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Abstract

Engineered nucleases have been used to generate knockout or reporter cell lines and a

range of animal models for human disease. These new technologies also hold great prom-

ise for therapeutic genome editing. Current methods to evaluate the activity of these nucle-

ases are time consuming, require extensive optimization and are hampered by readouts

with low signals and high background. We have developed a simple and easy to perform

method (SplitAx) that largely addresses these issues and provides a readout of nuclease

activity. The assay involves splitting the N-terminal (amino acid 1–158) coding region of

GFP and an out-of-frame of C-terminal region with a nuclease binding site sequence. Fol-

lowing exposure to the test nuclease, cutting and repair by error prone non-homologous end

joining (NHEJ) restores the reading frame resulting in the production of a full length fluores-

cent GFP protein. Fluorescence can also be restored by complementation between the

N-terminal and C-terminal coding sequences in trans. We demonstrate successful use of

the SplitAx assay to assess the function of zinc finger nucleases, CRISPR hCAS9 and

TALENS. We also test the activity of multiple gRNAs in CRISPR/hCas9/D10A systems. The

zinc finger nucleases and guide RNAs that showed functional activity in the SplitAx assay

were then used successfully to target the endogenous AAVS1, SOX6 and Cfms loci. This

simple method can be applied to other unrelated proteins such as ZsGreen1 and provides a

test system that does not require complex optimization.

Introduction

Zinc finger nucleases (ZFN), Clustered Regularly Interspersed Short Palindromic Repeats

(CRISPR) and Transcription Activator-Like Effectors (TALEs) are powerful tools which can

be used for genome editing[1–6]. To avoid delivering ineffective editing tools to cells and live

animals, it is imperative to test their functionality prior to delivery. There are many different

methods that have been developed to assess whether engineered nucleases are functional.

These include surveyor mutation detection, gene replacement and single strand annealing

assays[7–9]. These methods can require extensive optimisation, are time consuming and suffer

problems of high background noise [10]. We have developed a novel reporter assay (SplitAx)

that can be used to assess the efficacy of genome editing tools including ZFN, CRISPR/Cas9/
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D10A systems, and TALENs. It is based on the property that GFP may be split into two frag-

ments. GFP consists of 11 anti-parallel β strands. The GFP protein can tolerate the addition of

internal peptide sequence at specific locations between antiparallel β strands 4 and 5, 7 and 8,

as well as 8 and 9 [11]. We exploited this property introducing a genome editing binding site

between antiparallel β strands 7 and 8 so that a stop mutation prevents read through into the

C-terminus of GFP preventing fluorescence. We demonstrate that the addition of ZFNs,

TALENs and hCAS9 with guide RNAs followed by NHEJ leads to restoration of the GFP fluo-

rescence. This method is robust, requires little optimisation and has the potential to be devel-

oped for high throughput screening of nucleases. Here, we show that the SplitAx assay is

functional with GFP and an unrelated fluorescent coral protein, ZsGreen1. Sequencing of

break points after exposure to the genome editing system illustrates that following error prone

NHEJ there are two mechanisms by which the assay functions: by frameshift restoring an open

reading frame and through complementation with the N-terminus and C-terminus of the fluo-

rescent protein.

Materials and methods

Design and cloning of SplitAx vectors

The AAVS1-SplitAx-GFP, AAVS1-SplitAx-ZsGreen1, SOX6-SplitAx-GFP and Cfms-SplitAx-

ZsGreen1 were generated as a double stranded DNA oligos (http://eu.idtdna.com/site) so that

the binding site would be out of frame preventing read through into 3’end of the coding

sequence. 50ng of each double stranded oligo were incubated at 72˚C with dNTP and Emerald

Taq polymerase (Clontech) to add adenine bases for TA cloning (Life Science). Colonies were

selected and grown, plasmid DNA extracted and verified by DNA sequencing. The correctly

sequenced clones were sub cloned by EcoRI digest into a cut EcoRI pCAG-ASIP-ires-Puro

vector to generate the completed SplitAx vector. Alternatively, immediately upstream and

downstream of the genome binding site are the restriction enzymes sites NotI and XhoI. These

allow an alternative method to rapidly exchange the genome editing binding sites into the

pCAG-ASIP-ires-Puro (SplitAx Vector).

Transfection protocols

All transfections were performed with Xfect (Takira Clontech), on 200,000 293FT cells plated

in 6 well dishes. 500ng of the AAVS1-GFP-SplitAx or AAVS1-ZsGreen1-SplitAx were co-trans-

fected with 1000ng of AAVS1 Zinc Fingers (P662L and P622R) [12, 13]. 1000ng of CRISPR

gRNA_AAVS1-T1, CRISPR gRNA_AAVS1-T2 (Addgene Church George)[14], AAVS1 TALENs

Left and Right (Addgene Zhang)[15], gRNA-SOX6 1a, 1b, 2a or 2b, gRNA-Cfms 8a, 8b or 9a

were co-transfected with their respective 500ng GFP-SplitAx or ZsGreen1-SplitAx and 1000ng

hCAS9 or D10A nickase. The cells were cultured for 44–48 hours and then analysed by flow

cytometry (BD LSR Fortessa) and with FlowJo data analysis Software. All data shown are the

result of three independent experiments and in each experiment a parallel well was transfected

with a pCAG-GFP vector to assess transfection efficiency. Transfection efficiencies of over 80%

were routinely observed.

Genomic targeting of the AAVS1, SOX6 and Cfms loci

For targeting the AAVS1 locus 10 million hiPSCs (SFCi55) were electroporated (BioRad 320V,

250uF) with 40ug of the targeting vector AAVS1 Promoter KLF1 mCherry reporter construct

plasmid and 5ug of each AAVS1 ZFN P662L and P662R plasmids. For targeting the SOX6

locus 10 million hiPSCs (SFCi55) were electroporated (BioRad 320V 250uF) with 40ug of the

Novel assay to test engineered nucleases
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SOX6 targeting plasmid, 5ug hCAS9 plasmid and 5ug of the gRNA_SOX6-1a. For targeting

the Cfms locus 10 million murine ES cells (E14) were electroporated (Biorad 320V 250uF) with

40ug of the Cfms targeting vector plasmid and 10ug D10A nickase with 4ug of gRNA_SOX6-

8a and 4ug of gRNA_SOX6-9b.

Screening targeted clones

Puromycin selection (0.4ug/ml) of the AAVS1 targeted cells resulted in resistant colonies.

These were picked expanded prior to genomic DNA isolation and PCR screening to identify

correctly targeted clones using primers A4 and A5 for the 5’ screen. To screen correctly tar-

geted clones at the 3’ end primers A1, A2 and A3 were used (S1 Table).

The SOX6 targeting vector electroporated cells were sorted for mOrange at 48 hours post

electroporation. The cells were plated at low density and grown till colonies formed. Colonies

that had retained the mOrange were expanded prior to genomic DNA isolation. PCR amplifi-

cation with primers P1, P2 and P3 identified correctly targeted clones (S1 Table).

Selection of the Cfms targeted clones with G418 (300 μg/ml). Clones were expanded prior

to genomic DNA isolation and PCR screening. PCR amplification with primers C1, C2 and C3

identified correctly targeted clones (S1 Table).

Genomic DNA isolation and PCR screening

DNA was isolated (Bioscience KIT). 100ng of genomic DNA was used in each PCR reaction with

Hot Start Emerald Taq polymerase (Clontech-Takara) with the relevant primers (S1 Table). The

cycling conditions were as follows: 94˚C for 2 minutes, and 34 cycles of 94˚C for 15 seconds, 55˚C

for 30 seconds and 72˚C for 1 minute 20 seconds, and then 1 cycle at 72˚C for 10 minutes.

Construction of targeting vectors

The KLF1 promoter mCherry reporter construct was generated as follows: Firstly the mCherry

reporter was PCR cloned with the primers mCherry for and mCherry_rev (S1 Table) into the

vector PL452 using the restriction enzymes KpnI and EcoRI. The KLF1 promoter region

including an intronic enhancer [16] was amplified by PCR from genomic DNA with primers

KLF1a_for and KLF1a_rev (S1 Table). The KLF1 promoter region was then cloned into PL452

following KpnI restriction enzyme ligation cloning. The βGlobin-Poly A was added by PCR

cloning using primers βGlobin PA_for/rev followed by EcoRI restriction enzyme ligation clon-

ing downstream of the mCherry reporter. The KLF1 promoter-mCherry-PolyA cassette was

then amplified by PCR using the primers KLF1PZPuro_for and PZdage_rev (S1 Table) and

cloned by Age1 restriction digest ligation into an AgeI restriction enzyme cut PZDONOR

AAVS1 Puro vector (Sigma Aldrich).

The SOX6 C-terminal targeting vector was generated by PCR cloning 5’ and 3’ homology

arms from genomic DNA using primer pairs S1, S2, S3 and S4, and cloned by restriction

enzyme/ligation cloning NotI 5’ Homology arm and XhoI 3’ homology arm, respectively into

the destination vector pBluescript KS2+ (S1 Table). The T2A-BFP-PolyA cassette was synthe-

sises as a double stranded oligo (IDT) and cloned into the 5’Homology and 3’Homology arm

pBlueScript KS2+ vector using restriction BamHI. The LoxP-EF1 alpha promoter was ampli-

fied by PCR with primers E1 and E2 (S1 Table) and cloned with EcoRI whilst mOrange-Poly-

A-LoxP was synthesised as a double stranded oligo (IDT) and then cloned into pBlueScript

KS2+-5’-3’-T2aBFP-PolyA-EF1 alpha with the restriction enzymes ClaI.

The C-terminal Cfms targeting vector was generated by PCR cloning 5’ and 3’ homology

C4, C5 and C6 and C7, respectively) arms into the vector PL452 using KpnI and NotI restric-

tion enzymes respectively. The MMP12-PolyA cassette was generated as two large double
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stranded oligo fragments IDT. These were joined by restriction enzyme ligation (HindIII) and

subsequently cloned into the destination vector PL452 containing the 5’ and 3’ Cfms homology

arms using the restriction enzyme ApaI.

Results

Functional testing with the SplitAx reporter assay

We developed a novel assay, termed SplitAx, to screen for genome editing function using the

fluorescent reporter GFP sequence split into two regions at a specific location (S1 Fig). For

assessing AAVS1 locus targeting the SplitAX vector consisted of sequence encoding the 5’ end

of the GFP cDNA (1-474bp), an intervening sequence specific to the AAVS1 locus followed by

sequence encoding the 3’ end of the GFP cDNA (Fig 1A and S1 Fig). The AAVS1 specific

sequence was designed so that it introduced stop codons upstream of the 3’ cDNA end of GFP

preventing read through (Fig 1B and S1 Fig). Following the addition of a zinc finger endonu-

clease and repair by error prone NHEJ, indel mutations are introduced. In the example shown,

a 1bp deletion restores the reading frame that results in the translation of a full length GFP

protein (Fig 1C and S1 Fig).

Transfection of 293FT cells with the AAVS1-GFP-SplitAx vector alone or with a single

ZFN (ZF) resulted in no/low fluorescent signal (Fig 1D–1F). Transfection with the AAVS1-

GFP-SplitAx vector and a pair of AAVS1-specific zinc finger nucleases resulted in cutting and

repair by error prone NHEJ restoring the fluorescent GFP signal (Fig 1G). This occurs by the

introduction of indels into the sequence causing frame shift mutations that restore the reading

frame of the C-terminal GFP. To demonstrate reproducibility three separate experiments were

carried out and are represented in the graph (Fig 1H).

These zinc finger nucleases were also able to target the endogenous AAVS1 locus in a

human induced pluripotent stem cell (iPSC) line (SFCi55) with a KLF1 reporter construct.

Puromycin resistant clones were expanded and screened by PCR. 95% (20 of 21) clones were

targeted correctly (S2 Fig).

The AAVS1 SplitAx vector was then tested with hCAS9 and guide RNAs specific to the

AAVS1 locus. Transfection of 293FT cells with the AAVS1-GFPSplitAx vector and hCAS9 or

AAVS1-GFP-SplitAx vector resulted in no or low fluorescent signals (Fig 1I and 1J). Transfec-

tion with the AAVS1-GFP-SplitAx vector, hCAS9 and gRNA_AAVS1-T1 or T2(14) resulted

in a fluorescent GFP signal (Fig 1K and 1L). Comparison of the two different guide RNAs T1

and T2 in the SplitAx assay concurred with published data showing that T1 cuts less efficiently

than T2(14). The experiments were performed three times to demonstrate reproducibility and

these are represented graphically (Fig 1M).

We also validated a pair of TALENs specific for the AAVS1 locus (15) (Addgene) and dem-

onstrate that these also are functional with the AAVS1-SplitAx assay (S3 Fig).

To test the SplitAx system using another genetic locus, we generated a SOX6-GFP-SplitAx

vector (Fig 2A). Transfection with the SOX6-SplitAx vector alone or in the presence of hCAS9

resulted in low fluorescent signal (Fig 2B and 2C). Transfection with the SOX6-SplitAX vector,

hCAS9 and gRNA_SOX6-1a, gRNA_SOX6-1b, gRNA_SOX6-2a or gRNA_SOX6-2b resulted

in either high or low fluorescent activity (Fig 2D–2G). The experiments were repeated in tripli-

cate to demonstrate reproducibility and are represented graphically (Fig 2H).

SOX6 guide RNAs, selected based on their activity in the SplitAx assay were then used to

target the genomic locus in hiPSCs. The targeting efficiency was 5% (2 positive clones out of a

total of 40), (S4 Fig).

We then tested whether the SplitAx assay could be developed using a different fluorescent

protein. We elected to test the coral protein (ZsGreen1). The amino acid conservation between

Novel assay to test engineered nucleases
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GFP and ZsGreen1 is 26% (S5 Fig). It was noted that there was amino acid conservation at

residues KQ which is the critical residue at which to introduce the nuclease binding site at

Fig 1. Functional validation of the GFP-AAVS1 SplitAx reporter assay with zinc fingers and CRISPR/CAS9

system. Schematic of the GFP cDNA with the N-terminus and C-terminus separated by the AAVS1 binding site.

The DNA sequence of the AAVS1 binding site is shown and the location of zinc finger left (ZF L), Zinc finger right

(ZF R), AAVS1 guide RNAs T1 and T2 underlined (a). The translated DNA sequence of the AAVS1 binding site with

stop codons (-) (b). The translated DNA after genome editing. In this case a 1 bp deletion removes the stop codons

and allows in frame of translation of the C-terminal GFP resulting in fluorescence (c). Representative flow cytometry

plots of 293FT cells 44–48 hours after transfection with GFP-AAVS1 SplitAx only (d), GFP-AAVS1 SplitAx with

single AAVS1 Zinc Finger Left (Zn L) (e), GFP-AAVS1 SplitAx with AAVS1 single Zinc Finger Right (Zn R) (f), and

GFP-AAVS1 SplitAx with both AAVS1 Zinc Finger Lefand/Zinc Finger Right (Zn L, Zn R) (g). Quantification of flow

cytometry data for the GFP-AAVS1 SplitAx with the AAVS1 Zinc Fingers (+), cells not transfected with a plasmid (-).

Data shown as mean +/- SD (n = 3) (h). Representative flow cytometry plots of 293FT cells 44–48 hours after

transfection with GFP-AAVS1 SplitAx only (i) GFP-AAVS1 SplitAx and hCAS9 (j), GFP-AAVS1 SplitAx, hCAS9

CRISPR and gRNA_AAVS1-T1 (k), GFP-AAVS1 SplitAx, hCAS9 CRISPR and gRNA_AAVS1-T2 (l). Quantification

of flow cytometry data for the GFP-AAVS1 SplitAx with the CRIPSR gRNA_AAVS1- T1 or T2 and hCAS9 (+), cells

not transfected with a plasmid (-). Data shown as +STDev (n = 3) (m).

doi:10.1371/journal.pone.0171698.g001
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position 158 (S5 Fig). We developed an AAVS1 ZsGreen1-SplitAx vector consisting of the

sequence 5’ end of the ZsGreen1 cDNA (1-474bp) and immediately incorporated the sequence

specific to the AAVS1 locus downstream, followed by 3’ cDNA sequence encoding ZsGreen1

(475bp–end). As before, the AAVS1 locus was designed so that it introduced a stop codon

upstream of the C-terminal ZsGreen1 preventing read through (Fig 3A).

Transfection of 293FT cells with the AAVS1-ZsGreen1-SplitAx vector alone and co-trans-

fection with AAVS1-ZsGreen1-SplitAx and single ZFN Left (L) or Right (R) demonstrated low

fluorescence (Fig 3B–3D). Co-transfection of AAVS1-ZsGreen1-SplitAx and AAVS1 Zinc fin-

ger 662L and 662R resulted in a strong fluorescent signal (Fig 3E). The experiment was per-

formed in triplicate (n = 3) to verify reproducibility and is represented graphically (Fig 3F).

Fig 2. Functional validation of the GFP-SOX6-SplitAx reporter assay with SOX6 gRNAs and hCAS9.

Schematic diagram of the 5’ and 3’end of GFP separated by the SOX6 binding site. The DNA sequence of the

SOX6 binding site is shown and the location of the gRNA_SOX6-1a, 2a, 1b and 2b are underlined (a).

Representative flow cytometry plots of 293FT cells 44–48 hours after transfection with GFP-SOX6 SplitAx only (b),

GFP-SOX6 SplitAx with hCAS9 (c), GFP-SOX6 SplitAx, hCAS9 with gRNA_SOX6-1a (d), GFP-SOX6 SplitAx,

hCAS9 with gRNA_SOX6-1b (e), GFP-SOX6 SplitAx, hCAS9 with gRNA_SOX6-2a (f) and GFP-SOX6 SplitAx,

hCAS9 with gRNA_SOX6-2b (g). Quantification of flow cytometry data for the GFP-SOX6 SplitAx and hCAS9 with

the gRNAs_SOX6 (+), cells not transfected with a plasmid (-). Data shown is mean +/- SD (n = 3) (h).

doi:10.1371/journal.pone.0171698.g002

Novel assay to test engineered nucleases
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A Cfms targeting binding site was also engineered into the ZsGreen1 SplitAx vector (Fig

4A). The Cfms-ZsGreen1-SplitAx vector with hCAS9 showed virtually no fluorescent signal

(Fig 4B). The addition of gRNA_Cfms-8a, gRNA_Cfms-8b and gRNA_Cfms-9b resulted in a

strong fluorescent signal (Fig 4C–4E). Three independent experiments were performed and

are represented in the graph (Fig 4F). We also demonstrated that the Cfms-ZsGreen1-SplitAx

vector can be used with the D10a nickase enzyme. The Cfms-ZsGreen1-SplitAx vector alone

or with the D10A nickase enzyme gave virtually no fluorescent signal (Fig 4G and 4H). The

addition of RNA gRNA_Cfms-8a and 8b resulted in a high fluorescent signal (Fig 4I). Simi-

larly, the addition of gRNA_Cfms8a and 9b also resulted in a high fluorescent signal (Fig 4J).

Three independent experiments were performed and are represented in the graph (Fig 4K).

We then demonstrated that Cfms guide gRNAs that were selected based on the SplitAx

assay, gRNA_Cfms-8a and gRNA_Cfms-8b were successfully used to target the genomic locus

in mouse ESCs using the D10A nickase system. The targeting efficiency was 6% (3 positive

clones out of a total of 50)(S6 Fig).

Sequencing of the AAVS1-GFP-SplitAx vector after it had been cut with the AAVS1 zinc fin-

gers p662L and P662R and repaired by NHEJ revealed the mechanisms by which the SplitAx sys-

tem functions. In one sequence the AAVS1 binding site had been mutated by deleting 10 bp (Δ10)

resulting with the N-terminus of GFP in frame with the C-terminus of GFP leading to restored

fluorescent activity (Fig 5 and S7 Fig). Three sequences contained the following mutations Δ79

+53, Δ91 +110 and Δ93+83, respectively (S7 Fig). The effect of these mutations was to remove the

stop codon generating an Open Reading Frame containing the C-terminal GFP protein. The C-

terminal GFP can interact with the N-terminal GFP through complementation [17] (Fig 5).

Fig 3. Functional validation of the ZsGreen1-AAVS1 SplitAx reporter assay with AAVS1 zinc fingers.

Schematic of the ZsGreen1 cDNA with the N-terminus and C-terminus separated by the AAVS1 binding site. The

DNA sequence of the AAVS1 binding site is shown and the location of zinc finger left (ZF L), Zinc finger right (ZF R)

(a). Representative flow cytometry plots of 293FT cells 44–48 hours after transfection with ZsGreen1-AAVS1

SplitAx only (b), ZsGreen1-AAVS1 SplitAx with AAVS1 Zinc Finger Left (Zn L) (c), ZsGreen1-AAVS1 SplitAx with

AAVS1 Zinc Finger Right (Zn R) (d), and ZsGreen1-AAVS1 SplitAx with AAVS1 Zinc Finger Left/Zinc Finger Right

(Zn L, Zn R) (e). Graphical representation of flow cytometry data for the ZsGreen1-AAVS1 SplitAx with the AAVS1

Zinc Fingers (+), cells not transfected with a plasmid (-). Data shown as mean +/- SD (n = 3) (f).

doi:10.1371/journal.pone.0171698.g003
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Discussion

A number of technologies have been developed to screen for the functional activity of genome

editing systems including the surveyor mutation detection, episomal gene repair, traffic light

reporter or homology dependent GFP repair assays have been developed to screen for the

functional activity of genome editing [7, 8, 18–21]. These systems can require extensive opti-

misation and cannot be monitored in real time. The novel SplitAx assay described here is easy

to perform, can be monitored in real time and does not require extensive optimisation.

Fig 4. Functional validation of the ZsGreen1-Cfms-SplitAx reporter assay with Cfms gRNAs and hCAS9 or

D10A nickase. Schematic diagram of the 5’ and 3’end of Zs Green1 separated by the Cfms binding site. The DNA

sequence of the Cfms binding site is shown and the location of the gRNA_Cfms-8a, 8b and 9b are underlined (a).

Representative flow cytometry plots of 293FT cells 44–48 hours after transfection with ZsGreen1-Cfms-SplitAx with

hCAS9 (b), ZsGreen1-Cfms-SplitAx, hCAS9 with gRNA_Cfms-8a (c), ZsGreen1-Cfms-SplitAx, hCAS9 with

gRNA_Cfms-8b (d), ZsGreen1-Cfms-SplitAx, hCAS9 with gRNA_Cfms-9b (e). Quantification of flow cytometry data

for the ZsGreen1-Cfms- SplitAx and hCAS9 with the gRNAs_Cfms (+), cells not transfected with a plasmid (-). Data

shown as mean +/- SD (n = 3) (f). Representative flow cytometry plots of 293FT cells 44–48 hours after transfection

with ZsGreen1-Cfms-SplitAx only (g), ZsGreen1-Cfms-SplitAx with D10A nickase (h), ZsGreen1-Cfms-SplitAx,

D10A nickase with gRNA_Cfms-8a and8b (i), ZsGreen1-Cfms-SplitAx, D10A nickase with gRNA_Cfms-8a and 8b

(j). Graphical representation of flow cytometry data for the ZsGreen1-Cfms- SplitAx and D10A nickase with the

gRNAs_Cfms (+), cells not transfected with a plasmid (-). Data shown as mean +/- SD (n = 3) (k).

doi:10.1371/journal.pone.0171698.g004
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The basic mechanistic principle of the SplitAx system is that GFP consists of 11 antiparallel

β strands. GFP can tolerate additional protein sequence at amino acid position 158 (between

antiparallel β strands 7 and 8) and this addition does not affect its fluorescent activity [11, 22].

The SplitAx vector consists of sequence encoding the N-terminus (amino acid 1–158) and C-

terminus (amino acid 159-end) separated by an engineered genome editing binding site. The

C-terminal sequence of GFP is out of frame with the N-terminal sequence and so a full length

fluorescent protein cannot be generated. Following exposure to an engineered nuclease (e.g.

ZFNs, TALENs or hCAS9) system and the subsequent repair by NHEJ results in the introduc-

tion of frameshift mutations and restoration of the reading frame of GFP and the production

of a fluorescent protein.

Using this biosensor assay, we designed SplitAx vectors for three genetic loci, AAVS1, SOX6
and Cfms, and have validated these with a variety of genome editing tools including ZFNs,

CRISPR/CAS9/D10A and TALENs. The SplitAx assay can be used to quickly monitor whether

genome editing tools are functional. Importantly, we have shown that AAVS1 zinc finger

nucleases, SOX6 guide RNAs and Cfms guide RNAs that were selected based on their activity

in the SplitAx assay, were capable of mediating targeting events at endogenous loci in human

and mouse PSCs. This assay could potentially be used to confirm that lack of endonuclease

activity of mutant CAS9 proteins that have been designed for alternative function such as gene

activation.

Fig 5. Schematic diagram illustrating the different mechanisms of how the SplitAX assay functions.

The vector consisting of the pCAG promoter, the GFP cDNA (N-terminus 1-474bp), a genome editing binding

site containing a stop codon which is out of frame with the GFP cDNA C-terminus (475-end). In the absence of

exposure to a specific genome editing tool, the full length GFP protein is not expressed. Exposure of the

GFP-SplitAx to a genome editing tool creates a double strand break. Repair by non-homologous end joining

(NHEJ) mutates the binding site restoring the open reading frame (ORF) of GFP resulting in fluorescence.

The second mechanism involves the repair of the double strand break by NHEJ resulting in an N-terminal

ORF in frame with the C-terminal GFP. The C-terminal GFP can complement with the N-terminal GFP

expressed from a different vector leading to restored fluorescent activity.

doi:10.1371/journal.pone.0171698.g005
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Transfection of the SplitAx vector and genome editing tools predictably introduce double

strand breaks which are repaired by error prone non homologous end joining (NHEJ) result-

ing in deletions or insertions of DNA [23, 24]. We hypothesised that a change in the frame

shift in the AAVS1 sequence of -1, -4 or +1 or +4 or any triplet combination/deletion/insertion

of this will restore the open reading frame with the C-terminal GFP fragment and generate a

fluorescent signal within the cell (Fig 5A). In addition we have shown that the SplitAx assay

can also function through an alternative mechanism of complementation (Fig 5B). We have

tested 3 different binding sites in the context of a SplitAx vector. The binding sites range in

size from 67bp- 89bp. It may be possible to incorporate larger or smaller binding sites into the

SplitAx vector. As a matter of prudence, it would be important to consider when designing the

binding region whether there is a start codon with a putative Kozak signal [25]. The conse-

quence of this might be expression of C-terminus of the fluorescent protein and complementa-

tion with the N-terminus resulting in fluorescent activity in the absence of exposure to a

genome editing tool.

Other assays have described introducing a stop codon in the genome editing binding site

near the 5’ end of the GFP gene or linking multiple fluorescent proteins in different reading

frames [21, 26]. Double strand breaks followed by NHEJ can lead to frameshift mutations and

have a 1 in 3 chance that the GFP protein will restore the open reading frame and yield a fluo-

rescent signal. Since there are two mechanisms that can give rise to the fluorescent reporter

signal in the SplitAx assay, the sensitivity of this assay is greater than those that rely on a Cis

acting frameshift alone.

We have demonstrated that the fluorescent protein ZsGreen1 can be split with a genome

editing binding site in a similar manner to GFP. The ZsGreen1 SplitAx vector produces a

higher signal and lower signal to noise ratio when compared to GFP, owing to its brighter

spectral properties [27]. Since other fluorescent proteins share this property of splitting the N-

terminus and C-terminus, it may be possible to test the functional activity of genome editing

tools intended for one step mutations in multiple genes simultaneously.

The genome editing tools that showed high functional activity in the SplitAx assay were used

successfully to target endogenous loci in hiPSCs (AAVS1 and SOX6) or mouse ESCs (Cfms) dem-

onstrating that the plasmid-based SplitAx assay is able to identify editing tools that can function at

the genomic level where other factors, including epigenetic factors could affect their activity. How-

ever this study did not test tools that were non-functional in the SplitAx for their ability to func-

tion at the genome level and so we cannot state that there is a direct correlation between the two

systems. Nevertheless, given that the SplitAx requires little optimisation and is easy to perform we

believe it provides an attractive alternative to established techniques for the selection of functional

tools. The SplitAx assay could also be developed as a high throughput format to screen for func-

tional nucleases or as a method to evaluate off targeting by engineering SplitAx vectors with pre-

dicted off target sites. Finally, the SplitAx vector has been designed with the restriction enzymes

NotI and Xho1 to facilitate the rapid exchange of the genome editing binding sites.

Supporting information

S1 Fig. DNA and translated protein sequences of GFP and AAVS1-GFP-SplitAx vector. (a)

DNA and translated protein sequences of GFP. Amino acid Q158 is marked in red. This is the

position in which the genome editing binding site is inserted to split the GFP-N-terminus

from the GFP-C-terminus. (b)DNA sequence of AAVS1-GFP-SplitAx vector.Amino acid

Position 158 is marked in red, followed by Not1 restriction sites (underlined). AAVS1 genome

editing binding site (shaded yellow) followed by Xho1 restriction sites (broken line). (c)DNA

and translated protein sequence of AAVS1-GFP-SplitAx vector. Amino acid position 158 is
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shown in red and stop codons shown as dashes (-). (d)DNA and translated protein sequence

of AAVS1-GFP-SplitAx following genome editing. Following a 1 bp deletion at nucleotide

position 519 the complete GFP open reading frame is restored.

(DOCX)

S2 Fig. Targeting of the AAVS1 locus with the KLF1 promoter mCherry reporter. (a) Sche-

matic diagram of the AAVS1-KLF1-mCherry reporter vector used to target the AAVS1 locus

with zinc fingers P622L and P622R. Left Homology Arm, Splice Acceptor/2A peptide, Puromycin

selectable cassette (P), Poly A (PA), KLF1 Promoter, mCherry reporter followed by the AAVS1
Right Homology Arm (not to scale). (b) Schematic illustration of the AAVS1 locus, endogenous

promoter, exon 1 and the target site between the Left Homology, Right Homology Arm and exon

2. (c) Targeted AAVS1 locus with the KLF1 reporter vector. Arrows indicate primers used to

screen 5’ and 3’ end of the targeting site and solid bars indicate the PCR amplicons. Screen for tar-

geted events using 5’ primers A4 and A5 and 3’ primers are A1, A2 and A3. (d) PCR products

from 5’ PCR using primers A4 and A5. Clone 9 indicates that it is targeted at the 5’ end. (e) PCR

products from 3’ PCR using internal vector primers and an external primer. Clone 3 indicates a

random targeting event whilst clone 9 indicates a targeted event into the AAVS1 locus. WT is

genomic DNA from untreated iPS cells and 0 is a negative PCR control. (f) Sequencing trace

clone 9 of the 3’ external PCR showing that this PCR amplicon is specific to the AAVS1 locus.

(DOCX)

S3 Fig. Functional validation of the GFP-AAVS1 SplitAx reporter assay with AAVS1

TALENs. (a) Schematic of the GFP cDNA with the N-terminus and C-terminus separated by

the AAVS1 binding site. The DNA sequence of the AAVS1 binding site is shown and the loca-

tion of TALEN Left and TALEN Right are underlined. (b) Graphical representation of data for

the GFP-AAVS1 SplitAx with the TALEN Left and TALEN Right. Cells not transfected with a

plasmid (-). Data shown as +STDev (n = 3).

(DOCX)

S4 Fig. Targeting the C-Terminus of the SOX6 locus using hCAS9 and SOX 6 specific

gRNA in human iPS cells. (a) Schematic diagram of the SOX6 targeting vector consisting of

Left Homology Arm, T2A peptide, Blue Fluorescent Protein (BFP), Poly A (PA), Lox P sites

(black triangles), EF1 alpha promoter, mOrange and Right Homology Arm (not to scale). (b)

Schematic illustration of the SOX6 locus and exon 16 at the target site between the Left Homol-

ogy, Right Homology Arm. (c) Targeted SOX6 locus with the SOX6 targeting vector. Arrows

indicate primers used to screen 3’ end of the targeting site and solid bars indicate the PCR

amplicons. (d) PCR products from 3’ PCR using primers P1 and P2. Clones 1, 2, 3 and 4, whilst

Vec is the vector backbone and 0 is the negative control. (e) PCR products from 3’ PCR using

primers P1 and P3. Clones 1, 2, 3, and 4 whilst Vec is the vector backbone and 0 is the negative

control. Lanes 1 and 4 are positive for the targeting event but appear to have a different size

PCR amplicon. This may be the result of chew back during cloning. (f) Sequencing trace clone 1

of the 3’ external PCR showing that this PCR amplicon is specific to the SOX6 locus.

(DOCX)

S5 Fig. Comparison of the amino acid sequence between GFP and ZsGreen1. The critical

residue at position 158 where the genome editing binding site is inserted is highlighted.

(DOCX)

S6 Fig. Targeting the C-Terminus of the Cfms locus using the D10A nickase and Cfms-

guide RNAs. (a) Schematic diagram of the Cfms targeting vector consisting of Left Homology

Arm, T2A peptide, Matrix Metaloproteinase 12 cDNA (MMP12), Poly A (PA), Lox P sites
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(black triangles), PGK promoter and neomycin transferase gene (not to scale). (b) Schematic

illustration of the Cfms locus and exon 9 at the target site between the Left Homology, Right

Homology Arm. (c) Targeted Cfms locus with the Cfms targeting vector. Arrows indicate

primers used to screen 3’ end of the targeting site and solid bars indicate the PCR amplicons.

(d) PCR products from 3’ PCR using primers P1 and P2. Clones 1–8, whilst 0 is the negative

control and Vec is the vector backbone. (e) PCR products from 3’ PCR using primers P1 and

P3. Clones 1–8, whilst 0 is the negative control and Vec is the vector backbone.

(DOCX)

S7 Fig. DNA sequence of retored open reading frames. Examples of sequences repaired by

non-homologous end joining resulting in mutations that restore the open reading frame.

(DOCX)

S1 Table. List of primers. Sequence of all primers used in this study.

(DOCX)
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