

Edinburgh Research Explorer

Semantic Acyclicity Under Constraints

Citation for published version:
Barcelo, P, Gottlob, G & Pieris, A 2016, Semantic Acyclicity Under Constraints. in Proceedings of the 35th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. PODS '16, ACM, New
York, NY, USA, pp. 343-354, 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, San Francisco, United States, 26/06/16. DOI: 10.1145/2902251.2902302

Digital Object Identifier (DOI):
10.1145/2902251.2902302

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/78913004?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/2902251.2902302
https://www.research.ed.ac.uk/portal/en/publications/semantic-acyclicity-under-constraints(61fe0998-e831-47a7-aa90-bda0f7ecd894).html

Semantic Acyclicity Under Constraints

Pablo Barceló
Center for Semantic Web

Research & DCC
University of Chile

pbarcelo@dcc.uchile.cl

Georg Gottlob
Department of Computer

Science
University of Oxford

georg.gottlob@cs.ox.ac.uk

Andreas Pieris
Institute of Information

Systems
TU Wien

pieris@dbai.tuwien.ac.at

ABSTRACT
A conjunctive query (CQ) is semantically acyclic if it is equiva-
lent to an acyclic one. Semantic acyclicity has been studiedin
the constraint-free case, and deciding whether a query enjoys this
property is NP-complete. However, in case the database is sub-
ject to constraints such as tuple-generating dependencies(tgds) that
can express, e.g., inclusion dependencies, or equality-generating
dependencies (egds) that capture, e.g., functional dependencies, a
CQ may turn out to be semantically acyclic under the constraints
while not semantically acyclic in general. This opens avenues to
new query optimization techniques. In this paper we initiate and
develop the theory of semantic acyclicity under constraints. More
precisely, we study the following natural problem: Given a CQ and
a set of constraints, is the query semantically acyclic under the con-
straints, or, in other words, is the query equivalent to an acyclic one
over all those databases that satisfy the set of constraints?

We show that, contrary to what one might expect, decidability
of CQ containment is a necessary but not sufficient conditionfor
the decidability of semantic acyclicity. In particular, weshow that
semantic acyclicity is undecidable in the presence of full tgds (i.e.,
Datalog rules). In view of this fact, we focus on the main classes
of tgds for which CQ containment is decidable, and do not capture
the class of full tgds, namely guarded, non-recursive and sticky
tgds. For these classes we show that semantic acyclicity is decid-
able, and its complexity coincides with the complexity of CQcon-
tainment. In the case of egds, we show that if we focus on keys
over unary and binary predicates, then semantic acyclicityis decid-
able (NP-complete). We finally consider the problem of evaluating
a semantically acyclic query over a database that satisfies aset of
constraints. For guarded tgds and functional dependenciesthe eval-
uation problem is tractable.

1. INTRODUCTION
Query optimization is a fundamental database task that amounts

to transforming a query into one that is arguably more efficient to
evaluate. The database theory community has developed several
principled methods for optimization of conjunctive queries (CQs),
many of which are based onstatic-analysistasks such as contain-
ment [1]. In a nutshell, such methods compute aminimalequivalent
version of a CQ, where minimality refers to number of atoms. As
argued by Abiteboul, Hull, and Vianu [1], this provides a theoret-
ical notion of “true optimality” for the reformulation of a CQ, as
opposed to practical considerations based on heuristics. For each
CQ q the minimal equivalent CQ is itscoreq′ [21]. Although the
static analysis tasks that support CQ minimization are NP-complete
[12], this is not a major problem for real-life applications, as the in-
put (the CQ) is small.

It is known, on the other hand, that semantic information about

the data, in the form of integrity constraints, alleviates query opti-
mization by reducing the space of possible reformulations.In the
previous analysis, however, constraints play no role, as CQequiva-
lence is defined overall databases. Adding constraints yields a re-
fined notion of CQ equivalence, which holds over those databases
that satisfy a given set of constraints only. But finding a minimal
equivalent CQ in this context is notoriously more difficult than be-
fore. This is because basic static analysis tasks such as contain-
ment become undecidable when considered in full generality. This
motivated a long research program for finding larger “islands of
decidability” of such containment problem, based on syntactical
restrictions on constraints [2, 8, 10, 11, 22, 23].

An important shortcoming of the previous approach, however, is
that there is no theoretical guarantee that the minimized version of
a CQ is in fact easier to evaluate (recall that, in general, CQeval-
uation is NP-complete [12]). We know, on the other hand, quite
a bit about classes of CQs that can be evaluated efficiently. It is
thus a natural problem to ask whether constraints can be usedto
reformulate a CQ as one in such tractable classes, and if so, what is
the cost of computing such reformulation. Following Abiteboul et
al., this would provide us with a theoretical guarantee of “true effi-
ciency” for those reformulations. We focus on one of the oldest and
most studied tractability conditions for CQs; namely,acyclicity. It
is known that acyclic CQs can be evaluated in linear time [27].

More formally, let us writeq ≡Σ q′ whenever CQsq andq′ are
equivalent over all databases that satisfyΣ. In this work we study
the following problem:

PROBLEM : SEMANTIC ACYCLICITY

INPUT : A CQ q and a finite setΣ of constraints.
QUESTION: Is there an acyclic CQq′ s.t.q ≡Σ q′?

We study this problem for the two most important classes of
database constraints; namely:

1. Tuple-generating dependencies(tgds), i.e., expressions of
the form∀x̄∀ȳ(φ(x̄, ȳ) → ∃z̄ψ(x̄, z̄)), whereφ andψ are
conjuntions of atoms. Tgds subsume the important class of
referential integrity constraints (or inclusion dependencies).

2. Equality-generating dependencies(egds), i.e., expressions of
the form∀x̄(φ(x̄) → y = z), whereφ is a conjunction of
atoms andy, z are variables in̄x. Egds subsume keys and
functional dependencies (FDs).

A useful aspect of tgds and egds is that containment under them
can be studied in terms of thechase procedure[25].

Coming back to semantic acyclicity, the main problem we study
is, of course, decidability. Since basic reasoning with tgds and egds

is, in general, undecidable, we cannot expect semantic acyclicity to
be decidable for arbitrary such constraints. Thus, we concentrate
on the following question:

Decidability: For which classes of tgds and egds is the problem of
semantic acyclicity decidable? In such cases, what is the computa-
tional cost of the problem?

Since semantic acyclicity is defined in terms of CQ equivalence
under constraints, and the latter has received a lot of attention, it is
relevant also to study the following question:

Relationship to CQ equivalence:What is the relationship between
CQ equivalence and semantic acyclicity under constraints?Is the
latter decidable for each class of tgds and egds for which theformer
is decidable?

Notice that if this was the case, one could transfer the mature
theory of CQ equivalence under tgds and egds to tackle the problem
of semantic acyclicity.

Finally, we want to understand to what extent semantic acyclicity
helps CQ evaluation. Although an acyclic reformulation of aCQ
can be evaluated efficiently, computing such reformulationmight
be expensive. Thus, it is relevant to study the following question:

Evaluation:What is the computational cost of evaluating semanti-
cally acyclic CQs under constraints?

Semantic acyclicity in the absence of constraints.The semantic
acyclicity problem in the absence of dependencies (i.e., checking
whether a CQq is equivalent to an acyclic one over the set of all
databases) is by now well-understood. Regarding decidability, it
is easy to prove that a CQq is semantically acyclic iff its coreq′

is acyclic. (Recall that suchq′ is the minimal equivalent CQ to
q). It follows that checking semantic acyclicity in the absence of
constraints is NP-complete (see, e.g., [6]). Regarding evaluation,
semantically acyclic CQs can be evaluated efficiently [13, 14, 19].

The relevance of constraints.In the absence of constraints a CQ
q is equivalent to an acyclic one iff its coreq′ is acyclic. Thus,
the only reason whyq is not acyclic in the first hand is because it
has not been minimized. This tells us that in this context seman-
tic acyclicity is not really different from usual minimization. The
presence of constraints, on the other hand, yields a more interest-
ing notion of semantic acyclicity. This is because constraints can
be applied on CQs to produce acyclic reformulations of them.

Example 1.This simple example helps understanding the role
of tgds when reformulating CQs as acyclic ones. Consider a
database that stores information about customers, records, and mu-
sical styles. The relationInterest contains pairs(c, s) such that
customerc has declared interest in styles. The relationClass con-
tains pairs(r, s) such that recordr is of styles. Finally, the relation
Owns contains a pair(c, r) when customerc owns recordr.

Consider now a CQq(x, y) defined as follows:

∃z
(

Interest(x, z) ∧ Class(y, z) ∧ Owns(x, y)
)

.

This query asks for pairs(c, r) such that customerc owns recordr
and has expressed interest in at least one of the styles with which
r is associated. This CQ is a core but it is not acyclic. Thus, from
our previous observations it is not equivalent to an acyclicCQ (in
the absence of constraints).

Assume now that we are told that this database contains compul-
sive music collectors only. In particular, each customer owns every
record that is classified with a style in which he/she has expressed
interest. This means that the database satisfies the tgd:

τ = Interest(x, z),Class(y, z) → Owns(x, y).

With this information at hand, we can easily reformulateq(x, y) as
the following acyclic CQq′(x, y):

∃z
(

Interest(x, z) ∧ Class(y, z)
)

.

Notice thatq andq′ are in fact equivalent over every database that
satisfiesτ .

Contributions. We observe that semantic acyclicity under con-
straints is not only more powerful, but also theoretically more chal-
lenging than in the absence of them. We start by studying decid-
ability. In the process we also clarify the relationship between CQ
equivalence and semantic acyclicity.

Results for tgds:Having a decidable CQ containment problem is a
necessary condition for semantic acyclicity to be decidable under
tgds.1 Surprisingly enough, it is not a sufficient condition. This
means that, contrary to what one might expect, there are natural
classes of tgds for which CQ containment but not semantic acyclic-
ity is decidable. In particular, this is the case for the well-known
class offull tgds (i.e., tgds without existentially quantified variables
in the head). In conclusion, we cannot directly export techniques
from CQ containment to deal with semantic acyclicity.

In view of the previous results, we concentrate on classes of
tgds that (a) have a decidable CQ containment problem, and (b)
do not contain the class of full tgds. These restrictions aresatisfied
by several expressive languages considered in the literature. Such
languages can be classified into three main families depending on
the techniques used for studying their containment problem: (i)
guardedtgds [8], which contain inclusion and linear dependencies,
(ii) non-recursive[16], and (iii) stickysets of tgds [10]. Instead of
studying such languages one by one, we identify two semanticcri-
teria that yield decidability for the semantic acyclicity problem, and
then show that each one of the languages satisfies one such criteria.

• The first criterion isacyclicity-preserving chase. This is sat-
isfied by those tgds for which the application of the chase
over an acyclic instance preserves acyclicity. Guarded tgds
enjoy this property. We establish that semantic acyclicityun-
der guarded tgds is decidable and has the same complexity
than its associated CQ containment problem: 2EXPTIME-
complete, and NP-complete for a fixed schema.

• The second criterion isrewritability by unions of CQs
(UCQs). Intuitively, a classC of sets of tgds has this prop-
erty if the CQ containment problem under a set inC can
always be reduced to a UCQ containment problem without
constraints. Non-recursive and sticky sets of tgds enjoy this
property. In the first case the complexity matches that of its
associated CQ containment problem: NEXPTIME-complete,
and NP-complete if the schema is fixed. In the second case,
we get a NEXPTIME upper bound and an EXPTIME lower
bound. For a fixed schema the problem is NP-complete.

The NP bounds (under a fixed schema) can be seen as positive
results: By spending exponential time in the size of the (small)
query, we can not only minimize it using known techniques but
also find an acyclic reformulation if one exists.

Results for egds:After showing that the techniques developed for
tgds cannot be applied for showing the decidability of semantic
acyclicity under egds, we focus on the class of keys over unary
and binary predicates and we establish a positive result, namely
semantic acyclicity is NP-complete. We prove this by showing

1Modulo some mild technical assumptions elaborated in the paper.

that in such context keys have acyclicity-preserving chase. Inter-
estingly, this positive result can be extended to unary functional
dependencies (over unconstrained signatures); this result has been
established independently by Figueira [17]. We leave open whether
the problem of semantic acyclicity under arbitrary egds, oreven
keys over arbitrary schemas, is decidable.

Evaluation: For tgds for which semantic acyclicity is decidable
(guarded, non-recursive, sticky), we can use the followingalgo-
rithm to evaluate a semantically acyclic CQq over a databaseD
that satisfies the constraintsΣ:

1. Convertq into an equivalent acyclic CQq′ underΣ.
2. Evaluateq′ onD.
3. Returnq(D) = q′(D).

The running time isO(|D| · f(|q|, |Σ|)), wheref is a double-
exponential function (sinceq′ can be computed in double-
exponential time for each one of the classes mentioned aboveand
acyclic CQs can be evaluated in linear time). This constitutes a
fixed-parameter tractable algorithmfor evaluatingq on D. No
such algorithm is believed to exist for CQ evaluation [26]; thus, se-
mantically acyclic CQs under these constraints behave better than
the general case in terms of evaluation.

But in the absence of constraints one can do better: Evaluating
semantically acyclic CQs in such context is in polynomial time. It
is natural to ask if this also holds in the presence of constraints.
This is the case for guarded tgds and (arbitrary) FDs. For theother
classes of constraints the problem remains to be investigated.

Further results:The results mentioned above continue to hold for
a more “liberal” notion based on UCQs, i.e., checking whether a
UCQ is equivalent to an acyclic union of CQs under the decidable
classes of constraints identified above. Moreover, in case that a CQ
q is not equivalent to an acyclic CQq′ under a set of constraints
Σ, our proof techniques yield anapproximation ofq underΣ [4],
that is, an acyclic CQq′ that is maximally contained inq under
Σ. Computing and evaluating such approximation yields “quick”
answers toq when exact evaluation is infeasible.

Finite vs. infinite databases.The results mentioned above inter-
pret the notion of CQ equivalence (and, thus, semantic acyclicity)
over the set of bothfinite andinfinite databases. The reason is the
wide application of the chase we make in our proofs, which char-
acterizes CQ equivalence under arbitrary databases only. This does
not present a serious problem though, as all the particular classes
of tgds for which we prove decidability in the paper (i.e., guarded,
non-recursive, sticky) arefinitely controllable[3, 18]. This means
that CQ equivalence under arbitrary databases and under finite
databases coincide. In conclusion, the results we obtain for such
classes can be directly exported to the finite case.

Organization. Preliminaries are in Section 2. In Section 3 we con-
sider semantic acyclicity under tgds. Acyclicity-preserving chase is
studied in Section 4, and UCQ-rewritability in Section 5. Semantic
acyclicity under egds is investigated in Section 6. Evaluation of se-
mantically acyclic CQs is in Section 7. Finally, we present further
advancements in Section 8 and conclusions in Section 9.

2. PRELIMINARIES
Databases and conjunctive queries.Let C, N andV be disjoint
countably infinite sets ofconstants, (labeled) nullsand (regular)
variables(used in queries and dependencies), respectively, andσ
a relational schema. Anatomoverσ is an expression of the form
R(v̄), whereR is a relation symbol inσ of arity n > 0 and v̄ is

an n-tuple overC ∪ N ∪ V. An instanceover σ is a (possibly
infinite) set of atoms overσ that contain constants and nulls, while
a databaseoverσ is simply a finite instance overσ.

One of the central notions in our work is acyclicity. An instance
I is acyclic if it admits ajoin tree; i.e., if there exists a treeT and
a mappingλ that associates with each nodet of T an atomλ(t) of
I , such that the following holds:

1. For each atomR(v̄) in I there is a nodet in T such that
λ(t) = R(v̄); and

2. For each nullx occurring inI it is the case that the set{t |
x ∈ λ(t)} is connected inT .

A conjunctive query(CQ) overσ is a formula of the form:

q(x̄) := ∃ȳ
(

R1(v̄1) ∧ · · · ∧Rm(v̄m)
)

, (1)

where eachRi(v̄i) (1 ≤ i ≤ m) is an atom without nulls overσ,
each variable mentioned in thēvi’s appears either in̄x or ȳ, andx̄
are the free variables ofq. If x̄ is empty, thenq is aBoolean CQ.
As usual, the evaluation of CQs is defined in terms ofhomomor-
phisms. Let I be an instance andq(x̄) a CQ of the form (1). A
homomorphism fromq to I is a mappingh, which is the identity
onC, from the variables and constants inq to the set of constants
and nullsC ∪ N such thatRi(h(v̄i)) ∈ I ,2 for each1 ≤ i ≤ m.
Theevaluation ofq(x̄) overI , denotedq(I), is the set of all tuples
h(x̄) overC ∪N such thath is a homomorphism fromq to I .

It is well-known thatCQ evaluation, i.e., the problem of deter-
mining if a particular tuplēt belongs to the evaluationq(D) of a
CQ q over a databaseD, is NP-complete [12]. On the other hand,
CQ evaluation becomes tractable by restricting the syntactic shape
of CQs. One of the oldest and most common such restrictions is
acyclicity. Formally, a CQq is acyclic if the instance consisting of
the atoms ofq (after replacing each variable inq with a fresh null)
is acyclic. It is known from the seminal work of Yannakakis [27],
that the problem of evaluating an acyclic CQq over a databaseD
can be solved in linear timeO(|q| · |D|).

Tgds and the chase procedure.A tuple-generating dependency
(tgd) overσ is an expression of the form:

∀x̄∀ȳ
(

φ(x̄, ȳ) → ∃z̄ψ(x̄, z̄)
)

, (2)

where bothφ andψ are conjunctions of atoms without nulls overσ.
For simplicity, we write this tgd asφ(x̄, ȳ) → ∃z̄ψ(x̄, z̄), and use
comma instead of∧ for conjoining atoms. Further, we assume that
each variable in̄x is mentioned in some atom ofψ. We callφ andψ
thebodyandheadof the tgd, respectively. The tgd in (2) is logically
equivalent to the expression∀x̄(qφ(x̄) → qψ(x̄)), whereqφ(x̄) and
qψ(x̄) are the CQs∃ȳφ(x̄, ȳ) and∃z̄ψ(x̄, z̄), respectively. Thus,
an instanceI overσ satisfies this tgd if and only ifqφ(I) ⊆ qψ(I).
We say that an instanceI satisfies a setΣ of tgds, denotedI |= Σ,
if I satisfies every tgd inΣ.

Thechaseis a useful tool when reasoning with tgds [8, 16, 22,
25]. We start by defining a single chase step. LetI be an instance
over schemaσ andτ = φ(x̄, ȳ) → ∃z̄ψ(x̄, z̄) a tgd overσ. We
say thatτ is applicablew.r.t. I if there exists a tuple(ā, b̄) of ele-
ments inI such thatφ(ā, b̄) holds inI . In this case,the result of
applyingτ overI with (ā, b̄) is the instanceJ that extendsI with
every atom inψ(ā, z̄′), wherez̄′ is the tuple obtained by simulta-
neously replacing each variablez ∈ z̄ with a fresh distinct null not

occurring inI . For such a single chase step we writeI
τ,(ā,b̄)
−−−−→ J .

2As usual, we writeh(v1, . . . , vn) for (h(v1), . . . , h(vn)).

Let us assume now thatI is an instance andΣ a finite set of tgds.
A chase sequence forI underΣ is a sequence:

I0
τ0,c̄0−−−→ I1

τ1,c̄1−−−→ I2 . . .

of chase steps such that: (1)I0 = I ; (2) For eachi ≥ 0, τi is a
tgd inΣ; and (3)

⋃

i≥0 Ii |= Σ. We call
⋃

i≥0 Ii the resultof this
chase sequence, which always exists. Although the result ofa chase
sequence is not necessarily unique (up to isomorphism), each such
result is equally useful for our purposes since it can be homomor-
phically embedded into every other result. Thus, from now on, we
denote bychase(I,Σ) the result of an arbitrary chase sequence for
I underΣ. Further, for a CQq = ∃ȳ

(

R1(v̄1) ∧ · · · ∧ Rm(v̄m)
)

,
we denote bychase(q,Σ) the result of a chase sequence for the
database{R1(v̄

′
1), . . . , Rm(v̄′m)} underΣ obtained after replac-

ing each variablex in q with a fresh constantc(x).

Egds and the chase procedure.An equality-generating depen-
dency(egd) overσ is an expression of the form:

∀x̄
(

φ(x̄) → xi = xj
)

,

where φ is a conjunction of atoms without nulls overσ, and
xi, xj ∈ x̄. For clarity, we write this egd asφ(x̄) → xi = xj ,
and use comma for conjoining atoms. We callφ the bodyof the
egd. An instanceI overσ satisfies this egd if, for every homomor-
phismh such thath(φ(x̄)) ⊆ I , it is the case thath(xi) = h(xj).
An instanceI satisfies a setΣ of egds, denotedI |= Σ, if I satisfies
every egd inΣ.

Recall that egds subsume functional dependencies, which inturn
subsume keys. Afunctional dependency(FD) overσ is an expres-
sion of the formR : A → B, whereR is a relation symbol inσ
of arity n > 0, andA,B are subsets of{1, . . . , n}, asserting that
the values of the attributes ofB are determined by the values of the
attributes ofA. For example,R : {1} → {3}, whereR is a ternary
relation, is actually the egdR(x, y, z), R(x, y′, z′) → z = z′. A
FDR : A→ B as above is calledkeyif A ∪ B = {1, . . . , n}.

As for tgds, the chase is a useful tool when reasoning with egds.
Let us first define a single chase step. Consider an instanceI over
schemaσ and an egdǫ = φ(x̄) → xi = xj over σ. We say
thatǫ is applicablew.r.t. I if there exists a homomorphismh such
that h(φ(x̄)) ⊆ I andh(xi) 6= h(xj). In this case,the result
of applying ǫ over I with h is as follows: If bothh(xi), h(xj)
are constants, then the result is “failure”; otherwise, it is the in-
stanceJ obtained fromI by identifyingh(xi) andh(xj) as fol-
lows: If one is a constant, then every occurrence of the null is re-
placed by the constant, and if both are nulls, the one is replaced
everywhere by the other. As for tgds, we can define the notion
of the chase sequence for an instanceI under a setΣ of egds.
Notice that such a sequence, assuming that is not failing, always
is finite. Moreover, it is unique (up to null renaming), and thus
we refer tothe chase forI underΣ, denotedchase(I,Σ). Fur-
ther, for a CQq = ∃ȳ

(

R1(v̄1) ∧ · · · ∧ Rm(v̄m)
)

, we denote
by chase(q,Σ) the result of a chase sequence for the database
{R1(v̄

′
1), . . . , Rm(v̄′m)} under Σ obtained after replacing each

variablex in q with a fresh constantc(x); however, it is impor-
tant to clarify that these are special constants, which are treated as
nulls during the chase.

Containment and equivalence.Let q andq′ be CQs andΣ a finite
set of tgds or egds. Then,q is containedin q′ underΣ, denoted
q ⊆Σ q′, if q(I) ⊆ q′(I) for every instanceI such thatI |= Σ.
Further,q is equivalentto q′ underΣ, denotedq ≡Σ q′, whenever
q ⊆Σ q′ andq′ ⊆Σ q (or, equivalently, ifq(I) = q′(I) for every
instanceI such thatI |= Σ). The following well-known charac-

terization of CQ containment in terms of the chase will be widely
used in our proofs:

LEMMA 1. Let q(x̄) and q′(x̄′) be CQs andΣ be a finite set
of tgds or egds. Thenq ⊆Σ q′ if and only if c(x̄) belongs to the
evaluation ofq′ overchase(q,Σ).

A problem that is quite important for our work isCQ contain-
ment under constraints(tgds or egds), defined as follows: Given
CQs q, q′ and a finite setΣ of tgds or egds, is it the case that
q ⊆Σ q′? WheneverΣ is bound to belong to a particular classC
of sets of tgds, we denote this problem asCont(C). It is clear that
the above lemma provides a decision procedure for the containment
problem under egds. However, this is not the case for tgds.

Decidable containment of CQs under tgds.It is not surprising
that Lemma 1 does not provide a decision procedure for solving
CQ containment under tgds since this problem is known to be un-
decidable [7]. This has led to a flurry of activity for identifying
syntactic restrictions on sets of tgds that lead to decidable CQ con-
tainment (even in the case when the chase does not terminate).3

Such restrictions are often classified into three main paradigms:

Guardedness:A tgd isguardedif its body contains an atom, called
guard, that contains all the body-variables. Although the chase un-
der guarded tgds does not necessarily terminate, query containment
is decidable. This follows from the fact that the result of the chase
hasbounded treewidth. LetG be the class of sets of guarded tgds.

PROPOSITION 2. [8] Cont(G) is 2EXPTIME-complete. It be-
comesEXPTIME-complete if the arity of the schema is fixed, and
NP-complete if the schema is fixed.

A key subclass of guarded tgds is the class oflinear tgds, that is,
tgds whose body consists of a single atom [9], which in turn sub-
sume the well-known class ofinclusion dependencies(linear tgds
without repeated variables neither in the body nor in the head) [15].
LetL andID be the classes of sets of linear tgds and inclusions de-
pendencies, respectively.Cont(C), for C ∈ {L, ID}, is PSPACE-
complete, and NP-complete if the arity of the schema is fixed [22].

Non-recursiveness:A set Σ of tgds isnon-recursiveif its predi-
cate graph contains no directed cycles. (Non-recursive sets of tgds
are also known asacyclic [16, 24], but we reserve this term for
CQs). Non-recursiveness ensures the termination of the chase, and
thus decidability of CQ containment. LetNR be the class of non-
recursive sets of tgds. Then:

PROPOSITION 3. [24] Cont(NR) is complete forNEXPTIME,
even if the arity of the schema is fixed. It becomesNP-complete if
the schema is fixed.

Stickiness:This condition ensures neither termination nor bounded
treewidth of the chase. Instead, the decidability of query contain-
ment is obtained by exploitingquery rewriting techniques. The
goal of stickiness is to capture joins among variables that are not
expressible via guarded tgds, but without forcing the chaseto termi-
nate. The key property underlying this condition can be described
as follows: During the chase, terms that are associated (viaa homo-
morphism) with variables that appear more than once in the body of
a tgd (i.e., join variables) are always propagated (or “stick”) to the
inferred atoms. This is illustrated in Figure 1(a); the firstset of tgds
3In fact, these restrictions are designed to obtain decidable query
answering under tgds. However, this problem is equivalent to query
containment under tgds (Lemma 1).

(a)

 T(x,yyyy,z) → ∃w S(x,w)

 R(x,yyyy), P(yyyy,z) → ∃w T(x,y,w)

(b)

×

 T(x,y,z) → ∃w S(y,w)

 R(x,y), P(y,z) → ∃w T(x,y,w)

 T(x,y,z) → ∃w S(x,w)

 R(x,y), P(y,z) → ∃w T(x,y,w)

Figure 1: Stickiness and marking.

is sticky, while the second is not. The formal definition is based on
an inductive marking procedure that marks the variables that may
violate the semantic property of the chase described above [10].
Roughly, during the base step of this procedure, a variable that ap-
pears in the body of a tgdτ but not in every head-atom ofτ is
marked. Then, the marking is inductively propagated from head to
body as shown in Figure 1(b). Finally, a finite set of tgdsΣ is sticky
if no tgd inΣ contains two occurrences of a marked variable. Then:

PROPOSITION 4. [10] Cont(S) is EXPTIME-complete. It be-
comesNP-complete if the arity of the schema is fixed.

Weak versions:Each one of the previous classes has an associated
weak version, calledweakly-guarded[8], weakly-acyclic[16], and
weakly-sticky[10], respectively, that guarantees the decidability of
query containment. The underlying idea of all these classesis the
same: Relax the conditions in the definition of the class, so that
only those positions that receive null values during the chase pro-
cedure are taken into consideration. A key property of all these
classes is that they extend the class offull tgds, i.e., those with-
out existentially quantified variables. This is not the casefor the
“unrelaxed” versions presented above.

3. SEMANTIC ACYCLICITY WITH TGDS
One of the main tasks of our work is to study the problem of

checking whether a CQq is equivalent to an acyclic CQ over those
instances that satisfy a setΣ of tgds. When this is the case we
say thatq is semantically acyclic underΣ. The semantic acyclicity
problem is defined below;C is a class of sets of tgds (e.g., guarded,
non-recursive, sticky, etc.):

PROBLEM : SemAc(C)
INPUT : A CQ q and a finite setΣ of tgds inC.
QUESTION: Is there an acyclic CQq′ s.t.q ≡Σ q

′?

3.1 Infinite Instances vs. Finite Databases
It is important to clarify thatSemAc(C) asks for the existence

of an acyclic CQq′ that is equivalent toq underΣ focussing on
arbitrary (finite or infinite) instances. However, in practice we are
concerned only with finite databases. Therefore, one may claim
that the natural problem to investigate isFinSemAc(C), which ac-
cepts as input a CQq and a finite setΣ ∈ C of tgds, and asks
whether an acyclic CQq′ exists such thatq(D) = q′(D) for every
finite databaseD |= Σ.

Interestingly, for all the classes of sets of tgds discussedin the
previous section,SemAc andFinSemAc coincide due to the fact

that they ensure the so-calledfinite controllability of CQ contain-
ment. This means that query containment under arbitrary instances
and query containment under finite databases are equivalentprob-
lems. For non-recursive and weakly-acyclic sets of tgds this im-
mediately follows from the fact that the chase terminates. For
guarded-based classes of sets of tgds this has been shown in [3],
while for sticky-based classes of sets of tgds it has been shown
in [18]. Therefore, assuming thatC is one of the above syntac-
tic classes of sets of tgds, by giving a solution toSemAc(C) we
immediately obtain a solution forFinSemAc(C).

The reason why we prefer to focus onSemAc(C), instead of
FinSemAc(C), is given by Lemma 1: Query containment under
arbitrary instances can be characterized in terms of the chase. This
is not true for CQ containment under finite databases simply be-
cause the chase is, in general, infinite.

3.2 Semantic Acyclicity vs. Containment
There is a close relationship between semantic acyclicity and a

restricted version of CQ containment under sets of tgds, as we ex-
plain next. But first we need to recall the notion of connectedness
for queries and tgds. A CQ isconnectedif its Gaifman graphis
connected – recall that the nodes of the Gaifman graph of a CQq
are the variables ofq, and there is an edge between variablesx and
y iff they appear together in some atom ofq. Analogously, a tgdτ
is body-connectedif its body is connected. Then:

PROPOSITION 5. Let Σ be a finite set of body-connected tgds
and q, q′ two Boolean and connected CQs without common vari-
ables, such thatq is acyclic andq′ is not semantically acyclic under
Σ. Thenq ⊆Σ q

′ iff q ∧ q′ is semantically acyclic underΣ.

As an immediate corollary of Proposition 5, we obtain an initial
boundary for the decidability ofSemAc: We can only obtain a pos-
itive result for those classes of sets of tgds for which the restricted
containment problem presented above is decidable. More formally,
let us defineRestCont(C) to be the problem of checkingq ⊆Σ q′,
given a setΣ of body-connected tgds inC and two Boolean and
connected CQsq andq′, without common variables, such thatq is
acyclic andq′ is not semantically acyclic underΣ. Then:

COROLLARY 6. SemAc(C) is undecidable for every classC of
tgds such thatRestCont(C) is undecidable.

As we shall discuss later,RestCont is not easier than general CQ
containment under tgds, which means that the only classes oftgds
for which we know the former problem to be decidable are those
for which we know CQ containment to be decidable (e.g., those
introduced in Section 2).

At this point, one might be tempted to think that some version
of the converse of Proposition 5 also holds; that is, the semantic
acyclicity problem forC is reducible to the containment problem
for C. This would imply the decidability ofSemAc for any class
of sets of tgds for which the CQ containment problem is decidable.
Our next result shows that the picture is more complicated than this
asSemAc is undecidable even over the classF of sets of full tgds,
which ensures the decidability of CQ containment:

THEOREM 7. The problemSemAc(F) is undecidable.

PROOF. We provide a sketch since the complete construction is
long. We reduce from thePost correspondence problem(PCP) over
the alphabet{a, b}. The input to this problem are two equally long
listsw1, . . . , wn andw′

1, . . . , w
′
n of words over{a, b}, and we ask

whether there is asolution, i.e., a nonempty sequencei1 . . . im of
indices in{1, . . . , n} such thatwi1 . . . wim = w′

i1
. . . w′

im .

x

y

z

u

v

P#

P#

P#

Pa
Pb

PaPb

Pa

Pb

P∗

P∗

P∗

start end

Figure 2: The query q from the proof of Theorem 7.

Let w1, . . . , wn andw′
1, . . . , w

′
n be an instance of PCP. In the

full proof we construct a Boolean CQq and a setΣ of full tgds
over the signature{Pa, Pb, P#, P∗, sync, start, end}, wherePa,
Pb, P#, P∗ andsync are binary predicates, andstart andend are
unary predicates, such that the PCP instance given byw1, . . . , wn
andw′

1, . . . , w
′
n has a solution iff there exists an acyclic CQq′ such

that q ≡Σ q′. In this sketch though, we concentrate on the case
when the underlying graph ofq′ is a directed path; i.e, we prove
that the PCP instance has a solution iff there is a CQq′ whose
underlying graph is a directed path such thatq ≡Σ q′. This does
not imply the undecidability of the general case, but the proof of
the latter is a generalization of the one we sketch below.

The restriction of the queryq to the symbols that are notsync
is graphically depicted in Figure 2. There,x, y, z, u, v denote the
names of the respective variables. The interpretation ofsync in q
consists of all pairs in{y, u, z}.

Our setΣ of full tgds defines thesynchronizationpredicatesync
over those acyclic CQsq′ whose underlying graph is a path. As-
sume thatq′ encodes a wordw ∈ {a, b}+. We denote byw[i], for
1 ≤ i ≤ |w|, the prefix ofw of lengthi. In such case, the pred-
icatesync contains those pairs(i, j) such that for some sequence
i1 . . . im of indices in{1, . . . , n} we have thatwi1 . . . wim = w[i]
andw′

i1
. . . w′

im = w[j]. Thus, if w is a solution for the PCP
instance, then(|w|, |w|) belongs to the interpretation ofsync.

Formally,Σ consists of the following rules:

1. An initialization rule:

start(x), P#(x, y) → sync(y, y).

That is, the first element after the special symbol# (which
denotes the beginning of a word over{a, b}) is synchronized
with itself.

2. For each1 ≤ i ≤ n, a synchronization rule:

sync(x, y), Pwi
(x, z), Pw′

i
(y, u) → sync(z, u).

Here, Pw(x, y), for w = a1 . . . at ∈ {a, b}+, denotes
Pa1(x, x1), . . . , Pat(xt−1, y), where thexi’s are fresh vari-
ables. Roughly, if(x, y) is synchronized and the elementz
(resp.,u) is reachable fromx (resp.,y) by wordwi (resp.,
w′
i), then(z, u) is also synchronized.

3. For each1 ≤ i ≤ n, a finalization rule:

start(x), Pa(y, z), Pa(z, u), P∗(u, v), end(v),

sync(y1, y2), Pwi
(y1, y), Pw′

i
(y2, y) → ψ,

whereψ is the conjunction of atoms:

P#(x, y), P#(x, z), P#(x, u), P∗(y, v), P∗(z, v),

Pb(z, y), Pb(u, z), Pa(u, y), Pb(y, u),

sync(y, y), sync(z, z), sync(y, z), sync(z, y),

sync(y, u), sync(u, y), sync(z, u), sync(u, z).

This tgd enforceschase(q′,Σ) to contain a “copy” ofq
wheneverq′ encodes a solution for the PCP instance.

We first show that if the PCP instance has a solution given by the
nonempty sequencei1 . . . im, with 1 ≤ i1, . . . , im ≤ n, then there
exists an acylic CQq′ whose underlying graph is a directed path
such thatq ≡Σ q′. Let us assume thatwi1 . . . wim = a1 . . . at,
where eachai ∈ {a, b}. It is not hard to prove thatq ≡Σ q

′, where
q′ is as follows:

P∗

start

P# Pa1
x′

end

y′ z′ u′ v′
Pat. . . Pa Pa

Here, again,x′, y′, z′, u′, v′ denote the names of the respective
variables ofq′. All nodes in the above path are different. The
main reason whyq ≡Σ q′ holds is because the factw is a solution
implies that there are elementsy1 andy2 such thatsync(y1, y2),
Pw1(y1, y) andPw′

i
(y2, y) hold in chase(q′,Σ). Thus, the final-

ization rule is fired. This creates a copy ofq in chase(q′,Σ), which
allowsq to be homomorphically mapped tochase(q′,Σ).

Now we prove that if there exists an acyclic CQq′ such that
q ≡Σ q′ and the underlying graph ofq′ is a directed path, then
the PCP instance has a solution. Sinceq ≡Σ q′, Lemma 1 tells us
thatchase(q,Σ) ≡ chase(q′,Σ) are homomorphically equivalent.
But thenchase(q′,Σ) must contain at least one variable labeled
start and one variable labeledend. The first variable cannot have
incoming edges (otherwise,chase(q′,Σ) would not homomorphi-
cally map tochase(q,Σ)), while the second one cannot have out-
coming edges (for the same reason). Thus, it is the first variablex′

of q′ that is labeledstart and the last onev′ that is labeledend.
Further, all edges reachingv′ in q′ must be labeledP∗ (otherwise
q′ does not homomorphically map toq). Thus, this is the label of
the last edge ofq′ that goes from variableu′ to v′. Analogously,
the edge that leavesx′ in q′ is labeledP#. Further, any other edge
in q′ is labeledPa, Pb, or sync.

Notice now thatv′ must have an incoming edge labeledP∗ in
chase(q′,Σ) from some nodeu′′ that has an outgoing edge with
label Pa (sinceq homomorphically maps tochase(q′,Σ)). By
definition ofΣ, this could only have happened if the finalization
rule is fired. In particular,u′ is preceded by nodez′, which in
turn is preceded byy′, and there are elementsy′1 andy′2 such that
sync(y′1, y

′
2), Pw1(y

′
1, y

′) andPw′
i
(y′2, y

′) hold in chase(q′,Σ).
In fact, the unique path fromy′1 (resp.,y′2) to y′ in q′ is labeled
wi (resp.,w′

i). This means that the atomsync(y′1, y
′
2) was not one

of the edges ofq′, but must have been produced during the chase
by firing the initialization or the synchronization rules, and so on.
This process must finish in the second elementx∗ of q′. (Recall
that sync(x∗, x∗) belongs tochase(q′,Σ) due to the first rule of
Σ). We conclude that our PCP instance has a solution.

Theorem 7 rules out any class that captures the class of full tgds,
e.g., weakly-guarded, weakly-acyclic and weakly-sticky sets of
tgds. The question that comes up is whether the non-weak versions
of the above classes, namely guarded, non-recursive and sticky sets
of tgds, ensure the decidability ofSemAc, and what is the com-
plexity of the problem. This is the subject of the next two sections.

4. ACYCLICITY-PRESERVING CHASE
We propose a semantic criterion, the so-calledacyclicity-

preserving chase, that ensures the decidability ofSemAc(C) when-
ever the problemCont(C) is decidable. This criterion guarantees
that, starting from an acyclic instance, it is not possible to destroy

 α1 ∧ α2 ∧ α3 ∧ α4 ∧ α5

 µ (α1)

 µ (α2)

 µ (α3)

 µ (α4)
 µ (α5)

β 1

β 2

β 3

β

 α1 ∧ α2 ∧ α3 ∧ α4 ∧ α5

 µ (α1)

 µ (α2)

 µ (α3)

 µ (α4)
 µ (α5)

β 1

β 2

β 3

β

Figure 3: The compact acyclic query.

its acyclicity during the construction of the chase. We thenpro-
ceed to show that the class of guarded sets of tgds has acyclicity-
preserving chase, which immediately implies the decidability of
SemAc(G), and we pinpoint the exact complexity of the latter
problem. Notice that non-recursiveness and stickiness do not enjoy
this property, even in the restrictive setting where only unary and
binary predicates can be used; more details are given in the next
section. The formal definition of our semantic criterion follows:

Definition 1. (Acyclicity-preserving Chase) We say that a class
C of sets of tgds hasacyclicity-preserving chaseif, for every
acyclic CQq, setΣ ∈ C, and chase sequence forq underΣ, the
result of such a chase sequence is acyclic.

We can then prove the following small query property:

PROPOSITION 8. Let Σ be a finite set of tgds that belongs to
a class that has acyclicity-preserving chase, andq a CQ. If q is
semantically acyclic underΣ, then there exists an acyclic CQq′,
where|q′| ≤ 2 · |q|, such thatq ≡Σ q′.

The proof of the above result relies on the following technical
lemma, established in [8] (using slightly different terminology),
that will also be used later in our investigation:

LEMMA 9. Let q(x̄) be a CQ,I an acyclic instance, and̄c a
tuple of distinct constants occurring inI such thatq(c̄) holds inI .
There exists an acyclic CQq′(x̄), whereq′ ⊆ q and |q′| ≤ 2 · |q|,
such thatq′(c̄) holds inI .

For the sake of completeness, we would like to recall the idea
of the construction underlying Lemma 9, which is illustrated in
Figure 3. Assuming thatα1, . . . , α5 are the atoms ofq, there exists
a homomorphismµ that mapsα1 ∧ . . . ∧ α5 to the join treeT of
the acyclic instanceI (the shaded tree in Figure 3). Consider now
the subtreeTq of T consisting of all the nodes in the image of the
query and their ancestors. FromTq we extract the smaller treeF
also depicted in Figure 3;F = (V,E) is obtained as follows:

1. V consists of all the root and leaf nodes ofTq, and all the
inner nodes ofTq with at least two children; and

2. For everyv, u ∈ V , (v, u) ∈ E iff u is a descendant ofv in
Tq, and the only nodes ofV that occur on the unique shortest
path fromv to u in Tq arev andu.

It is easy to verify thatF is a join tree, and has at most2 · |q| nodes.
The acyclic conjunctive queryq′ is defined as the conjunction of all
atoms occurring inF .

Notice that a result similar to Lemma 9 is implicit in [4], where
the problem of approximating conjunctive queries is investigated.
However, from the results of [4], we can only conclude the exis-
tence of an exponentially sized acyclic CQ in the arity of theun-
derlying schema, while Lemma 9 establishes the existence ofan

acyclic query of linear size. This is decisive for our later complex-
ity analysis. Having the above lemma in place, it is not difficult to
establish Proposition 8.

PROOF OFPROPOSITION8. Since, by hypothesis,q is seman-
tically acyclic underΣ, there exists an acyclic CQq′′(x̄) such
that q ≡Σ q′′. By Lemma 1,c(x̄) belongs to the evaluation of
q over chase(q′′,Σ). Recall thatΣ belongs to a class that has
acyclicity-preserving chase, which implies thatchase(q′′,Σ) is
acyclic. Hence, by Lemma 9, there exists an acyclic CQq′, where
q′ ⊆ q and|q′| ≤ 2 · |q|, such thatc(x̄) belongs to the evaluation
of q′ over chase(q′′,Σ). By Lemma 1,q′′ ⊆Σ q′, and therefore
q ⊆Σ q′. We conclude thatq ≡Σ q′, and the claim follows.

It is clear that Proposition 8 provides a decision procedure
for SemAc(C) wheneverC has acyclicity-preserving chase and
Cont(C) is decidable. Given a CQq, and a finite setΣ ∈ C:

1. Guess an acyclic CQq′ of size at most2 · |q|; and

2. Verify thatq ⊆Σ q′ andq′ ⊆Σ q.

The next result follows:

THEOREM 10. Consider a classC of sets of tgds that has
acyclicity-preserving chase. If the problemCont(C) is decidable,
thenSemAc(C) is also decidable.

4.1 Guardedness
We proceed to show thatSemAc(G) is decidable and has the

same complexity as CQ containment under guarded tgds:

THEOREM 11. SemAc(G) is complete for 2EXPTIME. It be-
comesEXPTIME-complete if the arity of the schema is fixed, and
NP-complete if the schema is fixed.

The rest of this section is devoted to establish Theorem 11.

Decidability and Upper Bounds

We first show that:

PROPOSITION 12. G has acyclicity-preserving chase.

The above result, combined with Theorem 10, implies the decid-
ability of SemAc(G). However, this does not say anything about
the complexity of the problem. With the aim of pinpointing the
exact complexity ofSemAc(G), we proceed to analyze the com-
plexity of the decision procedure underlying Theorem 10. Recall
that, given a CQq, and a finite setΣ ∈ G, we guess an acyclic
CQ q′ such that|q′| ≤ 2 · |q|, and verify thatq ≡Σ q′. It is clear
that this algorithm runs in non-deterministic polynomial time with
a call to aC oracle, whereC is a complexity class powerful enough
for solvingCont(G). Thus, Proposition 2 implies thatSemAc(G)
is in 2EXPTIME, in EXPTIME if the arity of the schema is fixed,
and in NP if the schema is fixed. One may ask why for a fixed
schema the obtained upper bound is NP and notΣP2 . Observe that
the oracle is called only once in order to solveCont(G), and since
Cont(G) is already in NP when the schema is fixed, it is not really
needed in this case.

Lower Bounds

Let us now show that the above upper bounds are optimal. By
Proposition 5,RestCont(G) can be reduced in constant time to
SemAc(G). Thus, to obtain the desired lower bounds, it suffices to

reduce in polynomial timeCont(G) toRestCont(G). Interestingly,
the lower bounds given in Section 2 forCont(G) hold even if we
focus on Boolean CQs and the left-hand side query is acyclic.In
fact, this is true, not only for guarded, but also for non-recursive and
sticky sets of tgds. LetAcBoolCont(C) be the following problem:
Given an acyclic Boolean CQq, a Boolean CQq′, and a finite set
Σ ∈ C of tgds, is it the caseq ⊆Σ q′?

From the above discussion, to establish the desired lower bounds
for guarded sets of tgds (and also for the other classes of tgds
considered in this work), it suffices to reduce in polynomialtime
AcBoolCont to RestCont. To this end, we introduce the so-
called connecting operator, which provides a generic reduction
from AcBoolCont toRestCont.

Connecting operator. Consider an acyclic Boolean CQq, a
Boolean CQq′, and a finite setΣ of tgds. We assume that both
q, q′ are of the form∃ȳ

(

R1(v̄1) ∧ · · · ∧ Rm(v̄m)
)

. The appli-
cation of theconnecting operatoron (q, q′,Σ) returns the triple
(c(q), c(q′), c(Σ)), where

• c(q) is the query

∃ȳ∃w
(

R
⋆
1(v̄1, w) ∧ · · · ∧ R⋆m(v̄m, w) ∧ aux(w,w)

)

,

wherew is a new variable not inq, eachR⋆i is a new predi-
cate, and alsoaux is a new binary predicate;

• c(q′) is the query

∃ȳ∃w∃u∃v
(

R
⋆
1(v̄1, w) ∧ · · · ∧R⋆m(v̄m, w)∧

aux (w, u) ∧ aux(u, v) ∧ aux(v, w)
)

,

wherew, u, v are new variables not inq; and

• Finally, c(Σ) = {c(τ) | τ ∈ Σ}, where for a tgdτ =
φ(x̄, ȳ) → ∃z̄ψ(x̄, z̄), c(τ) is the tgd

φ
⋆(x̄, ȳ, w) → ∃z̄ψ⋆(x̄, z̄, w),

with φ⋆(x̄, ȳ, w), ψ⋆(x̄, z̄, w) be the conjunctions obtained
from φ(x̄, ȳ), ψ(x̄, z̄), respectively, by replacing each atom
R(x1, . . . , xn) with R⋆(x1, . . . , xn, w), wherew is a new
variable not occurring inτ .

This concludes the definition of the connecting operator. A classC
of sets of tgds isclosed under connectingif, for every setΣ ∈ C,
c(Σ) ∈ C. It is easy to verify thatc(q) remains acyclic and is
connected,c(q′) is connected and not semantically acyclic under
c(Σ), and c(Σ) is a set of body-connected tgds. It can be also
shown thatq ⊆Σ q′ iff c(q) ⊆

c(Σ) c(q
′).

From the above discussion, it is clear that the connecting
operator provides a generic polynomial time reduction from
AcBoolCont(C) to RestCont(C), for every classC of sets of tgds
that is closed under connecting. Then:

PROPOSITION 13. LetC be a class of sets of tgds that is closed
under connecting such thatAcBoolCont(C) is hard for a complex-
ity classC that is closed under polynomial time reductions. Then,
SemAc(C) is alsoC-hard.

Back to guardedness. It is easy to verify that the class of
guarded sets of tgds is closed under connecting. Thus, the lower
bounds forSemAc(G) stated in Theorem 11 follow from Proposi-
tions 2 and 13. Note that, although Proposition 2 refers toCont(G),
the lower bounds hold forAcBoolCont(G); this is implicit in [8].

As said in Section 2, a key subclass of guarded sets of tgds is the
class of linear tgds, i.e., tgds whose body consists of a single atom,

which in turn subsume the well-known class of inclusion depen-
dencies. By exploiting the non-deterministic procedure employed
for SemAc(G), and the fact that both linear tgds and inclusion de-
pendencies are closed under connecting, we can show that:

THEOREM 14. SemAc(C), for C ∈ {L, ID}, is complete for
PSPACE. It becomesNP-complete if the arity of the schema is fixed.

5. UCQ REWRITABILITY
Even though the acyclicity-preserving chase criterion wasvery

useful for solvingSemAc(G), it is of little use for non-recursive
and sticky sets of tgds. As we show in the next example, neither
NR norS have acyclicity-preserving chase:

Example 2.Consider the acyclic CQ and the tgd

q = ∃x̄
(

P (x1) ∧ . . . ∧ P (xn)
)

τ = P (x), P (y) → R(x, y),

where{τ} is both non-recursive and sticky, but not guarded. In
chase(q, {τ}) the predicateR holds all the possible pairs that can
be formed using the termsx1, . . . , xn. Thus, in the Gaifman graph
of chase(q, {τ}) we have ann-clique, which means that is highly
cyclic. Notice that our example illustrates that also otherfavorable
properties of the CQ are destroyed after chasing with non-recursive
and sticky sets of tgds, namely bounded (hyper)tree width.4

In view of the fact that the methods devised in Section 4 cannot
be used for non-recursive and sticky sets of tgds, new techniques
must be developed. Interestingly,NR and S share an important
property, which turned out to be very useful for semantic acyclic-
ity: UCQ rewritability. Recall that aunion of conjunctive queries
(UCQ) is an expression of the formQ(x̄) =

∨

1≤i≤n qi(x̄), where
eachqi is a CQ over the same schemaσ. The evaluation ofQ
over an instanceI , denotedQ(I), is defined as

⋃

1≤i≤n qi(I). The
formal definition of UCQ rewritability follows:

Definition 2. (UCQ Rewritability) A classC of sets of tgds is
UCQ rewritableif, for every CQq, andΣ ∈ C, we can construct
a UCQQ such that: For every CQq′(x̄), q′ ⊆Σ q iff c(x̄) ∈
Q(Dq′), withDq′ be the database obtained fromq′ after replacing
each variablex with c(x).

In other words, UCQ rewritability suggests that query contain-
ment can be reduced to the problem of UCQ evaluation. It is im-
portant to say that this reduction depends only on the right-hand
side CQ and the set of tgds, but not on the left-hand side query.
This is crucial for establishing the desirable small query property
whenever we focus on sets of tgds that belong to a UCQ rewritable
class. At this point, let us clarify that the class of guardedsets of
tgds is not UCQ rewritable, which justifies our choice of a different
semantic property, that is, acyclicity-preserving chase,for its study.

Let us now show the desirable small query property. For each
UCQ rewritable classC of sets of tgds, there exists a computable
functionfC(·, ·) from the set of pairs consisting of a CQ and a set
of tgds inC to positive integers such that the following holds: For
every CQq, setΣ ∈ C, and UCQ rewritingQ of q andΣ, theheight
of Q, that is, the maximal size of its disjuncts, is at mostfC(q,Σ).
The existence of the functionfC follows by the definition of UCQ
rewritability. Then, we show the following:

PROPOSITION 15. LetC be a UCQ rewritable class,Σ ∈ C a
finite set of tgds, andq a CQ. Ifq is semantically acyclic underΣ,
then there exists an acyclic CQq′, where|q′| ≤ 2 · fC(q,Σ), such
that q ≡Σ q′.
4Notice that guarded sets of tgds over predicates of bounded arity
preserve the bounded hyper(tree) width of the query.

PROOF. Sinceq is semantically acyclic underΣ, there exists
an acyclic CQq′′(x̄) such thatq ≡Σ q′′. AsC is UCQ rewritable,
there exists a UCQQ such thatc(x̄) ∈ Q(Dq′′), which implies that
there exists a CQqr (one of the disjuncts ofQ) such thatc(x̄) ∈
qr(Dq′′). Clearly, |qr | ≤ fC(q,Σ). ButDq′′ is acyclic, and thus
Lemma 9 implies the existence of an acyclic CQq′, whereq′ ⊆ qr
and |q′| ≤ 2 · fC(q,Σ), such thatc(x̄) ∈ q′(Dq′′). The latter
implies thatq′′ ⊆ q′. By hypothesis,q ⊆Σ q

′′, and henceq ⊆Σ q′.
For the other direction, we first show thatqr ⊆Σ q (otherwise,Q
is not a UCQ rewriting). Sinceq′ ⊆ qr, we get thatq′ ⊆Σ q. We
conclude thatq ≡Σ q

′, and the claim follows.

It is clear that Proposition 15 provides a decision procedure for
SemAc(C) wheneverC is UCQ rewritable, andCont(C) is decid-
able. Given a CQq, and a finite setΣ ∈ C:

1. Guess an acyclic CQq′ of size at most2 · fC(q,Σ); and

2. Verify thatq ⊆Σ q
′ andq′ ⊆Σ q.

The next result follows:

THEOREM 16. Consider a classC of sets of tgds that is UCQ
rewritable. If the problemCont(C) is decidable, thenSemAc(C)
is also decidable.

5.1 Non-Recursiveness
As already said, the key property ofNR that we are going to

exploit for solvingSemAc(NR) is UCQ rewritability. For a CQ
q and a setΣ of tgds, letpq,Σ andaq,Σ be the number of predi-
cates inq andΣ, and the maximum arity over all those predicates,
respectively. The next result is implicit in [20]:5

PROPOSITION 17. NR is UCQ rewritable. Furthermore,
fNR(q,Σ) = pq,Σ · (aq,Σ · |q|+ 1)aq,Σ .

The above result, combined with Theorem 16, implies the decid-
ability of SemAc(NR). For the exact complexity of the problem,
we simply need to analyze the complexity of the non-deterministic
algorithm underlying Theorem 16. Observe that when the arity of
the schema is fixed the functionfNR is polynomial, and therefore
Proposition 17 guarantees the existence of a polynomially sized
acyclic CQ. In this case, by exploiting Proposition 3, it is easy to
show thatSemAc(NR) is in NEXPTIME, and in NP if the schema
is fixed. However, things are a bit cryptic when the arity of the
schema is not fixed. In this case,fNR is exponential, and thus we
have to guess an acyclic CQ of exponential size. But now the fact
that Cont(NR) is in NEXPTIME (by Proposition 3) alone is not
enough to conclude thatSemAc(NR) is also in NEXPTIME. We
need to understand better the complexity of the query containment
algorithm forNR.

Recall that given two CQsq(x̄), q′(x̄), and a finite setΣ ∈ NR,
by Lemma 1,q ⊆Σ q′ iff c(x̄) ∈ q′(chase(q,Σ)). By exploiting
non-recursiveness, it can be shown that ifc(x̄) ∈ q′(chase(q,Σ)),
then there exists a chase sequence

q = I0
τ0,c̄0−−−→ I1

τ1,c̄1−−−→ I2 . . . In−1
τn−1,c̄n−1
−−−−−−−→ In

of q andΣ, wheren = |q′|·(bΣ)
O(pq′,Σ), with bΣ be the maximum

number of atoms in the body of a tgd ofΣ, such thatc(x̄) ∈ q′(In).
The query containment algorithm forNR simply guesses such a
chase sequence ofq andΣ, and checks whetherc(x̄) ∈ q′(In).

5The work [20] does not considerNR. However, the rewriting al-
gorithm in that paper works also for non-recursive sets of tgds.

Sincen is exponential, this algorithm runs in non-deterministic ex-
ponential time. Now, recall that forSemAc(NR) we need to per-
form two containment checks where either the left-hand sideor
the right-hand side query is of exponential size. But in bothcases
the containment algorithm forNR runs in non-deterministic expo-
nential time, and henceSemAc(NR) is in NEXPTIME. The lower
bounds are inherited fromAcBoolCont(NR) sinceNR is closed
under connecting (see Proposition 13). Then:

THEOREM 18. SemAc(NR) is complete forNEXPTIME, even
if the arity of the schema is fixed. It becomesNP-complete if the
schema is fixed.

5.2 Stickiness
We now focus on sticky sets of tgds. As forNR, the key property

of S that we are going to use is UCQ rewritability. The next result
has been explicitly shown in [20]:

PROPOSITION 19. S is UCQ rewritable. Furthermore,
fS(q,Σ) = pq,Σ · (aq,Σ · |q|+ 1)aq,Σ .

The above result, combined with Theorem 16, implies the de-
cidability of SemAc(S). Moreover, Proposition 19 allows us to
establish an optimal upper bound when the arity of the schemais
fixed since in this case the functionfS is polynomial. In fact, we
show thatSemAc(S) is NP-complete when the arity of the schema
is fixed. The NP-hardness is inherited fromAcBoolCont(S) since
S is closed under connecting (see Proposition 13). Now, when the
arity of the schema is not fixed the picture is still foggy. In this
case, the functionfS is exponential, and thus by following the usual
guess and check approach we get thatSemAc(S) is in NEXPTIME,
while Proposition 13 implies an EXPTIME lower bound. To sum
up, our generic machinery based on UCQ rewritability shows that:

THEOREM 20. SemAc(S) is in NEXPTIME and hard forEXP-
TIME. It becomesNP-complete if the arity is fixed.

An interesting question that comes up is whether for sticky sets
of tgds a stronger small query property than Proposition 15 can be
established, which guarantees the existence of a polynomially sized
equivalent acyclic CQ. It is clear that such a result would allow us
to establish an EXPTIME upper bound forSemAc(S). At this point,
one might be tempted to think that this can be achieved by showing
that the functionfS is actually polynomial even if the arity of the
schema is not fixed. The next example shows that this is not the
case. We can construct a sticky setΣ of tgds and a CQq such
that, for every UCQ rewritingQ for q andΣ, the height ofQ is
exponential in the arity.

Example 3.LetΣ be the sticky set of tgds given below; we write
x̄
j
i for the tuple of variablesxi, xi+1, . . . , xj :
{

Pi(x̄
i−1
1 , Z, x̄

n
i+1, Z, O), Pi(x̄

i−1
1 , O, x̄

n
i+1, Z, O) →

Pi−1(x̄
i−1
1 , Z, x̄

n
i+1, Z,O)

}

i∈{1,...,n}
.

Consider also the Boolean CQ

P0(0, . . . , 0, 0, 1).

It can be shown that, for every UCQ rewritingQ for q andΣ, the
disjunct ofQ that mentions only the predicatePn contains exactly
2n atoms. Therefore, there is no UCQ rewriting forq andΣ of
polynomial height, which in turn implies thatfS cannot be polyno-
mial in the arity of the schema.

The above discussion reveals the need to identify a more refined
property of stickiness than UCQ rewritability, which will allow us
to close the complexity ofSemAc(S) when the arity is not fixed.
This is left as an interesting open problem.

x

y z

w1

w2

x

y z

w1

w2

R (x,y,z,w1)

R (x,y,z,w2)

x

y z

w1
w2

x

y z

w1 w2

R (x,y,z,w1)

R (x,y,z,w2)

�

�

�

�

H

H

H H

H

H H

Figure 4: From a “tree” to a grid via key dependencies.

6. SEMANTIC ACYCLICITY WITH EGDS
Up to now, we have considered classes of constraints that are

based on tgds. However, semantic acyclicity can be naturally de-
fined for classes of egds. Hence, one may wonder whether the tech-
niques developed in the previous sections can be applied foregd-
based classes of constraints. Unfortunately, the situation changes
dramatically even for the simplest subclass of egds, i.e., keys.

6.1 Peculiarity of Keys
We show that the techniques developed in the previous sections

for tgds cannot be applied for showing the decidability of semantic
acyclicity under keys, and thus under egds. Although the notions
of acyclicity-preserving chase (Definition 1) and UCQ rewritability
(Definition 2) can be naturally defined for egds, are of littleuse even
if we focus on keys.

Acyclicity-preserving chase. It is easy to show via a simple ex-
ample that keys over binary and ternary predicates do not enjoy the
acyclicity-preserving chase property:

Example 4.Let q be the acyclic query

R(x, y) ∧ S(x, y, z) ∧ S(x, z, w) ∧ S(x,w, v) ∧R(x, v).

After applying onq the keyR(x, y), R(x, z) → y = z, which
simply states that the first attribute of the binary predicateR is the
key, we obtain the query

R(x, y) ∧ S(x, y, z) ∧ S(x, z, w) ∧ S(x,w, y),

which is clearly cyclic.

With the aim of emphasizing the peculiarity of keys, we give a
more involved example, which shows that a tree-like query can be
transformed via two keys into a highly cyclic query that contains a
grid. Interestingly, this shows that also other desirable properties,
in particular bounded (hyper)tree width, are destroyed when we
chase a query using keys.

Example 5.Consider the CQq depicted in Figure 4 (ignoring
for the moment the dashed boxes). Although seeminglyq con-
tains ann × n grid, it can be verified that the grid-like structure
in the figure is actually a tree. In addition,q contains atoms of
the formR(x, y, z, w) as explained in the figure. More precisely,
for each of the open squares occurring in the first column (e.g., the
upper-left shaded square), we have the two atomsR(x, y, z, w1)
andR(x, y, z, w2) represented by the two hyperedges on the left.
Moreover, for each of the internal open squares and the open
squares occurring in the last column (e.g., the upper-rightshaded
square), we have the two atomsR(x, y, z, w1) andR(x, y, z, w2)

represented by the two hyperedges on the right. Observe thatq is
an acyclic query. Consider now the setΣ of keys:

ǫ1 = R(x, y, z, w), R(x, y, z, w′) → w = w
′

ǫ2 = H(x, y),H(x, z) → y = z.

Notice thatH(·, ·) stores the horizontal edges. It is not difficult to
see thatchase(q,Σ) contains ann×n grid. Roughly, as described
at the bottom of Figure 4, by first applyingǫ1 we close the open
squares of the first column, while the open squares of the second
column have now the same shape as the ones of the first column, but
with a danglingH-edge. Then, by applyingǫ2, the twoH-edges
collapse into a single edge, and we obtain open squares that have
exactly the same shape as those of the first column. After finitely
many chase steps, all the squares are closed, and thuschase(q,Σ)
indeed contains ann × n grid. Therefore, although the queryq is
acyclic, chase(q,Σ) is far from being acyclic. Observe also that
the (hyper)tree width ofchase(q,Σ) depends onn, while q has
(hyper)tree width3.

UCQ rewritability. It is not hard to show that keys are not UCQ
rewritable. This is not surprising due to the transitive nature of
equality. Intuitively, the UCQ rewritability of keys implies that a
first-order (FO) query can encode the fact that the equality relation
is transitive. However, it is well-known that this is not possible due
to the inability of FO queries to express recursion.

6.2 Keys over Constrained Signatures
Despite the peculiar nature of keys as discussed above, we can

establish a positive result regarding semantic acyclicityunder keys,
providing that only unary and binary predicates can be used.This
is done by exploiting the following generic result, which isactually
the version of Theorem 10 for egd-based classes:

THEOREM 21. Consider a classC of sets of egds. IfC has
acyclicity-preserving chase, thenSemAc(C) is NP-complete, even
if we allow only unary and binary predicates.

The proof of the above result is along the lines of the proof for
Theorem 10, and exploits the fact that the containment problem un-
der egds is feasible in non-deterministic polynomial time (this can
be shown by using Lemma 1). The lower bound follows from [14],
which shows that the problem of checking whether a Boolean CQ
over a single binary relation is equivalent to an acyclic oneis NP-
hard. We now show the following positive result for the classof
keys over unary and binary predicates, denotedK2:

PROPOSITION 22. K2 has acyclicity-preserving chase.

Notice that the above result is not in a conflict with Examples4
and 5, since both examples use predicates of arity greater than two.
It is now straightforward to see that:

THEOREM 23. SemAc(K2) is NP-complete.

Interestingly, Theorem 23 can be extended tounary functional
dependencies(over unconstrained signatures), that is, FDs of the
form R : A → B, whereR is a relational symbol of arityn > 0
and the cardinality ofA is one. This result has been established in-
dependently by Figueira [17]. Let us recall that egds ensurethe fi-
nite controllability of CQ containment. Consequently, Theorem 23
holds even forFinSemAc, which takes as input a CQq and a set
Σ of egds, and asks for the existence of an acyclic CQq′ such that
q andq′ are equivalent over all finite databases that satisfyΣ.

7. EVALUATION OF SEMANTICALLY
ACYCLIC QUERIES

As it has been noted in different scenarios in the absence of con-
straints, semantic acyclicity has a positive impact on query evalu-
ation [4, 5, 6]. We observe here that such good behavior extends
to the notion of semantic acyclicity for CQs under the decidable
classes of constraints we identified in the previous sections. In par-
ticular, evaluation of semantically acyclic CQs under constraints in
such classes is afixed-parameter tractable(fpt) problem, assuming
the parameter to be|q|+ |Σ|. (Here,|q| and|Σ| represent the size
of reasonable encodings ofq andΣ, respectively). Recall that this
means that the problem can be solved in timeO(|D|c ·f(|q|+|Σ|)),
for c ≥ 1 andf a computable function.

Let C be a class of sets of tgds. We defineSemAcEval(C) to be
the following problem: The input consists of a set of constraintsΣ
in C, a semantically acyclic CQq underΣ, a databaseD such that
D |= Σ, and a tuplēt of elements inD. We ask whether̄t ∈ q(D).

PROPOSITION 24. SemAcEval(C) can be solved in time

O
(

|D| · 22
O(|q|+|Σ|)

)

,

whereC ∈ {G,NR, S}.

PROOF. Our results state that forC ∈ {G,NR, S}, checking
if a CQ q is semantically acyclic underC can be done in double-
exponential time. More importantly, in case thatq is in fact se-
mantically acyclic underC our proof techniques yield an equivalent
acyclic CQq′ of at most exponential size in|q|+|Σ|. We then com-
pute and evaluate such a queryq′ onD, and returnq(D) = q′(D).
Clearly, this can be done in time

O
(

22
O(|q|+|Σ|)

)

+ O
(

|D| · 2O(|q|+|Σ|)
)

.

The running time of this algorithm is dominated by

O
(

|D| · 22
O(|q|+|Σ|)

)

and the claim follows.

This is an improvement over general CQ evaluation for which
no fpt algorithm is believed to exist [26]. It is worth remarking,
nonetheless, thatSemAcEval(C) corresponds to apromise version
of the evaluation problem, where the property that defines the class
is EXPTIME-hard for all theC’s studied in Proposition 24.

The above algorithm computes an equivalent acyclic CQq′ for
a semantically acyclic CQq under a set of constraints inC. This
might take double-exponential time. Surprisingly, computing such
q′ is not always needed at the moment of evaluating semantically
acyclic CQs under constraints. In particular, this holds for the sets
of guarded tgds. In fact, in such case evaluating a semantically
acylic CQq underΣ over a databaseD that satisfiesΣ amounts to
checking a polynomial time property overq andD. It follows, in
addition, that the evaluation problem for semantically acyclic CQs
under guarded tgds is tractable:

THEOREM 25. SemAcEval(G) is in polynomial time.

The idea behind the proof of the above theorem is as follows.
Whenq is a semantically acyclic CQ in the absence of constraints,
evaluatingq on D amounts to checking the existence of a win-
ning strategy for the duplicator in a particular version of the pebble
game, known as theexistential 1-cover game, on q andD [13].
We denote this byq ≡∃1c D. The existence of such winning

strategy can be checked in polynomial time [13]. Now, whenq

is semantically acyclic under an arbitrary setΣ of tgds or egds,
we show that evaluatingq on D amounts to checking whether
chase(q,Σ) ≡∃1c D. When Σ is a set of guarded tgds, we
prove in addition thatchase(q,Σ) ≡∃1c D iff q ≡∃1c D. Thus,
SemAcEval(G) is tractable since checkingq ≡∃1c D is tractable.

The fact that the evaluation ofq onD boils down to checking
whetherchase(q,Σ) ≡∃1c D, whenq is semantically acyclic un-
derΣ, also yields tractability forSemAcEval(C), whereC is any
class of sets of egds for which the chase can be computed in polyno-
mial time. This includes the central class of FDs. Notice, however,
that we do not know whetherSemAc under FDs is decidable.

8. FURTHER ADVANCEMENTS
In this section we informally discuss the fact that our previous

results on semantic acyclicity under tgds and CQs can be extended
to UCQs. Moreover, we show that our techniques establish the
existence of maximally contained acyclic queries.

8.1 Unions of Conjunctive Queries
It is reasonable to consider a moreliberal version of semantic

acyclicity under tgds based on UCQs. In such case we are givena
UCQQ and a finite setΣ of tgds, and the question is whether there
is a unionQ′ of acyclic CQs that is equivalent toQ underΣ. It
can be shown that all the complexity results on semantic acyclicity
under tgds presented above continue to hold even when the input
query is a UCQ. This is done by extending the small query proper-
ties established for CQs (Propositions 8 and 15) to UCQs.

Consider a finite setΣ of tgds (that falls in one of the tgd-based
classes considered above), and a UCQQ. If Q is semantically
acyclic underΣ, then one of the following holds: (i) for each dis-
junct q of Q, there exists an acyclic CQq′ of bounded size (the
exact size ofq′ depends on the class ofΣ) such thatq ≡Σ q′, or
(ii) q is redundant inQ, i.e., there exists a disjunctq′ ofQ such that
q ⊆Σ q′. Having this property in place, we can then design a non-
deterministic algorithm for semantic acyclicity, which provides the
desired upper bounds. Roughly, for each disjunctq of Q, this al-
gorithm guesses whether there exists an acyclic CQq′ of bounded
size such thatq ≡Σ q′, or q is redundant inQ. The desired lower
bounds are inherited from semantic acyclicity in the case ofCQs.

8.2 Query Approximations
Let C be any of the decidable classes of finite sets of tgds we

study in this paper (i.e.,G, NR, or S). Then, for any CQq with-
out constants6 and setΣ of constraints inC, our techniques yield
a maximally containedacyclic CQq′ underΣ. This means that
q′ ⊆Σ q and there is no acyclic CQq′′ such thatq′′ ⊆Σ q and
q′ (Σ q′′. Following the recent database literature, suchq′ cor-
responds to anacyclic CQ approximation ofq underΣ [4, 5, 6].
Notice that whenq is semantically acyclic underΣ, this acyclic ap-
proximationq′ is in fact equivalent toq underΣ. Computing and
evaluating an acyclic CQ approximation forq might help finding
“quick” (i.e., fixed-parameter tractable) answers to it when exact
evaluation is infeasible.

The way in which we obtain approximations is by slightly refor-
mulating the small query properties established in the paper (Propo-
sitions 8 and 15). Instead of dealing with semantically acyclic CQs
only, we are now given an arbitrary CQq. In all cases the reformu-
lation expresses the following: For every acyclic CQq′ such that
q′ ⊆Σ q, there is an acyclic CQq′′ of the appropriate sizef(q,Σ)

6Approximations for CQs with constants are not well-understood,
even in the absence of constraints [4].

such thatq′ ⊆Σ q′′ ⊆Σ q. It is easy to prove that for each CQq
there exists at least one acyclic CQq′ such thatq′ ⊆Σ q; take a sin-
gle variablex and add a tupleR(x, . . . , x) for each symbolR. It
follows then that an acyclic CQ approximation ofq underΣ can al-
ways be found among the setA(q) of acyclic CQsq′ of size at most
f(q,Σ) such thatq′ ⊆Σ q. In fact, the acyclic CQ approximations
of q underΣ are the maximal elements ofA(q) under⊆Σ.

9. CONCLUSIONS
We have concentrated on the problem of semantic acyclicity for

CQs in the presence of database constraints; in fact, tgds oregds.
Surprisingly, we have shown that there are cases such as the class of
full tgds, where containment is decidable, while semantic acyclic-
ity is undecidable. We have then focussed on the main classesof
tgds for which CQ containment is decidable, and do not subsume
full tgds, i.e., guarded, non-recusrive and sticky tgds. For these
classes we have shown that semantic acyclicity is decidable, and
obtained several complexity results. We have also shown that se-
mantic acyclicity is NP-complete if we focus on keys over unary
and binary predicates. Finally, we have considered the problem
of evaluating a semantically acyclic CQ over a database thatsatis-
fies certain constraints, and shown that for guarded tgds andFDs
is tractable. Here are some interesting open problems that we are
planning to investigate: (i) The complexity of semantic acyclic-
ity under sticky sets of tgds is still unknown; (ii) We do not know
whether semantic acyclicity under keys over unconstrainedsigna-
tures is decidable; and (iii) We do not know the complexity ofeval-
uating semantically acyclic queries underNR, S and egds.

Acknowledgements:Barceló would like to thank D. Figueira, M. Romero,
S. Rudolph, and N. Schweikardt for insightful discussions about the na-
ture of semantic acyclicity under constraints. We also thank the anonymous
referees for their helpful feedback. Barceló is funded by the Millenium Nu-
cleus Center for Semantic Web Research under grant NC120004. Gottlob is
supported by the EPSRC Programme Grant EP/M025268/ “VADA: Value
Added Data Systems – Principles and Architecture”. Pieris is supported
by the Austrian Science Fund (FWF), projects P25207-N23 andY698, and
Vienna Science and Technology Fund (WWTF), project ICT12-015.

10. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu.Foundations of

Databases. Addison-Wesley, 1995.
[2] J.-F. Baget, M.-L. Mugnier, S. Rudolph, and M. Thomazo.

Walking the complexity lines for generalized guarded
existential rules. InIJCAI, pages 712–717, 2011.

[3] V. Bárány, G. Gottlob, and M. Otto. Querying the guarded
fragment.Logical Methods in Computer Science, 10(2),
2014.

[4] P. Barceló, L. Libkin, and M. Romero. Efficient
approximations of conjunctive queries.SIAM J. Comput.,
43(3):1085–1130, 2014.

[5] P. Barceló, R. Pichler, and S. Skritek. Efficient evaluation
and approximation of well-designed pattern trees. InPODS,
pages 131–144, 2015.

[6] P. Barceló, M. Romero, and M. Y. Vardi. Semantic acyclicity
on graph databases. InPODS, pages 237–248, 2013.

[7] C. Beeri and M. Y. Vardi. The implication problem for data
dependencies. InICALP, pages 73–85, 1981.

[8] A. Calì, G. Gottlob, and M. Kifer. Taming the infinite chase:
Query answering under expressive relational constraints.J.
Artif. Intell. Res., 48:115–174, 2013.

[9] A. Calì, G. Gottlob, and T. Lukasiewicz. A general
Datalog-based framework for tractable query answering over
ontologies.J. Web Sem., 14:57–83, 2012.

[10] A. Calì, G. Gottlob, and A. Pieris. Towards more expressive
ontology languages: The query answering problem.Artif.
Intell., 193:87–128, 2012.

[11] D. Calvanese, G. De Giacomo, and M. Lenzerini.
Conjunctive query containment and answering under
description logic constraints.ACM Trans. Comput. Log.,
9(3), 2008.

[12] A. K. Chandra and P. M. Merlin. Optimal implementation of
conjunctive queries in relational data bases. InSTOC, pages
77–90, 1977.

[13] H. Chen and V. Dalmau. Beyond hypertree width:
Decomposition methods without decompositions. InCP,
pages 167–181, 2005.

[14] V. Dalmau, P. G. Kolaitis, and M. Y. Vardi. Constraint
satisfaction, bounded treewidth, and finite-variable logics. In
CP, pages 310–326, 2002.

[15] R. Fagin. A normal form for relational databases that is
based on domians and keys.ACM Trans. Database Syst.,
6(3):387–415, 1981.

[16] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
exchange: Semantics and query answering.Theor. Comput.
Sci., 336(1):89–124, 2005.

[17] D. Figueira. Semantically acyclic conjunctive queries under
functional dependencies. InLICS, 2016. To appear.

[18] T. Gogacz and J. Marcinkowski. Converging to the chase -A
tool for finite controllability. InLICS, pages 540–549, 2013.

[19] G. Gottlob, G. Greco, and B. Marnette. Hyperconsistency
width for constraint satisfaction: Algorithms and complexity
results. InGraph Theory, Computational Intelligence and
Thought, pages 87–99, 2009.

[20] G. Gottlob, G. Orsi, and A. Pieris. Query rewriting and
optimization for ontological databases.ACM Trans.
Database Syst., 2014.

[21] P. Hell and J. Nešetřil. Graphs and Homomorphisms. Oxford
University Press, 2004.

[22] D. S. Johnson and A. C. Klug. Testing containment of
conjunctive queries under functional and inclusion
dependencies.J. Comput. Syst. Sci., 28(1):167–189, 1984.

[23] M. Krötzsch and S. Rudolph. Extending decidable existential
rules by joining acyclicity and guardedness. InIJCAI, pages
963–968, 2011.

[24] T. Lukasiewicz, M. V. Martinez, A. Pieris, and G. I. Simari.
From classical to consistent query answering under
existential rules. InAAAI, pages 1546–1552, 2015.

[25] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing
implications of data dependencies.ACM Trans. Database
Syst., 4(4):455–469, 1979.

[26] C. H. Papadimitriou and M. Yannakakis. On the complexity
of database queries.J. Comput. Syst. Sci., 58(3):407–427,
1999.

[27] M. Yannakakis. Algorithms for acyclic database schemes. In
VLDB, pages 82–94, 1981.

