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What kind of object is a quantum state? Is it an object thabdes an exponentially growing amount
of information (in the size of the system) or more akin to abadaility distribution? It turns out that
these questions are sensitive to what we do with the infaomaFor example, Holevo’s bound tells
us thatn qubits only encoda bits of classical information but for certain communicat@mmplexity
tasks there is an exponential separation between quantdrolassical resources. Instead of just
contrasting quantum and classical physics, we can plad¢ewitiiin a broad landscape of physical
theories and ask how non-quantum (and non-classical)itreeare different from, or more powerful
than quantum theory. For example, in communication conigiesertain (non-quantum) theories
can trivialise all communication complexity tasks. In neceork [C. M. Lee and M. J. Hoban, Proc.
Royal Soc. A 472 (2190), 2016], we showed that the immensespafvthe information content
of states in general (non-quantum) physical theories idimited to communication complexity.
We showed that, in general physical theories, states caskiea Bs “advice” for computers in these
theories and this advice allows the computers to easilyesahy decision problem. Aaronson has
highlighted the close connection between quantum comratinitcomplexity and quantum compu-
tations that take quantum advice, and our work gives furitihdications that this is a very general
connection. In this work, we review the results in our prergiovork and discuss the intricate rela-
tionship between communication complexity and computgking advice for general theories.

1 Introduction

Quantum theory holds the promise of more powerful algorgtand securer communication [24]. In
turn, these possibilities have affected the kinds of qaastive ask about quantum theory. In particular, if
guantum theory was replaced with another theory, what witnddnformation processing consequences
be [2/8[21]? By asking these sorts of questions we can uagiergiuantum theory better through its
limitations as well as its strengths, and this understapdiii allow us to maximise its potential.

One oft-asked question in the foundations of quantum thisowhat kind of object is the quantum
state [[1]? Is it like a classical probability distributionan exponentially long vector [16]? Forqubits,

2" coefficients are required, in general, to describe the sfatge system yet Holevo's theorem tells us
that onlyn classical bits can be reliably encoded into the systern [C&arly, the answer to the question
is sensitive to the context in which it is asked.

One concrete context in which we can ask about the informatimtent of quantum states is in the
study of communication complexity [4]. There are many v of communication complexity and
depending on the variety, there is no separation betwessick and quantum resources [7] or there is
anexponentiakeparation between randomised classical two-way commatimicand one-way quantum
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communication[[23]. That s, for certain tasks, to cladsicgEimulate the sending of a quantum state from
Alice to Bob requires an exponential amount of (even twowagdomised classical communication. In
this way, the quantum state seems like something very diftdrom a classical probability distribution.

So if a quantum state is not a probability distribution, thérat is it? An approach to answering this
guestion is to devise a general framework of theories thtt imzludes classical and quantum theory
as examples and also makes good operational sense. Luskdly, frameworks have been proposed
[25/6]12] and have laid the path for an impressive rangesflts. Within this framework, then, we can
compare the information content of quantum states withrif@rnation content of states within general
theories. We can ask how the information content of a stgtertlis on the underlying physical features
of the theory and viewing quantum theory in this more genepatext can yield insight into the nature
of the quantum state. Returning to the theme of communicatmnplexity, for a particular task there
is a vast difference between an arbitrary theory and quati@wory. For a theory colloquially known
as “Boxworld” [2], communication complexity tasks can badered completely trivial [8]. Given this
perspective, states in this theory are vastly more powérhul in quantum theory.

The result of trivial communication complexity for Boxwdrhas motivated the non-triviality of
communication complexity as an information theoretic gipfe that could pick out quantum theory, or
at least some subset of all theoriels [3]. In the restrictatlyéry related setting of studying non-locality, it
has been shown that there exists a consistent set of notiuguanrrelations (called the “almost quantum
correlations”) that does not lead to trivial communicatemmplexity so this principle cannot single out
guantum theory [19]. It is then natural to ask what are theriks that look like quantum theory from
the perspective of communication complexity and do theyeshiary common structure?

One difficulty with studying communication complexity istine variety of different scenarios and
resources that can be studied. As highlighted above, fotashke one can have an exponential separation
between quantum and classical, and no separation at alhfither. There are also complications in
translating between scenarios for different theories.example, in quantum communication complex-
ity, due to teleportation we can translate between thengetif having only communication of qubits
to the setting of having pre-shared entanglement and oabsial communication [4]. Theories more
general than quantum theory may not permit teleportatiorest@in comparisons can seem unfair. Box-
world with reversible dynamics does not permit telepootaill], and so even though communication
complexity is rendered trivial in the case with pre-shareckorld correlations, it's not clear if every
protocol of this form can be simulated by communicating calgonstant number of systems in Box-
world without pre-shared correlations. We need a cleardsaank in which we can ask general questions
about a theory that does not make too many assumptions adsmutrce interconversion within a theory.

In this direction, we look at the computational complexifycrcuits that take advice. This gives
a general framework that can address the question of how mimtmation can be encoded in a state
within a general theory. As Aaronson pointed aut [1], thanfiework is closely related to the setting
of one-way communication complexity so we can gain insigib ithe latter by studying the former.
We will further elaborate on the connections between the twgoarticular, we show that an argument
demonstrating that communication complexity is triviaBiaxworld can also be used to demonstrate the
computational complexity of Boxworld circuits that takevad. Going further, we non-trivially bound
the computational complexity of circuits that take adviced general class of theories satisfying natural
assumptions. We then comment on how this result might be taselhssify theories with non-trivial
communication complexity. The work presented here is based general discussion and technical
results in[[15] but now with expanded discussion from thespective of communication complexity.
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2 Circuits with advice in general physical theories

2.1 Operational theories

We work in the circuit framework for generalised probaliitisheories developed by Hardy in [12] and
Chiribella, D’Ariano and Perinotti in_[5,/6]. The preseritat here is most similar to that of Chiribella
et al. We now provide a brief review of this framework, seel[14, idd]more in-depth reviews and an
extended discussion of computation in general theories.

A theory within this framework specifies a set of laboratoeyides that can be connected together in
different ways to form experiments and assigns probadslito different experimental outcomes. Each
device has a classical pointer indicating an event that basred. In a general theory, one can depict
the connections of devices in some experimental set-updsedlcircuits. A requirement on any theory
is that it should give probabilistic predictions about tleewrrence of possible outcomes (i.e. the value
of the classical pointer). It is thus demanded that, in thasnework, closed circuits define probability
distributions. Given this structure, one then says thatptwsical devices are equivalent (from the point
of view of the theory) if replacing one by the other in any eld<ircuit does not change the probabilities.
The set of equivalence classes of devices with no input poeseferred to astates devices with no
output ports agffectsand devices with both input and output portdrasisformations

The notations )a is used to represent a state of system tpeherer is the outcome of the classical
pointer, andh(e& | to represent an effect on system tyjeso that if the effeck (e, | is applied to the state
s, )a, the probability to obtain outcomg on the physical device representing the state and outcome
ro on the physical device representing the effe¢{(is,|s,)a := P(r1,r2). The fact that closed circuits
correspond to probabilities can be leveraged to show tleatséth of states, effects and transformations
each give rise to a vector space and that the transformadinthffects act linearly on the vector space
of states. We assume in this work that all vector spaces ate diimensional.

We can now formally define some examples of physical priesipl

Definition 2.1.1 (Causality [5]) A theory is said to beausalif the marginal probability of a preparing
a state is independent of the choice of which measuremdmiviothe preparation.

Definition 2.1.2 (Tomographic locality 2,5, 12]) A theory satisfies tomographic locality if every trans-
formation can be uniquely characterised by local processdagraphy. Local process tomography is the
act of collecting statistics from only inputting local, phact states into a process and only making local
measurements.

We will now define the principle of bit-symmetry. Before wefide this principle, the following
concepts must be introduced. We say the laboratory devige jcy, wherej indexes the positions of
the classical pointer, is @arse-grainingof the device{&; }icx if there is a disjoint partitio{X; } jcy of
X such that%; = Yiex; &. That is, coarse-graining arises when some outcomes ofosaany device
are joined together. The devi¢€; }icx is said torefinethe device{%;}cvy. A state ispureif it does not
arise as aoarse-grainingof other states; a pure state is one for which we have maxinfi@amation.

A state ismixedif it is not pure and it iscompletely mixedf any other state refines it. That i) is
completely mixed if for any other stafp), there exists a non-zero probabilip/such thatp|p) refines

c). States{|aj)}N , areperfectly distinguishablé there exists a measurement, corresponding to effects
{(a|}N.;, such thate|oj) = §; for alli, j.

Definition 2.1.3(Bit-symmetry [18]) A theory satisfiebit-symmetryif for any two2-tuples of pure and
perfectly distinguishable statd$o1),[02)},{|01),|02)}, there exists a reversible transformation T such
that T|p) = |o;) fori =1,2.
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Note that causality, tomographic locality and bit-symmetre all logically independent: generalised
probabilistic theories satisfying any subset (includihg empty subset) can be defined. For example,
standard quantum theory satisfies all three, quantum theitinyreal amplitudes satisfies causality and
bit-symmetry but not tomographic locality, Boxworld séigs causality and tomographic locality but not
bit-symmetry [18] and the theory constructed|ih [9] doesgatisfy causality.

2.2 Efficient circuits that take advice

To define the class of efficient computation in a general theme must first define the notions of a
uniform circuit family and an acceptance condition for ahitaary theory. The notion of a poly-size
uniform circuit family {Cx}, which is indexed by some bit stringis defined in[[14]. In this definition, a
classical Turing machine gives an efficient description cfeuit, and the classical outcomes associated
with the pointers on the devices are efficiently processedhis/classical Turing machine to give a
classical output (acceptance or rejection).

In the paradigm of uniform circuits that take advice, oneii&y both the problem instanceand
an advice state, so the constructed cir€ijitmust have open system ports into which this state can be
plugged. Henceforth we will assume that uniform circuit fiéas consist of collections of circuits with a
number of open input ports, which can grow as a polynomiat|invhich we call theauxiliary register
Note that the choice of finite gate set determines the passiigtem types of the auxiliary register. Given
this convention, we can define efficient computation witlsteed advice in a specific general theory.

Definition 2.2.1. For a general theoryG, a language? C {0,1}" is in the classBBGP/gpoly if there
exists a poly-sized uniform family of circuf€x} in G, a set of (possibly non-uniform) statés,}n>1
on a composite system of sizegfor some polynomial dN — N, and an efficient acceptance criterion,
such that for all strings x {0,1}":

1. If xe .Z then G accepts with probability at leag/3 givenag, as input to the auxiliary register.
2. If x¢ £ then G accepts with probability at mody/3 given o, as input to the auxiliary register.

Here by “composite system of siz€n)”, we mean that the number of systems, or open ports, of
the auxiliary register — into which the advice state is inpiicreases ad(n), for d a polynomial in the
input size. The constan(%, %) can be chosen arbitrarily as long as they are bounded awayé‘rby
some constant. The example®GP/gpoly for quantum theory, calleBQP/qpoly was introduced by
Nishimura and Yamakami [20]. The classical version of téss is known to be equal #®/poly, the
class of deterministic, classical Turing machines thas &dtvice.

We now look at Boxworld with respect to our definitions advitgeneral physical theories. Towards
this end we provide a brief definition of Boxworld, see e.d][fr a more in-depth discussion. For a
given single systenf in Boxworld, there are two choices of binary-outcome measients,{a(Xal }
for x,a € {0,1}. Herex is the bit denoting the two possible choices of measuremmhiaas the bit
denoting the two possible outcomes of the chosen measutenectine two measurements on systdm
are{a(0pl,a (01|} and{a(1o|,a(11|}. States and measurements in this theory can produce d¢mmnela
associated with the so-called Popescu-Rohrlich non-lbcal[22]. These bipartite correlations can be
extended to am-partite system where now for thi¢h party,x; € {0,1} anda; € {0, 1} are the choice
of measurement and its outcome respectively. There existate|pr) and effects{;(x;,a;|} for all j
parties that produce the probabilities

A if @) = f(x),

X1,a1|(X2,32|...(Xn, = i
(X1, 20/ (X2, @2]...(%, @n|O1) {0 otherwise,
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where@ represents summation modulo 2 ahd {0,1}" — {0,1} is any Boolean function from the
bit-string x with elementsx;. Therefore, if the statfps) is prepared and local measurements described
by effects(x;,a;| made, a classical computer can compute the parity of albowsa; and so we deter-
ministically obtain the evaluation of a Boolean functibfx). This relatively straightforward observation
gives us the following result.

Theorem 2.2.2. [15] There exist generalised probabilistic theori€s satisfying causality and tomo-
graphic locality, which satisflBGP/gpoly = ALL whereALL is the class of all decision problems.

Proof. ClearlyBGP/gpoly C ALL is trivially true for Boxworld. The statefps) can be used as advice
states and, as all decision problems can be represented digaBofunctions, it follows thafLL C
BGP/gpoly. O

It was first established by Aaronson tH&®P/gpoly C PP/poly C ALL thus quantum mechanical
states cannot encode the answers to all problems, unlikeiesfor Boxworld. So, clearly, we need more
principles than causality and tomographic locality to diveories that have non-trivial upper bounds on
the computational power of advice. In the following resulg show that the principle of bit-symmetry
is such a principle and a theory satisfying it (recall thakBorld does not) cannot use advice to solve
all decision problems.

Theorem 2.2.3. [15] Any causal, bit-symmetric, tomographically local ting G with at least two pure
and distinguishable states satisfies

BGP/gpoly C PP/poly C ALL .

3 Connections between advice and communication complexity

Earlier, we discussed the information content of statetiwigjeneral theories from the point-of-view
of communication complexity. However, the framework anslits in this work were phrased in terms
of computations that take advice. This framework allowsausdncretely ask how much information
content there is in a state and we showed that informatiamatiples can limit the information content
of states. We now end with some comments on the connectisrebatadvice and communication com-
plexity. A pertinent question is whether our results cansayething about communication complexity.
For example, iBGP/gpoly = ALL for some theonyG, does this mean all communication complexity
tasks are trivial in this theory?

In the case of Boxworld, we can adapt the proof tB&P/gpoly = ALL to the communication
complexity scenario. In such a scenario, Alice has an infiustbng x € {0,1}" and Bob hay €
{0,1}" and they wish to perform some functidiix,y). They are allowed to share arbitrary states and
correlations in a theory prior to receiving the inputs bigafeceiving the inputs they can only classically
communicate. In the case of Boxworld, for a particular fiorctf (x,y), they prepare the statps ) )
described above and the firssystems are held by Alice whereas the secosgstems are held by Bob.
Upon receiving the inputg andy respectively, they make measurements corresponding $e ihput
choices, Alice then takes the parity of her outputs and s#rigddit value to Bob. Bob takes the parity
of his outputs with the bit that Alice sends and gégg,y) with certainty. Any such task can be achieved
through only communicating one classical bit.

Can such a mapping be made more general? Is communicatiopleddty non-trivial in theories
whereBGP/gpoly C PP/poly? We conjecture that this second question has a positiveeansdne
can give a bound on one-way communication complexity (withgre-shared “correlated” systems) in
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general theories that is similar to one that Aaronson pravdd], but for theories satisfying certain
non-trivial properties such as purification [5, 6] which a required in Theorefn 2.2.3. In general, the
connection between communication complexity and comjausithat take advice is not as straightfor-
ward as in the example of Boxworld. For example, it may be #sed¢hat a communication complexity
task could be rendered trivial but only when two parties star exponential amount of resources in
the size of the classical input. Van Dam’s original protoaals of this form([8], and even though we
can improve its “efficiency”, this may not be possible in gahelf the state that Alice and Bob have
to share is exponentially large (the number of sub-systémparties have is exponential in the size of
the input) then this is not a viable advice state accordingutodefinitions. What we can say is, if there
exists an efficient protocol (the states used and runtim@ayamomial in the size of the input) within a
theory that trivialises communication complexity, tH@8P/gpoly = ALL . Another possible indication
of the connection between the two might be that the proof &ofan 2.2.13 can be modified to derive
a bound on one-way communication complexity (without pdorrelations) in a theory satisfying the
same principles in the statement of the theorem.

In this work, we have related our work in [[15] to the study ofrtaunication complexity in general
physical theories. There has been some prior work in thiston studying the one-way communication
complexity of general theories with some initially intrigg and nice results [10,17]. In future work we
would like to connect this study to the study of computatitret take advice. In drawing these threads
together we may understand why Nature chose quantum thedma@ some other possibility, and in
doing so, we might understand what kind of object is the quargtate.
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