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ABSTRACT
This paper introduces a Deep Scattering network that utilizes
Dual-Tree complex wavelets to extract multi-scale translation
invariant representations from an input signal. The compu-
tationally efficient Dual-Tree wavelets decompose the input
signal into equally spaced representations over scales. Trans-
lation invariance is introduced in the representations by apply-
ing a non-linearity over a region followed by averaging. The
discriminatory information from the equally spaced locally
smooth signal representations aids the learning of the classi-
fier. The proposed network is shown to outperform Mallat’s
ScatterNet [1] on four datasets with different modalities, both
for classification accuracy and computational efficiency.

Index Terms— DTCWT, Scattering network, Convolu-
tional neural network, USPS dataset, UCI datasets.

1. INTRODUCTION

Signal classification is a difficult problem due to the consider-
able translation, rotation and scale variations that can hinder
the classifier’s ability to measure signal similarity [2]. Deep
Convolutional Neural Networks (CNNs) [3] have been widely
used to eliminate the above-mentioned variabilities and learn
invariant as well as discriminative signal representations by
using successive kernel operations (linear filters, pooling, and
non-linearity). Despite their success, the optimal configura-
tion of these networks is not well understood because of the
cascaded nonlinearities.

Scattering convolution network proposed by S. Mallat in
[1] provided a mathematical framework to incorporate ge-
ometric signal priors to extract discriminative and invariant
signal representations. Invariance is introduced in the rep-
resentations by filtering the input signal with a cascade of
multiscale and multidirectional complex Morlet wavelets fol-
lowed by pointwise nonlinear modulus and local averaging.
The high frequencies lost due to averaging are recovered at
the later layers using cascaded wavelet transformations with
non-linearities, justifying the need for a multilayer network.

This paper proposes an improved Deep Scattering ar-
chitecture that uses Dual-Tree Complex Wavelet Transform
(DTCWT) [4] to decompose a multi-resolution input signal
into translation invariant signal representations. The input
signal is first decomposed into multi-resolution signal rep-

resentations that are equally spaced on the scale domain.
Translation invariance is then introduced within each repre-
sentation by applying a non-linearity over a region followed
by local averaging. Next, a log non-linearity is used to
separate the multiplicative low-frequency illumination com-
ponents within the representations. Finally, a Support Vector
Machine (SVM) is used to create discrimination between dif-
ferent signal classes by learning weights that best summarize
the regularities (common coefficients) in the training data
and simultaneously ignore the coefficients arising due to the
irregularities [5].

The main contributions of the paper and their reasoning
are explained below:

• Multi-scale Input Signal: The input signal is decom-
posed into representations that are equally spaced on
the scale space using a DTCWT based decimated pyra-
mid of complex values [6]. The multi-scale represen-
tations have redundant local regularities that allows the
SVM to optimally learn weights that learn discrim-
inatory features (edges between two objects within
an image) from fine scale representations while non-
discriminator features like the middle of the objects
from the coarse features [7].

• DTCWT Filter Bank: The proposed network uses
DTCWT bank for filtering as opposed to Morlet wavelets [1]
due to its perfect reconstruction properties [4]. Perfect
reconstruction property allows the DTCWT filter to
extract features without any aliasing.

• Region Non-Linearity: The extracted representations
are cascaded by a region non-linearity as opposed to
a point non-linearity and then followed by local aver-
aging to produce a regional translation invariant rep-
resentation. The region non-linearity selects the dom-
inant feature within the region while simultaneously
suppressing features with lower magnitudes leading to
invariance similar to the max operator in CNNs.

The performance of the proposed network is tested on
four popular datasets selected from different modalities. Such
diversity of data sets is crucial to verify the generalization of
the proposed network to a large variety of problems.

The paper is divided into the following sections. Section 2
describes the proposed Deep Multi-Resolution DTCWT Scat-
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tering Architecture while Section 3 presents the step by step
experimental results leading to signal classification. Section
4 draws conclusions about the experimental results.

2. MULTI-RESOLUTION DTCWT SCATTERNET

In this section, the mathematical formulation of the proposed
Multi-Resolution DTCWT Scattering Network is presented
for 2 layers that decompose a one-dimensional input signal
x into translation invariant representations that are equally
spaced across the scale. However, the formulation can be eas-
ily extended to higher dimensions and deeper layers.

First, the multi-resolution representation of the signal x
is obtained at interleaved scale (s) [6] using a DTCWT based
decimated pyramid of complex values as shown below:

[x, x′] = decimated(x) (1)

The proposed scattering network is applied at each resolu-
tion (x, x′) to produce a translation invariant representation at
multiple layers. For the sake of simplicity, the derivation is
presented only for the input signal x.

The proposed architecture is realized by arranging DTCWT
filters with numerous scales (and orientations (for only 2D
signal) in multiple layers to extract stable and informative
signal representations. DTCWT is an advantageous filtering
choice due to its shift invariance and directional selectivity
properties. DTCWT wavelets is represented by ψ (with a real
ψa and imaginary ψb group). The complex band-pass filter ψ
is decomposed into real and imaginary groups as shown:

ψ(t) = ψa(t) + ιψb(t) t = (t1, t2) (2)

The signal x is filtered at the first layer (L1) using a family of
DTCWT wavelets ψλ(t) at different scales λ, formulated as:

x ? ψλ(t) = x ? ψaλ(t) + ιx ? ψbλ(t) (3)

The wavelet transform response commutes with translations,
and is therefore not translation invariant. To build a transla-
tion invariant representation, aL2 smooth non-linearity is first
applied over all overlapping regions of size R (R×R for 2D
signal) in feature output, obtained at a particular scale (and
six orientation (θ) (for 2D signal)). The non-linearity applied
to one of the above-mentioned regions is shown below:

|G ? ψλ(t)|R =
√
|Greal ? ψaλ(t)|2 + |Gimag ? ψbλ(t)|2 (4)

where R is the size of the region and G is a group of R
(R × R for 2D signal) complex scattering coefficients. L2 is
a non-expansive non-linearity that makes it stable to additive
noise and deformations [1]. The region non-linearity selects
the dominant feature in the region while simultaneously sup-
pressing features with lower magnitudes. This creates trans-
lation invariance in a larger region similar to the max operator
in CNNs. The scattering coefficients obtained after applying

the region non-linearity to the outputs of every wavelet scales
is given by as |x ? ψλ1

|R.
Next, the desired translation invariant representation are

obtained at the first layer (L1) by applying a local average on
|x ? ψλ1

|R, as shown below:

(L1)R =

(
|x ? ψλ1

|R
)
? φ2J (5)

The high frequencies coefficients lost by the averaging oper-
ator are recovered at the second layer (L2) by calculating the
wavelet coefficients of |x ? ψλ1 |R by the wavelet at scale λ2
given as (|x ? ψλ1

|R) ? ψλ2
(t) [1].

For a maximum scale λmax, the features of the first
layer (L1) extracted at scales smaller than the maximum
scale (λmax) are filtered with the DTCWT filter at coarser
scales (λoriginal < λ <= λmax) to produce translation in-
variant features for the second layer. The length of any path
p in the proposed network is a maximum of two as the lost
high-frequency components are recovered along a path by
filtering with only one wavelet with scale less than λmax and
greater than the original wavelet at which the coefficients
were extracted. The recovered frequencies are converted into
a translation invariant representation at second layer (L2) by
again taking a local average as shown below:

(L2)R =

(
|
(
|x ? ψλ1 |R

)
? ψλ2 |R

)
? φ2J (6)

The scattering coefficients SJx for the network at different
scales for two layers at a path p can be obtained using the
following:

SJx[p] =


x ? φ2J(

|x ? ψλ1
|R
)
? φ2J(

|
(
|x ? ψλ1

|R
)
? ψλ2

|R
)
? φ2J


λ=(2,3,4)

(7)

A logarithm non-linearity proposed by Oyallon et al. [8], is
applied to the scattering coefficients in order to transform the
low-frequency multiplicative components that arise due to il-
luminations into additive components. These additive fea-
tures coefficients can now be ignored as noise by the classi-
fier. The logarithm applied to the scattering coefficients (Sx)
extracted from a dataset with M training images, where the
coefficients computed from a single signal that has N dimen-
sions, is given by:

ΦM×N = log(SxM×N ) + k (8)

where Sx are the scattering coefficients and k is (small) con-
stant added to reduce the effect of noise magnification at small
signal levels. The value of the constant k (1e−6) used in [8]
is duplicated for all the experiments in this paper.
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Table 2. Classification error (%) comparison on USPS
Dataset Proposed ScatNet [1] FIC [9]
USPS 2.54 2.6 5.43

3. OVERVIEW OF RESULTS

Experiments are conducted on four real-world datasets se-
lected from the image, audio, biology and material modalities
to evaluate the performance of the proposed DTCWT multi-
resolution scattering network. In order to test the general-
ization of the proposed network to different problems, a large
mixture of data sets from different domains with various sizes
and dimensionality are used for experimentation. Please see
Table 1 for a detailed description of the datasets used in our
experiments.

The proposed multi-resolution DTCWT scattering net-
work is applied on each dataset to extract translation invariant
multi scale representations that are further used for classifi-
cation. Scattering coefficients in the case of two-dimensional
signal for all the experiments is computed at six orientations
(15, 45, 75, 105, 135, 165). The discrimination between the
signal classes is achieved using a gaussian SVM. Before the
SVM is trained on the training set, the mean of the training
set is subtracted from each feature followed by normalization
by the standard deviation of the training set for that feature.

The test set generalization error of the proposed Deep
DTCWT multi-resolution scattering network is reported on
each Dataset and compared with the scattering network pro-
posed by Mallat et al [1]. In addition, this error for the pro-
posed network is also compared with the recently proposed
machine learning approaches used for classification of the
datasets. Only those approaches are considered that don’t
augment the datasets and apply their algorithm only on the
unaltered signal.

3.1. US Postal Service Dataset

The US postal service dataset consists of two-dimensional
structured greyscale image signals with 7291 training obser-
vations and 2007 test observations [10]. This dataset was gen-
erated by scanning the handwritten digits from envelopes by
the U.S. Postal Service. The recorded images are de-slanted
and size normalized to 16 x 16 (256) pixels images in the
dataset. The objective is to differentiate between 10 different
digits between 0 and 9.

The proposed scattering network extracts the input sig-
nal at 6 resolution (s) (1, 0.85, 0.70, 0.6, 0.5, 0.35). The
translation invariant features are extracted at same parame-
ters mentioned in the Section. 3.1. As noted from Table. 1,
the proposed network with region non-linearity and without
log non-linearity results in the lowest classification error of
2.54%. This increase in error due to the log non-linearity is
explained in the previous section. The classification error of
the proposed architecture is also compared to ScatterNet [1]

and Fuzzy Integral Combination algorithm [3] as presented
in Table. 2. The proposed architecture outperforms both the
algorithms.

3.2. The UCI Isolet Dataset

The Isolet dataset comprises of one-dimensional audio sig-
nals collected from 150 speakers uttering all characters in the
English alphabet twice. Each speaker contributed 52 training
examples with a total of 7797 recordings [11]. The record-
ings are represented with 617 attributes such as spectral coef-
ficients, contour, sonorant and post-sonorant are provided to
classify letter utterance.

The proposed scattering network decomposes the input
signal at 4 resolution (s) (1, 0.70, 0.5, 0.35). The transla-
tion invariant features are extracted at 6 scattering DTCWT
wavelet scales (J) for the input signal at every resolution. Re-
gions (R) of size 1×4 is chosen for the application of the
region non-linearity. A cost value (c) of 15 was chosen for
the linear SVM. Again, the parameters are selected using 5-
fold cross validation. The generalization error is reported on
10-fold cross validation for this dataset. Table. 1 shows that
the multi-resolution scattering architecture with region non-
linearity and log non-linearity produces the lowest classifi-
cation error of 4.14%. The proposed method outperformed
ScatterNet [1] but was unable to surpass the performance of
Extreme entropy machines [12] as shown in Table 3.

Table 3. Classification error (%) comparison on Isolet
Dataset Proposed ScatNet [1] EEM [12]
Isolet 4.14 5.78 2.70

3.3. The UCI Yeast Dataset

This is a highly imbalanced one-dimensional signal dataset
that consists of 1484 yeast proteins with 10 cellular binding
sites [11]. Each binding site is described with 8 attributes.
The aim is to classify the most probable cellular localization
site of the proteins.

The proposed scattering network decomposes the input
signal at 2 resolution (s) (1, 0.70). The translation invariant
features are extracted at 2 scattering DTCWT wavelet scales
(J) for the input signal at every resolution. The Region (R)
size of 1×2 and a cost value (c) of 15 is chosen using 5-fold
cross validation. The generalization error was reported on
10-fold cross validation for this dataset. Table. 1 shows that
the multi-resolution scattering architecture with region non-
linearity and log non-linearity produces the lowest classifi-
cation error of 35.02%. The proposed method outperformed
ScatterNet [1] but was unable to outrank the Extreme entropy
machines [12] as shown in Table 4.

Table 4. Classification error (%) comparison on Yeast
Dataset Proposed ScatNet [1] IS [13]
Yeast 35.02 35.89 33.0
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Table 1. Classification error (%) on different datasets for each component of the proposed network. DTCWT ScatNet: DSCAT,
DTCWT ScatNet + Pooling: DSCATP, Multi-Resolution DTCWT ScatNet: MDSCAT, Multi-Resolution DTCWT ScatNet +
Pooling: MDSCATP. The left result in / is without log non-linearity applied while the right is with log applied (NoLog/Log).

Dataset DSCAT DSCATP MDSCAT MDSCATP
USPS 3.31 / 3.38 3.24 / 3.33 2.89 / 3.11 2.56 / 2.84
Isolet 5.14 / 5.3 5.10 / 5.36 4.75 / 5.02 4.14 / 4.88
Yeast 41.65 / 41.17 45.86 / 45.85 37.04 / 34.62 39.77 / 39.04
Glass 31.78 / 29.16 31.77 / 33.68 27.82 / 24.32 30.05 / 26.06

3.4. The UCI Glass Dataset

This dataset consists of 214 one-dimensional signals that de-
scribe six types of glass based on 9 chemical fractions of the
oxide content [11]. This dataset was motivated by a crimino-
logical investigation where the correct classification of glass
left on the crime scene could be used for evidence. Hence, the
aim is to classify between different types of glass.

The proposed scattering network uses the same parame-
ters as mentioned in Section. 3.4 for feature extraction. The
generalization error was reported on 10-fold cross valida-
tion for this dataset. Table. 1 shows that the multi-resolution
scattering architecture with region non-linearity and log non-
linearity produces the lowest classification error of 24.32%.
The proposed method outperformed ScatterNet [1] and Ker-
nelized Vector Quantization [14] as shown in Table 5.

Table 5. Classification error (%) comparison on Glass
Dataset Proposed ScatNet [1] KVQ [14]
Glass 24.32 28.86 31.6

4. CONCLUSION

The paper proposes a ScatterNet that extracts regionally trans-
lation invariant features from an input signal that are equally
spaced over the scale space. The proposed algorithm was
tested on four datasets. It outperformed Mallat’s ScatterNet
on all the datasets while was able to outperform the learning
based algorithms only on two datasets. Hence, it is necessary
to take learning into account. The proposed scattering the
network can then provide the first two layers of such learn-
ing networks. It eliminates translation variability, which can
help in learning the next layers. In addition, this network can
replace simpler low-level features such as SIFT vectors.
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