in many other long-term follow-up studies. Table 1
shows that more than half of the women did not complete the study because of either early
dropout or HIV-related death. In particular, 78 women dropped out of the study before dying
with HIV-related reasons. Moreover, previous analyses of these data suggested that it is quite
plausible that the dropout was closely related to the missing CD4 cell counts, i.e. the unob-
served CD4 cell counts among those who dropped out are systematically lower than those who
continued follow-up, even after adjusting for covariates and observed CD4 cell counts (Hogan
et al., 2004). We need to deal with this informative dropout in our analysis. Hogan et al. (2004)
have examined the unconditional profile of CD4 cell counts and related factors, but dropout
and HIV-related death are not distinguished in their pattern–mixture model approach. In our
analysis, we shall also investigate the conditional profile of CD4 cell counts given being alive,
which might provide insights to clinical questions that were not addressed in previous analyses.
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Table 1. Number of patients with different semi-
competing risks data of dropout and HIV-related
death in the HERS

Indicators for dropout or Number of patients
HIV-related death

.δD
i , δS

i /= (0, 0) 374
.δD

i , δS
i /= (1, 0) 352

.δD
i , δS

i /= (0, 1) 23
.δD

i , δS
i /= (1, 1) 78

For those women who actually finished 12 scheduled visits, their dropout and HIV-related
times of death are treated as administratively censored at the time of this final visit. The maximum
follow-up time was 2093 days in the HERS data, and we partition the follow-up period into
12 intervals to determine the observed discretized time of death SÅ

i and δS
i . Except for the first

interval which is 3 months from enrolment, the remaining 11 intervals are equally spaced for 6
months such that each interval contains one scheduled CD4 cell count measurement. During
the follow-up, 579 (7:6%) CD4 cell count measurements were intermittently missing before the
patients’ dropout, death or the end of the study. We assume that this intermittent missingness
is ignorable, i.e. the probability of intermittent missingness is assumed to be independent of the
unobserved longitudinal outcome, given the observed data. Therefore, no additional model for
the indicators of intermittent missingness is specified.

4.1. Fitted models
Following the previous analysis of the HERS data (Hogan et al., 2004), we assume the uncon-
ditional model for the longitudinal measurements of CD4 cell count as follows:

Yij =xT
ijβ+bi1 +bi2j + εij, .10/

where Yij is the square root of the CD4 cell count at the jth visit and xij is the vector of
corresponding covariates, which include the visit number j (time), indicator variables for HIV
viral load group .0, 500], .500, 5000], .5000, 30000] (copies per millilitre) at baseline, an indicator
of antiretroviral therapy at baseline, HIV symptomatology (presence of HIV-related symptoms
on a scale from 0 to 5) at baseline and the interactions between time and these baseline covariates.
bi1 and bi2 are a random intercept and slope respectively, and they follow the multivariate normal
distribution with mean 0 and covariance Σ, as parameterized in expression (8).

On the basis of some preliminary investigations and the findings in Smith et al. (2003), we
assume the following models for the dropout and death times:

Pr.Di = j|Di � j, xD,ij, bi1, bi2/=1−Φ.xT
D,ijα

D +γD
1 bi1 +γD

2 bi2/,

Pr.Si = j|Si � j, xS,ij, bi1, bi2/=1−Φ.xT
S,ijα

S +γS
1 bi1 +γS

2 bi2/,

where the covariate vectors xD,ij and xS,ij both include indicators of baseline HIV viral load
groups, HIV symptomatology at baseline, an indicator of antiretroviral therapy at baseline and
j=12 and .j=12/2, to account for the change in the discrete time hazards over time. More details
can be found in Table 2.

We use both Bayesian and maximum likelihood approaches described in Section 3 for
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Table 2. Results for the dropout and HIV-related death parts of the JM analysis of the HERS data†

Results of Bayesian analysis Results of MLE analysis

Mean 2.5% 97.5% Estimate 2.5% 97.5%

Dropout
Intercept 1.052 0.849 1.274 1.033 0.899 1.149
j=12 1.190 0.380 1.912 1.058 0.572 1.347
.j=12/2 −1:733 −2:405 −1:007 −1:746 −1:931 −1:545
Baseline HIV viral load (copies ml−1)

0–500 0.733 0.523 0.934 0.733 0.595 0.886
500–5000 0.650 0.464 0.831 0.648 0.537 0.776
5000–30000 0.269 0.064 0.469 0.271 0.137 0.422
>30000 Reference Reference

Baseline HIV symptoms −0:011 −0:063 0.044 −0:011 −0:072 0.049
Antiretroviral therapy at baseline −0:043 −0:154 0.073 −0:042 −0:164 0.082
γD

1 0.029 0.018 0.039 0.028 0.016 0.041
γD

2 0.443 0.349 0.537 0.442 0.339 0.546

HIV-related death
Intercept 3.472 2.842 4.161 3.350 2.947 3.702
j=12 −4:272 −6:106 −2:469 −4:783 −5:793 −4:028
.j=12/2 2.931 1.415 4.449 2.715 2.210 3.271
Baseline HIV viral load (copies ml−1)

0–500 2.032 1.427 2.751 1.992 1.463 2.781
500–5000 1.194 0.811 1.619 1.194 0.901 1.501
5000–30000 0.539 0.149 0.938 0.561 0.280 0.882
>30000 Reference Reference

Baseline HIV symptoms −0:121 −0:245 0.000 −0:126 −0:256 0.003
Antiretroviral therapy at baseline −0.516 −0:789 −0:249 −0.538 −0:807 −0:267
γS

1 0.128 0.098 0.162 0.131 0.100 0.162
γS

2 1.192 0.911 1.547 1.174 0.981 1.407

†For results from the Bayesian approach, we present the posterior mean and 95% credible intervals. For maximum
profile likelihood estimation results, we provide point estimates and 95% confidence intervals.

estimation. For the Bayesian approach, we assign independent normal priors N.0, 100/ to
β and the parameter λ21 in Σ. For parameters in the dropout and death models, we assign
weakly informative N.0, 4/ priors to αD, γD

1 and γD
2 , αS , and γS

1 and γS
2 because these mod-

els are specified at the probit scale. For variance component parameters, we assign the prior
σ2

ε ∼ inverse-gamma.0:001, 0:001/ and σ2
k ∼ inverse-gamma.0:01, 1/ (k=1, 2) for Σ. We run three

Markov chain Monte Carlo chains with diverse initial values and assess convergence within a
5000-iteration burn-in period by using history plots and Gelman and Rubin convergence statis-
tics provided by the WinBUGS package. After convergence, pooled posterior samples of size
45000 are used for model inference.

For maximum likelihood estimation, we encountered some numerical challenges in analysing
the HERS data. The R function optim is used to obtain the MLEs numerically. Owing to the
sample size (i.e. 827) and the large number of the model parameters (i.e. 36) as well as the dimen-
sion of multivariate normal probability calculation (up to 24), it is computationally intensive
when it comes to the evaluation of the log-likelihood function and the iteration of searching
for the MLE, even though good initial values are provided from the results of the Bayesian
approach. Furthermore, it is impossible to reach a sufficiently small convergence tolerance (e.g.
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10−6), because of the Monte Carlo error that is introduced by the R package mvtnorm when
evaluating the log-likelihood function. For the HERS data, we stop the program at 2000 iter-
ations, where we find that the log-likelihood function values cannot be further improved with
more iterations. Obtaining the Hessian matrix can also be a challenge when it needs to be ap-
proximated numerically, because a proper step value for the magnitude of gradient evaluation
must be chosen not only to capture the characteristics of the log-likelihood function but also
to overcome the noise that is caused by the Monte Carlo error. Different choices of this step
value can be tried out at this stage. However, this is to some extent arbitrary and the positive
definiteness of the approximated Hessian matrix cannot be guaranteed. Therefore, we choose
to use the profile likelihood approach for estimating the regression coefficient parameters and
constructing the 95% confidence intervals. For each regression coefficient a profile likelihood
function is evaluated at each of 10 grid point values of this parameter, by maximizing the like-
lihood with respect to the rest of the parameters. Because of the computational burden, we
smooth the profile likelihood function to obtain the point estimate and 95% confidence interval
based on the likelihood ratio test. We shall further discuss these computational issues in Section
6.

For comparison, we also present the results from fitting the LMM (as in equation (10)) to
the HERS data without addressing the informative dropout and HIV-related death problem.
Missingness due to dropout and/or death is then treated as ignorable (under missingness at
random and separable parameter assumptions). The estimation for the LMM is implemented
by the R package nlme.

We use the Bayesian approach to obtain the partly conditional profiles of CD4 cell count given
that patients were still alive. We first use the posterior samples of αS , γS

1 , γS
2 and Σ to calculate

E.bi1|Si � j, xij, zij/ and E.bi2|Si � j, xij, zij/ (see more details in the on-line supplementary
materials). Then we compute E.Yij|Si � j, xij, zij/ by using posterior samples of β, E.bi1|Si �
j, xij, zij/ and E.bi2|Si �j, xij, zij/. These posterior samples of E.Yij|Si �j, xij, zij/ are used for
inference on partly conditional profiles.

Theoretically, we could also sample from the asymptotic distribution of the MLEs and provide
the inference of partly conditional profiles. However, because of the computational problem of
obtaining the Hessian matrix in the maximum likelihood estimation for the HERS data, this
approach was not pursued.

4.2. Model assessment
To assess the fit of the JM to the observed data, within the Bayesian estimation framework, we
use posterior predictive checks based on replicated observed data as recommended in Daniels
et al. (2012) and a χ2 discrepancy statistic described in Gelman et al. (1996). Specifically, the
steps are as follows.

Step 1: for the ith patient, sample a replicated dropout time D
rep
i from the specified dropout

model, given the current posterior samples and the patient’s covariate values.
Step 2: for the ith patient, sample a replicated HIV-related death time S

rep
i from the specified

HIV-related death model, given the current posterior samples and the patient’s covariate
values.
Step 3: for the ith patient, sample the complete longitudinal outcome vector Yrep

i from the
specified unconditional longitudinal model, given the current posterior samples and the pa-
tient’s covariate values.
Step 4: truncate Yrep

i at the jth visit and j =min.D
rep
i , S

rep
i , 12/ to obtain the replicates of the

observed longitudinal data, Yo,rep
i .
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Step 5: repeat steps 1–4 for N =827 HERS patients and compute

827∑
i=1

.Yo,rep
i −μi/

TΩ−1.Yo,rep
i −μi/=nrep,

where nrep is the total number of replicates for the observed longitudinal data, μi is the mean
given in equation (10) with the random effects integrated out and Ω is the marginal covari-
ance matrix after integrating out the random effects. Similarly, compute the χ2-discrepancy
statistic for the observed HERS data.
Step 6: repeat steps 1–5 for each posterior sample and compute the posterior predictive
probability that the replicated χ2-statistic is larger than the observed χ2-statistic.

The posterior probability that the χ2-statistic is larger than the observed χ2-statistic is 0.55,
which indicates a reasonable fit of our JM to the observed data.

4.3. Results
The results for the longitudinal part of the proposed JM and the LMM are presented in Table
3. Table 2 shows the results from the dropout and survival parts of the fitted JM. We first focus
on the results based on the Bayesian approach.

4.3.1. Results for the unconditional longitudinal profile
The estimated main effect of time (posterior mean) in the unconditional model from the JM is
−0:863 (95% credible interval [−1:105, −0:628]), which is larger in magnitude than the estimate
from the LMM under ignorable missingness. The primary difference between the LMM and JM
analyses is that the LMM assumes that those who dropped out or died earlier in the study had
similar longitudinal CD4 cell profiles (intercept and time slopes) to those with later occurrences
of these two events given past observed values and covariates. However, from Table 2 it is clear
that patients who dropped out or died early tended to have larger declines in CD4 cell count
over time (γD

2 = 0:443 (95% credible interval [0.349,0.537]), γS
2 = 1:192 (95% credible interval

[0.911, 1.547])). As a result, the time slope under ignorable missingness may be underestimated
(with a less steep decline). Similarly, the JM estimates show larger differences in the slope of
CD4 cell count within baseline viral load groups, whereas Table 2 indicates that the hazards of
dropout and death are both higher for those with higher baseline HIV viral load. LMM results
also suggest that patients with antiretroviral therapy at baseline had a less steep decline in CD4
cell count given other covariates, but the JM analysis did not find enough evidence to support
this finding. Interestingly, the estimates for the unconditional model from our JM analysis are
very similar to the results from the pattern–mixture model analysis that was reported in Hogan
et al. (2004).

4.3.2. Results for the conditional longitudinal profile given being alive
The inferences that are presented in Table 3 are for the unconditional model. As discussed
previously, we are also interested in the conditional profiles given being alive for the longitudinal
CD4 cell count outcome in the HERS. Fig. 2 presents the unconditional and partly conditional
longitudinal profiles (posterior mean estimates) of CD4 cell counts for patients who had low
baseline HIV viral load (0–500 copies ml−1), one HIV symptom and were taking antiretroviral
therapy at baseline. Again, the LMM analysis underestimates the CD4 cell time slope as patients
who stayed in the study tended to have a less rapid decline of CD4 cell count. The unconditional
mean profile from the JM analysis corrects the selection bias but implicitly extrapolates the
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Table 3. Results for the longitudinal part of the JM analysis and the LMM analysis (under missingness at
random) of the HERS data†

Results for the JM Results for the LMM

Bayesian analysis MLE analysis Estimate 2.5% 97.5%

Mean 2.5% 97.5% Estimate 2.5% 97.5%

Intercept 15.080 13.700 16.410 14.901 14.267 15.509 14.589 13.208 15.969
Time (visit) −0.863 −1:105 −0:628 −0.902 −1:024 −0:795 −0.574 −0:803 −0:344
Baseline HIV viral load (copies ml−1)

0–500 10.040 8.495 11.550 10.035 9.115 10.956 10.520 8.974 12.066
500–5000 6.623 5.175 8.020 6.605 5.764 7.288 6.985 5.530 8.440
5000–30000 2.977 1.464 4.519 2.946 1.907 3.907 3.210 1.611 4.808
>30000 Reference Reference Reference

Baseline HIV symptoms −0:115 −0:513 0.268 −0:182 −0:614 0.234 −0:142 −0:550 0.265
Antiretroviral therapy −4.653 −5:485 −3:814 −4.815 −5:719 −3:990 −4.760 −5:600 −3:920

at baseline
Time Å baseline viral load (copies ml−1)

0–500 0.464 0.207 0.734 0.463 0.319 0.597 0.232 −0:016 0.480
500–5000 0.433 0.183 0.684 0.422 0.311 0.533 0.220 −0:019 0.459
5000–30000 0.273 0.003 0.547 0.266 0.104 0.424 0.153 −0:108 0.414
>30000 Reference Reference Reference

Time Å baseline −0:049 −0:107 0.013 −0:054 −0:117 0.010 −0:027 −0:086 0.032
HIV symptoms

Time Å antiretroviral 0.109 −0.011 0.229 0.105 −0.027 0.223 0.159 0.040 0.279
therapy at baseline

corr.bi1, bi2/ −0:305 −0.380 −0:229 — — — −0:343 — —
var.bi1/ 29.120 26.000 32.520 — — — 29.284 — —
var.bi2/ 0.539 0.467 0.622 — — — 0.450 — —
σ2

ε 7.304 7.026 7.583 — — — 7.345 — —

†For results from the Bayesian approach, we present the posterior mean, standard deviation and 95% credible
intervals. For the maximum profile likelihood estimation results, we provide point estimates and 95% confidence
intervals.

longitudinal CD4 cell count profile beyond death. Therefore, it gives the lowest CD4 cell count
profile because it assumes that the CD4 cell count beyond death tended to be lower than those
from survivors. In contrast, the partly conditional mean profile adjusts for the selection bias
due to informative dropout but allows the survival differences over time. Thus it lies between
the two unconditional mean profiles from the JM and LMM.

Since baseline HIV viral load is an important factor associated with informative dropout
and HIV-related deaths (Table 2), we also obtain the partly conditional mean profiles for other
baseline HIV viral load groups (with one HIV symptom and antiretroviral therapy at baseline).
Details can be found in the on-line supplementary materials. As the partly conditional mean
profiles take into account the survival differences over time and between baseline HIV viral
load groups, the differences between the profiles from different baseline HIV viral load groups
are reduced compared with those unconditional mean profiles. In other words, the interaction
between time and baseline HIV viral load groups is smaller because, through the selection by
survivals, the population remaining in the study is less heterogeneous.

The estimated regression coefficients from profile maximum likelihood estimation are similar
to those from the Bayesian approach, which are also presented in Tables 2 and 3. However,
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Fig. 2. Estimated longitudinal profiles (posterior mean) of CD4 cell count for patients who had low baseline
HIV viral load (0–500 copies ml�1), one HIV symptom and were taking antiretroviral therapy at baseline
in the HERS: �, unconditional mean profile of CD4 cell count from the LMM analysis .E.Yij jxij / D xT

ijβ/;
4, unconditional mean profile of CD cell count from the JM analysis .E.Yij jxij / D xT

ijβ/; }, partly conditional
mean profile given that the patients were still alive at the current visit .E.Yij jxij , Si � j//

this profile maximum likelihood approach is extremely computationally intensive as there are
32 parameters to examine. To make the computational time affordable, we stop the program
at 500 iterations to obtain the maximum profile likelihood estimates at each grid point of
the parameters. In Tables 2 and 3, we find that most confidence intervals from the maximum
profile likelihood approach are narrower than the credible intervals that are obtained from the
Bayesian approach, which is possibly due to the cut-off of 500 iterations as suggested by our
investigations.

4.3.3. Summarizing remarks
Overall, our results for the unconditional model are consistent with the findings that were
reported in Hogan et al. (2004), i.e. baseline HIV viral load groups had very different uncon-
ditional CD4 cell count profiles over time. However, these differences were smaller if we focus
on the conditional CD4 cell count profiles of the survivor population over time, which was
not provided in the pattern–mixture model approach in Hogan et al. (2004). In addition, we
find that baseline HIV viral load groups were associated with dropout and HIV-related death,
and baseline antiretroviral therapy status was associated with HIV-related death, whereas these
factors that were related to the selection processes of dropout and HIV-related death were not
able to be examined in Hogan et al. (2004).

5. Simulation study

In this section, we conduct a brief simulation study to examine the finite sample performance
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of the JM proposed. The design of the simulation study is motivated by the HERS analysis in
Section 4. We perform the estimation by using the Bayesian approach, because of the compu-
tational issues from the maximum likelihood approach as discussed in Section 4. Details about
the simulation design and estimation can be found in the on-line supplementary materials.

For regression coefficients and variance component parameters in the longitudinal model
(Table 1 in the on-line supplementary materials), the posterior mean estimates based on the
JM proposed had minimal absolute biases and the 95% credible intervals had good coverage
probabilities.

Overall, the posterior mean estimates from the dropout model had small biases and the
95% credible intervals had good coverage probabilities (Table 2 in the on-line supplementary
materials). For the HIV-related death model, the biases are slightly larger for certain parameters,
possibly because of the large curvature in the true regression function as well as the high survival
probabilities in this simulation design and the consequent lack of information from the data for
estimation. In addition, compared with the parameters in the dropout model, the parameter
estimates in the HIV-related death model had larger empirical standard deviations. Further
discussions about the simulation results can be found in the supplementary materials.

6. Discussion

In this paper, we developed a new likelihood-based approach to dealing with informative dropout
mixed with death in longitudinal studies. An important feature of our approach is that inferences
from both unconditional and partly conditional models can be obtained conveniently. More-
over, compared with the existing weighted estimating equation approaches for partly conditional
models, our likelihood-based approach explicitly allows for informative dropout, censoring of
survival information and also intermittent missing data. Our model also helps to shed light
on the factors that influence the selection process by dropout and survival. The HERS data
analysis in Section 4 confirmed the findings in Hogan et al. (2004) for the unconditional model,
but it also provided the inferences for partly conditional models, which were not addressed in
the pattern–mixture model approach of Hogan et al. (2004).

In our motivating application from the HERS, we focus on the longitudinal outcome; and
HIV disease progression represented by changes in CD4 cell count is believed to be strongly as-
sociated with the dropout and HIV-related death. Therefore, we use random effects in the model
for CD4 cell counts to characterize the HIV disease progression, and govern the relationships
between HIV disease progression and dropout and HIV-related death. A key assumption in our
joint modelling approach is the independence of the complete longitudinal data and semicom-
peting risks data given the random effects and covariates. As suggested by a referee, to assess
the conditional independence between dropout and death times we could introduce additional
frailty terms apart from the random effects that are specified in the longitudinal model. How-
ever, one aspect of the conditional independence assumption is unverifiable because we cannot
assess the conditional independence between missing longitudinal data and dropout and death
times given random effects and covariates. In practice, we could carefully model the residual
covariance and random-effects structures in the JM such that the valid extrapolation of the
missing longitudinal data is more plausible. As in all problems with informative missing data,
a sensitivity analysis is required to check the effect of the unverifiable assumption about the
extrapolation of the missing data on the inferences and conclusions drawn from the models
fitted to the observed data. Unfortunately, unlike selection models and pattern–mixture mod-
els for addressing informative missing data problems, research for sensitivity analysis strategies
under the shared parameter model framework is very limited and it is not clear how to perform
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sensitivity analyses without changing the inferences based on the observed data (Daniels and
Hogan (2008), chapter 8). Further work on sensitivity analysis within the shared parameter
model framework is of great interest.

Following the literature for the joint modelling of longitudinal and time-to-event data, we
specified a parametric LMM for the unconditional model of the longitudinal outcome. This can
be made more flexible by incorporating splines or fractional polynomials in both the population
level and the individual level longitudinal profiles. Therefore, the serial correlation can be more
flexibly characterized with a time varying random-effects specification; and the functional forms
of the regression function in the longitudinal part can be made semiparametric. In addition,
more flexible functional forms can be introduced into the regression models for dropout and
HIV-related death to relax the parametric assumption.

We emphasize, regardless of how flexibly we specify the joint model, extrapolation is al-
ways involved when making inferences about the unconditional longitudinal outcome pro-
file by using data truncated by dropout and death. We could assess only whether the model
fits the observed data well (Daniels and Hogan, 2008), which is an advantage of our meth-
ods because model assessment based on the observed data is more straightforward within the
likelihood-based frameworks (e.g. through the posterior predictive checks in the Bayesian frame-
work).

As pointed out by a referee, a longitudinal model with ignorable dropout and death times is
also an option in practice. When all covariates that are associated with the dropout and death
times are included in the longitudinal model and the random effects that characterize the dis-
ease progression are not associated with the dropout and death times, the longitudinal outcome
is independent of the dropout and death times given covariates. In this case, the dropout and
death times are ignorable, given that they have distinct parameters from the parameters of the
longitudinal model and the longitudinal model (including the covariance structure) is correctly
specified (Little and Rubin, 2002; Daniels and Hogan, 2008). Under this model, the mean of the
longitudinal outcome conditionally on being alive is the same as the unconditional mean, given
covariates. Our approach relaxes the assumption in this model with ignorable dropout and death
times by allowing the random effects that characterize the underlying disease progression to be
associated with the dropout and death times, although we still make unverifiable assumptions as
discussed. In practice, it is difficult to differentiate the models assuming ignorable missingness
and non-ignorable missingness on the basis of the model fits to the observed data only (Molen-
berghs et al., 2008). Therefore, it is important to include the model with ignorable dropout and
death times as a plausible option. Note that the key requirements under this model are inclusion
of all covariates that are associated with dropout and death and correct specification of the full
distribution for the longitudinal outcome.

In the HERS data, the observed dropout time is discrete. We discretize the time for HIV-
related death following Barrett et al. (2015) such that the dropout and HIV-related death follow
the same timescale. Barrett et al. (2015) investigated the effect of discretization of the timescale
on the inferences of the longitudinal and survival submodels. Their simulation studies and anal-
ysis of special cases suggested that the parameter estimates (in particular, the covariate effects
in the longitudinal and survival submodels) were not greatly influenced by the discretization.
Moreover, Barrett et al. (2015) theoretically proved that there is no loss of information when
the survival functions are linear between discrete time points. In practice, a discretization that
ensures approximate linearity was recommended.

The Bayesian approach for fitting our model is relatively straightforward and the WinBUGS
code and R code for obtaining partly conditional profiles are available from http://wileyon
linelibrary.com/journal/rss-datasets.
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Owing to the complexity of derivatives of multivariate normal distribution functions with
respect to the unknown parameters, the maximum likelihood estimation and Hessian matrix can
be obtained only numerically, and we had computational issues in implementing the maximum
likelihood estimation for the HERS analysis. As mentioned previously, the challenges include
the following.

(a) The estimation and inference are extremely computationally intensive because of the need
to calculate the multivariate normal probabilities of high dimension, together with the
large number of model parameters.

(b) Monte Carlo errors are unavoidable when approximating multivariate normal probabili-
ties of high dimensions in the evaluations of the log-likelihood function.

These errors not only introduce noise in the convergence process when it reaches the neighbour-
hood of the MLE but also lead to inaccurate numerical approximation of the Hessian matrix.
In our investigation for the analysis of HERS data, the R function optim with the Nelder–
Mead method struggles to find the parameter values that minimize the minus log-likelihood
function after 5000 iterations. It appears that it is impossible to reach a reasonably small tol-
erance for convergence. These Monte Carlo errors are more prominent in our analysis than
the analysis in Barrett et al. (2015) probably because of the calculation of higher dimensional
(up to 24) multivariate normal probabilities in our model. A possible solution to this problem
is the maximum smoothed likelihood estimation (Ionides, 2005). In fact, our profile maxi-
mum likelihood approach for the HERS data has partly used this concept of smoothing the
approximated log-likelihood functions. Further research is required on the use of maximum
smoothed likelihood estimation for our JM. Directly calculating the conditional mean of the
random effects given being alive in Section 3.4 also involves calculation of multivariate nor-
mal probabilities. In the HERS application, the situation is slightly better than calculating the
marginal likelihood, because the dimension is up to 12 (instead of 24). Another approach to
obtaining the conditional mean of random effects given being alive is to sample directly from
the multivariate skew normal distribution for the random effects, given the posterior samples
of the model parameters, and to calculate the corresponding sample means of the random-
effects samples. This sampling procedure is made easier because of the specification of our
JM under discretization of the death timescale. For other JMs with continuous timescale for
death, the conditional distribution of random effects given being alive will usually not have
a closed form. Therefore, the sampling will require more computational steps, for example,
through the Metropolis–Hastings algorithm (Rizopoulos, 2011). As pointed out by a referee,
when the dimension of the random effect is low (e.g. with random intercept and slope only),
Gauss–Hermite quadrature can be used to integrate out random effects for calculating the
marginal likelihood directly. In this case, the above computational issue for calculating multi-
variate normal probabilities does not apply to fitting our JM. When the dimension of random
effects is high (e.g. with time varying random effects through specification of splines), it is
challenging to approximate effectively the integration by using Gaussian quadrature. Overall,
in practice we recommend using the Bayesian approach for estimation in our JM, because of
its computational efficiency with off-the-shelf software and the challenges in maximum like-
lihood estimation when calculating high dimensions of multivariate normal probabilities is
required.
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