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Optical dispersive shock waves in defocusing colloidal media

X. Ana,1, T. R. Marchanta,1,∗, N. F. Smytha,b,1,2

aSchool of Mathematics and Applied Statistics, University of Wollongong
bSchool of Mathematics, University of Edinburgh

Abstract

The propagation of an optical dispersive shock wave, generated from a jump discontinuity in light

intensity, in a defocussing colloidal medium is analysed. The equations governing nonlinear light

propagation in a colloidal medium consist of a nonlinear Schrödinger equation for the beam and

an algebraic equation for the medium response. In the limit of low light intensity, these equations

reduce to a perturbed higher order nonlinear Schrödinger equation. Solutions for the leading and

trailing edges of the colloidal dispersive shock wave are found using modulation theory. This is done

for both the perturbed nonlinear Schrödinger equation and the full colloid equations for arbitrary

light intensity. These results are compared with numerical solutions of the colloid equations.

Keywords: undular bores, dispersive shock waves, optical solitary waves, modulation theory,

colloidal media

1. Introduction

Generic nonlinear wave equations, such as the Korteweg-de Vries (KdV), nonlinear Schrödinger

(NLS) and Sine-Gordon equations, all possess hump-like travelling wave solutions, solitary waves

[1], also referred to as solitons. However, the term soliton and solitary wave are not strictly

interchangeable, as a soliton is a solitary wave that has special properties. A solitary wave is a5

hump-like wave which decays to a constant level away from its peak [1]. To be termed a soliton

a solitary wave must interact cleanly with other solitary waves, with the only evidence of their

interaction being a possible phase change [1, 2, 3]. Another generic nonlinear wave structure is the

undular bore, also called a dispersive shock wave (DSW) or collisionless shock wave [4]. The study

of bores first arose in water wave theory [5, 6]. Bores are the dispersive or dissipative resolution10

of an initial discontinuity in wave height, classic examples being the tidal bores which arise in

coastal regions of strong tidal flow, such as the Severn Estuary in England and the Bay of Fundy
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in Canada, and the tsunamis generated by marine earthquakes and land slips. Bores in fluids fall

into two broad categories, viscous bores and undular bores. As the name suggests, viscous bores

are dominated by viscous loss and are steady wavetrains resulting from a balance between viscous15

loss, nonlinearity and dispersion [1, 5, 6]. Such bores with loss will not be of concern in the present

work on optical DSWs. On the other hand, DSWs or undular bores arise when viscous effects

are negligible and are unsteady wavetrains which spread continuously, with solitary waves at one

edge and linear waves at the other. In the context of fluid flow, undular bores have been observed,

studied and modelled in the atmosphere [7, 8, 9], on the continental shelf in the internal tide [10],20

in stratified fluids [11], in magma flow in geophysics [12, 13, 14], in Fermi gases [15] and Bose-

Einstein condensates [16]. Of relevance to the present work, there have been experimental and

theoretical studies of DSWs in nonlinear optical media such as photorefractive crystals [17, 18, 19],

nonlinear optical fibres [20, 21, 22] and nonlinear thermal optical media [23, 24]. While the terms

DSW and undular bore refer to the same phenomenon and, in principle, are interchangeable, the25

first term will be used in the present work. This is because the term undular bore tends to be

restricted to water wave theory and the term DSW is more commonly used for the phenomenon

in other fields.

DSWs are unsteady wave forms and so finding solutions for them is not as straightforward

as finding solutions for steady waves, such as solitary waves. It was not until the development30

of Whitham modulation theory [1, 25, 26] that a technique was developed which enabled the

derivation of DSW solutions of suitable nonlinear wave equations. Whitham modulation theory

is a method to analyse slowing varying periodic wavetrains using either a Lagrangian formulation

of the equations or conservation equations [1], and is related to the method of multiple scales

in asymptotic analysis. For this reason it is sometimes referred to as the method of averaged35

Lagrangians. It is also a nonlinear extension of the WKB method. The modulation equations

derived using Whitham modulation theory are equations for the slowly varying parameters of the

wavetrain, such as amplitude, wavenumber and mean height. If the underlying wavetrain is sta-

ble, then the modulation equations form a hyperbolic system and if it is unstable, the modulation

equations form an elliptic system [1]. In particular, Whitham derived the modulation equations40

for the KdV equation, which were found to form a hyperbolic system [1, 26]. It was subsequently

realised that a simple wave (expansion fan) solution of these modulation equations was physically

a DSW solution [27, 28]. With this connection with Whitham modulation theory, DSW solutions

could be derived for other nonlinear wave equations, such as the NLS equation [29], the Sine-

Gordon equation [30] and the Gardner equation [31]. However, finding these DSW solutions as45

simple wave solutions relied on setting the hyperbolic modulation equations in Riemann invariant

form, which is only guaranteed if the underlying nonlinear wave equation is integrable [32]. Re-

cently, El [4, 33, 34] showed that, in general, hyperbolic modulation equations have a simplified
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structure at the leading and trailing edges of a DSW. This simplified structure was then

exploited to determine its leading and trailing edges without a full knowledge of the50

Whitham modulation equations for the governing equation. For negative dispersion,

the leading edge consists of solitary waves and the trailing edge linear waves, with

the position of these waves swapped around for positive dispersion. This relaxation of

the need for the full modulation equations then enabled the leading and trailing edges of DSWs

governed by non-integrable equations to be determined [4, 11, 14, 35, 36]. In many observational55

measurements only the solitary wave edge of an DSW can be resolved [7, 8, 9, 10, 23, 37], so the

restriction of El’s method to the leading and trailing edges of a DSW is less critical than may first

appear.

In the present work the propagation of an optical DSW in the nonlinear optical medium of

a colloidal suspension will be studied. The equations governing optical beam propagation in a60

colloid consist of an NLS-type equation for the beam coupled to an algebraic equation for the

concentration of the colloid particles which depends on the beam intensity [38, 39]. In the limit of

low light intensity, these equations can be asymptotically reduced to a higher order NLS equation.

While a colloid is normally a focusing medium, so that its refractive index increases with beam

intensity, it can be made to be a defocusing medium [40, 41], which then supports a DSW consisting65

of dark solitary waves at the trailing edge and linear waves at the leading edge [4, 29, 42]. The DSW

is generated by a jump initial condition in optical beam intensity. While there have been previous

studies of DSW in colloids [43, 44], these have been for focusing colloids. In this case the waves of

the DSW are modulationally unstable, so that the DSW structure has only a finite propagation

length before becoming unstable. This is not the case for a defocusing colloidal medium. The70

leading and trailing edges of the colloid DSW are determined using El’s method [4, 33, 34] based

on both the full colloid equations and their limit in terms of a higher order NLS equation in the

limit of low beam intensity. These modulation theory solutions are compared with full numerical

solutions of the governing colloid equations. As well as determining the accuracy of modulation

theory, these comparisons also determine the applicability of the low light intensity limit of the75

colloid equations.

2. Colloid equations

Let us consider the propagation of a polarised optical beam through a colloidal suspension.

DSWs in nonlinear optical media are governed by NLS-type equations and, in the simplest ap-

proximation, are governed by (1 + 1) dimensional equations [4, 45]. Higher dimensional (2 + 1)

dimensional DSWs governed by NLS-type equations are much more difficult to analyse and need

a non-trivial azimuthal vortex structure to be stable. Indeed, solutions of (2 + 1) dimensional

DSWs governed by not just NLS-type equations, but any nonlinear wave equation, are an open
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topic [46, 47]. Hence, the optical beam generating the colloid DSW will be assumed to have a

plane front. The z direction will then be taken to be the propagation direction, with the x direc-

tion orthogonal to this and the beam having no y dependence. The concentration of the colloid

particles has a nonlinear dependence on the beam intensity. The colloid can be either a focusing

medium, so that its refractive index increases with beam intensity [38, 48], or defocusing, so that it

decreases with intensity [40, 41]. In order for a stable DSW to be generated, the colloidal medium

will be assumed to be defocussing. Let us denote the concentration of the colloidal particles by η,

with η0 the constant background concentration in the absence of the optical beam. In the slowly

varying, paraxial approximation the non-dimensional equations governing the propagation of the

optical beam through the colloidal suspension are then [38, 39]

i
∂u

∂z
+

1

2

∂2u

∂x2
− (η − η0)u = 0, (1)

with the equation of state, that is the medium response equation,

|u|2 = g(η)− g0, g(η) =
3− η

(1− η)3
+ ln η. (2)

Here u is the complex valued envelope of the electric field of the optical beam and g0 = g(η0). The

Carnahan-Starling compressibility approximation has been used for the state relation g. Alterna-

tive models for the compressibility alter the form of g. The Carnahan-Starling approximation is80

valid up to the solid-fluid transition, which occurs at η =
√
2π/9 ≈ 0.496 in a hard-sphere fluid

[49]. It should be noted that the nonlinear term in the NLS equation (1) for the optical beam has

a negative coefficient, so that the equation is defocussing, in contrast to the focussing equation of

previous work [38, 39].

Hoefer [50] considered general properties of DSW solutions of generalised NLS equations of the

form

i
∂u

∂z
+

1

2

∂2u

∂x2
− f(|u|2)u = 0, (3)

with details determined for a power law nonlinearity f . While the colloid system (1) and (2) is85

in principle of this form, the nonlinearity f cannot be explicitly determined from the medium

response equation (2). The colloid system then represents a further extension of the forms of

nonlinear response in generalised NLS equations and the DSW solutions for such equations, in

addition to the previously studied extension of a nonlocal response [35, 51].

The simplest initial condition which will result in the generation of a DSW is a step initial

condition in optical intensity,

u(x, 0) =







u−, x < 0,

u+, x > 0
. (4)

We require that u− > u+ ≥ 0 in order for the initial condition to be breaking so that a DSW is

generated, in contrast to an expansion wave for u− < u+. The medium equation (2) then shows
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that the initial concentration of colloid particles is

η(x, 0) =







η−, x < 0

η+, x > 0
, (5)

where η− is the concentration generated by the beam intensity u− and η+ by the intensity u+.90

The intensity u and packing fraction are related by the state equation (2).

3. Low light intensity limit

The colloid equations (1) and (2) can be simplified in the limit in which the intensity |u|2

of the light beam is low as the medium equation (2) can then be asymptotically solved for the

concentration η in terms of |u|2. Let us then set the concentration as

η = η0 + η1|u|2 + η2|u|4 + . . . (6)

The low intensity limit is equivalent to |η − η0| ≪ 1. The medium equation (2) can then be

inverted to give

η − η0 =
|u|2
g′(η0)

− g′′(η0)

2g′(η0)3
|u|4 + . . . , (7)

so that the electric field equation (1) becomes

i
∂u

∂z
+

1

2

∂2u

∂x2
− (g′(η0))

−1 |u|2u+
g′′(η0)

2g′(η0)3
|u|4u = 0 (8)

to second order in |u|2. This is an NLS equation with a fifth order nonlinearity correction, which

has been extensively studied [18, 36, 45]. It can be set in the standard form

i
∂u

∂z′
+

1

2

∂2u

∂x′2
− |u|2 u+ α|u|4u = 0 (9)

by using the rescaled variables

z = g′(η0)z
′, x =

√

g′(η0)x
′, α =

g′′(η0)

2g′(η0)2
, (10)

as the derivative g′(η0) of the constitutive law is positive.

The linear periodic wave solution of the higher order NLS equation (9) is

u = u∞e−i(u2
∞

−αu4
∞

)z′

. (11)

Using this wave as the background carrier wave, we then find the grey solitary wave solution of

the higher order NLS equation (9) as95

u =
[

B tanhCθ +
α

3

(

B3 +A2B
)

tanhCθ − α

3
B3 tanh3 Cθ

+ iA− i
α

3
AB2 tanh2 Cθ

]

e−i(u2
∞

−αu4
∞

)z′+iV x′

+ . . . , where (12)

C = B − α

(

B3 +
4

3
A2B

)

, A2 +B2 = u2
∞
, θ = x′ −

[

A+ V − α

(

2

3
AB2 +A3

)]

z′.
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V is velocity of the background level. In the limit α = 0, the NLS grey soliton is obtained. This

asymptotic solitary wave solution will be used in Section 6 to derive the amplitude of the leading

solitary wave of the DSW in the limit of low light intensity.

Figure 1 shows a typical DSW solution of the colloid equations (1) and (2). The parameters

are u− = 1.0, u+ = 0.5 and η0 = 0.01. Shown is a contour plot of the numerical simulation of100

(a) the electric field |u| and (b) the packing fraction η. It can be seen that the solution consists

of four sections. The first is the original levels u+ and u− ahead of and behind the DSW. The

second is an intermediate shelf ui behind the actual DSW with u+ < ui < u−, with the third

section a dispersionless level change linking the intermediate shelf ui to the level behind u−. It

should be noted that there is a small amplitude wavetrain on the level u−. This wavetrain is due105

to the smoothing of the discontinuity in derivative at the point the expansion wave links the level

u− [28]. The final, fourth, section is the actual DSW linking the intermediate shelf ui to the level

u+ ahead. Each of these portions of the solution will be discussed in the following sections.

4. Dispersionless Limit

As can be seen from Figure 1, a DSW consists of two main wave forms, the DSW itself for which

dispersion balances nonlinearity, and the region away from the DSW for which dispersion can be

neglected [4, 33, 34]. To understand the solution in these two regions, it is simplest to set the

colloid equations (1) and (2) in the so-called hydrodynamic form via the Madelung transformation

u =
√
ρeiφ, v = φx. (13)

This transformation then sets the colloid equations in the form110

∂ρ

∂z
+

∂

∂x
(ρv) = 0, (14)

∂v

∂z
+ v

∂v

∂x
− ∂

∂x

(

ρxx
4ρ

− ρ2x
8ρ2

)

+
∂η

∂x
= 0, (15)

where

ρ = g(η)− g(η0). (16)

The system (14) and (15) is referred to as the hydrodynamic form as it is similar to the shallow

water equations [1], with the first of equation (14) that for mass conservation and the second (15)

that for momentum conservation in this context. The initial condition is (4) and (5).

Away from the DSW, the solution is approximately non-dispersive as there are no significant

waves, as seen from the typical solution displayed in Figure 1. The non-dispersive limit of the115

hydrodynamic equations (14) and (15) is

∂ρ

∂z
+

∂

∂x
(ρv) = 0,

∂v

∂z
+ v

∂v

∂x
+

1

g′(η)

∂ρ

∂x
= 0,

∂η

∂x
=

1

g′(η)

∂ρ

∂x
. (17)
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Figure 1: DSW solution of the colloid equations (1) and (2). The parameters are u− = 1.0, u+ = 0.5 and η0 = 0.01.

Shown are contour plots of the numerical solution of (a) the electric field |u| and (b) the packing fraction η.
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In Riemann invariant form, these equations are

v +

∫ ρ

ρ+

dρ
√

ρg′(η)
= constant on C+ :

dx

dz
= V+ = v +

√

ρ

g′(η)
, (18)

v −
∫ ρ

ρ+

dρ
√

ρg′(η)
= constant on C− :

dx

dz
= V− = v −

√

ρ

g′(η)
. (19)

The dispersionless equations can be used to determine the level ui of the intermediate shelf

seen in Figure 1. As noted above, the levels u− and ui are linked by an expansion wave, which is

an expansion fan on the characteristic C− with the Riemann invariant on C+ constant in the fan.

The intermediate shelf ui terminates at the DSW, whose trailing edge has the velocity v−. This

simple wave solution is

ρ =



















ρ−,
x
z < −H−,

ρf , −H− ≤ x
z ≤ M(ρ−, ρi)−Hi,

ρi, M(ρ−, ρi)−Hi <
x
z < v−

(20)

and

v =



















0, x
z < −H−,

M(ρ−, ρf ), −H− ≤ M(ρ−, ρi)−Hi,

M(ρ−, ρi), M(ρ−, ρi)−Hi <
x
z < v−

. (21)

The expressions for the edges of the expansion fan are involved and are

H− =

√

ρ−
g′(η−)

, M(ρ−, ρi) =

∫ ρ−

ρi

dρ
√

ρg′(η)
,

Hi =

√

ρi
g′(ηi)

, M(ρ−, ρf ) =

∫ ρ−

ρf

dρ
√

ρg′(η)
. (22)

The intensity ρ = ρf on the expansion fan is the solution of

ρf = g′(ηf )
[

M(ρ−, ρf )−
x

z

]2

. (23)

This simple wave solution is not complete as the level ui =
√
ρi of the intermediate shelf is not

yet determined. The intermediate level ρi is found by the requirement that the Riemann invariant

along the characteristic C− is constant through the DSW, which links the intermediate level to

the level u+ =
√
ρ+ ahead of the DSW [4, 33, 34]. Hence the wavenumber v on the intermediate

shelf is

vi = M(ρi, ρ+). (24)

Matching this value of vi with the value given by the simple wave solution (21) finally gives that

ρi is determined by the solution of

M(ρ−, ρi) = M(ρi, ρ+). (25)

This completes the solution for the colloid DSW, except for the DSW itself.
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In the low light intensity limit the Riemann invariant form (18) and (19) of the non-dispersive120

hydrodynamic equations can be approximated by

2
√
ρ− 2

3
αρ3/2 + v = constant on C+ :

dx′

dz′
= v +

√
ρ(1 + αρ), (26)

2
√
ρ− 2

3
αρ3/2 − v = constant on C− :

dx′

dz′
= v −√

ρ(1 + αρ). (27)

The expansion fan solution (20) then becomes

√
ρ =



















u−, Q < x
z ,

ρfhnls
, Q ≤ x

z ≤ G,
√
ρi, G < x

z < v−,

(28)

with the limits of the expansion fan given by

Q = −u− + αu3
−

√

g′(η0)
, G =

2u− − 3
√
ρi − α

3

(

2u3
−
+ ρ

3/2
i

)

√

g′(η0)
. (29)

The corresponding wavenumber v is determined by the intensity ρ given by (28) and is

v = 2u− − 2
√
ρ− 2α

3

(

u3
−
− ρ3/2

)

. (30)

In the expansion fan the intensity ρ = ρfhnls
is given by the solution of

3
√
ρfhnls

+
1

3
αρfhnls

3/2 =

(

2u− − 2

3
αu3

−

)

− x

z

1
√

g′(η0)
, (31)

which completes the non-dispersion portion of the solution in the low light intensity limit.

In the same low intensity limit, equation (25) for the intermediate level ρi can be solved to

give
√
ρi =

√
ρ− +

√
ρ
+

2
+

α

12

[

ρ
3/2
−

+ ρ
3/2
+ − 1

4

(√
ρ− +

√
ρ+
)3
]

. (32)

The wavenumber vi on the intermediate shelf, given by (24), similarly becomes

vi =
√
ρ− −√

ρ+ − α

12

[

10ρ
3/2
−

+ 2ρ
3/2
+ − 3

2

(√
ρ− +

√
ρ+
)3
]

. (33)

This solution for the intermediate level is also needed for the determination of the leading and

trailing edges of the DSW as the trailing edge of the DSW arises from this shelf, see Figure 1.

5. Dam Break Solution125

The simplest solution of the colloid equations (1) and (2) with the jump initial condition (4)

is for u+ = 0. In this limit, the intermediate shelf ui disappears and there is only the expansion

wave of the previous section linking the level u− to u+ = 0. The solution is then just the classical

9
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Figure 2: The intensity ρ versus x at z = 1500. The parameters are ρ− = 1.0, ρ+ = 0.0 and η0 = 0.01. Shown

are the numerical solution of the colloid equations (1) and (2) for the initial jump condition (4) and the dam break

solution (34) of colloid equation and (36) of the higher order NLS equation. Initial ρ: (dark blue) dot-dash line;

numerical solution of colloid equation: (red) solid line; modulation solution of higher order NLS: pink (dotted) line;

modulation solution of colloid equation: (green) dashed line.

dam break solution of shallow water wave theory [1]. The expansion fan solution (20) and (21)

then becomes

ρ =



















ρ−,
x
z < −H−,

ρf , −H− ≤ M(ρ−, 0),

0, x
z > M(ρ−, 0)

(34)

and

v =



















0, x
z < −H−,

M(ρ−, ρf), −H− ≤ x
z ≤ M(ρ−, 0),

M(ρ−, 0),
x
z > M(ρ−, 0),

(35)

where, again, ρf is the solution of (23). As the intermediate shelf has disappeared, there is no

DSW as no wavetrain is needed to bring the solution down from ui to u+.

In the low light intensity limit, this dam break solution becomes

√
ρ =



















u−, Q < x
z ,

ρfhnls
, Q ≤ x

z ≤ Gdam,

0, x
z > Gdam.

(36)

Here Q and Gdam are given by (29) and v is given by (30), with ρi = 0.

Figure 2 shows the intensity ρ versus x at z = 1500. The parameters are ρ− = 1.0, ρ+ = 0.0

and η0 = 0.01, so that the dam break solution applies. Compared are the numerical solution of130

the colloid equations (1) and (2) and the dam break solutions of the higher order NLS equation
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(28) and the colloid equations (34). It can be seen that there is excellent agreement between the

numerical solution and the dam break solution of colloid equation, while the higher order NLS

solution shows clear disagreement, indicating the importance of higher order terms in the colloid

equations (1) and (2). The expansion fan itself lies in the region −230 < x < 347 as predicted by135

dam break solution the colloid equations and −144 < x < 288 by the dam break solution of the

higher order NLS equation. The disagreement can be explained by the size of |α|. As α = −0.425,

neglected terms of O(α2) and higher are important. It can be seen that there is a small amplitude

dispersive wavetrain generated at the trailing edge of the expansion fan which is not accounted

for by the present modulation theory. This wavetrain is due to the discontinuity in the derivative140

of the dam break solution at the trailing edge of the expansion fan and the flat level u− behind

the trailing edge. This small amplitude wavetrain is a general feature of expansion fan solutions

in modulation theory and acts to smooth out this discontinuity [28].

6. Higher order NLS DSW

In general, when the level ahead u+ is non-zero there is a DSW linking this level with an145

intermediate level of height ui, as seen in Figure 1. There is no known periodic wave solution of

the colloid equations (1) and (2), and hence no basis to calculate the full Whitham modulation

equations, from which the DSW solution could be determined. It is then convenient to use the

method of El [4, 33, 34] to determine the leading and trailing edges of this DSW. This will be done

in Section 7. However, due to the highly nonlinear constitutive relation (2), the exact solution of150

El’s equations cannot be found and they have to be solved numerically. In this section, El’s method

will be used for the higher order NLS equation (9) as the leading and trailing edge equations can be

solved exactly in this low intensity limit. It should be noted that El’s method has been applied to

similar higher order NLS equations in previous work [18, 36]. The higher order NLS equation (8)

differs from that used in this previous work only in the scaling of the cubic and quintic nonlinear155

terms due to the colloid constitutive relation (2). The present DSW solution for the leading and

trailing edges for the higher order NLS equation (8) is then a rescaled version of that of this

previous work.

El [4, 33, 34] showed that the leading and trailing edges of a DSW can be determined from the

linear dispersion relation for the relevant equation. In hydrodynamic form the higher order NLS160

equation (9) is

∂ρ

∂z′
+

∂

∂x′
(ρv) = 0,

∂v

∂z′
+ v

∂v

∂x′
+ (1− 2αρ)

∂ρ

∂x′
− ∂

∂x′

(

ρx′x′

4ρ
− ρ2x′

8ρ2

)

= 0. (37)

We then seek a linear travelling wave solution

ρ = ρ̄+ ρ1e
i(kx′

−ωz′), v = v̄ + v1e
i(kx′

−ωz′), (38)
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of these equations, where |ρ1| ≪ ρ̄ and |v1| ≪ |v̄|. This gives the dispersion relation

ω = v̄k + k

√

ρ̄ (1− 2αρ̄) +
1

4
k2 = v̄k + k

√

ρ̄+
1

4
k2 − αρ̄2k

(

ρ̄+
1

4
k2
)

−1/2

+ . . . (39)

The determination of the leading and trailing edges of a DSW results from a matching of these

edges with the dispersionless solution away from the DSW.

6.1. Linear wave edge of DSW

El [4, 33, 34] gives that the linear wave edge of the DSW, the leading edge, is determined by

the differential equation

dk

dρ̄
=

∂ω

∂ρ̄

(

V+ − ∂ω

∂k

)

−1

, (40)

where V+ is the velocity of the forward propagating characteristic (18). At the edges of the DSW,

v̄ and ρ̄ are related due to the coincidence of two characteristics of the full modulation equations

[4, 33, 34]. This relation is determined by the DSW jump condition which requires that the

Riemann invariant on the C− characteristic is the same at both ends of the DSW. This gives

v̄ = 2
√
ρ− 2

3
αρ3/2 − 2

√
ρ+ +

2

3
αρ

3/2
+ , (41)

as v = 0 and ρ = ρ+ ahead of the DSW.165

The equation (40) for the linear edge of the DSW can now be solved on using the dispersion

relation (39) with v̄ determined by (41). Substituting the dispersion relation (39) and the mean

level (41) into the differential equation (40) gives

dk

dρ̄
=

1

2

(1− 4αρ̄) k
√
ρ̄ (1 + αρ̄)W 1/2 −W + k2

4

, (42)

where

W = ρ̄ (1− 2αρ̄) +
k2

4
. (43)

The change of variable

γ =

√

1 +
k2

4(ρ̄− 2αρ̄2)
(44)

is now used to simplify this equation for the leading edge, so that it becomes

dγ

dρ̄
= −1 + γ

2ρ̄
+ α

[

4(1 + γ)γ

2γ + 1
− (1 + γ)

]

. (45)

The leading, linear edge of the DSW can now be determined by solving this equation with the

boundary condition which links it to the trailing, solitary wave edge. This boundary condition is

k = 0 when ρ̄ =
√
ρi, with ρi given by (32), as a solitary wave has zero wavenumber [4, 33, 34]. It

can then be found that

γ = 2

√

ρi
ρ̄

− 1 + α

[

6
√
ρ̄ρi + 32ρi − 38

ρ
3/2
i√
ρ̄

+ 128
ρ
3/2
i√
ρ̄

log
4
√
ρi −

√
ρ̄

3
√
ρi

]

. (46)
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The wavenumber k+ at the leading, linear edge of the DSW is hence given by (46) and (44)

with ρ̄ = ρ+. Furthermore, the position of this edge of the DSW is given by the linear group

velocity, which is

cg =
∂ω

∂k
=

ρ+ + 1
2k

2
+

√

ρ+ + 1
4k

2
+

− αρ3+
(

ρ+ + 1
4k

2
+

)3/2
. (47)

6.2. Solitary wave edge of DSW

The trailing, solitary wave, edge of the DSW can be determined in a similar fashion. This edge

is determined in a similar fashion to the linear wave edge, but with a “conjugate” wavenumber

k̃ and “conjugate” frequency ω̃ related by the “conjugate” dispersion relation ω̃ = −iω(ik̃, ρ̄, v̄),

where ω is given by the linear dispersion relation (39). Thus, the “conjugate” dispersion relation

is

ω̃ = v̄k̃ + k̃

√

ρ̄ (1− 2αρ̄)− 1

4
k̃2 = v̄k̃ + k̃

√

ρ̄− 1

4
k̃2 − αρ̄2k̃

(

ρ̄− 1

4
k̃2
)

−1/2

+ . . . (48)

As for the leading edge, the solitary wave edge of the DSW is determined by [4, 33, 34]

dk̃

dρ̄
=

∂ω̃

∂ρ̄

(

V+ − ∂ω̃

∂k̃

)

−1

. (49)

Again, the Riemann invariant condition (41) is used to relate v̄ and ρ̄ at the trailing edge of

the DSW as, again, two of the modulation equations coincide at this edge. Using the conjugate

dispersion relation (48) and the mean level (41), the trailing edge equation (49) becomes

dk̃

dρ̄
=

1

2

(1− 4αρ̄) k̃
√
ρ̄ (1 + αρ̄)V 1/2 − V + k̃2

4

, (50)

with

V = ρ̄ (1− 2αρ̄)− k̃2

4
. (51)

Again, the change of variable

γ̃ =

√

1− k̃2

4(ρ̄− 2αρ̄2)
(52)

is now used to simplify this equation, which becomes

dγ̃

dρ̄
= −1 + γ̃

2ρ̄
+ α

[

4(1 + γ̃)γ̃

2γ̃ + 1
− (1 + γ̃)

]

. (53)

This equation is solved with the boundary condition linking the trailing edge with the linear,

leading edge of the DSW, so that k̃ = 0 at ρ̄ = ρ+ [4, 33, 34]. The trailing edge solution is then

found to be

γ̃ = 2

√

ρ+
ρ̄

− 1 + α

(

6
√
ρ̄ρ+ + 32ρ+ − 38

ρ
3/2
+√
ρ̄

+ 128
ρ
3/2
+√
ρ̄

log
4
√
ρ+ −√

ρ̄

3
√
ρ+

)

. (54)

The conjugate wavenumber k̃i at the trailing edge of the DSW is finally given by (54) and (52)

with ρ̄ = ρi and ρi given by (32).
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The position of the trailing, solitary wave, edge of the DSW is determined by the solitary wave

velocity

v− =
ω̃

k̃
= vi +

√

ρi −
1

4
k̃2i −

αρ2i
√

ρi − 1
4 k̃

2
i

. (55)

Finally, the amplitude of the trailing edge solitary wave of the DSW can be deduced from the grey

solitary wave solution (12). Let us define the amplitude of the trailing edge solitary wave as

As = ui −A, (56)

which is the difference between the intermediate level ui and the minimum of the solitary wave

|u|. The velocity (12) of the (grey) solitary wave is given by the amplitude/velocity relation

v− = A+ vi − α

(

2

3
AB2 +A3

)

. (57)

On noting that A2 +B2 = u2
i and |α| ≪ 1, this equation can be solved to give

A = v− − vi +
1

3
α(v− − vi)

[

2u2
i + (v− − vi)

2
]

. (58)

This amplitude expression is similar to the equivalent results (92) in [18] and (66) in

[36]. The difference between these expressions and the present ones is that the present170

results are derived based on the general grey soliton solution (12) of the higher order

NLS equation for the colloid response (2). It should be noted that the leading and trailing

edge velocities (47) and (55), respectively, are in the scaled (x′, z′) coordinates and need to be

transformed back to the coordinates (x, z) via the transformations (10) to be compatible with the

colloid equations (1) and (2).175

7. Full colloid DSW

In the previous section the leading and trailing edges of the DSW solution of the higher order

NLS equation (8) were determined by using the theory of El [4, 33, 34], which is an asymptotic

approximation to the edges of the DSW of the full colloid equations (1) and (2) in the limit of

low light intensity. This leads to explicit solutions for the leading and trailing edges, detailed in180

Sections 6.1 and 6.2. The same method will now be used to determine the leading and trailing

edges of the DSW solution of the full colloid equations (1) and (2). However, due to the complexity

of the medium equation (2) the differential equations for the leading and trailing edges cannot be

solved explicitly and need to be solved numerically.

The dispersion relation for the full colloid equations can be found by substituting the linear

wave solution

ρ = ρ̄+ ρ1e
i(kx−ωz), v = v̄ + v1e

i(kx−ωz), (59)
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where |ρ1| ≪ ρ̄ and |v1| ≪ |v̄|, into the hydrodynamic equations (15). This gives

ω = kv̄ + k

√

ρ̄

g′(η̄)
+

1

4
k2, with g(η̄)− g0 = ρ̄. (60)

Again, at the trailing and leading edges of the DSW v̄ is related to ρ̄ through the condition

that the Riemann invariant on the characteristic C− (19) is the same at the two edges of the DSW.

We then have

v̄ =

∫ ρ̄

ρ+

dρ
√

ρg′(η)
. (61)

7.1. Linear wave edge of DSW185

The leading, linear wave, and trailing, solitary wave, edges of the DSW solution of the full

colloid equations (1) and (2) can be determined in a similar fashion as was done in Section 6 for

the DSW solution the higher order NLS equation (8).

The leading, linear wave, edge of the DSW is determined by the differential equation (40). On

using the full dispersion relation (60) and expression (61) for v̄, this equation becomes

dk

dρ̄
=

k√
ρ̄g′(η̄)

√

ρ̄
g′(η̄) +

1
4k

2 + 1
2k
(

1
g′(η̄) −

ρ̄g′′(η̄)
g′3(η̄)

)

√

ρ̄
g′(ρ̄)

√

ρ̄
g′(η̄) +

1
4k

2 − ρ̄
g′(η̄) − 1

2k
2

. (62)

As for the higher order NLS DSW of Section 6 this equation is simplified using the change of

variable

γ(ρ̄) =

√

1 +
1

4

k2g′(η̄)

ρ̄
. (63)

The leading, linear edge of the DSW is then determined by

dγ

dρ̄
= −

(1 + γ)
(

2
g′(η̄) + (2γ − 1)( ρ̄

g′(η̄) )
′

)

2(2γ + 1)( ρ̄
g′(η̄) )

. (64)

This equation is solved with the condition k(ρi) = 0 which connects the linear edge of the DSW

to the solitary wave edge [4, 33, 34], so that γ(ρi) = 1. With this solution the wavenumber at the

leading edge of the DSW is

k = k(ρ+) = 2

√

ρ+
g′(η+)

√

γ2(ρ+)− 1. (65)

The position of the leading edge of the DSW is therefore finally given by the group velocity

cg =
∂ω

∂k
=

√

ρ+
g′(η+)

(

2γ(ρ+)−
1

γ(ρ+)

)

. (66)

This leading edge position will be compared with numerical solutions of the colloid equations (1)

and (2) in Section 9.190
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7.2. Solitary wave edge of DSW

The trailing, solitary wave, edge of the bore is determined in a similar fashion. The equation

governing the trailing edge of the DSW is (49). As for the higher order NLS equation DSW, in

general the “conjugate” dispersion relation is given by ω̃ = −iω(ik̃, ρ̄, v̄), so that the

linear dispersion relation (60) gives for the colloid DSW

ω̃ = k̃v̄ + k̃

√

ρ̄

g′(η̄)
− 1

4
k̃2, with g(η̄)− g0 = ρ̄. (67)

With these conjugate variables and the relation (61) between v̄ and ρ̄ at the trailing edge of the

DSW, equation (49) gives that the trailing edge is determined by

dk̃

dρ̄
=

k̃√
ρ̄g′(η̄)

√

ρ̄
g′(η̄) − 1

4 k̃
2 + 1

2 k̃
(

1
g′(η̄) −

ρ̄g′′(η̄)
g′3(η̄)

)

√

ρ̄
g′(ρ̄)

√

ρ̄
g′(η̄) − 1

4 k̃
2 − ρ̄

g′(η̄) +
1
2 k̃

2
. (68)

As for the linear edge, this equation can be simplified by the change of variable

γ̃(ρ̄) =

√

1− 1

4

k̃2g′(η̄)

ρ̄
, (69)

so that the final equation for the trailing, solitary wave edge is

dγ̃

dρ̄
= −

(1 + γ̃)
(

2
g′(η̄) + (2γ̃ − 1)( ρ̄

g′(η̄) )
′

)

2(2γ̃ + 1)( ρ̄
g′(η̄) )

. (70)

This equation is solved with the condition k̃(ρ+) = 0 [4, 33, 34] which connects the trailing edge

to the leading edge, giving γ̃(ρ+) = 1. With this solution, the velocity of the trailing edge of the

DSW is

v− =
ω̃

k̃
=

∫ ρi

ρ+

dρ

ρ
√

g′(η)
+ γ̃(ρi)

√

ρi
g′(ηi)

, (71)

on using expression (61) for v̄.

The differential equations (64) and (70) for the leading and trailing edges of the DSW, respec-

tively, were solved numerically. The solution for the trailing edge of the DSW is not complete

yet as, while (71) gives the velocity of the trailing edge, the amplitude of the solitary wave at the

trailing edge has not been determined. The colloid equations (1) and (2) have no known exact

solitary wave solutions. However, the exact amplitude-velocity relation for the grey colloid solitary

wave can be found without knowledge of this solution as (see Appendix A)

Vs =

√
2|fm|

√

σu2
∞

− σ|fm|2 + F (ηm, η∞)

u2
∞

− |fm|2 , (72)

with |fm| the minimum value of |u| and u∞ the background carrier wave amplitude. The amplitude

of the grey solitary wave is then

As = u∞ − |fm|, (73)
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the difference between the background level u∞ and the minimum of |u|. We now recognise Vs as

the difference between leading solitary wave velocity v− from (71) and vi from (24). The minimum

|fm| is found by applying Newton’s method to (72), resulting in the amplitude As. Hoefer

[50] obtained general results for DSW solutions for NLS equations with a general

nonlinearity f(|u|2)u. The electric field equation (1) has a nonlinearity of this form,

but without an explicit expression for f as the nonlinearity (η − η0)u is determined

implicitly from the medium response (2). Hoefer found that in this general case the

structure of the simple wave solution of the Whitham modulation equations for the

DSW can break down in that the characteristic velocity of the simple wave ceases to

be monotonic, which results in the formation of a multi-phase wavetrain [1, 4, 14].

In terms of the present work, this can occur if

V+ =
∂ω

∂k
or V+ =

∂ω̃

∂k̃
(74)

in equations (40) and (49) for the leading and trailing edges of the DSW. It can be

seen from the specific equations (64) and (70) for the leading and trailing edges that

such a breakdown of the simple wave solution cannot occur for the colloid equations.195

8. Vacuum Point

As the jump height ui−u+ increases, the amplitudes of the waves in the DSW grow until there

is a jump height for which the trailing solitary wave of the DSW has its minimum at |u| = |fm| = 0.

This point is referred to as the vacuum point [29]. At the vacuum point the trailing grey solitary

wave of the DSW becomes dark as |fm| = 0 and the amplitude-velocity (72) gives Vs = 0. Hence,

the velocity of the trailing edge of the DSW is v− = vi and the trailing edge conjugate dispersion

relation (67) gives
ρi

g′(ηi)
=

1

4
k̃2. (75)

This condition cannot be solved exactly to determine the vacuum point. However, it can be solved

from expression (69) for the conjugate wavenumber k̃, with γ̃ determined by numerically solving

the trailing edge equation (70).

The vacuum point condition (75) can be asymptotically solved in the low power limit. The

higher order NLS equation conjugate dispersion relation (48) gives the onset of the vacuum point

as

ρi − 2αρ2i =
1

4
k̃2. (76)

Using the conjugate wavenumber k̃ determined by (54) and (52), the vacuum point then first

occurs when ρ+ and ρi satisfy

2

√

ρ+
ρi

+ α

(

6
√
ρiρ+ + 32ρ+ − 38

ρ
3/2
+√
ρ

+ 128
ρ
3/2
+√
ρi

log
4
√
ρ+ −√

ρi

3
√
ρ+

)

= 1. (77)

17



 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

-300 -200 -100  0  100  200  300  400  500

ρ

x

Figure 3: The intensity ρ versus x at z = 1500. The parameter values are ρ− = 1.0, ρ+ = 0.5 and η0 = 0.01.

Shown are the numerical solution of the colloid equations (1) and (2) for the initial condition (4), the solution (20)

and (25) of the non-dispersive colloid equations and non-dispersive solution (28) of the higher order NLS equation.

Numerical solution: red (solid) line; solution of the higher order NLS equation: pink (dotted) line; solution of the

colloid equation: green (dashed) line.

9. Comparison with numerical solutions200

In this section, numerical solutions of the colloid equations (1) and (2) with the jump initial

condition (4) will be compared with the modulation solutions of the NLS equation (higher order

NLS equation with α = 0), the higher order NLS equation and the full colloid equations. The

numerical solutions of the colloid equations (1) and (2) were obtained using the numerical scheme

of [43]. The electric field equation (1) was solved using a hybrid method with central differences205

used to approximate the spatial derivatives and the 4th order Runge-Kutta scheme used to prop-

agate forward in the time-like variable z. The algebraic constitutive law (2) was solved using

Newton’s method. The full numerical scheme was found to be stable and has error O(∆z4,∆x2)

for discretization ∆z and ∆x.

Figure 3 shows the optical intensity ρ versus x at z = 1500. The parameter values are ρ− = 1.0,210

ρ+ = 0.5 and η0 = 0.01. Compared are the non-dispersive modulation solution of the colloid

equations (1) and (2) and the higher order NLS equation (8), as well as the numerical solution

of the colloid equations. The expansion fan lies in the region −227 < x ≤ −120 as predicted by

the modulation solution of the colloid equation and −144 < x ≤ −84 by the modulation solution

of the higher order NLS equation. Also, the intermediate level lies in −120 ≤ x < 160 as given215

by the modulation solution of the colloid equations and −84 ≤ x < 155 as given by the higher

order NLS equation modulation solution. As for the dam break solution, there is again excellent

agreement between the modulation theory solution (20) and the numerical solution, but the higher
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Figure 4: The intermediate level ρi versus ρ+. The parameter values are ρ− = 1.0 and η0 = 0.01. Shown are the

NLS equation modulation solution (32) with α = 0: (light blue) line with ⋆; higher order NLS equation modulation

solution (32): (red) line with •; modulation solution of full colloid equations (25): (green) line with ×; numerical

solution of colloid equations: (black) line.

order NLS solution (28) shows significant differences due to higher order terms being important.

There is again a backward propagating small amplitude wavetrain on the initial level ρ−, which is220

again generated by the smoothing due to dispersion of the discontinuity in slope of the modulation

simple wave solution where it joins the level ρ−. As ρ+ 6= 0, a DSW is generated ahead of the

intermediate level ρi.

Figure 4 shows the intermediate level ρi versus ρ+. The parameter values are ρ− = 1.0 and

η0 = 0.01. Shown are numerical solutions and the full modulation solution (25) of the colloid225

equations (1) and (2), the higher NLS equation modulation theory solution (32) and the NLS

equation modulation theory solution (32) with α = 0. It can be seen that both the full non-

dispersive solution and the higher order NLS equation solution are in excellent agreement with

the full numerical solution. As ρ+ → 1, all the modulation theory solutions converge to ρi = 1 as in

this limit there is no initial jump and the full solution is ρ = 1. As ρ+ decreases, the intermediate230

level decreases from the level behind and the differences between the modulation theory and

numerical solutions increase. It should be noted that a vacuum point arises for ρ+ < 0.1 and

the modulation theory solutions are not valid below this level. Unfortunately, to continue the

modulation theory solution below the vacuum point requires a knowledge of the full modulation

equations [29]. It is important to note that the intermediate level as given by modulation theory235

for the NLS equation is in excellent agreement with the numerical values, except in the limit of

large jumps ρ−−ρ+ towards the vacuum point, with the maximum error 8.5%. Higher order NLS

equation modulation theory gives values for the intermediate level ρi which are almost identical
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Figure 5: The trailing solitary wave amplitude As versus ρ+. The parameter values are ρ− = 1.0 and η0 = 0.01.

Shown are the full numerical solution of the colloid equations (1) and (2) and modulation theory. NLS modulation

theory (56) with α = 0: (light blue) line with ⋆; higher order NLS modulation theory (56): (red) line with •; full

modulation theory (73): (green) line with ×; numerical solution: black line.

with those of full modulation theory and with numerical results, which is expected given the

accurate predictions of NLS equation modulation theory. Modulation theory for the higher order240

NLS equation gives intermediate levels which differ by at most 2.8% from numerical values.

Figure 5 shows the amplitude As of the trailing solitary wave versus ρ+. The parameter

values are ρ− = 1.0 and η0 = 0.01. Shown are the numerical solution and the modulation theory

amplitude (73) for the full colloid equations, the amplitude (56) for the higher order NLS equation

and the amplitude (56) for the NLS equation (when α = 0). It can be seen that the full modulation245

theory gives amplitudes in excellent agreement with numerical solutions for the full range of jump

heights ρ−−ρ+. As for the intermediate level both full modulation theory and modulation theory

for the higher order NLS equation give amplitudes in near perfect agreement with numerical

results. The full colloid equation modulation amplitude differs by at most 0.5% and the higher

order NLS equation modulation amplitude differs by at most 2% from the numerical values. Again,250

as for the intermediate level, modulation theory for the NLS equation gives amplitudes in good

agreement with numerical solutions, except for large jump heights with ρ+ near the vacuum point,

at which point the modulation amplitude differs by 7% from the numerical value. The numerical

and modulation amplitudes converge to As = 0 as ρ+ → 1 as the jump vanishes in this limit.

Figure 6 shows the amplitude As of the trailing solitary wave of the DSW versus the background255

packing fraction η0. The parameter values are ρ− = 1.0 and ρ+ = 0.5. Shown are amplitudes from

numerical solutions of the colloid equations (1) and (2), the full modulation theory amplitude (73),

the NLS equation modulation theory amplitude (56) with α = 0 and the higher order NLS equation

amplitude (56). The full modulation theory is, again, in excellent agreement with the numerical

results, with an overall difference less than 0.5%. In contrast to the comparisons of Figures 4 and 5,260
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Figure 6: The trailing solitary wave amplitude As versus the background packing fraction η0. The parameter values

are ρ− = 1.0 and ρ+ = 0.5. Shown are full numerical solutions of the colloid equations (1) and (2) and modulation

theory. NLS equation modulation theory (56) with α = 0: (light blue) line with ⋆; higher order NLS equation

modulation theory (56): (red) line with •; full modulation theory (73): (green) line with ×; numerical solution:

(black) line.

the amplitudes as given by the modulation theories for the NLS and higher order NLS equations

show significant differences from the numerical values. For high background packing fractions

the full modulation theory and the NLS and higher order NLS equation modulation theories

give similar results, but the NLS and higher order NLS modulation theories show significant

disagreement with the numerical results as the background packing fraction decreases. The NLS265

and higher order NLS equation modulation theories differ by 2.9% and 2.0% from numerical results

in this limit.

Figure 7 shows the trailing solitary wave velocity v− versus ρ+. The parameter values are

ρ− = 1.0 and η0 = 0.01. Compared are the numerical velocity of the trailing solitary wave of the

DSW and the modulation theory values, the full modulation theory value (71), the higher order270

NLS modulation theory value (55) and the NLS modulation theory value (55) with α = 0. These

comparisons are shown down to ρ+ = 0.1, at which value the vacuum point first appears and

the modulation theories of Sections 6 and 7 cease to be valid. As for the previous comparisons,

the full modulation theory velocity is in excellent agreement with the numerical velocity, with a

difference less of than 0.3%. The higher order NLS equation modulation theory gives a velocity in275

good agreement with the numerical value, but showing differences from it, unlike the intermediate

level and amplitude comparisons of Figures 4 and 5. As for the amplitude comparison of Figure 6

modulation theory for the NLS equation does not yield a good prediction for the trailing solitary

wave velocity, with differences ranging from 19% to 30%, showing the importance of higher order

effects in determining the trailing solitary wave velocity.280

Figure 8 shows a contour plot of the DSW portion of a numerical solution of the colloid
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Figure 7: The trailing solitary wave velocity v− versus ρ+. The parameter values are ρ− = 1.0 and η0 = 0.01.

Shown are: NLS modulation theory (55) with α = 0: (light blue) line with ⋆; higher order NLS modulation theory

(55): (red) line with •; full modulation theory (71): (green) line with ×; numerical solution of colloid equations (1)

and (2): (black) line.

equations (1) and (2). To investigate the accuracy of the modulation theory prediction of the

leading edge of the DSW by the linear group velocity cg, this figure also has superimposed the

leading edge prediction of the modulation theories of Sections 6.1 and 7.1. The parameter values

used are ρ− = 1.0, ρ+ = 0.5 and η0 = 0.01. The full modulation theory front position is given285

by the group velocity (66) and the higher order NLS equation modulation theory front position

is given by the group velocity (47). The front position as given by the NLS equation modulation

theory is the higher order NLS result (47) with α = 0. This comparison is more complicated than

the similar comparison of the trailing, solitary wave edge of Figure 7 as numerical solutions show

no distinct leading edge, in contrast to the predictions of modulation theory, with an extended290

train of waves of decreasing amplitude bringing the level back to ρ+ [4, 28]. Nevertheless, the

front position comparison of Figure 8 shows that the full modulation theory gives a front position

which encompasses the majority of the larger amplitude waves of the DSW. As for the trailing

edge comparison of Figure 7, the higher order NLS equation modulation theory gives a good

approximation to the leading edge position, while NLS equation modulation theory is not in295

agreement with numerical solutions. This again indicates that the higher order terms in the

constitutive law (2) are important and that the response of the medium to the optical beam

cannot be approximated by Kerr’s Law. It should be noted for the comparisons of Figure 8 that,

in general, modulation theory does not do as well in predicting the linear edge position of a DSW

than the solitary wave edge [4, 28, 52, 53, 54]. In terms of asymptotic theory there is an additional300

layer of linear waves between the initial level and the linear edge of the Whitham modulation

theory solution [52, 53, 54].

Figure 9 shows a comparison for the vacuum point versus the background packing fraction η0
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Figure 8: Contour plot of the DSW portion of the numerical solution of the colloid equations (1) and (2). Super-

imposed are the positions of the leading, linear edge of the DSW as given by the group velocity cg of modulation

theory. The parameter values are ρ− = 1.0, ρ+ = 0.5, and η0 = 0.01. NLS modulation theory (47) with α = 0:

(light blue) line with ⋆; higher order NLS modulation theory (47): (red) line with ⋄; full modulation theory (66):

(green) line with ×.

for ρ− = 1.0. This comparison is for the value of η+ at which the vacuum point first occurs, that

is the value of ρ+ at which |u| first vanishes within the DSW, as discussed in Section 8. The full305

modulation theory gives that this vacuum point is given implicitly by (75), while higher order NLS

equation modulation theory gives that it is the solution of (77), with the NLS equation modulation

theory value given by this expression with α = 0. The NLS equation modulation theory gives

a constant vacuum point independent of η0, in contrast to the other modulation theories. The

full modulation theory gives near perfect agreement for the vacuum point for the full range of310

background packing fractions η0, with the overall difference from the numerical value less than

0.1%. The higher order NLS modulation theory gives reasonable agreement, with increasing

disagreement as the background packing fraction decreases, similar to the amplitude comparison

of Figure 6. The difference grows to 2.8% at η0 = 0.01. This is due to the higher order NLS

equation (8) being valid in the limit |η − η0| ≪ 1, which becomes less valid as η0 decreases. As315

for the other DSW properties discussed above, the NLS equation modulation theory does not give

good agreement for the vacuum point, again highlighting the importance of the higher order terms

in the constitutive law (2) for the colloid.

10. Conclusions

The DSW solution for optical beam propagation in a defocussing colloidal solution has been320

derived. As the full Whitham modulation theory [1, 25, 26] is not available, due to the underlying
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Figure 9: Vacuum point versus background packing fraction η0 for ρ− = 1.0. Shown are the NLS modulation theory

prediction (77) with α = 0: (light blue) line with ⋆; higher order NLS modulation theory prediction (77): (red) line

with •; full modulation theory prediction (75): (green) line with ×; numerical solution of colloid equations (1) and

(2): (black) line.

colloid equations (1) and (2) not being integrable [32], modulation equations for the leading and

trailing edges of the DSW were derived using the method of El [4, 33, 34]. This method enables

the derivation of differential equations for these leading and trailing edges without knowledge of

the full modulation equations by using the degenerate nature of these modulation equations at325

the edges of the DSW for cases in which the DSW is of KdV type. It was found that in the limit

of low beam power, or small deviations of the colloid concentration from the background value,

the full colloid equations can be approximated by a higher order NLS equation. El’s method was

also used to derive the leading and trailing edges of DSW for this higher order NLS equation, as

has been done in previous work [18, 36].330

The modulation theory for the full colloid equations was found to give near perfect predictions

for the amplitude and velocity of the trailing solitary wave of the DSW and the velocity of the

linear, leading edge of the DSW. It was also found that the modulation theory for the higher order

NLS equation gave reasonable predictions for the leading and trailing edges of the DSW, but not

for other properties, such as the vacuum point. This highlights that the full constitutive law (2)335

is not always necessary and that Taylor expansions of it for small packing fractions can lead to

adequate approximations to the full constitutive law. The constitutive law (2) is one of many

derived under various approximations for colloidal media. It is an open question as to whether

these full constitutive laws are needed and whether low power Taylor expansions provide adequate

approximations. However, the present work highlights the power of El’s method to derive the340

leading and trailing edges of a KdV-like DSW, particularly for nonlinear wave equations which

are not integrable. One extension of this work is to optical colloidal media with a more general
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constitutive relation g(η) [42]. Hopefully, this theoretical and numerical study will motivate some

future experimental studies of dark DSWs in colloidal and other optical media.

Appendix A. Amplitude-velocity relation for the grey colloidal solitary wave.345

In this appendix, the amplitude-velocity relation for a grey colloidal solitary wave is derived.

Let us seek a grey solitary wave solution of the colloid equations (1) and (2) of the form

u = f(θ)e−iσz , η = η(x − V z), θ = x− V z, (A.1)

where V is the velocity and σ is the propagation constant. The carrier wave giving the level as

θ → ±∞ is

u = u∞e−iσz, σ = η∞ − η0, g(η∞)− g0 = u2
∞
. (A.2)

Substituting the grey solitary wave form (A.1) into the colloid equations (1) and (2) gives

σf − iV f ′ +
1

2
f ′′ − (η − η0)f = 0, |f |2 = g(η)− g0. (A.3)

We split this equation into real and imaginary parts with f = fr + ifi, giving

σfr + V f ′

i +
1

2
f ′′

r − (η − η0)fr = 0, (A.4)

σfi − V f ′

r +
1

2
f ′′

i − (η − η0)fi = 0 (A.5)

and σ given by (A.2). Multiplying the real part (A.4) by f ′

r and the imaginary part (A.5) by f ′

i ,

adding and then integrating once gives

1

2
σ
(

f2
r + f2

i

)

+
1

4

(

f ′2
r + f ′2

i

)

−
∫

(η − η0) (frf
′

r + fif
′

i) dθ = D, (A.6)

where D is a constant of integration. Differentiating the constitutive law (A.3) enables the integral

to be rearranged as an integral in η, so that (A.6) can be determined explicitly as

σ
(

f2
r + f2

i

)

+
1

2

(

f ′2
r + f ′2

i

)

− F (η, η∞) = D, (A.7)

with

F (η, η∞) =

[

1

(1− η)3
− 1

(1− η)2
− 1

1− η
+

η

2
− η0

2
g(η)

]η

η∞

. (A.8)

The constant of integration D can be found by taking θ → ∞, resulting in D = σu2
∞
, since

|f |2 → u2
∞

as θ → ∞.

Similarly, multiplying the real part (A.4) by fi and the imaginary part (A.5) by fr, subtracting

and integrating gives

fif
′

r − frf
′

i =
(

u2
∞

− f2
r − f2

i

)

V. (A.9)
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Let us now consider the minimum of the grey solitary wave profile |u| and denote values at

this minimum by an m subscript. At the minimum for |u|2, we have that

frmf ′

rm + fimf ′

im = 0. (A.10)

Hence, the imaginary part expression (A.9) gives

V =
|fm|2

fim (u2
∞

− |fm|2)f
′

rm. (A.11)

Similarly, using the minimum relation (A.10) in the real part expression (A.8) we have

|fm|2
f2
im

(f ′

rm)2 = 2D − 2σ|fm|2 + 2F (ηm, η∞), (A.12)

where F (ηm, η∞) is similarly defined as F (η, η∞). Combining (A.11) and (A.12) we can deduce

the amplitude-velocity relation for a grey colloid solitary wave as

V =

√
2|fm|

√

σu2
∞

− σ|fm|2 + F (ηm, η∞)

u2
∞

− |fm|2 . (A.13)

We note that this amplitude-velocity relation has been derived independently of the solution for

the grey solitary wave.350
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