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Abstract—Virtualization technology has been widely adopted
in Cloud data centers for adaptive resource provisioning. With
virtualization, multiple virtual machines (VMs) can be co-
located on a single physical host to yield maximum efficiency.
However, VMs which show high CPU utilization correlations
to other co-located peers are more likely to trigger overload-
ing incidents. This work provides an analysis on effects of
correlation-based VM allocation criteria to Cloud data centers.
The correlations among VMs’ CPU utilizations are considered
as parameters for decision making in VM allocation processes.
Three different expressions of correlation-based criteria are
introduced and evaluated in this work. According to our
simulation results obtained from CloudSim with real-world
workload traces, Cloud data centers with correlation-based al-
location criteria can perform better in terms of reducing energy
consumption and avoid committing Service Level Agreements
violations than those with power-based criteria.
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I. INTRODUCTION

Cloud technology, by pooling resource to on-demand

computing in a cost-effective manner, is gaining prominence

rapidly. The soaring demand for Cloud applications has

produced a surge in resource utilization of Cloud data cen-

ters. Resource provisioning, which minimizes the number of

active physical hosts by allocating virtual machines (VMs)

carefully, is an efficient way to reduce energy expenditure

of Cloud data centers. On the other hand, it is essential for

Cloud service providers to provide the committed processing

power to their subscribers, or a penalty cost will be applied.

Virtualization technology allows resource of a physical host

to be shared by multiple VMs. However, hosts with highly

correlated VMs are more likely to trigger overloading inci-

dents. Therefore, how to prevent the co-location of highly

correlated VMs on the same host becomes an important issue

that needs to be addressed.

Resource allocation problems in Cloud computing can be

regarded as combinatorial problems. Several techniques have

been proposed to analyze performance interference effects

between co-located VMs. In [1], Zhu and Tung proposed

a consolidation algorithm based on an interference model

to search an optimal consolidation configuration. Nathuji

et al. in [2] proposed a QoS-aware control framework to

manage performance interference effects introduced by the

consolidation of multiple VMs onto multicore servers. Their

work is based on a MIMO model to determine whether

additional resources should be allocated to compensate per-

formance degradation due to interference between co-located

workloads. However, both of these works were focusing

on interference effects in VM consolidation processes and

did not emphasis on VM migration techniques. In [3], a

correlation-aware dynamic power management solution tar-

geting the execution of scale-out applications was presented

by Kim et al.. They considered the correlations between co-

located VMs individually instead of calculating the multiple

correlation. In an earlier work of the authors in this paper [4],

host’s temperature was used as a migration criterion. In [5],

the provisioning process was formulated as a stable matching

problem to make hosts operate at desirable utilization levels.

In this work, several VM allocation criteria based on

VMs’ CPU utilization correlations are presented and ana-

lyzed. The criteria were utilized in an allocation mechanism

which optimizes resource allocation to mitigate overloading

caused by correlated VMs. More specifically, correlation

information among VMs are taken into account in the

migration process to lower the risk of further overloading

on source hosts while without imposing negative impacts

on destination hosts. The criteria were implemented and

evaluated on CloudSim [6] with real-world workload data.

Comparing with allocation mechanisms with power-based

criteria, mechanisms with correlation-based criteria show

significant improvements in terms of energy consumption

and fulfilling Service Level Agreements (SLAs).

The rest of the paper is arranged as follows. Preliminaries

are given in Section II. Section III introduces and elaborates

the correlation-based VM allocation criteria. Performance of

the correlation-based mechanism is studied and discussed in

Section IV. Finally, conclusions are given in Section V.

II. PRELIMINARIES

We adopt the multiple correlation coefficient in [7] to

estimate the correlation between VMs. Consider a host with

n co-located VMs and suppose these VMs are represented

by vector V = [V1, V2, ..., Vn]. The correlation strength of

the ith VM toward the other n−1 VMs is measured based on

their last q CPU utilization observations. Let yi be denoted

as the vector containing the last q observations of the ith
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VM. Similarly, let X be denoted as an augmented matrix

comprises the q observations of the remaining n − 1 VMs

on the host. Expressions of yi and X are shown as follow
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Here, yi contains the last q utilization history of the ith VM,

while X contains that of all other co-located VMs. Here,

xp,m is the pth CPU utilization observation of Vm. Then we

can compute the multiple correlation coefficient R2

Vi,V\Vi

for each Vi, which is denoted as

R2

Vi,V\Vi
=

∑q

k=1
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where myi
and mŷi

are the sample means of yi and ŷi

respectively, and ŷi is a vector of predicted values which

can be obtained as follow

ŷi = Xb b = (XTX)−1XTyi. (3)

The correlation coefficient between the ith VM and all the

other co-located VMs is then estimated accordingly.

III. CORRELATION-BASED VM ALLOCATION CRITERIA

In general, a Cloud resource provisioning process contains

three major steps, which are (1) identifying over or under-

utilized hosts, (2) selecting VM(s) on the identified hosts

for migration, and (3) reallocating those VM(s) according

to some given criteria.

In the first step, we adopt Local Regression Robust (LRR)

algorithm introduced in [8] to identify overloaded hosts

because of its superior performance comparing with other

host overloading detection methods. LRR method is an

adaptive utilization threshold detection method. It estimates

the CPU utilization of a host based on its last j CPU

utilization values, and thus determines whether a host is

considered as overloaded. In this work, j is set to 10.

In the second part of the provisioning process, Minimun

Migration Time (MMT) policy in [8] is adopted for VM

selection. Under MMT, a VM associated with the shortest

migration time on a critical host will be selected to be

migrated first. In the results presented in [8], it is shown

that MMT outperforms other selection policies in the VM

selection step.

In this section, we introduce and elaborate three dif-

ferent correlation-based VM allocation criteria which can

be utilized in the last step of the provisioning process,

where suitable hosts will be identified to accommodate the

migrated VM(s). The VM reallocation process is commonly

formulated as a Bin Packing Problem (BPP). Among the

solvers for BPP, the Best-Fit-Decreasing (BFD) heuristic is

employed in this work due to its low complexity.

A. Correlation of Migrated VM(s)

In this approach, a VM will be allocated to a host such that

the correlation between the migrated VM and the existing

VMs on the host is minimized. Such correlation is calculated

using (2).

B. Average Correlation Level of Destination Host(s)

In the second approach, we allocate a migrated VM to

a host with the minimal average correlation level. A host’s

average correlation function (ACL) is defined as follow

ACL =

∑n

i=1
R2

Vi,V\Vi

n
, (4)

where n is the total number of VMs on the candidate

host together with the migrated in VM. Comparing with

the previous approach, the current approach considers the

impact of the migration to the co-located VMs and allows a

host with a relatively large number of VMs being selected,

provided that the correlations between the migrating-in VM

and the co-located VMs are all at low values.

C. Variation of Correlation Level of Destination Host(s)

The higher the correlations among VMs running on a host,

the higher the probability for the host to be overloaded [9].

Based on such phenomenon, in the last approach, we try to

consolidate VMs such that each active host could achieve a

low correlation level among all its co-located VMs to reduce

the risk of overloading.

Intuitively, VMs with strong correlations should be placed

onto different hosts to reduce such a risk. A VM to be

migrated will not choose hosts with VMs that have strong

correlations with it. It should also avoid causing significant

performance impacts on the destination host. Therefore, we

compute the total correlation variation of each candidate host

to efficiently quantify the impact of the migrating-in VM(s)

on their existing VMs, which is defined as

VCL =
n−1
∑

i=1

(

R2

Vi,V\Vi
−R2

Vi,V′\Vi

)

, (5)

where V′ is the vector represented VMs on the host before

receiving the migrating-in VM. Under this criterion, we se-

lect hosts with minimal VCL values for VM reallocation. All

the above approaches can be applied in BFD algorithm for

solving the re-allocation problem. Due to space limitation,

only the last approach is presented in Figure 1.

Details on the operation of the mechanism are elaborated

as follows. At first, we initialize a list of available hosts

from the host overloading detection process and a list of to-

be-migrated VMs (VmsToMigrate) obtained from the VM

selection process. Then the selected VMs are sorted in a

descending order of their current CPU utilizations. For each
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Figure 1: Flowchart of Correlation-based BFD Algorithm

VM in the pipeline, the host with the minimum VCL value

will be selected as its destination. After each reallocation,

the migrated VM would be removed from the VmsToMigrate

list. If no host is available, an inactive host will be turned on

to accommodate the VM. On the other hand, under-utilized

hosts will be turned off to conserve energy. The algorithm

is repeated until all the VMs on the VmsToMigrate list are

being allocated.

It can be observed that an allocation process with the

correlation-based criteria tends to consolidate VMs onto

some hosts that can minimize the impact to their other co-

located VMs. By doing so, an overloading incident is less

likely to be triggered and the number of migrations can

be reduced ultimately. Furthermore, mechanisms with these

criteria can arrange VMs with low correlations to operate

under the same host to yield better utilization.

IV. EXPERIMENTAL EVALUATION

A. Simulation Setup

We implemented and evaluated all the aforementioned

criteria on CloudSim-3.0.3 [6]. In this work, the scenario

under study is based on an Infrastructure as a Service (IaaS)

model. An ordinary Cloud data center with 800 physical

hosts and 1052 VMs was simulated. In the simulation, there

were two types of dual-core hosts with different resource

capacities, namely HP ProLiant G4 servers and HP ProLiant

G5 servers. The corresponding energy models were obtained

from SpecPower08 [10]. At any given instance, multiple

independent users may submit their requests on provisioning

M VMs. These VMs, characterized by their requirements,

are then allocated to the physical hosts. To simulate real-

world scenarios, four different types of single-core VMs with

different levels of MIPS and RAM were simulated in the

simulations. Each VM was configured with 100 Mbit/s of

bandwidth and 2.5 Gigabytes of storage. In the experiments,

the sampling interval of overloading measurements is set to

five minutes. The CPU utilization history q equals to 30.

During the provisioning process, SLAs, a measurement of

QoS, will be established between the Cloud service provider

and its users. If there are any SLA violations, the service

provider will have to pay a penalty, which will increase its

operating cost.

In this paper, the level of SLA violation is measured

using the two metrics in [8] : (1) SLA violation Time per

Active Host (SLATAH) which indicates the percentage of

time when physical hosts have reached 100% CPU utiliza-

tion, and (2) Performance Degradation due to Migrations

(PDM) which shows the overall performance degradation

due to the capacity requirement of the migrated VM and

the VM migration process itself. SLATAH and PDM are

independent to each other and are with equal importance. A

parameter called SLA Violation (SLAV), which integrated

both metrics, is defined as

SLAV = SLATAH × PDM. (6)

In general, energy consumption and SLAV are conflicting

metrics. The goal of a VM allocation mechanism is to

achieve a reasonable trade-off between these two metrics.

In this work, the Energy and SLA Violations (ESV) in [8]

is adopted, that combines energy consumption and SLAV

metrics together to evaluate the overall performance of a

Cloud data center. Here, ESV is expressed as

ESV = E × SLAV, (7)

where E is the total energy consumption of a data center.

B. Performance Analysis

In our experiments, we chose the power-based LRR

mechanism in [8] as a benchmark due to its outstanding

performance over other existing methods. Here, the power-

based LRR mechanism is referred to the method which

adopted host’s power consumption as a migration criteria.

While in other mechanisms under test, correlation-based

criteria mentioned in Section III were adopted separately.

Six different metrics were used to evaluate the efficiency

of the correlation-based criteria, namely energy consump-

tion, migration number, total overloaded hosts, SLATAH,

SLAV, and ESV. Table I shows the results obtained from

the simulations.

As observed in Table I, mechanisms utilizing the

correlation-based criteria invoked less migrations compared

to the benchmark. Note that the number of overloaded hosts

obtained using correlation-based allocation mechanisms are

much lower than that of the power-based mechanism. Table

I also shows the SLATAH values of Cloud data centers with

different VM allocation criteria. Correlation-based allocation



Table I: Simulation Results

VM Allocation Criteria
Energy

(kWh)

Migration

Number

Overloaded

Hosts
SLATAH(%)

SLAV

(x0.00001)

ESV

(x0.001)

Power-based 163.48 27859 3138 5.86 4.64 7.59

Correlation of Migrated VM(s) 125.2 9792 2953 4.28 1.1 1.34

Average Correlation Level (ACL) 125.46 10147 3008 4.6 1.26 1.58

Variation of Correlation Level (VCL) 124.59 9546 2796 3.68 0.89 1.11

mechanisms led to significantly less SLATAH than their

counterparts, which indicates that correlation-based alloca-

tion mechanisms can further reduce the risk of overloading

and thus have less impact on the quality of service. Systems

with lower ESV values mean they can achieve a better

all-round performance. From the simulations, it can be

observed that correlation-based mechanisms can outperform

the power-based LRR mechanism by about 80% in terms

of ESV. The simulation results show the advantages of

considering correlation information among VMs during the

VM reallocation process.

From the results, we find that allocation mechanisms

adopting the VCL criterion can yield lowest ESV values

among all other variations under test. Mechanisms utilizing

the VCL criterion can allocate VM to hosts that introduce

the least impacts to their co-located VMs. Furthermore,

by minimizing the correlations among co-located VMs, the

probability of having overloading incidents is reduced and

thus lead to a low number of VM migrations. In contrast,

for power-based method, hosts with different hardware con-

figurations may encounter the same utilization level, but

associated with very different energy consumption, and vice

versa. Using energy consumption or utilization as the sole

allocation criterion may lead to a poor resource utilization.

Note that the criterion based on ACL did not perform

well as the other two correlation-based criteria. Criterion

based on ACL works well if all the correlations between the

migrating-in VM and the co-located VMs are at low values

and are evenly distributed. However, it cannot identify cases

when there exist a few extreme correlation values as they

are averaged out by the large number of VMs.

V. CONCLUSIONS

In this work, we presented an analysis on the effects of

different correlation-based virtual machine (VM) allocation

criteria to Cloud data centers. Correlation-based allocation

mechanisms allocate VMs to hosts based on CPU utilization

correlations among VMs. VMs with low correlations are

more preferred to be co-located on the same physical host

to lower the risk of overloading, and thus avoid potential

Service Level Agreement (SLA) violations. Performances

of correlation-based allocation mechanisms were evaluated

using CloudSim with real-world workload data. Simulation

results show that the criterion considers correlation varia-
tion of candidate hosts during a VM reallocation process

performs better than other VM reallocation criteria in terms

of reducing energy consumption and SLA violations.
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