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Design of the TRONCO BioConductor
Package for TRanslational ONCOlogy
by Marco Antoniotti, Giulio Caravagna, Luca De Sano, Alex Graudenzi, Giancarlo Mauri, Bud
Mishra, and Daniele Ramazzotti

Abstract Models of cancer progression provide insights on the order of accumulation of genetic
alterations during cancer development. Algorithms to infer such models from the currently available
mutational profiles collected from different cancer patients (cross-sectional data) have been defined in
the literature since late the 90s. These algorithms differ in the way they extract a graphical model of the
events modelling the progression, e.g., somatic mutations or copy-number alterations.

TRONCO is an R package for TRanslational ONcology which provides a series of functions
to assist the user in the analysis of cross-sectional genomic data and, in particular, it implements
algorithms that aim to model cancer progression by means of the notion of selective advantage. These
algorithms are proved to outperform the current state-of-the-art in the inference of cancer progression
models. TRONCO also provides functionalities to load input cross-sectional data, set up the execution
of the algorithms, assess the statistical confidence in the results, and visualize the models.
Availability. Freely available at http://www.bioconductor.org/ under GPL license; project hosted
at http://bimib.disco.unimib.it/ and https://github.com/BIMIB-DISCo/TRONCO.
Contact. tronco@disco.unimib.it

Introduction

In the last two decades many specific genes and genetic mechanisms involved in different types of
cancer have been identified. Yet our understanding of cancer and of its varied progressions is still
largely elusive, as it still faces fundamental challenges.

Meanwhile, a growing number of cancer-related genomic data sets have become available (e.g.,
see NCI and the NHGRI (2005))., There now exists an urgent need to leverage a number of sophisticated
computational methods in biomedical research to analyse such fast-growing biological data sets.
Motivated by this state of affairs, we focus on the problem of reconstructing progression models of cancer.
In particular, we aim at inferring the plausible sequences of genomic alterations that, by a process of
accumulation, selectively make a tumor fitter to survive, expand and diffuse (i.e., metastasize).

We developed a number of algorithms (see Olde Loohuis et al. (2014); Ramazzotti et al. (2015))
which are implemented in the TRanslational ONCOlogy (TRONCO) package. Starting from cross-
sectional genomic data, such algorithms aim at reconstructing a probabilistic progression model by
inferring “selectivity relations,” where a mutation in a gene A “selects” for a later mutation in a gene
B. These relations are depicted in a combinatorial graph and resemble the way a mutation exploits
its “selective advantage” to allow its host cells to expand clonally. Among other things, a selectivity
relation implies a putatively invariant temporal structure among the genomic alterations (i.e., events)
in a specific cancer type. In addition, a selectivity relation between a pair of events here signifies that
the presence of the earlier genomic alteration (i.e., the upstream event) is advantageous in a Darwinian
competition scenario raising the probability with which a subsequent advantageous genomic alteration
(i.e., the downstream event) “survives” in the clonal evolution of the tumor (see Ramazzotti et al. (2015)).

Notice that, in general, the inference of cancer progression models requires a complex data
processing pipeline (see Caravagna et al. (2015)), as summarized in Figure 1. Initially, one collects
experimental data (which could be accessible through publicly available repositories such as TCGA)
and performs genomic analyses to derive profiles of, e.g., somatic mutations or copy-number variations
for each patient. Then, statistical analysis and biological priors are used to select events relevant to
the progression (e.g., driver mutations). This complex pipeline can also include further statistics and
priors to determine cancer subtypes and to generate patterns of selective advantage (e.g, hypotheses of
mutual exclusivity). Given these inputs, our algorithms (such as CAPRESE and CAPRI) can extract a
progression model and assess confidence measures using various metrics based on non-parametric
bootstrap and hypergeometric testing. Experimental validation concludes the pipeline. The TRONCO
package provides support to all the steps of the pipeline.

Inference algorithms

TRONCO, provides a series of functions to support the user in each step of the pipeline, i.e., from
data import, through data visualization, and, finally, to the inference of cancer progression models.
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Figure 1: Data processing pipeline for the cancer progression inference. TRONCO implements a
pipeline consisting in a series of functions and algorithms to extract cancer progression models from
cross-sectional input data. The first step of such a pipeline consists in collecting experimental data
(which could be accessible through publicly available repositories such as TCGA) and performing
genomic analyses to derive profiles of, e.g., somatic mutations or copy-number variations for each
patient or single cells. Then, both statistical analysis and biological priors are adopted to select
the significant alterations for the progression; e.g., driver mutations. This complex pipeline can also
include further statistics and priors to determine cancer subtypes and to generate patterns of selective
advantage; e.g., hypotheses of mutual exclusivity. Given these inputs, the implemented algorithms
(i.e., CAPRESE and CAPRI) can extract a progression model and assess various confidence measures on
its constituting relations such as non-parametric bootstrap and hypergeometric testing. Experimental
validation concludes the pipeline, see Ramazzotti et al. (2015) and Caravagna et al. (2015).

Specifically, in the current version, TRONCO implements the CAPRESE and CAPRI algorithms for
cancer progression inference, which we briefly describe in the following.

Central to these algorithms, is Suppes’ notion of probabilistic causation, which can be stated in the
following terms: a selectivity relation between two observables i and j is said to hold if (1) i occurs
earlier than j – temporal priority (TP) – and (2) if the probability of observing i raises the probability
of observing j, i.e., P(j | i) > P(j | i) – probability raising (PR). For the detailed description of the
methods, we refer the reader to Olde Loohuis et al. (2014); Ramazzotti et al. (2015).

CAncer PRogression Extraction with Single Edge

The CAncer PRogression Extraction with Single Edges algorithm, i.e., CAPRESE, extracts tree-based models
of cancer progression with (i) multiple independent starting points and (ii) branches. The former
models the emergence of different progressions as a result of the natural heterogeneity of cancer (cf.,
Olde Loohuis et al. (2014)). The latter models the possibility of a clone to undergo positive selection by
acquiring different mutations.

The inference of CAPRESE’s models is driven by a shrinkage estimator of the confidence in the
relation between pairs of genes, which augments robustness to noise in the input data.

As shown in Olde Loohuis et al. (2014), CAPRESE is currently the state-of-the-art algorithm to infer
tree cancer progression models, although its expressivity is limited to this kind of selective advantage
models (cf., Ramazzotti et al. (2015)). Since this limitation is rather unappealing in analyzing cancer
data, an improved algorithm was sought in Ramazzotti et al. (2015).

CAncer PRogression Inference

The CAncer PRogression Inference algorithm, i.e., CAPRI, extends tree models by allowing multiple
predecessors of any common downstream event, thus allowing construction of directed acyclic graph
(DAGs) progression models.

CAPRI performs maximum likelihood estimation for the progression model with constraints
grounded in Suppes’ prima facie causality (cf., Ramazzotti et al. (2015)). In particular, the search space
of the possible valid solutions is limited to the selective advantage relations where both TP and PR
are verified. On this reduced search space, the likelihood fit is performed. CAPRI was shown to be
effective and polynomial in the size of the inputs.
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Algorithms’ structures

The core of the two algorithms is a simple quadratic loop1 that prunes arcs from an initially totally
connected graph. Each pruning decision is based on the application of Suppes’ probabilistic causation
criteria.

The pseudocode of the two implemented algorithms along with the procedure to evaluate the con-
fidence of the arcs by bootstrap is summarized in Algorithms 1, 2, 3 and 4, which depict the data
preparation step, the CAPRESE and CAPRI algorithms, and finally the optional bootstrap step.

Algorithm 1: TRONCO Data Import and Preprocessing

Input: a data set containing MAF or GISTIC scores (e.g., as obtained from cBio portal)
(Cerami et al. (2012); Beroukhim et al. (2007)).

Result: a data structure containing Boolean flags for “events,” relative frequencies and
other metadata.

1 From the data set (depending on the data format) derive a Boolean matrix M, where
each entry 〈i, j〉 is true if event i is “present” in sample/patient j.

2 forall events e do
3 Compute the frequency of the event e in the data set and save it in a map F.
4 Compute the joint probability of co-occurrence of pair of events in the data set and

save it in a map C.
5 end

6 return A data structure comprising the Boolean matrix M, the maps F and C and other
metadata.

Algorithm 2: CAPRESE algorithm

Input: a data set of n events, i.e., genomic alterations, and m samples packed in a data
structure obtained from Algorithm 1.

Result: a tree model representing all the relations of selective advantage.

Pruning based on Suppes’ criteria.

1 Let G ← a complete directed graph over the vertices n.
2 forall arcs (a, b) in G do
3 Compute a score S(·) for the nodes a and b based on Suppes’ criteria.

Verify Suppes’ criteria, that is:
4 if S(a) ≥ S(b) and S(a) > 0 then
5 Keep (a, b) as edge. I.e., select ‘a’ as “candidate parent”.
6 else if S(b) > S(a) and S(b) > 0 then
7 Keep (b, a) as edge. I.e., select ‘b’ as “candidate parent”.
8 end

Fit of the prima facie directed acyclic graph to the best tree model.

9 Let T ← the best tree model obtained by Edmonds’ algorithm (see Edmonds (1967)).
10 Remove from T any connection where the candidate father does not have a minimum

level of correlation with the child.

11 return The resulting tree model T .

Package design

In this section we will review the structure and implementation of the TRONCO package. For the sake
of clarity, we will structure the description through the following functionalities that are implemented
in the package.

1For CAPRI the n actually depends on the structural complexity of the input “patterns,” i.e., of the Boolean
formulæ employed in the “lifting operation;” more information of this in Ramazzotti et al. (2015).
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Algorithm 3: CAPRI

Input: a data set of n variables, i.e., genomic alterations or patterns, and m samples.
Result: a graphical model representing all the relations of “selective advantage.”

Pruning based on the Suppes’ criteria

1 Let G ← a directed graph over the vertices n
2 forall arcs (a, b) ∈ G do
3 Compute a score S(·) for the nodes a and b in terms of Suppes’ criteria.
4 Remove the arc (a, b) if Suppes’ criteria are not met.
5 end

Likelihood fit on the prima facie directed acyclic graph

6 LetM← the subset of the remaining arcs ∈ G, that maximize the log-likelihood of the
model, computed as: LL(D | M)− ((log m)/2) dim(M), where D denotes the input
data, m denotes the number of samples, and dim(M) denotes the number of
parameters inM (see Koller and Friedman (2009)).

7 return The resulting graphical modelM.

Algorithm 4: Bootstrap Procedure

Input: a model T obtained from CAPRESE or a modelM obtained from CAPRI, and
the initial data set.

Result: the confidence in the inferred arcs.

1 Let counter ← 0
2 Let nboot← the number of bootstrap sampling to be performed.
3 while counter < nboot do
4 Create a new data set for the inference by random sampling of the input data.
5 Perform the reconstruction on the sampled data set and save the results.
6 counter = counter + 1
7 end

8 Evaluate the confidence in the reconstruction by counting the number of times any arc
is inferred in the sampled data sets.

9 return The inferred model T orM augmented with an estimated confidence for each arc.

• Data import. Functions for the importation of data both from flat files (e.g., MAF, GISTIC) and
from Web querying (e.g., cBioPortal Cerami et al. (2012)).

• Data export and correctness. Functions for the export and visualization of the imported data.

• Data editing. Functions for the preprocessing of the data in order to tidy them.

• External utilities. Functions for the interaction with external tools for the analysis of cancer
subtypes or groups of mutually exclusive genes.

• Inference algorithms. In the current version of TRONCO, the CAPRESE and CAPRI algorithms
are provided in a polynomial implementation.

• Confidence estimation. Functions for the statistical estimation of the confidence of the recon-
structed models.

• Visualization. Functions for the visualization of both the input data and the results of the
inference and of the confidence estimation.

Data import

The starting point of TRONCO analysis pipeline is a data set of genomics alterations (i.e., somatic
mutations and copy number variations) which need to be imported as a TRONCO-compliant data
structure, i.e., a R list structure containing the required data both for the inference and the visualization.
The data import functions take as input such genomic data and from them create a TRONCO-
compliant data structure consisting in a list variable with the different parameters needed by the
algorithms.
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The core of data import from text files, is the function

import.genotypes(geno, event.type = "variant", color = "Darkgreen")

This function imports a matrix of 0/1 alterations as a TRONCO compliant data set. The input geno
can be either a dataframe or a file name. In any case the dataframe or the table stored in the file
must have a column for each altered gene and a row for each sample. Column names will be used to
determine gene names; if data are loaded from a file, the first column will be assigned as row names.

TRONCO imports data from other file format such as MAF and GISTIC, by providing wrappers
of the function import.genotypes. Specifically, the function

import.MAF(file, sep = "\t", is.TCGA = TRUE)

imports mutation profiles from a Manual Annotation Format (MAF) file. All mutations are aggregated
as a unique event type labeled "Mutation" and are assigned a color according to the default of function
import.genotypes. If the input is in the TCGA MAF file format, the function also checks for multiple
samples per patient and a warning is raised if any are found. The function

import.GISTIC(x)

also transforms GISTIC scores for copy number alterations (CNAs) in a TRONCO-compliant object.
The input can be a matrix with columns for each altered gene and rows for each sample; (in this case
colnames/rownames mut be provided). If the input is a string, an attempt to load a table from the
indicated file is performed. In this case the input table format should be consistent with TCGA data
for focal CNA; i.e., there should hence be: one column for each sample, one row for each gene, a
column Hugo_Symbol with every gene name and a column Entrez_Gene_Id with every gene’s Entrez
ID. A valid GISTIC score should be any value of: "Homozygous Loss" (−2), "Heterozygous Loss"
(−1), "Low-level Gain" (+1), and "High-level Gain" (+2).

Finally, TRONCO also provides utilities for the query of genomic data from cBioPortal Cerami
et al. (2012). This functionality is provided by the function

cbio.query(cbio.study = NA, cbio.dataset = NA, cbio.profile = NA, genes)

which is a wrapper for the CGDS package Jacobsen (2011). This can work either automatically, if one
sets cbio.study, cbio.dataset and cbio.profile, or interactively. A list of genes to query with less
than 900 entries should be provided. This function returns a list with two dataframes: the required
genetic profile along with clinical data for the cbio.study. The output is also saved to disk as an Rdata
file. See also the cBioPortal webpage at http://www.cbioportal.org.

The function

show(x, view = 10)

prints (on the R console) a short report of a data set x, which should be a TRONCO-compliant data
set.

All the functions described in the following sections will assume as input a TRONCO-compliant
data structure.

Data export and correctness

TRONCO provides a series of function to explore the imported data and the inferred models. All
these functions are named with the ‘as.’ prefix.

Given a TRONCO-compliant imported data set, the function

as.genotypes(x)

returns the 0/1 genotypes matrix. This function can be used in combination with the function

keysToNames(x, matrix)

to translate column names to event names, given the input matrix with colnames/rownames which
represent genotypes keys. Also, functions to get the list of genes, events (i.e., each column in the
genotypes matrix, it differs from genes, as the same genes of different types are considered different
events), alterations (i.e., genes of different types are merged as 1 unique event), samples (i.e., patients
or also single cells), and alteration types. See the functions

as.genes(x, types = NA)
as.events(x, genes = NA, types = NA)
as.alterations(x, new.type = "Alteration", new.color = "khaki")
as.samples(x)
as.types(x, genes = NA)
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Functions of this kind are also implemented to explore the results, most notably the models that have
been inferred

as.models(x, models = names(x$model)))

the reconstructions

as.adj.matrix(x, events = as.events(x), models = names(x$model), type = "fit")

the patterns (i.e., the formulæ)

as.patterns(x)

and the confidence

as.confidence(x, conf)

Similarly, the library defines a set of functions that extract the cardinality of the compliant TRONCO
data structure

nevents(x, genes = NA, types = NA)
ngenes(x, types = NA)
npatterns(x)
nsamples(x)
ntypes(x)

Furthermore, functions to asses the correctness of the inputs are also provided. The function

is.compliant(x,
err.fun = "[ERR]",
stage = !(all(is.null(x$stages)) || all(is.na(x$stages))))

verifies that the parameter x is a compliant data structure. The function

consolidate.data(x, print = FALSE)

verifies if the input data are consolidated, i.e., if there are events with 0 or 1 probability or indistinguish-
able in terms of observations. Any indistinguishable event is returned by the function duplicates(x).

Finally, TRONCO provides functions to access TCGA data.

TCGA.multiple.samples(x)

checks whether there are multiple sample in the input, while

TCGA.remove.multiple.samples(x)

removes them accordingly to TCGA barcodes naming rules.

Data editing

TRONCO provides a wide range of editing functions. We will describe some of them in the following;
for a technical description we refer to the manual.

Removing and merging

A set of functions to remove items from the data is provided; such functions are characterized by the
‘delete.’ prefix. The main functions are

delete.gene(x, gene)
delete.samples(x, samples)
delete.type(x, type)
delete.pattern(x, type)

These respectively remove genes, samples (i.e., tumors profiles), types (i.e., type of alteration such
as somatic mutation, copy number alteratio, etc.), and patterns from a TRONCO data structure x.
Conversely it is possible to merge events and types:

merge.events(x, ..., new.event, new.type, event.color)
merge.types(x, ..., new.type = "new.type", new.color = "khaki")
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Binding

The purpose of the binding functions is to combine different data sets. The function

ebind(...)

combines events from one or more data sets, whose events need be defined over the same set of
samples. The function

sbind(...)

combines samples from one or more data sets, whose samples need to be defined over the same set of
events. Samples and events of two data set can also be intersected via the function

intersect.datasets(x, y, intersect.genomes = TRUE)

Changing and renaming

The functions

rename.gene(x, old.name, new.name)
rename.type(x, old.name, new.name)

can be used respectively to rename genes or alterations types.
The function

change.color(x, type, new.color)

can be used to change the color associated to the specified alteration type in x.

Selecting and splitting

Genomics data usually involve a large number of genes, most of which are not relevant for cancer
development (e.g., they may be passenger mutations). For this reason, TRONCO implements the
function

events.selection(x, filter.freq = NA, filter.in.names = NA,filter.out.names = NA)

which allows the user to select a subset of genes to be analyzed. The selection can be performed
by frequency and gene symbols. The 0 probability events can are removed by the function trim(x).
Moreover, the functions

samples.selection(x, samples)
ssplit(x, clusters, idx = NA)

respectively filter a data set x based on the selected sample’s id and then splits the data set into clusters
(i.e., groups). The last function can be used to analyze specific subtypes within a tumor.

External utilities

TRONCO permits the interaction with external tools to (i) reduce inter-tumor heterogeneity by cohort
subtyping and (ii) detect fitness equivalent exclusive alterations. The first issue can be attacked by
adopting clustering techniques to split the data set in order to analyze each cluster subtype separately.
Currently, TRONCO can export and import data from Hofree et al. (2013) via the function

export.nbs.input(x, map_hugo_entrez, file = "tronco_to_nbs.mat")

and the previously described splitting functions.

In order to handle alterations with equivalent fitness, TRONCO interacts with the tool MUTEX
proposed in Babur et al. (2014). The interaction is ensured by the functions

export.mutex(x,
filename = "to_mutex",
filepath = "./",
label.mutation = "SNV",
label.amplification = list("High-level Gain"),
label.deletion = list("Homozygous Loss"))

import.mutex.groups(file, fdr = 0.2, display = TRUE)

Such exclusivity groups can then be further added as patterns (see the next section).
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Inference algorithms

The current version of TRONCO implements the progression reconstruction algorithms CAPRESE Olde Loohuis
et al. (2014) and CAPRI Ramazzotti et al. (2015).

CAPRESE. The CAPRESE algorithm Olde Loohuis et al. (2014) can be executed by the function

tronco.caprese(data, lambda = 0.5, do.estimation = FALSE, silent = FALSE)

with data being a TRONCO data structure. The parameter lambda can be used to tune the shrinkage-
like estimator adopted by CAPRESE, with the default being 0.5 as suggested in Olde Loohuis et al.
(2014).

CAPRI. The CAPRI algorithm Ramazzotti et al. (2015) is executed by the function

tronco.capri(data,
command = "hc",
regularization = c("bic", "aic"),
do.boot = TRUE,
nboot = 100,
pvalue = 0.05,
min.boot = 3,
min.stat = TRUE,
boot.seed = NULL,
do.estimation = FALSE,
silent = FALSE)

with data being a TRONCO data structure. The parameters command and regularization allow
respectively to choose the heuristic search to be performed to fit the network and the regularizer to be
used in the likelihood fit (see Ramazzotti et al. (2015)). CAPRI can be also executed with or without the
bootstrap preprocessing step depending on the value of the parameter do.boot; this is discouraged,
but can speed up the execution with large input data sets.

As discussed in Ramazzotti et al. (2015), CAPRI constrains the search space using Suppes’ prima
facie conditions which lead to a subset of possible valid selective advantage relations. The members of
this subset are then evaluated by the likelihood fit. Although uncommon, it may so happen (especially
when patterns are given as input) that such a resulting prima facie graphical structure may still contain
cycles. When this happens, the cycles are removed through the heuristic algorithm implemented in

remove.cycles(adj.matrix,
weights.temporal.priority,
weights.matrix,
not.ordered,
hypotheses = NA,
silent)

The function takes as input a set of weights in terms of confidence for any valid selective advantage
edge; ranks all the valid edges in increasing confidence levels; and, starting from the less confident,
goes through each edge removing the ones that can break the cycles.

Patterns

CAPRI allows for the input of patterns, i.e., group of events which express possible selective advantage
relations. Such patterns are given as input using the function

hypothesis.add(data,
pattern.label,
lifted.pattern,
pattern.effect = "*",
pattern.cause = "*")

This function is wrapped within the functions

hypothesis.add.homologous(x,
pattern.cause = "*",
pattern.effect = "*",
genes = as.genes(x),
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FUN = OR)
hypothesis.add.group(x,

FUN,
group,
pattern.cause = "*",
pattern.effect = "*",
dim.min = 2,
dim.max = length(group),
min.prob = 0)

which, respectively, allow the addition of analogous patterns (i.e., patterns involving the same gene of
different types) and patterns involving a specified group of genes. In the current version of TRONCO,
the implemented patterns are Boolean, i.e., those expressible by the Boolean operators AND, OR and
XOR (functions AND(...), OR(...), and XOR(...)).

Confidence estimation

To asses the confidence of the selectivity relations found, TRONCO uses non-parametric and statistical
bootstraps. For the non-parametric bootstrap, each event row is uniformly sampled with repetitions
from the input genotype and then, on such an input, the inference algorithms are performed. The
assessment concludes after K repetitions (e.g., K = 100). Similarly, for CAPRI, a statistical bootstrap is
provided: in this case the input data set is kept fixed, but different seeds for the statistical procedures
are sampled (see, e.g., Wu (1986) for an overview of these methods). The bootstrap is implemented in
the function

tronco.bootstrap(reconstruction,
type = "non-parametric",
nboot = 100,
verbose = FALSE)

where reconstruction is a TRONCO-compliant object obtained by the inference by one of the imple-
mented algorithms.

Visualization and reporting

During the development of the TRONCO package, a lot of attention was paid to the visualization
features which are crucial for the understanding of biological results. Listed below is a summary of
the main features; for a detailed description of each function, please refer to the manual.

ONCOPRINT. ONCOPRINTs are compact means of visualizing distinct genomic alterations, includ-
ing somatic mutations, copy number alterations, and mRNA expression changes across a set of cases.
They are extremely useful for visualizing gene set and pathway alterations across a set of cases, and
for visually identifying trends, such as trends in mutual exclusivity or co-occurence between gene
pairs within a gene set. Individual genes are represented as rows, and individual cases or patients are
represented as columns. See http://www.cbioportal.org/. The function

oncoprint(x)

provides such visualizations with a TRONCO-compliant data structure as input. The function

oncoprint.cbio(x)

exports the input for the cBioPortal visualization, see http://www.cbioportal.org/public-portal/
oncoprinter.jsp.

It is also possible to annotate a description and tumor stages to any oncoprint by means of the
functions

annotate.description(x, label)
annotate.stages(x, stages, match.TCGA.patients = FALSE).

Reconstruction. The inferred models can be displayed by the function tronco.plot. The features
included in the plots are multiple, such as the choice of the regularizer(s), editing font of nodes and
edges, scaling nodes’ size in terms of estimated marginal probabilities, annotating the pathway of
each gene and displaying the estimated confidence of each edge. We refer to the manual for a detailed
description.

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

http://www.cbioportal.org/
http://www.cbioportal.org/public-portal/oncoprinter.jsp
http://www.cbioportal.org/public-portal/oncoprinter.jsp


CONTRIBUTED RESEARCH ARTICLES 48

Reports. Finally, TRONCO provides a number of reporting utilities. The function

genes.table.report(x,
name,
dir = getwd(),
maxrow = 33,
font = 10,
height = 11,
width = 8.5,
fill = "lightblue")

can be used to generate LATEX code to be used as report, while the function

genes.table.plot(x, name, dir = getwd())

generates histograms reports.

TRONCO use cases

In this section, we will present a case study for the usage of the TRONCO package based on the work
presented in Ramazzotti et al. (2015). Specifically, the example is from Piazza et al. (2013) where they
used a high-throughput exome sequencing technology to identity somatically acquired mutations in 64
ACML patients, and found a previously unidentified recurring missense point mutation hitting the
SETBP1 gene.

The example illustrates the typical steps that are necessary to perform a progression reconstruction
with TRONCO. The steps are the following:

1. Selecting “Events”.

2. Adding “Hypotheses”.

3. Reconstructing the “Progression Model”.

4. Bootstrapping the Data.

Selecting Events. We will start by loading the TRONCO package in R along with an example data
set that is part of the package distribution.

> library(TRONCO)
> data(aCML)
> hide.progress.bar <<- TRUE

We then use the function show to get a short summary of the aCML data set that has just been loaded.

> show(aCML)
Description: CAPRI - Bionformatics aCML data.
Dataset: n=64, m=31, |G|=23.
Events (types): Ins/Del, Missense point, Nonsense Ins/Del, Nonsense point.
Colors (plot): darkgoldenrod1, forestgreen, cornflowerblue, coral.
Events (10 shown):

gene 4 : Ins/Del TET2
gene 5 : Ins/Del EZH2
gene 6 : Ins/Del CBL
gene 7 : Ins/Del ASXL1
gene 29 : Missense point SETBP1
gene 30 : Missense point NRAS
gene 31 : Missense point KRAS
gene 32 : Missense point TET2
gene 33 : Missense point EZH2
gene 34 : Missense point CBL

Genotypes (10 shown):
gene 4 gene 5 gene 6 gene 7 gene 29 gene 30 gene 31 gene 32 gene 33 gene 34

patient 1 0 0 0 0 1 0 0 0 0 0
patient 2 0 0 0 0 1 0 0 0 0 1
patient 3 0 0 0 0 1 1 0 0 0 0
patient 4 0 0 0 0 1 0 0 0 0 1
patient 5 0 0 0 0 1 0 0 0 0 0
patient 6 0 0 0 0 1 0 0 0 0 0
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Using the function as.events, we can have a look at the genes flagged as “mutated” in the data set
(i.e., the events that TRONCO deals with).

> as.events(aCML)
type event

gene 4 "Ins/Del" "TET2"
gene 5 "Ins/Del" "EZH2"
gene 6 "Ins/Del" "CBL"
gene 7 "Ins/Del" "ASXL1"
gene 29 "Missense point" "SETBP1"
gene 30 "Missense point" "NRAS"
gene 31 "Missense point" "KRAS"
gene 32 "Missense point" "TET2"
gene 33 "Missense point" "EZH2"
...
gene 88 "Nonsense point" "TET2"
gene 89 "Nonsense point" "EZH2"
gene 91 "Nonsense point" "ASXL1"
gene 111 "Nonsense point" "CSF3R"

These events account for alterations in the following genes.

> as.genes(aCML)
[1] "TET2" "EZH2" "CBL" "ASXL1" "SETBP1" "NRAS" "KRAS" "IDH2" "SUZ12"

[10] "SF3B1" "JARID2" "EED" "DNMT3A" "CEBPA" "EPHB3" "ETNK1" "GATA2" "IRAK4"
[19] "MTA2" "CSF3R" "KIT" "WT1" "RUNX1"

Now we can take a look at the alterations of only the gene SETBP1 across the samples.

> as.gene(aCML, genes = 'SETBP1')
Missense point SETBP1

patient 1 1
patient 2 1
patient 3 1
...
patient 12 1
patient 13 1
patient 14 1
patient 15 0
patient 16 0
patient 17 0
...
patient 62 0
patient 63 0
patient 64 0

We consider a subset of all the genes in the data set to be involved in patterns based on the support we
found in the literature. See Ramazzotti et al. (2015) as a reference.

> gene.hypotheses = c('KRAS', 'NRAS', 'IDH1', 'IDH2', 'TET2', 'SF3B1', 'ASXL1')

Regardless from which types of mutations we include, we select only the genes which appear alterated
in at least 5% of the patients. Thus, we first transform the data set into “alterations” (i.e., collapsing all
the event types for the same gene) and then we consider only these events from the original data set.

> alterations = events.selection(as.alterations(aCML), filter.freq = .05)
*** Aggregating events of type(s) {Ins/Del, Missense point, Nonsense Ins/Del, Nonsense point}

in a unique event with label "Alteration".
Dropping event types Ins/Del, Missense point, Nonsense Ins/Del, Nonsense point for 23 genes.

*** Binding events for 2 datasets.
*** Events selection: #events=23, #types=1 Filters freq|in|out = \{TRUE, FALSE, FALSE\}
Minimum event frequency: 0.05 (3 alterations out of 64 samples).
Selected 7 events.

Selected 7 events, returning.
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We now show a plot of the selected genes. Note that this plot has no title, as, by default, the function
events.selection does not add any. The resulting figure is shown in Figure 2.

> oncoprint(alterations, font.row = 12, cellheight = 20, cellwidth = 4)
*** Oncoprint for ""

with attributes: stage=FALSE, hits=TRUE
Sorting samples ordering to enhance exclusivity patterns.

Figure 2: The oncoprint function in TRONCO. Result of the oncoprint function in TRONCO on the
aCML data set.

Adding Hypotheses. We now create the data set to be used for the inference of the progression
model. We consider the original data set and from it we select all the genes whose mutations are
occurring at least 5% of the times together with any gene involved in any hypothesis. To do so, we use
the parameter filter.in.names as shown below.

> hypo = events.selection(aCML,
filter.in.names = c(as.genes(alterations),
gene.hypotheses))

*** Events selection: #events=31, #types=4 Filters freq|in|out = \{FALSE, TRUE, FALSE\}
[filter.in] Genes hold: TET2, EZH2, CBL, ASXL1, SETBP1 ... [10/14 found].
Selected 17 events, returning.
> hypo = annotate.description(hypo, 'CAPRI - Bionformatics aCML data (selected events)')

We now call oncoprint of this latest data set where we annotate the genes in gene.hypotheses in order
to identify them in Figure 3. The sample names are also shown.

> oncoprint(hypo,
gene.annot = list(priors = gene.hypotheses),
sample.id = T,
font.row = 12,
font.column = 5,
cellheight = 20,
cellwidth = 4)

*** Oncoprint for "CAPRI - Bionformatics aCML data (selected events)"
with attributes: stage=FALSE, hits=TRUE
Sorting samples ordering to enhance exclusivity patterns.
Annotating genes with RColorBrewer color palette Set1 .

We now also add the hypotheses that are described in CAPRI’s manuscript. Hypothesis of hard
exclusivity (XOR) for NRAS/KRAS events (Mutation). This hypothesis is tested against all the events
in the data set.

> hypo = hypothesis.add(hypo, 'NRAS xor KRAS', XOR('NRAS', 'KRAS'))

We then try to include also a soft exclusivity (OR) pattern but, since its “signature” is the same of the
hard one just included, it will not be included. The code below is expected to result in an error.

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 51

Figure 3: Annotated oncoprint. Result of the oncoprint function on the selected data set in TRONCO
with annotations.

> hypo = hypothesis.add(hypo, 'NRAS or KRAS', OR('NRAS', 'KRAS'))
Error in hypothesis.add(hypo, "NRAS or KRAS", OR("NRAS", "KRAS")) :
[ERR] Pattern duplicates Pattern NRAS xor KRAS.

To better highlight the perfect (hard) exclusivity among NRAS/KRAS mutations, one can examine
further their alterations. See Figure 4.

> oncoprint(events.selection(hypo,
filter.in.names = c('KRAS', 'NRAS')),
font.row = 12,
cellheight = 20,
cellwidth = 4)

*** Events selection: #events=18, #types=4 Filters freq|in|out = \{FALSE, TRUE, FALSE\}
[filter.in] Genes hold: KRAS, NRAS ... [2/2 found].
Selected 2 events, returning.
*** Oncoprint for ""

with attributes: stage=FALSE, hits=TRUE
Sorting samples ordering to enhance exclusivity patterns.

We repeated the same analysis as before for other hypotheses and for the same reasons, we will include
only the hard exclusivity pattern.

> hypo = hypothesis.add(hypo, 'SF3B1 xor ASXL1', XOR('SF3B1', OR('ASXL1')), '*')
> hypo = hypothesis.add(hypo, 'SF3B1 or ASXL1', OR('SF3B1', OR('ASXL1')), '*')
Error in hypothesis.add(hypo, "SF3B1 or ASXL1", OR("SF3B1", OR("ASXL1")), :
[ERR] Pattern duplicates Pattern SF3B1 xor ASXL1.

Finally, we now repeat the same for genes TET2 and IDH2. In this case three events for the gene TET2
are present: "Ins/Del", "Missense point" and "Nonsense point". For this reason, since we are not
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Figure 4: RAS oncoprint. Result of the oncoprint function in TRONCO for only the RAS genes to
better show their hard exclusivity pattern.

specifying any subset of such events to be considered, all TET2 alterations are used. Since the events
present a perfect hard exclusivity, their patterns will be included as a XOR. See Figure 5.

> as.events(hypo, genes = 'TET2')
type event

gene 4 "Ins/Del" "TET2"
gene 32 "Missense point" "TET2"
gene 88 "Nonsense point" "TET2"
> hypo = hypothesis.add(hypo, 'TET2 xor IDH2', XOR('TET2', 'IDH2'), '*')
> hypo = hypothesis.add(hypo, 'TET2 or IDH2', OR('TET2', 'IDH2'), '*')
> oncoprint(events.selection(hypo, filter.in.names = c('TET2', 'IDH2')), font.row = 12,

cellheight = 20, cellwidth = 4)
*** Events selection: #events=21, #types=4 Filters freq|in|out = \{FALSE, TRUE, FALSE\}
[filter.in] Genes hold: TET2, IDH2 ... [2/2 found].
Selected 4 events, returning.
*** Oncoprint for ""

with attributes: stage=FALSE, hits=TRUE
Sorting samples ordering to enhance exclusivity patterns.

Figure 5: TET/IDH2 oncoprint. Result of the oncoprint function in TRONCO for only the TET/IDH2
genes.

We now finally add any possible group of homologous events. For any gene having more than one
event associated to it, we also add a soft exclusivity pattern among them.

> hypo = hypothesis.add.homologous(hypo)
*** Adding hypotheses for Homologous Patterns
Genes: TET2, EZH2, CBL, ASXL1, CSF3R
Function: OR
Cause: *
Effect: *
Hypothesis created for all possible gene patterns.

The final data set that will be given as input to CAPRI is now finally shown. See Figure 6.
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> oncoprint(hypo,
gene.annot = list(priors = gene.hypotheses),
sample.id = T,
font.row = 10,
font.column = 5,
cellheight = 15,
cellwidth = 4)

*** Oncoprint for "CAPRI - Bionformatics aCML data (selected events)"
with attributes: stage=FALSE, hits=TRUE
Sorting samples ordering to enhance exclusivity patterns.
Annotating genes with RColorBrewer color palette Set1 .

Figure 6: Final data set for CAPRI. Result of the oncoprint function in TRONCO on the data set used
in Ramazzotti et al. (2015).

Reconstructing Progression Models. We next infer the model by running the CAPRI algorithm with
its default parameters: we use both AIC and BIC as regularizers; Hill-climbing as heuristic search
of the solutions; and exhaustive bootstrap (nboot replicates or more for Wilcoxon testing, i.e., more
iterations can be performed if samples are rejected), p-value set at 0.05. We set the seed for the sake of
reproducibility.

> model = tronco.capri(hypo, boot.seed = 12345, nboot = 10)
*** Checking input events.
*** Inferring a progression model with the following settings.

Dataset size: n = 64, m = 26.
Algorithm: CAPRI with "bic, aic" regularization and "hc" likelihood-fit strategy.
Random seed: 12345.
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Bootstrap iterations (Wilcoxon): 10.
exhaustive bootstrap: TRUE.
p-value: 0.05.
minimum bootstrapped scores: 3.

*** Bootstraping selective advantage scores (prima facie).
Evaluating "temporal priority" (Wilcoxon, p-value 0.05)
Evaluating "probability raising" (Wilcoxon, p-value 0.05)

*** Loop detection found loops to break.
Removed 26 edges out of 68 (38%)

*** Performing likelihood-fit with regularization bic.
*** Performing likelihood-fit with regularization aic.
The reconstruction has been successfully completed in 00h:00m:02s

We then plot the model inferred by CAPRI with BIC as a regularizer and we set some parameters to get
a good plot; the confidence of each edge is shown both in terms of temporal priority and probability
raising (selective advantage scores), and hypergeometric testing (statistical relevance of the data set of
input). See Figure 7.

> tronco.plot(model,
fontsize = 13,
scale.nodes = .6,
regularization = "bic",
confidence = c('tp', 'pr', 'hg'),
height.logic = 0.25,
legend.cex = .5,
pathways = list(priors = gene.hypotheses),
label.edge.size = 5)

*** Expanding hypotheses syntax as graph nodes:
*** Rendering graphics

Nodes with no incoming/outgoing edges will not be displayed.
Annotating nodes with pathway information.
Annotating pathways with RColorBrewer color palette Set1 .
Adding confidence information: tp, pr, hg
RGraphviz object prepared.
Plotting graph and adding legends.

Bootstrapping the Data. Finally, we perform non-parametric bootstrap as a further estimation of
the confidence in the inferred results. See Figure 8.

> model.boot = tronco.bootstrap(model, nboot = 10)
Executing now the bootstrap procedure, this may take a long time...
Expected completion in approx. 00h:00m:03s
*** Using 7 cores via "parallel"

*** Reducing results

Performed non-parametric bootstrap with 10 resampling and 0.05 as pvalue
for the statistical tests.

> tronco.plot(model.boot,
fontsize = 13,
scale.nodes = 0.6,
regularization = "bic",
confidence = c('npb'),
height.logic = 0.25,
legend.cex = 0.5,
pathways = list(priors = gene.hypotheses),
label.edge.size = 10)

*** Expanding hypotheses syntax as graph nodes:
*** Rendering graphics
Nodes with no incoming/outgoing edges will not be displayed.
Annotating nodes with pathway information.
Annotating pathways with RColorBrewer color palette Set1 .
Adding confidence information: npb

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 55

Figure 7: Reconstruction by CAPRI. Result of the reconstruction by CAPRI on the input data set.

RGraphviz object prepared.
Plotting graph and adding legends.

We now conclude this analysis with an example of inference with the CAPRESE algorithm. As CAPRESE
does not consider any pattern as input, we use the data set shown in Figure 3. These results are shown
in Figure 9.

> model.boot.caprese = tronco.bootstrap(tronco.caprese(hypo))
*** Checking input events.
*** Inferring a progression model with the following settings.

Dataset size: n = 64, m = 17.
Algorithm: CAPRESE with shrinkage coefficient: 0.5.

The reconstruction has been successfully completed in 00h:00m:00s
Executing now the bootstrap procedure, this may take a long time...
Expected completion in approx. 00h:00m:00s

Performed non-parametric bootstrap with 100 resampling and 0.5
as shrinkage parameter.

> tronco.plot(model.boot.caprese,
fontsize = 13,
scale.nodes = 0.6,
confidence = c('npb'),
height.logic = 0.25,
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Figure 8: Reconstruction by CAPRI and Bootstrap. Result of the reconstruction by CAPRI on the input
data set with the assessment by non-parametric bootstrap.

legend.cex = 0.5,
pathways = list(priors = gene.hypotheses),
label.edge.size = 10,
legend.pos = "top")

*** Expanding hypotheses syntax as graph nodes:
*** Rendering graphics

Nodes with no incoming/outgoing edges will not be displayed.
Annotating nodes with pathway information.
Annotating pathways with RColorBrewer color palette Set1 .
Adding confidence information: npb
RGraphviz object prepared.
Plotting graph and adding legends.

Conclusions

We have described TRONCO, an R package that provides state-of-the-art techniques to support
the user during the analysis of cross-sectional genomic data with the aim of understanding cancer
evolution. In the current version, TRONCO implements the CAPRESE and CAPRI algorithms for
cancer progression inference together with functionalities to load input cross-sectional data, set up the
execution of the algorithms, assess the statistical confidence in the results, and visualize the inferred
models.
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Figure 9: Reconstruction by CAPRESE and Bootstrap. Result of the reconstruction by CAPRESE on the
input data set with the assessment by non-parametric bootstrap.
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