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ABSTRACT

A conjunctive query (CQ) is semantically acyclic if it is ear
lent to an acyclic one. Semantic acyclicity has been studied
the constraint-free case, and deciding whether a querytijis
property is NP-complete. However, in case the databasebis su
ject to constraints such as tuple-generating dependeftgis that
can express, e.g., inclusion dependencies, or equalitgrgéng
dependencies (egds) that capture, e.g., functional deperes, a
CQ may turn out to be semantically acyclic under the congfsai
while not semantically acyclic in general. This opens aesnio
new query optimization techniques. In this paper we irgtiand
develop the theory of semantic acyclicity under constsaiiore
precisely, we study the following natural problem: Given@ &nd
a set of constraints, is the query semantically acyclic utttiecon-
straints, or, in other words, is the query equivalent to aclacone
over all those databases that satisfy the set of constpaints

We show that, contrary to what one might expect, decidabilit
of CQ containment is a necessary but not sufficient condiibon
the decidability of semantic acyclicity. In particular, wieow that
semantic acyclicity is undecidable in the presence of gdkt(i.e.,
Datalog rules). In view of this fact, we focus on the main st&s
of tgds for which CQ containment is decidable, and do notuwrapt
the class of full tgds, namely guarded, non-recursive aiutyst
tgds. For these classes we show that semantic acyclicitydsld
able, and its complexity coincides with the complexity of CGh-
tainment. In the case of egds, we show that if we focus on keys
over unary and binary predicates, then semantic acyclgigcid-
able (NP-complete). We finally consider the problem of extihg
a semantically acyclic query over a database that satistes af
constraints. For guarded tgds and functional dependetimes/al-
uation problem is tractable.

1. INTRODUCTION

Query optimization is a fundamental database task that ateou
to transforming a query into one that is arguably more efficie
evaluate. The database theory community has developedakeve
principled methods for optimization of conjunctive qusri€Qs),
many of which are based tatic-analysigasks such as contain-
ment[1]. In anutshell, such methods computeiaimalequivalent
version of a CQ, where minimality refers to number of atoms. A
argued by Abiteboul, Hull, and Vianu [1], this provides adhet-
ical notion of “true optimality” for the reformulation of a@, as
opposed to practical considerations based on heuristiosed&ch
CQ ¢ the minimal equivalent CQ is itsore ¢’ [21]. Although the
static analysis tasks that support CQ minimization are hifgtete
[12], this is not a major problem for real-life applicatigs the in-
put (the CQ) is small.

It is known, on the other hand, that semantic informationuabo
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the data, in the form of integrity constraints, alleviate®ny opti-
mization by reducing the space of possible reformulatidnshe
previous analysis, however, constraints play no role, agQ@va-
lence is defined ovaall databases. Adding constraints yields a re-
fined notion of CQ equivalence, which holds over those dada
that satisfy a given set of constraints only. But finding aimad
equivalent CQ in this context is notoriously more difficiian be-
fore. This is because basic static analysis tasks such asiwon
ment become undecidable when considered in full generdlitis
motivated a long research program for finding larger “iskodl
decidability” of such containment problem, based on sytitak
restrictions on constraints [2, 8, 10, 11, 22, 23].

An important shortcoming of the previous approach, howeser
that there is no theoretical guarantee that the minimizesioe of
a CQ is in fact easier to evaluate (recall that, in general e}
uation is NP-complete [12]). We know, on the other hand,equit
a bit about classes of CQs that can be evaluated efficierttlig |
thus a natural problem to ask whether constraints can betosed
reformulate a CQ as one in such tractable classes, and ifrexd,isv
the cost of computing such reformulation. Following Abitebet
al., this would provide us with a theoretical guarantee nféteffi-
ciency” for those reformulations. We focus on one of the sidad
most studied tractability conditions for CQs; namelgyclicity. It
is known that acyclic CQs can be evaluated in linear time.[27]

More formally, let us writey =s. ¢’ whenever CQg andq’ are
equivalent over all databases that satisfyln this work we study
the following problem:

PROBLEM:  SEMANTIC ACYCLICITY
INPUT : A CQ g and a finite seE of constraints.
QUESTION: Is there an acyclic CQ’ s.t.q =x ¢'?

We study this problem for the two most important classes of
database constraints; namely:

1. Tuple-generating dependenciégds), i.e., expressions of
the formVaVvy(¢(z, y) — 3z¢(Z, 2)), wheregp andy are
conjuntions of atoms. Tgds subsume the important class of
referential integrity constraints (or inclusion depenzies).

. Equality-generating dependenci@gds), i.e., expressions of
the formVz(¢(z) — y = z), where¢ is a conjunction of
atoms andy, z are variables irc. Egds subsume keys and
functional dependencies (FDs).

A useful aspect of tgds and egds is that containment under the
can be studied in terms of tlohase procedurg25].

Coming back to semantic acyclicity, the main problem we wtud
is, of course, decidability. Since basic reasoning wittstaad egds



is, in general, undecidable, we cannot expect semantidicity¢o
be decidable for arbitrary such constraints. Thus, we qunate
on the following question:

Decidability: For which classes of tgds and egds is the problem of
semantic acyclicity decidable? In such cases, what is thrpata-
tional cost of the problem?

Since semantic acyclicity is defined in terms of CQ equivedéen
under constraints, and the latter has received a lot oftadtent is
relevant also to study the following question:

Relationship to CQ equivalenc®#hat is the relationship between
CQ equivalence and semantic acyclicity under constraifgshe
latter decidable for each class of tgds and egds for whicfotineer

is decidable?

Notice that if this was the case, one could transfer the reatur
theory of CQ equivalence under tgds and egds to tackle thegmo
of semantic acyclicity.

Finally, we want to understand to what extent semantic &gjcl
helps CQ evaluation. Although an acyclic reformulation c2@
can be evaluated efficiently, computing such reformulatioght
be expensive. Thus, it is relevant to study the followingstios:

Evaluation:What is the computational cost of evaluating semanti-
cally acyclic CQs under constraints?

Semantic acyclicity in the absence of constraintsThe semantic
acyclicity problem in the absence of dependencies (i.eecking
whether a CQy is equivalent to an acyclic one over the set of all
databases) is by now well-understood. Regarding decitahtl

is easy to prove that a CQis semantically acyclic iff its core’

is acyclic. (Recall that such’ is the minimal equivalent CQ to
q)- It follows that checking semantic acyclicity in the abserof
constraints is NP-complete (see, e.g., [6]). Regardintuatian,
semantically acyclic CQs can be evaluated efficiently [#3,1B].

The relevance of constraints.In the absence of constraints a CQ
q is equivalent to an acyclic one iff its cokg is acyclic. Thus,
the only reason why is not acyclic in the first hand is because it
has not been minimized. This tells us that in this contextasem
tic acyclicity is not really different from usual minimizan. The
presence of constraints, on the other hand, yields a mazeesit
ing notion of semantic acyclicity. This is because constgacan
be applied on CQs to produce acyclic reformulations of them.

Example 1.This simple example helps understanding the role
of tgds when reformulating CQs as acyclic ones. Consider a
database that stores information about customers, reardsnu-
sical styles. The relatiobnterest contains pairgc, s) such that
customer has declared interest in styde The relatiorclass con-
tains pairgr, s) such that record is of styles. Finally, the relation
Owns contains a paifc, r) when customee owns record-.

Consider now a CQ(x, y) defined as follows:

Jz(Interest(z,z) A Class(y, z) A Ouns(z,y)).

This query asks for pairg:, ) such that customerowns record
and has expressed interest in at least one of the styles aithw
r is associated. This CQ is a core but it is not acyclic. Thusnfr
our previous observations it is not equivalent to an acyCkg (in
the absence of constraints).

Assume now that we are told that this database contains dempu
sive music collectors only. In particular, each customenwavery
record that is classified with a style in which he/she hasesged
interest. This means that the database satisfies the tgd:

7 = Interest(z,z),Class(y,z) — Owns(z,y).

With this information at hand, we can easily reformulafe, y) as
the following acyclic CQy' (z, y):

Jz(Interest(z,z) A Class(y, 2)).

Notice thatg andq’ are in fact equivalent over every database that
satisfiesr. (]

Contributions. We observe that semantic acyclicity under con-
straints is not only more powerful, but also theoreticallgrenchal-
lenging than in the absence of them. We start by studyingdeeci
ability. In the process we also clarify the relationshipvetn CQ
equivalence and semantic acyclicity.

Results for tgdsHaving a decidable CQ containment problem is a
necessary condition for semantic acyclicity to be deciglalvider
tgds? Surprisingly enough, it is not a sufficient condition. This
means that, contrary to what one might expect, there areaiatu
classes of tgds for which CQ containment but not semanticliaey
ity is decidable. In particular, this is the case for the vkelbwn
class offull tgds (i.e., tgds without existentially quantified variable
in the head). In conclusion, we cannot directly export témpines
from CQ containment to deal with semantic acyclicity.

In view of the previous results, we concentrate on classes of
tgds that (a) have a decidable CQ containment problem, and (b
do not contain the class of full tgds. These restrictionssatsfied
by several expressive languages considered in the literaBuch
languages can be classified into three main families depgrah
the techniques used for studying their containment probléin
guardedtgds [8], which contain inclusion and linear dependencies,
(ii) non-recursiveg16], and (iii) stickysets of tgds [10]. Instead of
studying such languages one by one, we identify two semaritic
teria that yield decidability for the semantic acyclicitpplem, and
then show that each one of the languages satisfies one stefiecri

e The first criterion isacyclicity-preserving chaserhis is sat-
isfied by those tgds for which the application of the chase
over an acyclic instance preserves acyclicity. Guarded tgd
enjoy this property. We establish that semantic acycligity
der guarded tgds is decidable and has the same complexity
than its associated CQ containment problem:X2EME-
complete, and NP-complete for a fixed schema.

The second criterion igewritability by unions of CQs
(UCQs) Intuitively, a classC of sets of tgds has this prop-
erty if the CQ containment problem under a setdncan
always be reduced to a UCQ containment problem without
constraints. Non-recursive and sticky sets of tgds enj®y th
property. In the first case the complexity matches that of its
associated CQ containment problem: XH IME-complete,

and NP-complete if the schema is fixed. In the second case,
we get a NXPTIME upper bound and anX®TIME lower
bound. For a fixed schema the problem is NP-complete.

The NP bounds (under a fixed schema) can be seen as positive
results: By spending exponential time in the size of the (ma
query, we can not only minimize it using known techniques but
also find an acyclic reformulation if one exists.

Results for egdsAfter showing that the techniques developed for
tgds cannot be applied for showing the decidability of seiman
acyclicity under egds, we focus on the class of keys overyunar
and binary predicates and we establish a positive resutbelya
semantic acyclicity is NP-complete. We prove this by shagwin

'Modulo some mild technical assumptions elaborated in tipepa



that in such context keys have acyclicity-preserving chadster-

estingly, this positive result can be extended to unary tfanal

dependencies (over unconstrained signatures); thist tessilbeen
established independently by Figueira [17]. We leave opleether
the problem of semantic acyclicity under arbitrary egdsewen

keys over arbitrary schemas, is decidable.

Evaluation: For tgds for which semantic acyclicity is decidable
(guarded, non-recursive, sticky), we can use the follovaigp-
rithm to evaluate a semantically acyclic GQover a databas®
that satisfies the constrainis

1. Convertg into an equivalent acyclic C@ underX.
2. Evaluatey on D.
3. Returng(D) = ¢'(D).

The running time isO(|D| - f(|q|,|X|)), where f is a double-
exponential function (since;/ can be computed in double-
exponential time for each one of the classes mentioned aue
acyclic CQs can be evaluated in linear time). This constsw
fixed-parameter tractable algorithrfor evaluatingg on D. No
such algorithm is believed to exist for CQ evaluation [2Bli4, se-
mantically acyclic CQs under these constraints behavehistan
the general case in terms of evaluation.

But in the absence of constraints one can do better: Evafyati
semantically acyclic CQs in such context is in polynomiaidi It
is natural to ask if this also holds in the presence of coimta
This is the case for guarded tgds and (arbitrary) FDs. Footther
classes of constraints the problem remains to be investigat

Further results:The results mentioned above continue to hold for
a more “liberal” notion based on UCQs, i.e., checking whethe
UCQ is equivalent to an acyclic union of CQs under the dedé&lab
classes of constraints identified above. Moreover, in desteat CQ

q is not equivalent to an acyclic C@ under a set of constraints
3%, our proof techniques yield aapproximation ofy underX [4],
that is, an acyclic CQ/ that is maximally contained ig under

3. Computing and evaluating such approximation yields “guic
answers t@ when exact evaluation is infeasible.

Finite vs. infinite databases.The results mentioned above inter-
pret the notion of CQ equivalence (and, thus, semantic iyl
over the set of botffinite andinfinite databases. The reason is the
wide application of the chase we make in our proofs, which-cha
acterizes CQ equivalence under arbitrary databases ohnity.ddes
not present a serious problem though, as all the particldases
of tgds for which we prove decidability in the paper (i.e.agiled,
non-recursive, sticky) arénitely controllable[3, 18]. This means
that CQ equivalence under arbitrary databases and undé fini
databases coincide. In conclusion, the results we obtaisuch
classes can be directly exported to the finite case.

Organization. Preliminaries are in Section 2. In Section 3 we con-
sider semantic acyclicity under tgds. Acyclicity-preseguchase is
studied in Section 4, and UCQ-rewritability in Section 5nf2atic
acyclicity under egds is investigated in Section 6. Evaduadf se-
mantically acyclic CQs is in Section 7. Finally, we presantter
advancements in Section 8 and conclusions in Section 9.

2. PRELIMINARIES

Databases and conjunctive queriesLet C, N andV be disjoint
countably infinite sets ofonstants (labeled) nullsand (regular)
variables(used in queries and dependencies), respectivelygsand
a relational schema. Aatomover o is an expression of the form
R(v), whereR is a relation symbol irr of arity n > 0 andv is

ann-tuple overC U N U V. An instanceover o is a (possibly
infinite) set of atoms over that contain constants and nulls, while
adatabaseovero is simply a finite instance over.

One of the central notions in our work is acyclicity. An insta
1 is acyclic if it admits goin tree i.e., if there exists a tre€ and
a mapping)\ that associates with each nodef 7" an atom\(t) of
1, such that the following holds:

1. For each atonR(v) in I there is a node in 7" such that
A(t) = R(v); and

2. For each nulk occurring in! it is the case that the sét |
x € A\(t)} is connected i

A conjunctive queryCQ) overo is a formula of the form:
q(%) = 3G(Ri(v1) A+ A R (0m)), 1)

where eachR;(7;) (1 < i < m) is an atom without nulls over,
each variable mentioned in the's appears either i or g, andz
are the free variables @f. If z is empty, theny is aBoolean CQ
As usual, the evaluation of CQs is defined in term$iofmomor-
phisms Let I be an instance ang(z) a CQ of the form (1). A
homomorphism frony to I is a mappingh, which is the identity
on C, from the variables and constantsgro the set of constants
and nullsC U N such thatR; (h(7;)) € 1,% for eachl < i < m.
Theevaluation ofy(z) overI, denoted;(7), is the set of all tuples
h(z) over C U N such that: is a homomorphism from to I.

It is well-known thatCQ evaluationi.e., the problem of deter-
mining if a particular tuple belongs to the evaluatiop( D) of a
CQ ¢ over a databasP, is NP-complete [12]. On the other hand,
CQ evaluation becomes tractable by restricting the syictabape
of CQs. One of the oldest and most common such restrictions is
acyclicity. Formally, a CQy is acyclic if the instance consisting of
the atoms of; (after replacing each variable inwith a fresh null)
is acyclic. It is known from the seminal work of Yannakaki§2
that the problem of evaluating an acyclic GQ@ver a databas®
can be solved in linear tim@(|q| - | D).

Tgds and the chase procedure A tuple-generating dependency
(tgd) overo is an expression of the form:

vavy(o(z, ) — 3z29(z, 2)), 2

where bothp andv are conjunctions of atoms without nulls over
For simplicity, we write this tgd a&(z, y) — 3z¢(Z, z), and use
comma instead of for conjoining atoms. Further, we assume that
each variable izt is mentioned in some atom @f We call¢ andy
thebodyandheadof the tgd, respectively. The tgd in (2) is logically
equivalent to the expressiotz (¢4 (Z) — ¢ (Z)), whereg, (z) and

gy () are the CQslyo(z, y) and3zy(Z, z), respectively. Thus,
an instancd overo satisfies this tgd if and only if, (1) C g (I).
We say that an instandesatisfies a set of tgds, denoted = X,

if I satisfies every tgd iX.

The chaseis a useful tool when reasoning with tgds [8, 16, 22,
25]. We start by defining a single chase step. Lée an instance
over schema andr = ¢(Z,y) — 3z (Z, z) a tgd overs. We
say thatr is applicablew.r.t. T if there exists a tupléa, b) of ele-
ments in/ such thaip(a, b) holds inI. In this casethe result of
applyingT over I with (a, b) is the instance/ that extendd with
every atom iny(a, z’), wherez' is the tuple obtained by simulta-

neously replacing each variablec z with a fresh distinct null not

occurring inl. For such a single chase step we wiité 2y 7.

., h(vn)).

2As usual, we writéa(v1, . . ., v,) for (h(v1), ..



Let us assume now thatis an instance antl a finite set of tgds.

A chase sequence fdrunderX is a sequence:
JARALIAINY SRNELZINY PRI

of chase steps such that: (&) = I; (2) Foreachi > 0, 7; is a
tgd in3; and (3)U,~, Ii = 3. We calllJ;., I; theresultof this
chase sequence, which always exists. Although the resaltiofise
sequence is not necessarily unique (up to isomorphismi), @ach
result is equally useful for our purposes since it can be hoaorte
phically embedded into every other result. Thus, from noywea
denote bychase(I, X) the result of an arbitrary chase sequence for
I underX. Further, fora CQ = Hy(Rl(m) Ao A R'm('l_)rn))y
we denote bychase(q,X) the result of a chase sequence for the
databas€{ R1(v1), . .., Rm(v,)} under obtained after replac-
ing each variable: in g with a fresh constant(z).

Egds and the chase procedure. An equality-generating depen-
dency(egd) overo is an expression of the form:

where ¢ is a conjunction of atoms without nulls over, and
xi,x; € . For clarity, we write this egd ag(z) — z; = zj,
and use comma for conjoining atoms. We calthe body of the
egd. An instancd over o satisfies this egd if, for every homomor-
phismh such thath(¢(z)) C I, itis the case thal(z;) = h(x;).
An instancel satisfies a set of egds, denoted = ¥, if I satisfies
every egd in:.

Recall that egds subsume functional dependencies, whicirin
subsume keys. Aunctional dependendfFD) overo is an expres-
sion of the formR : A — B, whereR is a relation symbol inr
of arity n > 0, and A, B are subsets of1,...,n}, asserting that
the values of the attributes &f are determined by the values of the
attributes ofA. For exampleR : {1} — {3}, whereR is aternary
relation, is actually the eg&(z,y, 2), R(z,y',2") — 2z = 2/. A
FDR: A — B as above is calleeyif AUB = {1,...,n}.

As for tgds, the chase is a useful tool when reasoning witls.egd
Let us first define a single chase step. Consider an instaoger
schemas and an egdt = ¢(Z) — x; = x; overo. We say
thate is applicablew.r.t. I if there exists a homomorphismsuch
that h(¢(Z)) C I andh(z;) # h(x;). In this casethe result
of applyinge over I with h is as follows: If bothhi(z;), h(z;)
are constants, then the result is “failure”; otherwisesithe in-
stanceJ obtained fromI by identifying h(x;) and h(z;) as fol-
lows: If one is a constant, then every occurrence of the suléi
placed by the constant, and if both are nulls, the one is cepla
everywhere by the other. As for tgds, we can define the notion
of the chase sequence for an instardcander a se® of egds.
Notice that such a sequence, assuming that is not failinggyal
is finite. Moreover, it is unique (up to null renaming), andigh
we refer tothe chase for/ underX, denotedchase(1,%). Fur-
ther, for a CQq = 3y(Ri(v1) A -+ A Rm(vm)), We denote
by chase(q,X) the result of a chase sequence for the database
{R1(v}),...,Rm(v,,)} under ¥ obtained after replacing each
variablex in ¢ with a fresh constant(z); however, it is impor-
tant to clarify that these are special constants, whichresgdd as
nulls during the chase.

Containment and equivalenceLet g andq’ be CQs and a finite
set of tgds or egds. Thep,is containedin ¢’ undery, denoted
q Cs ¢, if q(I) C ¢'(I) for every instancd such thatl | 3.
Further,q is equivalentto ¢’ under, denoted; =s ¢’, whenever
q Cx ¢ andq’ Cs q (or, equivalently, if¢(I) = ¢'(I) for every
instancel such that/ = ). The following well-known charac-

terization of CQ containment in terms of the chase will beekyd
used in our proofs:

LEMMA 1. Letq(z) and ¢'(z’) be CQs and® be a finite set
of tgds or egds. Theq Cx ¢’ if and only ifc(Z) belongs to the
evaluation ofg’ over chase(q, X).

A problem that is quite important for our work &Q contain-
ment under constraint@gds or egds), defined as follows: Given
CQsq, ¢ and a finite sefS of tgds or egds, is it the case that
q Cx ¢'? Whenevel: is bound to belong to a particular clags
of sets of tgds, we denote this problem@st(C). It is clear that
the above lemma provides a decision procedure for the contait
problem under egds. However, this is not the case for tgds.

Decidable containment of CQs under tgds.It is not surprising
that Lemma 1 does not provide a decision procedure for splvin
CQ containment under tgds since this problem is known to be un
decidable [7]. This has led to a flurry of activity for ideniifig
syntactic restrictions on sets of tgds that lead to decel@i) con-
tainment (even in the case when the chase does not terminate)
Such restrictions are often classified into three main pgnast

GuardednessA tgd is guardedif its body contains an atom, called
guard that contains all the body-variables. Although the chase u
der guarded tgds does not necessarily terminate, querginoment
is decidable. This follows from the fact that the result af tihase
hasbounded treewidthLet G be the class of sets of guarded tgds.

PrRoPOSITION 2. [8] Cont(G) is 2EXPTIME-complete. It be-
comesExpPTIME-complete if the arity of the schema is fixed, and
NP-complete if the schema is fixed.

A key subclass of guarded tgds is the clasbrafar tgds, that is,
tgds whose body consists of a single atom [9], which in tutmsu
sume the well-known class a@ficlusion dependencigginear tgds
without repeated variables neither in the body nor in thelhEib].
LetL andID be the classes of sets of linear tgds and inclusions de-
pendencies, respectivelgont(C), for C € {L,ID}, is PSPACE
complete, and NP-complete if the arity of the schema is fig2dl [

Non-recursivenessA set X of tgds isnon-recursiveif its predi-
cate graph contains no directed cycles. (Non-recursiveaa@gds
are also known ascyclic [16, 24], but we reserve this term for
CQs). Non-recursiveness ensures the termination of theeclaad
thus decidability of CQ containment. LBIR be the class of non-
recursive sets of tgds. Then:

PrRoPOSITION 3. [24] Cont(NR) is complete foNEXPTIME,
even if the arity of the schema is fixed. It becomN&complete if
the schema is fixed.

StickinessThis condition ensures neither termination nor bounded
treewidth of the chase. Instead, the decidability of quenytain-
ment is obtained by exploitinguery rewritingtechniques. The
goal of stickiness is to capture joins among variables thanat
expressible via guarded tgds, but without forcing the classrmi-
nate. The key property underlying this condition can be desd

as follows: During the chase, terms that are associateé (viemo-
morphism) with variables that appear more than once in tg bb
atgd (i.e., join variables) are always propagated (or K&}ito the
inferred atoms. This is illustrated in Figure 1(a); the first of tgds

3In fact, these restrictions are designed to obtain deaidgipéry
answering under tgd$However, this problem is equivalent to query
containment under tgds (Lemma 1).



R(z,y), Ay,2) — Fw T(z,y,w) R(z.y), Ay,2) = Fw T(z,y,w)
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Figure 1: Stickiness and marking.

is sticky, while the second is not. The formal definition is&d on

an inductive marking procedure that marks the variablesrttzy
violate the semantic property of the chase described abt®e [
Roughly, during the base step of this procedure, a varilalieap-
pears in the body of a tgd but not in every head-atom of is
marked. Then, the marking is inductively propagated frowawchie
body as shown in Figure 1(b). Finally, a finite set of tgdis sticky

if no tgd in X contains two occurrences of a marked variable. Then:

PRoOPOSITION 4. [10] Cont(S) is ExPTIME-complete. It be-
comesNP-complete if the arity of the schema is fixed.

that they ensure the so-calléidite controllability of CQ contain-
ment. This means that query containment under arbitratgricgs
and query containment under finite databases are equivalebt
lems. For non-recursive and weakly-acyclic sets of tgds itni-
mediately follows from the fact that the chase terminatesr F
guarded-based classes of sets of tgds this has been sho@h in [
while for sticky-based classes of sets of tgds it has beewrsho
in [18]. Therefore, assuming thét is one of the above syntac-
tic classes of sets of tgds, by giving a solutionSemAc(C) we
immediately obtain a solution fdfinSemAc(C).

The reason why we prefer to focus 8emAc(C), instead of
FinSemAc(C), is given by Lemma 1: Query containment under
arbitrary instances can be characterized in terms of theechihis
is not true for CQ containment under finite databases simely b
cause the chase is, in general, infinite.

3.2 Semantic Acyclicity vs. Containment

There is a close relationship between semantic acyclicitya
restricted version of CQ containment under sets of tgds,eaexw
plain next. But first we need to recall the notion of connecesd
for queries and tgds. A CQ isonnectedf its Gaifman graphis
connected — recall that the nodes of the Gaifman graph of @ CQ
are the variables af, and there is an edge between variahiesd
y iff they appear together in some atomgfAnalogously, a tgd-
is body-connected its body is connected. Then:

PrROPOSITION 5. Let X be a finite set of body-connected tgds
and ¢, ¢’ two Boolean and connected CQs without common vari-

Weak versionsEach one of the previous classes has an associatedables, such thaj is acyclic andy’ is not semantically acyclic under

weak version, calletveakly-guarded8], weakly-acyclid16], and
weakly-sticky10], respectively, that guarantees the decidability of
query containment. The underlying idea of all these classtd®e
same: Relax the conditions in the definition of the class,hso t
only those positions that receive null values during theseharo-
cedure are taken into consideration. A key property of akéh
classes is that they extend the clasSuif tgds, i.e., those with-
out existentially quantified variables. This is not the chsethe
“unrelaxed” versions presented above.

3. SEMANTIC ACYCLICITY WITH TGDS

One of the main tasks of our work is to study the problem of
checking whether a CQis equivalent to an acyclic CQ over those
instances that satisfy a skt of tgds. When this is the case we
say thaty is semantically acyclic undet. The semantic acyclicity
problem is defined belowf is a class of sets of tgds (e.g., guarded,
non-recursive, sticky, etc.):

PROBLEM: SemAc(C)
INPUT : A CQ ¢ and a finite sek of tgds inC.
QUESTION: Isthere an acyclic CQ’ s.t.q =x ¢'?

3.1 Infinite Instances vs. Finite Databases

It is important to clarify thaSemAc(C) asks for the existence
of an acyclic CQq’ that is equivalent t@; underX: focussing on
arbitrary (finite or infinite) instances. However, in praetiwe are
concerned only with finite databases. Therefore, one magncla
that the natural problem to investigateFisSemAc(C), which ac-
cepts as input a CQ and a finite se®2 € C of tgds, and asks
whether an acyclic CQ’ exists such thag(D) = ¢'(D) for every
finite databas® = X.

Interestingly, for all the classes of sets of tgds discussetie
previous sectionSemAc and FinSemAc coincide due to the fact

3. Theng Csx ¢ iff ¢ A ¢’ is semantically acyclic undex.

As an immediate corollary of Proposition 5, we obtain anahit
boundary for the decidability emAc: We can only obtain a pos-
itive result for those classes of sets of tgds for which tstrieted
containment problem presented above is decidable. Monesfidy,
let us defineRestCont(C) to be the problem of checkingCs. ¢/,
given a sett of body-connected tgds i@ and two Boolean and
connected CQg andq’, without common variables, such thais
acyclic andy’ is not semantically acyclic undét. Then:

COROLLARY 6. SemAc(C) is undecidable for every clagsof
tgds such thaRestCont(C) is undecidable.

As we shall discuss lateRestCont is not easier than general CQ
containment under tgds, which means that the only classeglsf
for which we know the former problem to be decidable are those
for which we know CQ containment to be decidable (e.g., those
introduced in Section 2).

At this point, one might be tempted to think that some version
of the converse of Proposition 5 also holds; that is, the séima
acyclicity problem forC is reducible to the containment problem
for C. This would imply the decidability ofemAc for any class
of sets of tgds for which the CQ containment problem is dditela
Our next result shows that the picture is more complicated this
asSemAc is undecidable even over the cldsf sets of full tgds,
which ensures the decidability of CQ containment:

THEOREM 7. The problenSemAc(F) is undecidable.

PROOF We provide a sketch since the complete construction is
long. We reduce from thost correspondence problgifACP) over
the alphabefa, b}. The input to this problem are two equally long
listsws, ..., w, andwy,...,w;, of words over{a, b}, and we ask
whether there is aolution i.e., a nonempty sequenc¢e. . . i,, of
indices in{1, ..., n} such thatv;, ...w;,, = wi, ... w;

m im *



Figure 2: The query ¢ from the proof of Theorem 7.

Let ws,...,w, andwi,...,w,, be an instance of PCP. In the
full proof we construct a Boolean C@ and a set of full tgds
over the signaturd P,, Py, Py, Ps, sync, start, end}, whereP,,
Py, Py, P, andsync are binary predicates, astart andend are
unary predicates, such that the PCP instance giveniby. . , w,
andw?, ..., w, has asolution iff there exists an acyclic @Quch
thatg =s ¢’. In this sketch though, we concentrate on the case
when the underlying graph ef is a directed path; i.e, we prove
that the PCP instance has a solution iff there is a £ @hose
underlying graph is a directed path such thats. ¢’. This does
not imply the undecidability of the general case, but theopiaf
the latter is a generalization of the one we sketch below.

The restriction of the query to the symbols that are neync
is graphically depicted in Figure 2. There,y, z, u, v denote the
names of the respective variables. The interpretatiasyo€ in ¢
consists of all pairs ify, u, z}.

Our set® of full tgds defines theynchronizatiorpredicatesync
over those acyclic CQg whose underlying graph is a path. As-
sume thay’ encodes a worah € {a, b}*. We denote byu[i], for
1 < < |wl, the prefix ofw of lengthi. In such case, the pred-
icatesync contains those pair@, j) such that for some sequence
i1...1m Ofindicesin{1,...,n} we have thatv;, ... w;,, = w[i]
andw;i, ...w; = w[j]. Thus, ifw is a solution for the PCP
instance, therf|w|, |w|) belongs to the interpretation sfnc.

Formally,>: consists of the following rules:

1. Aninitialization rule:

start (), Py (z,y) — sync(y,y).

That is, the first element after the special symo{which
denotes the beginning of a word oVer, b}) is synchronized
with itself.

2. For eachl < i < n, asynchronization rule:

sync(@, ), Pu, (z,2), Py (y,u) — sync(z, u).
Here, Py(z,y), for w = a1...a: € {a,b}", denotes
Py, (z,x1), ..., Pa,(x¢—1,y), Where ther;’s are fresh vari-
ables. Roughly, ifx,y) is synchronized and the element
(resp.,u) is reachable from: (resp.,y) by word w; (resp.,
w}), then(z, u) is also synchronized.

3. Foreach < ¢ < n, afinalization rule:

start(x), Pa(yvz)v Pa(zvu)v P*(u7 'U), end(v)v
sync(y, y2), P, (y1,9), Pur (y2,y) — ¢,

where is the conjunction of atoms:

Py(z,y), Pyu(z, 2), Py(z,u), P(y,v), P(z,v),
Py(z,y), Po(u, 2), Pa(u,y), Py(y,u),
sync(y,y),sync(z, z), sync(y, z), sync(z, y),

sync(y, u), sync(u, y),sync(z, u), sync(u, z).

This tgd enforceschase(q’,>) to contain a “copy” ofg
wheneverg’ encodes a solution for the PCP instance.

We first show that if the PCP instance has a solution given &y th
nonempty sequenae . . . i, With 1 <1, ..., 4, < n,thenthere
exists an acylic CQ/ whose underlying graph is a directed path
such thaty =x, ¢’. Let us assume that;, ...w;,, = a1 ...as,
where eachu; € {a,b}. Itis not hard to prove that =x ¢’, where
q' is as follows:

’
8 P. Pay o o Poy Y Po _Z Pg Y Px 6
start end

Here, againg’,y’, z’, v, v’ denote the names of the respective
variables ofg’. All nodes in the above path are different. The
main reason why =s. ¢’ holds is because the fagtis a solution
implies that there are elemens andy. such thatsync(y1, y2),
Py, (y1,y) and P, (y2,y) hold in chase(q', 2). Thus, the final-
ization rule is fired. This creates a copyqdh chase(q’, %), which
allows g to be homomorphically mapped tdase(q’, 2).

Now we prove that if there exists an acyclic GQsuch that
g =s ¢ and the underlying graph af is a directed path, then
the PCP instance has a solution. Sigpces, ¢/, Lemma 1 tells us
thatchase(q, ) = chase(q’, %) are homomorphically equivalent.
But then chase(q’, ) must contain at least one variable labeled
start and one variable labeleghd. The first variable cannot have
incoming edges (otherwisehase(q’, ) would not homomorphi-
cally map tochase(q, 2)), while the second one cannot have out-
coming edges (for the same reason). Thus, it is the firstiarid
of ¢’ that is labeledstart and the last one’ that is labeledend.
Further, all edges reaching in ¢ must be labeled. (otherwise
¢’ does not homomorphically map 9. Thus, this is the label of
the last edge of’ that goes from variable’ to v’. Analogously,
the edge that leaves in ¢’ is labeledPy. Further, any other edge
in ¢ is labeledP,, P,, orsync.

Notice now thaty’ must have an incoming edge label&d in
chase(q’, %) from some node:” that has an outgoing edge with
label P, (since g homomorphically maps tehase(q’,X)). By
definition of X, this could only have happened if the finalization
rule is fired. In particulary’ is preceded by node’, which in
turn is preceded by’, and there are elemeng$ andy) such that
sync(y1,y2), Puw, (y1,y") and P,y (y2,y") hold in chase(q’, ¥).

In fact, the unique path from; (resp.,y5) to ¢’ in ¢’ is labeled

w; (resp.,w;). This means that the atosgnc(y1, y3) was not one

of the edges of;, but must have been produced during the chase
by firing the initialization or the synchronization rulesidaso on.
This process must finish in the second elemehof ¢’. (Recall
thatsync(z*, z*) belongs tochase(q’, %) due to the first rule of
¥%). We conclude that our PCP instance has a solution. (I

Theorem 7 rules out any class that captures the class offtid| t
e.g., weakly-guarded, weakly-acyclic and weakly-sticlegssof
tgds. The question that comes up is whether the non-wealowsrs
of the above classes, namely guarded, non-recursive ahg séts
of tgds, ensure the decidability 8tmAc, and what is the com-
plexity of the problem. This is the subject of the next twotsets.

4. ACYCLICITY-PRESERVING CHASE

We propose a semantic criterion, the so-callacclicity-
preserving chasehat ensures the decidability 8mAc(C) when-
ever the problenCont(C) is decidable. This criterion guarantees
that, starting from an acyclic instance, it is not possibleléstroy
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Figure 3: The compact acyclic query.

its acyclicity during the construction of the chase. We tpeo-
ceed to show that the class of guarded sets of tgds has aiyyclic
preserving chase, which immediately implies the decidghbdf
SemAc(G), and we pinpoint the exact complexity of the latter
problem. Notice that non-recursiveness and stickinesotlenmjoy
this property, even in the restrictive setting where onlgrnyrand
binary predicates can be used; more details are given ineke n
section. The formal definition of our semantic criterioridals:

Definition 1. (Acyclicity-preserving Chasg We say that a class
C of sets of tgds hascyclicity-preserving chasé, for every
acyclic CQgq, setX € C, and chase sequence fpundery, the
result of such a chase sequence is acyclic. =

We can then prove the following small query property:

PrROPOSITION 8. Let 3 be a finite set of tgds that belongs to
a class that has acyclicity-preserving chase, and CQ. If ¢ is
semantically acyclic undex;, then there exists an acyclic Cg,
where|q’| < 2-]q|, such thaly =5, ¢'.

The proof of the above result relies on the following techhic
lemma, established in [8] (using slightly different terwliogy),
that will also be used later in our investigation:

LEMMA 9. Letq(Z) be a CQ,I an acyclic instance, and a
tuple of distinct constants occurring ihsuch thatg(¢) holds in1.
There exists an acyclic Cg(z), whereq’ C gand|q’| < 2 - |q],
such thatg’(¢) holds in1.

For the sake of completeness, we would like to recall the idea
of the construction underlying Lemma 9, which is illustchi@
Figure 3. Assuming that, .. ., as are the atoms aof, there exists
a homomorphismu that mapsy; A ... A as to the join treeT” of
the acyclic instancé (the shaded tree in Figure 3). Consider now
the subtredl;, of T' consisting of all the nodes in the image of the
query and their ancestors. Frdf) we extract the smaller treE
also depicted in Figure 3 = (V, E) is obtained as follows:

1. V consists of all the root and leaf nodesff, and all the
inner nodes of/;, with at least two children; and

2. Foreveryv,u € V, (v,u) € Eiff uis a descendant afin
T,, and the only nodes df that occur on the unique shortest
path fromo to v in T, arev andu.

Itis easy to verify thaf’ is a join tree, and has at mast|q| nodes.
The acyclic conjunctive queny is defined as the conjunction of all
atoms occurring irf.

Notice that a result similar to Lemma 9 is implicit in [4], wiee
the problem of approximating conjunctive queries is inggged.
However, from the results of [4], we can only conclude thesexi
tence of an exponentially sized acyclic CQ in the arity of time
derlying schema, while Lemma 9 establishes the existenam of

acyclic query of linear size. This is decisive for our latermplex-
ity analysis. Having the above lemma in place, it is not diffico
establish Proposition 8.

PROOF OFPROPOSITIONS. Since, by hypothesig, is seman-
tically acyclic undery:, there exists an acyclic CQ’(z) such
thatq =s ¢”. By Lemma 1,c(z) belongs to the evaluation of
q over chase(q”,%). Recall thats belongs to a class that has
acyclicity-preserving chase, which implies thdtase(q¢”, ) is
acyclic. Hence, by Lemma 9, there exists an acyclicdCQvhere
q¢ C qand|q’| < 2-|q|, such that(x) belongs to the evaluation
of ¢’ over chase(q”,%). By Lemma 1,4” Cs ¢, and therefore
q Cs ¢'. We conclude thag =s; ¢/, and the claim follows. [

It is clear that Proposition 8 provides a decision procedure
for SemAc(C) wheneverC has acyclicity-preserving chase and
Cont(C) is decidable. Given a C@, and a finite set € C:

1. Guess an acyclic Cg of size at mos® - |g|; and
2. Verify thatq Cx ¢’ andq’ Cx q.
The next result follows:

THEOREM 10. Consider a classC of sets of tgds that has
acyclicity-preserving chase. If the probleGont(C) is decidable,
thenSemAc(C) is also decidable.

4.1 Guardedness

We proceed to show th&emAc(G) is decidable and has the
same complexity as CQ containment under guarded tgds:

THEOREM 11. SemAc(G) is complete for ExPTIME. It be-
comesExpPTIME-complete if the arity of the schema is fixed, and
NP-complete if the schema is fixed.

The rest of this section is devoted to establish Theorem 11.

Decidability and Upper Bounds
We first show that:

PROPOSITION 12. G has acyclicity-preserving chase.

The above result, combined with Theorem 10, implies theddeci
ability of SemAc(G). However, this does not say anything about
the complexity of the problem. With the aim of pinpointingeth
exact complexity oSemAc(G), we proceed to analyze the com-
plexity of the decision procedure underlying Theorem 10cdRe
that, given a CQy, and a finite seb € G, we guess an acyclic
CQ ¢ such thatq’| < 2-|q|, and verify thaty =s. ¢'. Itis clear
that this algorithm runs in non-deterministic polynomiahé with
a call to aC oracle, where is a complexity class powerful enough
for solving Cont(G). Thus, Proposition 2 implies th§emAc(G)
is in 2EXPTIME, in EXPTIME if the arity of the schema is fixed,
and in NP if the schema is fixed. One may ask why for a fixed
schema the obtained upper bound is NP andHot Observe that
the oracle is called only once in order to sofent(G), and since
Cont(G) is already in NP when the schema is fixed, it is not really
needed in this case.

Lower Bounds

Let us now show that the above upper bounds are optimal. By
Proposition 5,RestCont(G) can be reduced in constant time to
SemAc(G). Thus, to obtain the desired lower bounds, it suffices to



reduce in polynomial tim€ont(G) to RestCont(G). Interestingly,

the lower bounds given in Section 2 f@ont(G) hold even if we

focus on Boolean CQs and the left-hand side query is acytdic.
fact, this is true, not only for guarded, but also for nonurse/e and

sticky sets of tgds. LeAcBoolCont(C) be the following problem:
Given an acyclic Boolean C@, a Boolean CQ/, and a finite set
3 € Coftgds, isitthe case Cx ¢'?

From the above discussion, to establish the desired lowerds
for guarded sets of tgds (and also for the other classes sf tgd
considered in this work), it suffices to reduce in polynontiale
AcBoolCont to RestCont. To this end, we introduce the so-
called connecting operator, which provides a generic réaluc
from AcBoolCont to RestCont.

Connecting operator. Consider an acyclic Boolean C@ a
Boolean CQq’, and a finite sek of tgds. We assume that both
q,q" are of the form3y(R1(v1) A -+ A Rpn(0m)). The appli-
cation of theconnecting operatoon (g, ¢’,>) returns the triple
(c(q),c(q'),c(%)), where

e c(q) isthe query
FyFw (Ry (01, w) A -+ A Ry (0m, w) A auz(w, w)),

wherew is a new variable not ig, eachR} is a new predi-
cate, and alsauz is a new binary predicate;

e c(q’) is the query

FyFwIuIv (RT (01, w) A -+ A Ry (U, w) A
auz(w,u) A auz(u,v) A auz(v,w)),
wherew, u, v are new variables not it and

e Finally, c(X) = {c(r) | = € X}, where for a tgdr =
o(Z,y) — 3z (7, 2), c(7) is the tgd
¢ (z,9,w) = I (T, Z, w),
with ¢*(z, 7, w), ¥*(Z, Z,w) be the conjunctions obtained
from ¢(Z,y), ¥ (Z, z), respectively, by replacing each atom

R(z1,...,zs) With R*(x1,...,2zn,w), Wherew is a new
variable not occurring inr.

This concludes the definition of the connecting operatorla&sC

of sets of tgds i€losed under connectinifj for every set™ € C,
c(X) € C. ltis easy to verify that(q) remains acyclic and is
connectedg(q’) is connected and not semantically acyclic under
c(X), andc(X) is a set of body-connected tgds. It can be also
shown thay Cs ¢ iff c(q) Cc(x) c(¢').

From the above discussion, it is clear that the connecting
operator provides a generic polynomial time reduction from
AcBoolCont(C) to RestCont(C), for every clas< of sets of tgds
that is closed under connecting. Then:

PrRoPOSITION 13. LetC be a class of sets of tgds that is closed
under connecting such thaicBoolCont(C) is hard for a complex-
ity classC that is closed under polynomial time reductions. Then,
SemAc(C) is alsoC-hard.

Back to guardedness. It is easy to verify that the class of
guarded sets of tgds is closed under connecting. Thus, ¥ lo
bounds forSemAc(G) stated in Theorem 11 follow from Proposi-
tions 2 and 13. Note that, although Proposition 2 refefxtat(G),
the lower bounds hold fohcBoolCont(G); this is implicit in [8].

As said in Section 2, a key subclass of guarded sets of tgtig is t
class of linear tgds, i.e., tgds whose body consists of desatgm,

which in turn subsume the well-known class of inclusion aepe
dencies. By exploiting the non-deterministic procedureleyed

for SemAc(G), and the fact that both linear tgds and inclusion de-
pendencies are closed under connecting, we can show that:

THEOREM 14. SemAc(C), for C € {L,ID}, is complete for
PSPACE. It becomedNP-complete if the arity of the schema is fixed.

5. UCQ REWRITABILITY

Even though the acyclicity-preserving chase criterion wery
useful for solvingSemAc(G), it is of little use for non-recursive
and sticky sets of tgds. As we show in the next example, neithe
NR nor S have acyclicity-preserving chase:

Example 2.Consider the acyclic CQ and the tgd
q=3%(P(z1)A...AP(zn)) 7= P(x),P(y) = R(z,y),

where{7} is both non-recursive and sticky, but not guarded. In
chase(q, {7}) the predicateR holds all the possible pairs that can
be formed using the terms, . . ., z,,. Thus, in the Gaifman graph
of chase(q, {T}) we have am-clique, which means that is highly
cyclic. Notice that our example illustrates that also oflagprable
properties of the CQ are destroyed after chasing with noorséve
and sticky sets of tgds, namely bounded (hyper)tree vidth. m

In view of the fact that the methods devised in Section 4 canno
be used for non-recursive and sticky sets of tgds, new tqaksi
must be developed. InterestinglfR and S share an important
property, which turned out to be very useful for semanticchicy
ity: UCQ rewritability. Recall that aunion of conjunctive queries
(UCQ)is an expression of the for@ (z) =/, ,,, 4:(Z), where
eachg; is a CQ over the same schema The evaluation of
over an instancé, denoted)(7), is defined a$ J, .., ¢:(1). The
formal definition of UCQ rewritability follows: — —

Definition 2. (UCQ Reuwritability ) A classC of sets of tgds is
UCQ rewritableif, for every CQgq, andX € C, we can construct
a UCQQ such that: For every CQ'(z), ¢ Cx q iff ¢(z) €
Q(D,), with D, be the database obtained frafmafter replacing
each variable: with c(x). L]

In other words, UCQ rewritability suggests that query conta
ment can be reduced to the problem of UCQ evaluation. It is im-
portant to say that this reduction depends only on the tigimg
side CQ and the set of tgds, but not on the left-hand side query
This is crucial for establishing the desirable small quenypprty
whenever we focus on sets of tgds that belong to a UCQ rewgitab
class. At this point, let us clarify that the class of guardets of
tgds is not UCQ rewritable, which justifies our choice of datiént
semantic property, that is, acyclicity-preserving chéseits study.

Let us now show the desirable small query property. For each
UCQ rewritable clas€ of sets of tgds, there exists a computable
function fc(+, -) from the set of pairs consisting of a CQ and a set
of tgds inC to positive integers such that the following holds: For
every CQq, setX € C, and UCQ rewriting? of ¢ and3, theheight
of @, that is, the maximal size of its disjuncts, is at mfistq, X).

The existence of the functioft- follows by the definition of UCQ
rewritability. Then, we show the following:

ProPOSITION 15. LetC be a UCQ rewritable class; € C a
finite set of tgds, and a CQ. Ifg is semantically acyclic undex,
then there exists an acyclic C€, where|q’| < 2 - fc(q,2), such
thatq =x ¢'.

“Notice that guarded sets of tgds over predicates of boundigd a
preserve the bounded hyper(tree) width of the query.




PROOF Sincegq is semantically acyclic undex, there exists
an acyclic CQy"(z) such thay =s, ¢”. As C is UCQ rewritable,
there exists a UC@ such that:(z) € Q(D,), which implies that
there exists a CQ, (one of the disjuncts of)) such thate(z) €
qr(Dgy). Clearly,|g-| < fc(g,X). But D, is acyclic, and thus
Lemma 9 implies the existence of an acyclic gQwhereq’ C ¢.
and|¢’| < 2 fc(g,X), such thate(z) € ¢'(Dy+). The latter
implies thaty”” C ¢'. By hypothesisq Cx. ¢”, and hencg Cx. ¢'.
For the other direction, we first show that Cs; ¢ (otherwise,Q
is not a UCQ rewriting). Since’ C ¢, we get thay’ Cx q. We
conclude that =s, ¢/, and the claim follows. O

It is clear that Proposition 15 provides a decision procedar
SemAc(C) wheneverC is UCQ rewritable, an€ont(C) is decid-
able. Given a C@Q, and a finite set € C:

1. Guess an acyclic C¢ of size at mose - fc(g,X); and
2. Verify thatq Cx. ¢’ andq’ Cx q.

The next result follows:

THEOREM 16. Consider a clas€ of sets of tgds that is UCQ
rewritable. If the problenmCont(C) is decidable, thesemAc(C)
is also decidable.

5.1 Non-Recursiveness

As already said, the key property dIR that we are going to
exploit for solvingSemAc(NR) is UCQ rewritability. For a CQ
g and a seft of tgds, letp,,» anda,,s be the number of predi-
cates ing andX, and the maximum arity over all those predicates,
respectively. The next result is implicit in [28]:

PrRoPOSITION 17. NR is UCQ rewritable.
foe(¢,X) = pes - (ags - [q] +1)%=.

Furthermore,

The above result, combined with Theorem 16, implies theddeci
ability of SemAc(NR). For the exact complexity of the problem,
we simply need to analyze the complexity of the non-deteistiin
algorithm underlying Theorem 16. Observe that when thg afit
the schema is fixed the functiofar is polynomial, and therefore
Proposition 17 guarantees the existence of a polynomiatiyds
acyclic CQ. In this case, by exploiting Proposition 3, it &sg to
show thatSemAc(NR) is in NExPTIME, and in NP if the schema
is fixed. However, things are a bit cryptic when the arity of th
schema is not fixed. In this casgr is exponential, and thus we
have to guess an acyclic CQ of exponential size. But now ttte fa
that Cont(NR) is in NExPTIME (by Proposition 3) alone is not
enough to conclude th&kemAc(NR) is also in NEXPTIME. We
need to understand better the complexity of the query comtzit
algorithm forNR.

Recall that given two CQg(z), ¢'(z), and a finite seE € NR,
by Lemma 14 Cx ¢ iff ¢(Z) € ¢'(chase(q,X)). By exploiting
non-recursiveness, it can be shown tha{if) € ¢’(chase(q, X)),
then there exists a chase sequence

T1,C1 Tn—1,Cn—1

g=1Io 2% 1, 8 I Ty I,

of g ands, wheren = |¢/|- (bs)© P« =), with by, be the maximum
number of atoms in the body of a tgd¥f such that(z) € ¢'(1,,).
The query containment algorithm fOfR simply guesses such a
chase sequence gfand ¥, and checks whether(z) € ¢'(I,.).

5The work [20] does not consid&fR. However, the rewriting al-
gorithm in that paper works also for non-recursive sets détg

Sincen is exponential, this algorithm runs in non-deterministic e
ponential time. Now, recall that f@emAc(NR) we need to per-
form two containment checks where either the left-hand side
the right-hand side query is of exponential size. But in lozthes
the containment algorithm fa¥RR runs in non-deterministic expo-
nential time, and henc&mAc(NR) is in NEXPTIME. The lower
bounds are inherited frorAcBoolCont(NR) sinceNR is closed
under connecting (see Proposition 13). Then:

THEOREM 18. SemAc(NR) is complete foNEXPTIME, even
if the arity of the schema is fixed. It becon¢B-complete if the
schema is fixed.

5.2 Stickiness

We now focus on sticky sets of tgds. As SR, the key property
of S that we are going to use is UCQ rewritability. The next result
has been explicitly shown in [20]:

PrROPOSITION 19. S is UCQ rewritable. Furthermore,

fs(q,%2) = pg,x - (ag,s - g + 1)%=.

The above result, combined with Theorem 16, implies the de-
cidability of SemAc(S). Moreover, Proposition 19 allows us to
establish an optimal upper bound when the arity of the schiema
fixed since in this case the functigh is polynomial. In fact, we
show thatSemAc(S) is NP-complete when the arity of the schema
is fixed. The NP-hardness is inherited frémBoolCont(S) since
S is closed under connecting (see Proposition 13). Now, when t
arity of the schema is not fixed the picture is still foggy. hist
case, the functiotfs is exponential, and thus by following the usual
guess and check approach we get 8w Ac(S) is in NEXPTIME,
while Proposition 13 implies anTIME lower bound. To sum
up, our generic machinery based on UCQ rewritability shdvas: t

THEOREM 20. SemAc(S) is in NExPTIME and hard forExp-
TIME. It becomes$\P-complete if the arity is fixed.

An interesting question that comes up is whether for stigkg s
of tgds a stronger small query property than Propositionatble
established, which guarantees the existence of a polytigrsized
equivalent acyclic CQ. It is clear that such a result wouldvalus
to establish an EPTIME upper bound foBemAc(S). At this point,
one might be tempted to think that this can be achieved by isigow
that the functionfs is actually polynomial even if the arity of the
schema is not fixed. The next example shows that this is not the
case. We can construct a sticky setof tgds and a CQy such
that, for every UCQ rewriting? for ¢ and X, the height ofQ is
exponential in the arity.

'Example 3.Let X be the sticky set of tgds given below; we write
z! for the tuple of variables;, xi41, ..., z;:
{P(z\7",2,5},,2,0),Pi(z,1,0,2}, 1, Z,0) —
Pia(ay ' 2,2, 2, O)}ie{l ,,,,, n}
Consider also the Boolean CQ
Py(0,...,0,0,1).

It can be shown that, for every UCQ rewritiidg for ¢ andX:, the
disjunct of Q that mentions only the predicaf®, contains exactly
2" atoms. Therefore, there is no UCQ rewriting fpand X of
polynomial height, which in turn implies thgt cannot be polyno-
mial in the arity of the schema. =

The above discussion reveals the need to identify a moreetefin
property of stickiness than UCQ rewritability, which willaw us
to close the complexity adfemAc(S) when the arity is not fixed.
This is left as an interesting open problem.



represented by the two hyperedges on the right. Observe ibat

Fa— TH I—' I e TET T an acyclic query. Consider now the &&bf keys:
’a Z I I @7 €1 = R(xvyvsz)7R(xvyvsz,) —>w:w/

R(z,y,zw) . . Y % €y = .IL_I(CC7 y)7 I‘I(‘Z'7 Z) — Y = Z.

7 & ;" Notice thatH (-, -) stores the horizontal edges. It is not difficult to
el sz see thathase(q, X) contains am x n grid. Roughly, as described

8

at the bottom of Figure 4, by first applying we close the open
squares of the first column, while the open squares of thenseco

R(z,y,z,w,) ‘e” H H H H Y Z

S Lo column have now the same shape as the ones of the first column, b
I I P with a danglingH-edge. Then, by applying., the two H-edges
3 collapse into a single edge, and we obtain open squaresdkat h
exactly the same shape as those of the first column. Afteelffinit

Figure 4: From a “tree” to a grid via key dependencies. many chase steps, all the squares are closed, and#hss(q, )
indeed contains an x n grid. Therefore, although the quegis
6. SEMANTIC ACYCLICITY WITH EGDS acyclic, chase(q, X)) is far from being acyclic. Observe also that

the (hyper)tree width othase(q,X) depends om, while ¢ has

Up to now, we have considered classes of constraints that are (hypen)tree widtts. .

based on tgds. However, semantic acyclicity can be nayudaH
fined for classes of egds. Hence, one may wonder whetherdhe te
niques developed in the previous sections can be applieelgibr
based classes of constraints. Unfortunately, the situatimnges
dramatically even for the simplest subclass of egds, iegsk

UCQ rewritability. It is not hard to show that keys are not UCQ
rewritable. This is not surprising due to the transitiveunatof
equality. Intuitively, the UCQ rewritability of keys im@s that a
first-order (FO) query can encode the fact that the equadigtion
6.1 Peculiarity of Keys is transitive. However, it is well-known that this is not gisge due

We show that the techniques developed in the previous ssctio to the inability of FO queries to express recursion.

for tgds cannot be applied for showing the decidability shaatic 6.2 Keys over Constrained Signatures
acyclicity under keys, and thus under egds. Although thénst . . .

ey ; e s Despite the peculiar nature of keys as discussed above, nve ca
of a(:_yf:l_lcny-preservmg chase (D_eflnmon 1) and UCQ _remlmllty establizh a pos[i)tive result regarding )s/emantic acycligityer keys
gDeflnltlon 2) can be naturally defined for egds, are of litibe even providing that only unary and binary predicates can be u?;dadis,
if we focus on keys. is done by exploiting the following generic result, whictagually
Acyclicity-preserving chase. It is easy to show via a simple ex-  the version of Theorem 10 for egd-based classes:
ample that keys over binary and ternary predicates do noyehg

acyclicity-preserving chase property: THEOREM 21. Consider a classC of sets of egds. I€ has
) acyclicity-preserving chase, th&emAc(C) is NP-complete, even
Example 4.Let g be the acyclic query if we allow only unary and binary predicates.

R(@,y) A S(@,y,2) A S(,2,w) A S(@, w,v) A R(@,0). The proof of the above result is along the lines of the proof fo

After applying ong the key R(z,y), R(z,2) — y = z, which Theorem 10, and exploits the fact that the containment proloin-
simply states that the first attribute of the binary predidats the der egds is feasible in non-deterministic polynomial tirtrés(can
key, we obtain the query be shown by using Lemma 1). The lower bound follows from [14],

which shows that the problem of checking whether a Boolean CQ
R(z,y) A S(z,y,2) A S(z,2,w) A S(z,w,y), over a single binary relation is equivalent to an acyclic s P-
which is clearly cyclic. - hard. We now show the following positive result for the clags
keys over unary and binary predicates, dended
With the aim of emphasizing the peculiarity of keys, we give a

more involved example, which shows that a tree-like querylma PROPOSITION 22. K5 has acyclicity-preserving chase.
transformed via two keys into a highly cyclic query that @ns a
grid. Interestingly, this shows that also other desirabtpprties, Notice that the above result is not in a conflict with Exampgles
in particular bounded (hyper)tree width, are destroyed nwve and 5, since both examples use predicates of arity greatetto.
chase a query using keys. Itis now straightforward to see that:

Example 5.Consider the CQ depicted in Figure 4 (ignoring THEOREM 23. SemAc(Kz2) is NP-complete.
for the moment the dashed boxes). Although seemiigbon-
tains ann x n grid, it can be verified that the grid-like structure Interestingly, Theorem 23 can be extendedit@ry functional

in the figure is actually a tree. In addition,contains atoms of dependenciegover unconstrained signatures), that is, FDs of the
the form R(z, y, z, w) as explained in the figure. More precisely, form R : A — B, whereR is a relational symbol of arity. > 0

for each of the open squares occurring in the first column,(éhg and the cardinality ofd is one. This result has been established in-
upper-left shaded square), we have the two atétts, y, z, w1) dependently by Figueira [17]. Let us recall that egds enthedi-
and R(z,y, z, ws2) represented by the two hyperedges on the left. nite controllability of CQ containment. Consequently, Ghem 23
Moreover, for each of the internal open squares and the openholds even fofFinSemAc, which takes as input a C@and a set
squares occurring in the last column (e.g., the upper-sgatied 3 of egds, and asks for the existence of an acyclicgCuch that
square), we have the two atomgz, y, z, w1) and R(x, y, z, w2) g andq’ are equivalent over all finite databases that safisfy



7. EVALUATION OF SEMANTICALLY

ACYCLIC QUERIES

As it has been noted in different scenarios in the absencersf c
straints, semantic acyclicity has a positive impact on yj@salu-
ation [4, 5, 6]. We observe here that such good behavior dsten
to the notion of semantic acyclicity for CQs under the delida
classes of constraints we identified in the previous sestibmpar-
ticular, evaluation of semantically acyclic CQs under ¢aaists in
such classes isfixed-parameter tractabl@pt) problem, assuming
the parameter to big| + |X|. (Here,|q| and|X]| represent the size
of reasonable encodings @fandY, respectively). Recall that this
means that the problem can be solved in t@&D| - £ (|q|+|2])),
for ¢ > 1 andf a computable function.

Let C be a class of sets of tgds. We defBwnAcEval(C) to be
the following problem: The input consists of a set of coriatea>
in C, a semantically acyclic CQ undery, a databas® such that
D E ¥, and a tuplég of elements inD. We ask whethet € ¢(D).

PROPOSITION 24. SemAcEval(C) can be solved in time
0 (|D| . 22<><\q\+\zn)

whereC € {G,NR,S}.

PrROOF Our results state that faf € {G,NR, S}, checking
if a CQ ¢ is semantically acyclic undet can be done in double-
exponential time. More importantly, in case thats in fact se-
mantically acyclic unde€ our proof techniques yield an equivalent
acyclic CQq’ of at most exponential size jp|+|%|. We then com-
pute and evaluate such a quefyon D, and returny(D) = ¢'(D).
Clearly, this can be done in time

1) (220<\q\+\z\>) L0 (|D| ) 20(\q\+\2\)) .

The running time of this algorithm is dominated by

0 (|D| .220(\Q\+\E\))

and the claim follows. O

This is an improvement over general CQ evaluation for which
no fpt algorithm is believed to exist [26]. It is worth remant,
nonetheless, th&emAcEval(C) corresponds to promise version
of the evaluation problem, where the property that definesldss
is EXPTIME-hard for all theC’s studied in Proposition 24.

The above algorithm computes an equivalent acyclicC@r
a semantically acyclic CQ under a set of constraints i{@. This
might take double-exponential time. Surprisingly, conipyisuch
¢’ is not always needed at the moment of evaluating semanticall
acyclic CQs under constraints. In particular, this holdstiie sets
of guarded tgds. In fact, in such case evaluating a seméntica
acylic CQq underX over a databas® that satisfie® amounts to
checking a polynomial time property overand D. It follows, in
addition, that the evaluation problem for semanticallyclicyCQs
under guarded tgds is tractable:

THEOREM 25. SemAcEval(G) is in polynomial time.

The idea behind the proof of the above theorem is as follows.
Wheng is a semantically acyclic CQ in the absence of constraints,
evaluatingg on D amounts to checking the existence of a win-
ning strategy for the duplicator in a particular versionta pebble
game, known as thexistential 1-cover gameon ¢ and D [13].

We denote this byy =3:. D. The existence of such winning

strategy can be checked in polynomial time [13]. Now, whken
is semantically acyclic under an arbitrary setof tgds or egds,
we show that evaluating on D amounts to checking whether
chase(q,X) =31 D. WhenX is a set of guarded tgds, we
prove in addition thathase(q,X) =31, D iff ¢ =31 D. Thus,
SemAcEval(G) is tractable since checking=s:. D is tractable.

The fact that the evaluation @f on D boils down to checking
whetherchase(q, X)) =31 D, wheng is semantically acyclic un-
derX, also yields tractability fo6emAcEval(C), whereC is any
class of sets of egds for which the chase can be computedyingol
mial time. This includes the central class of FDs. Noticeyéwer,
that we do not know whethé&emAc under FDs is decidable.

8. FURTHER ADVANCEMENTS

In this section we informally discuss the fact that our poegi
results on semantic acyclicity under tgds and CQs can bedste
to UCQs. Moreover, we show that our techniques establish the
existence of maximally contained acyclic queries.

8.1 Unions of Conjunctive Queries

It is reasonable to consider a mdileral version of semantic
acyclicity under tgds based on UCQs. In such case we are given
UCQQ and a finite sek of tgds, and the question is whether there
is a union@’ of acyclic CQs that is equivalent @ under. It
can be shown that all the complexity results on semanticliattyc
under tgds presented above continue to hold even when thé inp
query is a UCQ. This is done by extending the small query prope
ties established for CQs (Propositions 8 and 15) to UCQs.

Consider a finite seX of tgds (that falls in one of the tgd-based
classes considered above), and a UQQ If @ is semantically
acyclic underX, then one of the following holds: (i) for each dis-
junct ¢ of Q, there exists an acyclic C@ of bounded size (the
exact size ofy’ depends on the class bf) such thaty =s ¢/, or
(i) ¢ is redundant ir), i.e., there exists a disjungt of  such that
g Cs ¢'. Having this property in place, we can then design a non-
deterministic algorithm for semantic acyclicity, whictopides the
desired upper bounds. Roughly, for each disjunof @, this al-
gorithm guesses whether there exists an acyclicgC6f bounded
size such thay =x. ¢/, or ¢ is redundant irQ. The desired lower
bounds are inherited from semantic acyclicity in the case@s.

8.2 Query Approximations

Let C be any of the decidable classes of finite sets of tgds we
study in this paper (i.eG, NR, orS). Then, for any CQ; with-
out constanfsand set® of constraints inC, our techniques yield
a maximally containedacyclic CQq’ underX. This means that
¢ Csx ¢ and there is no acyclic CQ” such thaty” Csx ¢ and
¢ Cs ¢"”. Following the recent database literature, sytlcor-
responds to amacyclic CQ approximation of underX [4, 5, 6].
Notice that whenry is semantically acyclic undét, this acyclic ap-
proximationg’ is in fact equivalent tg; underX. Computing and
evaluating an acyclic CQ approximation fgmight help finding
“quick” (i.e., fixed-parameter tractable) answers to it whexact
evaluation is infeasible.

The way in which we obtain approximations is by slightly refo
mulating the small query properties established in the p@yepo-
sitions 8 and 15). Instead of dealing with semantically &cyeQs
only, we are now given an arbitrary CQ In all cases the reformu-
lation expresses the following: For every acyclic GQsuch that
q' Cs g, there is an acyclic CQ" of the appropriate siz¢(q, X)

5Approximations for CQs with constants are not well-undess
even in the absence of constraints [4].



such thaiy’ Cx ¢ Cs ¢. Itis easy to prove that for each G
there exists at least one acyclic GQsuch thay’ Csx ¢; take a sin-
gle variablex and add a tuplé?(z, ..., x) for each symboR. It
follows then that an acyclic CQ approximationgdindery: can al-
ways be found among the sdfq) of acyclic CQs;’ of size at most
f(g,¥) such thaty Cs q. In fact, the acyclic CQ approximations
of ¢ underX are the maximal elements gf(q) underCs.

9. CONCLUSIONS

We have concentrated on the problem of semantic acyclioity f
CQs in the presence of database constraints; in fact, tgegadsr.
Surprisingly, we have shown that there are cases such alatissof
full tgds, where containment is decidable, while semartickc-
ity is undecidable. We have then focussed on the main clagses

tgds for which CQ containment is decidable, and do not suksum

full tgds, i.e., guarded, non-recusrive and sticky tgdsr these
classes we have shown that semantic acyclicity is decidalle
obtained several complexity results. We have also shownsta
mantic acyclicity is NP-complete if we focus on keys over yna
and binary predicates. Finally, we have considered thel@mob
of evaluating a semantically acyclic CQ over a databasestiig-
fies certain constraints, and shown that for guarded tgds=&d
is tractable. Here are some interesting open problems taatres
planning to investigate: (i) The complexity of semantic @iy
ity under sticky sets of tgds is still unknown; (ii) We do natdw
whether semantic acyclicity under keys over unconstragigda-
tures is decidable; and (iii) We do not know the complexitgedl-
uating semantically acyclic queries und&R, S and egds.
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