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Abstract

The biomolecular simulation community is currently in need of novel and optimised software tools that can analyse and process, in reasonable
timescales, the large generated amounts of molecular simulation data. In light of this, we have developed and present here pyPcazip: a suite of
software tools for compression and analysis of molecular dynamics (MD) simulation data. The software is compatible with trajectory file formats
generated by most contemporary MD engines such as AMBER, CHARMM, GROMACS and NAMD, and is MPI parallelised to permit the
efficient processing of very large datasets. pyPcazip is a Unix based open-source software (BSD licenced) written in Python.
c⃝ 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/)
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1. Introduction

Molecular dynamics simulations of biological molecules
and complexes can give insights into the relationship between
macromolecular structure and dynamics at the atomistic level,
and the complex emergent properties of the system at much
longer length and timescales. Continuing developments in
hardware and software mean that researchers are faced with
ever increasing volumes of raw data from the simulations that
need to be stored, analysed, and shared. The key raw data
are trajectories: snapshots of the time-evolution of the system
output at regular intervals, where each snapshot records the
three dimensional coordinates of each atom in the simulation at
that moment in time. The widening gap between highly scalable
molecular simulation codes that enable simulation of multi-
million atom systems over microseconds of time, and legacy
sequential analysis tools, that were designed to deal with tens
to hundreds of thousands of atoms over nanoseconds of time, is
exposing a new bottleneck in the process of obtaining scientific
insights from the computational experiments.

As one of the efforts to address this gap we have developed
pyPcazip, a suite of software tools that can compress molecular
simulation data to a small fraction (few percent) of their
original size without significant loss of information. According
to their interests, users can control the balance between
the pyPcazip degree of compression and precision (fraction
of the overall variance that is captured from the original
molecular simulation data) of the molecular simulation data.
Subsequently, the compressed data opens the door to a manifold
of analysis methods that produce objective, quantitative and
comparative metrics related to convergence and sampling of
molecular simulation as well as metrics on the similarity
between molecular simulation trajectories.

2. Problems and background

pyPcazip uses Principal Component Analysis (PCA), a
dimensionality reduction technique at the core of its algorithms
for compression and analysis of MD trajectory data.

Dimensionality reduction techniques such as PCA are
increasingly being applied to the analysis of molecular
simulation data [1–4], as well as other types of data that report

on variations in biomolecular conformation such as NMR
ensembles [5], collections of crystal structures [6], and Monte
Carlo simulations [7].

PCA allows the dominant modes of molecular flexibility to
be identified in a rigorous manner, and presented in the form of
variations in the values of a small number of collective coor-
dinates, rather than the 3N independent Cartesian coordinates
of the individual atoms, so greatly easing interpretation and vi-
sualisation. PCA provides the gateway to a range of analysis
methods that provide quantitative and comparative metrics re-
lated to convergence and sampling, and the similarity between
one trajectory and another.

We have previously described how this method can be ap-
plied to compression of the data [8], and as a route to en-
hanced sampling [9] using our Fortran1 and C2 software codes.
These software codes which we have developed in previous
years, have very limited documentation and a very basic func-
tionality. For these reasons we have undertaken the current code
development, re-engineering and substantial functionality en-
hancement in order to provide the user community with a com-
plete suite of software tools that they can use much more easily,
flexibly and compatibly with their needs and that they can cite.

In fact, here and now, with pyPcazip we present a complete
new suite of software tools written in Python that includes some
redesigned and reengineered algorithms of our Fortran and C
codes but a much better engineered software and a much more
extended range of functionalities with respect to these formerly
used codes of ours. Originalities of pyPcazip (not present
in our Fortran and C codes) include but are not limited to:
(i) A better handling of memory issues when dealing with
very large datasets; (ii) On-the-fly selection of subsets of atoms
of interest for the PCA analysis from the available datasets
(rather than having the datasets filtered by the user prior to
using the software); (iii) Flexible support for the simultaneous
analysis of multi-trajectory datasets that vary in their molecular
topology and number of atoms; (iv) MPI support for input
processing and internal calculations; (v) Compliance with High
Performance Computing (HPC) architectures such as ARCHER

1 http://holmes.cancres.nottingham.ac.uk/pcazip.
2 http://mmb.pcb.ub.es/software/pcasuite/pcasuite.html.
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(UK national supercomputing resource); (vi) Unit testing and
an automatic testing suite; (vii) Compliance with a large range
of state-of-the-art formats (output formats of MD engines
such as AMBER [10], CHARMM [11], GROMACS [12] and
NAMD [13]) and analysis tools (such as MDAnalysis [14]) of
MD code outputs.

3. Software framework

3.1. Software architecture

In our software, the compression of an MD trajectory of
N atoms using PCA is implemented through a workflow that
involves:

• Calculating the average structure and least-squares fitting
each snapshot to this average structure;

• Calculating the Cartesian coordinate covariance matrix of
the fitted data;

• Diagonalisation of this covariance matrix to obtain a set of
N eigenvectors and eigenvalues;

• Selecting the top M of these that capture a chosen percentage
of the total variance (e.g. 90%);

• Calculating, for each snapshot in the trajectory, the
corresponding projection into the M-dimensional subspace;

• Writing the selected eigenvectors, eigenvalues, and projec-
tions to the output file.

3.2. Software functionalities

As a suite of software tools, pyPcazip is composed of four
main components and related functionalities:

• pyPcazip itself takes one or many input MD trajectory
files and converts them into a highly compressed, HDF5-
based,3.pcz format. The program has options to select sub-
sets of atoms, and/or subsets of snapshots from the trajectory
files for analysis. The file-reading capabilities of pyPcazip
draw extensively on the MDAnalysis Python toolkit [14]. In
addition to providing pyPczdump (see below) as a tool to
post-process the .pcz format we also provide a customised
reader of the output files produced by pyPcazip as part of a
module of the software. This module4 can be found within
the source code and could be easily integrated and used in
third-party software if needed upon citation of this work.

• pyPcaunzip can decompress a .pcz file back into a con-
ventional trajectory file in a range of formats (including
dcd, .xtc, .ncdf, .trj).

• pyPczdump extracts information such as eigenvectors,
eigenvalues, and projections from a .pcz file. It can also pro-
duce multi-model PDB format files to animate eigenvectors.

• pyPczcomp permits the quantitative comparison of the data
from two congruent .pcz files. An example might be the dy-
namics of a protein in the presence and absence of a ligand,
or a comparative analysis of the dynamics of a wild-type pro-
tein and a mutant.

3 https://www.hdfgroup.org/HDF5/doc/H5.format.html.
4 https://github.com/ElsevierSoftwareX/SOFTX-D-15-00082/blob/master/

ramonbsc-pypcazip-3d7ab553c8dc/pypcazip/MDPlus/analysis/pca/pcz.py.
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Fig. 1. Parallel scaling performance of pyPcazip.

4. Implementation and empirical results

4.1. Implementation details

pyPcazip is a Python software code that provides command-
line tools for the compression and analysis of molecular
dynamics trajectory data using PCA methods. The software is
designed to be flexible, scalable, and compatible with other
Python toolkits that are used in the molecular simulation and
analysis field such as MDAnalysis [14].

Many stages in the pyPcazip workflow such as the input
reading process and the covariance matrix calculation of the
PCA analysis are amenable to parallelisation, which has been
implemented using MPI. Fig. 1 shows scaling data of pyPcazip
on up to 96 cores on ARCHER-UK national supercomputing
service. Each of the ARCHER compute nodes contains two
2.7 GHz, 12-core processors for a total of 24 cores per node.
Where the number of cores is less than 24, MPI processes
are assigned to the one processor first, then the second, and
in the other cases multiples of 24 processes have been used,
keeping the nodes fully populated. The bend in this figure at
12 cores occurs as the first processor of the first node has
become fully occupied. With less than 12 cores used, each core
has access to proportionally more cache space and memory
bandwidth, so the higher performance is obtained. The dataset
for this scalability analysis includes 10,000 snapshots of a
Mouse Major Urinary Protein (MUP) [15] trajectory (with
35k atoms including solvent) that is atom-filtered on-the-fly
selecting the backbone related atoms only (157 alpha-carbon
atoms).

An automatic testing suite has been developed for pyPcazip
that is activated by a single command (“pyPcazip –tests”).
This validates the correct functioning of the installed software.
In addition, individual python modules are instrumented with
extensive unit tests.

Installation instructions, details of underlying algorithms,
detailed performance data, and use-case examples are available
at https://github.com/ElsevierSoftwareX/SOFTX-D-15-00082.

4.2. Empirical results

The compression achieved by pyPcazip depends on the
nature of the molecular system and, as a “lossy” method,

https://www.hdfgroup.org/HDF5/doc/H5.format.html
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00082/blob/master/ramonbsc-pypcazip-3d7ab553c8dc/pypcazip/MDPlus/analysis/pca/pcz.py
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00082/blob/master/ramonbsc-pypcazip-3d7ab553c8dc/pypcazip/MDPlus/analysis/pca/pcz.py
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00082/blob/master/ramonbsc-pypcazip-3d7ab553c8dc/pypcazip/MDPlus/analysis/pca/pcz.py
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00082/blob/master/ramonbsc-pypcazip-3d7ab553c8dc/pypcazip/MDPlus/analysis/pca/pcz.py
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00082/blob/master/ramonbsc-pypcazip-3d7ab553c8dc/pypcazip/MDPlus/analysis/pca/pcz.py
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00082/blob/master/ramonbsc-pypcazip-3d7ab553c8dc/pypcazip/MDPlus/analysis/pca/pcz.py
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00082/blob/master/ramonbsc-pypcazip-3d7ab553c8dc/pypcazip/MDPlus/analysis/pca/pcz.py
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00082/blob/master/ramonbsc-pypcazip-3d7ab553c8dc/pypcazip/MDPlus/analysis/pca/pcz.py
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00082/blob/master/ramonbsc-pypcazip-3d7ab553c8dc/pypcazip/MDPlus/analysis/pca/pcz.py
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00082/blob/master/ramonbsc-pypcazip-3d7ab553c8dc/pypcazip/MDPlus/analysis/pca/pcz.py
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00082/blob/master/ramonbsc-pypcazip-3d7ab553c8dc/pypcazip/MDPlus/analysis/pca/pcz.py
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00082/blob/master/ramonbsc-pypcazip-3d7ab553c8dc/pypcazip/MDPlus/analysis/pca/pcz.py
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00082/blob/master/ramonbsc-pypcazip-3d7ab553c8dc/pypcazip/MDPlus/analysis/pca/pcz.py
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00082/blob/master/ramonbsc-pypcazip-3d7ab553c8dc/pypcazip/MDPlus/analysis/pca/pcz.py
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00082
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on the chosen quality threshold (percentage of the total
variance to be captured). In particular, the variance captured
considering a small number of the most important principal
components (modes) retains crucial insights for conformational
investigations as these modes directly relate to the highest
amplitude (and normally slower) motions of molecular systems
whereas the less important principal components relate to the
high frequency small amplitude atomistic fluctuations. For
this reason we would not recommend the use of this suite
of tools for the investigation of phenomena such as reaction
mechanisms where the retention of sub-angstrom accuracy in
e.g. bond lengths is required.

Table 1 illustrates performance for three example datasets,
each of 1000 snapshots: (1) a short peptide (alanine-12,
unpublished data); (2) a DNA 18mer [16]; and (3) the mouse
major urinary protein (MUP) [15]. The two metrics are the
degree of compression achieved and the compression error
expressed as the average RMSD between snapshots in the
original file and those in the compressed file. Clearly for many
purposes compression to 10%–20% of the original file size
is quite possible. The code has been tested on a variety of
platforms ranging from laptops to national HPC facilities, and
compression/decompression gives results identical to within an
RMSD of less than 0.02 Å, even when run in parallel.

5. Illustrative examples

The pyPczdump and pyPczcomp utilities allow a range
of PCA-related metrics extracted or calculated from the
compressed trajectory files. Output is in the form of ASCII
data files that may be easily rendered using the user’s preferred
graph plotting packages and molecular visualisation tools.
Fig. 2 (rendered using matplotlib) illustrates the sampling
projected onto the subspace defined by the first two Principal
Components (PC), PC1 and PC2, for simulations of MUP
([15], plus additional unpublished data), resolving three
conformational states, while the time series of PC1 for one
trajectory as shown in Fig. 3 (rendered using matplotlib)
reveals how it moves between these. Finally, for a different
biomolecular system, Fig. 4 illustrates (using Chimera [17]) the
animation of the first PC extracted from MD simulations of a
DNA tetranucleotide (sequence TGTC) [16].

In the following, an example of the use of pyPczcomp is
shown to compare quantitatively the MUP [15] collective mode
data files of the respectively free state (apo CA.pcz) and bound
state (holo CA.pcz), using the quick option of pyPczcomp
so as to skip the time-consuming comparisons of collective
modes. This is carried out by calculating the dot product matrix
between the eigenvectors identified by the PCA investigation
on the apo-protein and those identified by PCA in the ligand-
bound form of the protein. In particular, from this example
we observe that the major similarity (63%) between the two
different scenarios concerns the comparison of the first two
principal components and there is a subspace overlap of 73.4%.
Indeed, we would expect a degree of similarity between the
two scenarios (as we would also expect differences due to
ligand binding) and by means of pyPczcomp we have shown
a straightforward way to quantify such similarity.

1008060–40 –20 0 20 40

–20

0

20

40

60

Fig. 2. Conformational sampling in MD simulations of the MUP protein,
projected onto the subspace defined by the first two principal components. Two
highly populated states can be distinguished, and a third, rare, state identified.
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Fig. 3. Time series of the projection of snapshots from an MD simulation of
MUP onto the first principal component (same data as Fig. 2). A transition from
the rare state (PC1 approx. −50) to the more populated states (PC1 around 20)
is seen at time frame 1000, however the rare state continues to be sampled,
albeit infrequently, over the remainder of the simulation.

> pyPczcomp -i apo_CA.pcz holo_CA.pcz --quick
Comparison of X: apo_CA.pcz and Y: holo_CA.pcz
Rmsd between <X> and <Y>: 0.43
Dot product matrix:

0 1 2 3 4 5 6 7 8 9
0 0.63 0.19 0.02 0.03 0.22 0.08 0.16 0.09 0.17 0.10
1 0.30 0.39 0.22 0.15 0.17 0.35 0.05 0.10 0.31 0.11
2 0.22 0.03 0.03 0.40 0.15 0.11 0.08 0.06 0.05 0.29
3 0.22 0.01 0.49 0.20 0.10 0.06 0.06 0.26 0.12 0.06
4 0.04 0.48 0.28 0.04 0.36 0.05 0.13 0.11 0.28 0.31
5 0.27 0.30 0.48 0.13 0.25 0.28 0.09 0.30 0.19 0.16
6 0.11 0.09 0.30 0.43 0.18 0.56 0.07 0.18 0.01 0.13
7 0.03 0.22 0.10 0.11 0.01 0.39 0.10 0.07 0.05 0.12
8 0.36 0.20 0.15 0.13 0.23 0.04 0.60 0.09 0.32 0.09
9 0.13 0.10 0.01 0.37 0.30 0.01 0.41 0.05 0.04 0.03

Subspace overlap: 0.734
Average maximum dot product: 0.464
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Table 1
Compression performance.

Systema Atoms 90% variance 95% variance 98% variance 99% variance
Cmprb Errorc Cmpr Error Cmpr Error Cmpr Error

1 132 0.06 1.29 0.10 0.90 0.19 0.57 0.31 0.40
2 1139 0.03 0.43 0.08 0.30 0.18 0.19 0.29 0.14
3 2494 0.10 0.42 0.17 0.30 0.27 0.20 0.33 0.15

a See text for details.
b Compression as a fraction of the original file size.
c Average error between original and compressed snapshots (RMSD in angstroms).

Fig. 4. Visualisation of the first principal component extracted from
MD simulations of a DNA tetranucleotide (sequence TGTC). Multiple
conformations of the DNA, sampling this mode, have been overlaid to
demonstrate the collective motion of atoms in the structure. The colouring
of carbon atoms changes from blue to red in sequential frames, while the
colouring of other atoms (O, N, P, H) remains constant. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

In addition to the here presented illustrative examples,
an introductory tutorial that includes a variety of analysis
examples that can be performed through this software, is
available at https://github.com/ElsevierSoftwareX/SOFTX-D-
15-00082/blob/master/ramonbsc-pypcazip-3d7ab553c8dc/
README.mdl.

6. Impact

The software presented in this paper, pyPcazip, is an
easy to use, flexible and extensible package for PCA-based
investigations of molecular simulation data generated by most
common state-of-the-art simulation packages such as AMBER,
CHARMM, GROMACS and NAMD. PCA methods are of
growing importance in the Biosimulation field, as the volumes
of data that can be produced using modern HPC facilities
overwhelm more traditional qualitative and human operator-
intensive analysis techniques. The method has been used for
some time to provide key insights into the relationship between
biomolecular structure, dynamics, and function. Examples of
our own work include the analysis of sequence-dependent

DNA dynamics [3,18–20], protein–ligand interactions [15] and
GPCR dynamics [21,22] but to date there has been no open
source software product designed specifically to perform this
type of analysis, or compatible with all common simulation
packages.

pyPcazip gives insights into structure and behaviour of
molecules in addition to enabling highly compressed data stor-
age of simulation trajectory files with insignificant loss of
information. Through its analysis components the software
provides a variety of methods that produce objective, quan-
titative and comparative metrics related to convergence and
sampling of molecular simulation as well as metrics on the
similarity between molecular simulation trajectories. We en-
visage a large potential user base for pyPcazip given that
(i) PCA methods have been in use by the Biomolecular sim-
ulation community for about 15 years and that, as discussed
above, (ii) the need for such automated and quantitative routes
to data analysis is growing rapidly, together with the fact that
(iii) the approach is applicable to trajectory data from any
type of simulation (nucleic acids, proteins, oligosaccharides
etc.). Moreover, pyPcazip has been promoted to the Biomolec-
ular simulation community at several international conferences
[23–27] that have contributed to the expansion of its user base.
It is easy to install and use on a wide variety of different plat-
forms ranging from personal Unix-based workstations to na-
tional HPC resources.

Finally, the source code repository of pyPcazip, together
with accompanying documentation, installation instructions for
a variety of platforms, testing data and examples, is distributed
under the BSD license version 2. In order to increase the
visibility and usage of our software package that we present
in this work but also for the benefit of the user community, we
have made it freely and anonymously available for download
at the official Python package register (https://pypi.python.org/
pypi/pyPcazip/). More than 1158 downloads in the last month
were recorded at the beginning of April 2016.

7. Conclusions and future directions

pyPcazip gives insights into structure and behaviour of
molecules in addition to enabling highly compressed data
storage of simulation trajectory files with insignificant loss
of information. It provides an easy to use, flexible approach
to undertaking PCA-based investigations of MD trajectory

https://github.com/ElsevierSoftwareX/SOFTX-D-15-00082/blob/master/ramonbsc-pypcazip-3d7ab553c8dc/README.mdl
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00082/blob/master/ramonbsc-pypcazip-3d7ab553c8dc/README.mdl
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00082/blob/master/ramonbsc-pypcazip-3d7ab553c8dc/README.mdl
https://pypi.python.org/pypi/pyPcazip/
https://pypi.python.org/pypi/pyPcazip/
https://pypi.python.org/pypi/pyPcazip/
https://pypi.python.org/pypi/pyPcazip/
https://pypi.python.org/pypi/pyPcazip/
https://pypi.python.org/pypi/pyPcazip/
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data generated by all of the most common current simulation
packages.

The modularity of the software enables the integration and
planning of future methodologies to complement the insights
obtained from the use of the PCA method. Currently, a sparse-
PCA approach that has been implemented using the main data
structures of the pyPcazip package is being investigated for
potential better insights on collective motions in molecular
systems.

Although due to significant differences in terms of func-
tionality (that we have mentioned in the “Problems and Back-
ground” section) and usability we could not directly compare
the suite of software tools we present here with the old For-
tran and/or C codes that we cite in the “Problems and Back-
ground” section, we would expect the pyPcazip performance
in terms of speed to be close to the performance of Fortran
and C codes given that most of the heavy algebra calculation
sections in pyPcazip have been implemented via SciPy whose
time-critical loops are usually implemented in C or Fortran. In
addition, pyPcazip has also been designed for use on HPC ar-
chitectures so that the workload can be spread across different
nodes and cores of a cluster making the final results available
to the user at a fraction of the time of a serial run. In addition,
for the sake of even more improved performance, the replace-
ment of the most computationally expensive routines of pyP-
cazip with corresponding Fortran code is being validated and an
up to 10-fold improvement of performance has been observed
during preliminary tests of performance analysis. We plan fu-
ture software releases to incorporate these enhancements.

Finally, as an open source Python package, pyPcazip is
amenable to end-user driven development and integration with
the growing number of other Python-based packages in the
molecular simulation domain.

Supporting material

Source code, supporting material and users support
through the bitbucket ticketing system is publicly available
at https://github.com/ElsevierSoftwareX/SOFTX-D-15-00082.
The code is accompanied with extensive information on the
application of this software, detailed installation instructions for
desktop workstations but also HPC architectures and details of
the code performance for differing system configurations, all
available at the same public access repository.
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