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Abstract. We investigate how optical vortices, which tend to be azimuthally

unstable in nonlinear media, can be stabilized by a copropagating coaxial spa-

tial solitary wave in nonlocal, nonlinear media. We focus on the formation of

nonlinear vortex-soliton vector beams in reorientational soft matter, namely ne-

matic liquid crystals, and report on experimental results, as well as numerical

simulations.

I. INTRODUCTION

Light beams with optical vortices have attracted growing attention during the past

decades1–4. Such complex beams are usually associated with a ring-like intensity struc-

ture with a zero value at the centre where the electromagnetic field vanishes, and a phase

distribution spiralling around it. Besides their rich and intriguing properties, including phase

singularities, internal energy circulation and the unique features of their linear and angular

momentum distributions, optical vortices offer a wide range of prospective applications in

such areas as micro-manipulation5–9, optical encoding/processing of information10–14 and

sensitivity and resolution enhancement in optical observations and measurements15,16. Op-

tical vortex beams can be generated in different types of linear1–4,17 and nonlinear media18.

However, they are usually prone to strong dynamical instabilities in self-focusing nonlinear

media that tend to amplify local azimuthal modulations of the initial donut shape and split

it into fragments which fly away from the initial vortex ring18.

Nevertheless, as was shown in a few theoretical papers, if the nonlinearity is accompanied

by nonlocality, so that the overall nonlinear perturbation in the medium extends far beyond

the beam waist in the transverse plane19, the propagation of an optical vortex can be sta-

bilised. In particular, stable propagation of spatially localized vortices may become possible

in highly nonlocal, nonlinear media with a self-focusing response20,21. This prediction was

confirmed by experimental results on the existence of stable vortex solitons with unit topo-

logical charge in thermal nonlinear media22. Nonlocal spatial solitons were also found to

be able to stably guide and route vortex beams across an interface or around a defect by

counteracting the diffraction and instabilities enhanced by such refractive perturbations23.

An intense vortex and a co-propagating spatial soliton are expected to form a stable vec-

tor soliton in a self-focusing nonlocal media18, in a similar fashion to bright vector solitons
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with components of different colours24,25, spiralling solitons with angular momentum26–29

and multi-hump soliton structures consisting of two (or more) components which mutually

self-trap18,30–32. As was reported in recent theoretical and numerical studies33, such two

component vector vortex solitons may be stable in nematic liquid crystals (NLCs) due to

the strong reorientational nonlinearity of such soft matter34,35 and the stabilizing character

of the resulting nonlinear, nonlocal potential generated by the superposition of both beam

components 33,36. Thus, an important challenge in nonlinear singular optics remains to re-

veal the physical mechanisms which will allow the experimental observation of stable optical

vortices in realistic nonlinear media.

In this Paper, we observe experimentally and describe theoretically the formation of stable

two component vector vortex solitons in nematic liquid crystals. These vector solitons appear

in the form of two wavelength self-trapped beams with one of the components carrying a

phase singularity and being stabilized by its nonlocally enhanced interaction with the other

transverse localized beam, a fundamental spatial soliton. We also find that such vector

beams can be generated for certain ranges of the soliton excitation, that is the input beam

power.

II. SAMPLE AND EXPERIMENTAL RESULTS

For our experiments we used a planar cell realized by polycarbonate slides held parallel to

one another and separated by 110µm across y in order to contain the 6CHBT NLC mixture.

The cell structure is sketched in Figs. 1(a,b). The planar interfaces between the polycar-

bonate and the nematic liquid crystals provide molecular anchoring by means of mechanical

rubbing, ensuring that the elongated molecules are orientated with their main axes in the

plane (x, z) of the slides, at an angle θ0 = π/4 with the input wavevector k along the z di-

rection. Two additional 150µm thick glass slides at the input and output interfaces seal the

cell to prevent lens-like effects and avoid light depolarization. The maximum propagation

length along the z axis was 1.1 mm from the input to the output facets.

The experimental setup for the generation of two component, two colour vector vortex

solitons is shown in Fig. 1(c). One beam component (red) carries the extraordinarily

polarized single charge vortex beam generated by a fork-type amplitude diffraction hologram

(DH) using a cw laser beam at wavelength λ01 = 671nm and power Pr. The second (green)
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FIG. 1. (Color online) (a) Perspective and (b) top views of the planar cell; the ellipses indicate

the oriented molecules; (c) Experimental setup: L1,2 are the green (λ01 = 671nm) and red (λ02 =

532nm) cw lasers, λ0/2— half wave plates, BS— beam splitters, DH— vortex hologram, M—

mirrors, MO1–10× microscope objective, MO2–20× microscope objective, NLC— sample, F—

filter, CCD— charge-coupled device camera.

component is an extraordinarily polarized fundamental Gaussian beam of wavelength λ02 =

532nm and power Pg. Figure 2 shows the input beams, with Figs. 2(a,d) showing the

corresponding input intensity distributions, Figs. 2(b,e) the schematic phase fronts and

Figs. 2(c,f) the intensity profiles of each beam: the green Gaussian beam (left) and the

red single charged vortex (right). The two co-polarized beams were injected into the NLC

with collinear Poynting vectors along z by a 10× microscope objective (MO1). The input

waists were wv ≈ 7µm and wg ≈ 4µm for the vortex and fundamental Gaussian beams,

respectively. With the half-wave plates λ01/2 and λ02/2 we controlled the polarization state

of both beams. In order to study the singular phase structure of the vector vortex beams we

used a Mach-Zehnder arrangement (beam splitters BS1 and BS3, mirrors M1 and M2). The

output light intensity after propagation was monitored by collecting the light at the output

using a 20× microscope objective (MO2) and a high-resolution CCD camera. We monitored

the evolution at both wavelengths, but in order to prevent chromatic effects and record the

output images of the (red) vortex or green (fundamental) beams separately, we used either

red or green filters (F) placed in front of the camera.
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FIG. 2. (Color online) Each vector beam component, i.e. a Gaussian (left) or a single-charge vortex

(right) propagating separately in the NLC cell. (a,d) Measured input intensity distributions; (b,e)

schematic wavefront views and (c,f) normalized intensity profiles of each beam from the input

images (a,d).

We initially investigated the linear and nonlinear behaviour of either component when

each beam propagated in the absence of the other. As visible in Figs. 3(a,c), for low input

powers of both beams, Pg,r < 0.9 mW , the self-focusing is too weak to overcome diffraction.

On increasing the power of the green component to Pg > 2.4 mW the fundamental Gaussian

beam undergoes self-focusing and the transverse intensity distribution at the output visibly

reduces, so that a spatial soliton is formed, also called a nematicon in these materials [see

Fig. 3(b)]35. On the other hand, increasing the input power of the beam which carries

angular momentum to Pr > 5 mW leads to its self-focusing, but such a beam is affected by

strong dynamic instabilities which tend to amplify local azimuthal modulations of the initial

ring shape and so split the vortex beam into two fragments [Fig. 3(d)]20. Such a symmetry-

breaking azimuthal instability is enhanced by the nonsymmetric configuration of the planar

cell and the related anisotropy in the induced refractive index profile. This dynamics is

consistent with recently reported results on the astigmatic deformation of a vortex beam in a

planar NLC cell and its transformation into a dipole-like transverse intensity distribution29.

Figures 3(e–h) show the normalized x cross-sections of the intensity profiles in the plane

(x, y) for two different powers of both components, as acquired from the output images in

Figs. 3(a–d).

5



P =8mW
g

P =0.4mW
r

P =0.4mW
g

P =8mW
r(a) (c) (d)(b)

Gaussian beam Vortex beam

1

0.5

0
0-22 22

y

x

y

x
(e)

10 µm

(d)

(h)
1

0.5

0
0-22 22x, µm

I 
(a

.u
.)

I 
(a

.u
.)

1

0.5

0

(f)

0-22 22

I 
(a

.u
.)

0

0.5

(g)

0-22 22

I 
(a

.u
.)

10 µm

x, µm x, µm x, µm

1

FIG. 3. (Color online) Measured output intensity distributions (a–d) and corresponding normalized

intensity profiles (e–h) of Gaussian (a,b,e,f) and vortex (c,d,g,h) components propagating separately

for various input powers Pg and Pr.

To prevent the symmetry-breaking azimuthal instability of the vortex beam in the planar

NLC cell we studied the interaction of two mutually incoherent two colour components— a

vortex and a Gaussian beam— co-propagating in the cell as co-polarized coaxial beams. Both

components were extraordinarily polarized (input E-field along the y-axis) and launched

with the same Poynting directions along z. Figure 4 shows the results for two series of

experiments for different input powers of the red vortex beam, namely Pr = 5mW [Figs.

4(a-e)] and Pr = 8mW [Figs. 4(f–j)]. These values of Pr were high enough to excite nonlinear

effects and instabilities in the absence of the fundamental Gaussian beam. In both sets of

experiments we kept Pr constant while we gradually changed the input power of the green

beam Pg. Firstly, we monitored the power dependent dynamics of a two colour vector soliton

at Pr = 5mW using the red band-pass filter in front of the CCD camera in order to block

the green light. For low powers of the green nematicon, 0 < Pg[mW ] < 3.8, the initially

ring-shaped (red) vortex beam transformed into a dipole-like mode due to the symmetry

breaking azimuthal instability, which is similar to the dipole-like vector solitons observed

in other systems37,38. A further increase of the input power, 3.9 < Pg[mW ] < 5.5, led to a

dramatic reshaping of the intensity distribution of the vortex, see Fig. 4(b). Noteworthy, at
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higher powers 5.6 < Pg[mW ] < 8.5 we observed a remarkable stabilization of the intensity

profile of the red vortex and the formation of a vector vortex soliton which in the red

component had an annular shape around a dark core, see Fig. 4(c). At higher excitations,

Pg > 8.6mW , the spatial dynamics was amplified and the vector beam developed temporally

unstable intensity distributions39, as seen in Fig. 4(d).
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FIG. 4. (Color online) Experimental results for the output intensity distribution (a–d, f–i) and the

corresponding interferograms (e,j) of the vortex (red) component of the composite vector beam for

various input powers of the fundamental (Gaussian) component Pg. Images were acquired for two

different input powers of the vortex (red) component Pr = 5mW (a–e) and Pr = 8mW (f–j)

We also observed an analogous behaviour of the vector beam at the other values of Pr.

Figs. 4(f-i) present experimental results for a two-colour vector vortex beam propagating at

Pr = 8mW in the same NLC cell. As expected, at relatively low input powers 0 < Pg[mW ] <

4.8, the symmetry-breaking mechanism of the vortex beam leads to its azimuthal instability.

However, at higher power excitations, 4.9 < Pg[mW ] < 8, the composite beam is converted

into a stable circularly symmetric vector vortex soliton. Finally, as expected, for higher

powers Pg > 8.1 mW we observe temporally unstable behavior. By comparing both cases

for various values of the input power, i.e. Pr = 5mW and Pr = 8mW , we observe that a

stable vortex soliton can exist for a relatively broad power range which is determined by the

green nematicon power and the mode mixing process.

Finally, we investigated the interferograms of the vector vortex solitons by employing a
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Mach-Zehnder arrangement: a tilted broad Gaussian beam at an angle with the vector beam

interferes with it at the output [see Fig. 1(c)]. The interferograms in Figs. 4(e,j) show the

phase singularities by the characteristic presence of fork dislocations. Therefore, we ascertain

that the vortex character of the red input beam persists after the formation of a vector

soliton owing to its interaction with the nonlocal potential induced by the green nematicon.

The highly nonlocal, nonlinear response of soft matter, specifically reorientational nematic

liquid crystals, dramatically enhances the incoherent field coupling of two co-polarized wave-

packets of different colours, leading to the stabilization of a vortex soliton when the soliton

power is large enough to trap the nonlinear vortex.

III. VECTOR VORTEX-BEAM EQUATIONS

To model the experiments presented above, let us consider the propagation of two beams

of polarized, coherent light of wavenumbers k01 and k02 through a cell containing undoped

nematic liquid crystals. As in the experiments, the z direction is taken as the propagation

direction of the beam, with the (x, y) coordinates orthogonal to this. In the absence of the

optical beams the nematic molecules lie at an angle θ0 to the z direction in the (x, z) plane.

Furthermore, the molecules are constrained to rotate in the (x, z) plane under the influence

of the electric fields of the optical beams. Let us denote the extra (nonlinear) rotation of the

nematic molecules due to the optical beams by θ. It can be assumed that this extra rotation

is small, |θ| � θ0. Then in the slowly varying, paraxial approximation the equations for

the electric field envelopes A1 and A2 of the beams and the optically induced rotation θ

are24,34,35,43

2ik01n01
∂A1

∂z
+D1∇2A1 + k201δn

2
a1 sin(2θ0)A1θ = 0,

2ik02n02
∂A2

∂z
+D2∇2A2 + k202δn

2
a2 sin(2θ0)A2θ = 0, (1)

K∇2θ +
1

4
ε0δn

2
a1 sin(2θ0)|A1|2 +

1

4
ε0δn

2
a2 sin(2θ0)|A2|2 = 0,

with the Laplacian ∇2 in the transverse (x, y) plane. The quantities n01 and n02 are the

background refractive indices of the medium and δna1 and δna2 are the optical anisotropies

at the two wavelengths, respectively35,43. In general, δn2
a = n2

‖ − n2
⊥, with n‖ and n⊥ being

the refractive indices for electric fields parallel and perpendicular to the optic axis (director)
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FIG. 5. (Color online) Vortex |v| (a) in (X,Y ) at Z = 300 and (b) in (X,Z) without a co-

propagating nematicon. The parameters for the beams are au = 0.0, av = 0.25 and wv = 10.0.

The nonlocality figure is ν = 219.

of the NLC, respectively. In the present work the values n‖ = 1.67 and n⊥ = 1.51 are used,

as for the nematic mixture 6CHBT at room temperature44,45, as this is the reorientational

medium used in the experiments by Izdebskaya et al46. The parameters D1 and D2 are the

diffraction coefficients at the two wavelengths and K is the scalar elastic constant of the

NLC.

The two colour nematic equations (1) can be simplified by setting them in non-dimensional

form via the variable and coordinate transformations

X = Wx, Y = Wy, A1 = αu, A2 = βv, Z = γz. (2)

The non-dimensional two colour nematic equations are then

i
∂u

∂Z
+

1

2
∇2u+ 2θu = 0, (3)

i
∂v

∂Z
+

1

2
Dv∇2v + 2Avθv = 0, (4)

ν∇2θ + 2|u|2 + 2Av|v|2 = 0, (5)

where the Laplacian ∇2 is now in the transverse (X, Y ) plane and the scale width W , scale

amplitude β for the A2 mode and scale propagation length γ are

W =
2
√
D1

k01δna1

√
sin(2θ0)

, β =

√
k02
k01

α, γ =
4n01

k01δn2
a1 sin(2θ0)

. (6)

The scale amplitude α for the mode A1 is determined from the power P1 and width wb of
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FIG. 6. (Color online) Vortex |v| (a) in (X,Y )at Z = 300 and (b) in (X,Z) with a co-propagating

nematicon. (c) Nematicon in (X,Y ) at Z = 300. The parameters for the beams are au = 0.5,

wu = 10, av = 0.25 and wv = 10.0. The nonlocality is ν = 219.

the input beam in the A1 mode. For a Gaussian input beam

P1 =
ε0
2
cn01

π

2
α2w2

b , (7)

which determines α in terms of P1 and wb. The non-dimensional nonlocal response ν of the

soft medium in the director equation (5) is given by

ν =
8K

ε0δn2
a1α

2W 2 sin(2θ0)
. (8)

Finally, the non-dimensional diffraction coefficient Dv and the coupling coefficient Av in

equation (4) for the beam v are given by

Dv =
D2

D1

k01n01

k02n02

and Av =
k02n01δn

2
a2

k01n02δn2
a1

. (9)

The parameter values used to non-dimensionalise the nematic equations (1) are taken

10



from experimental data46. The vortex was formed from a beam at λ02 = 671nm and the

solitary wave at λ01 = 532nm, with k01 = 2π/λ01 and k02 = 2π/λ02. The anchoring angle

was θ0 = π/4 in the plane (X,Z). The amplitude of the beams was scaled using (7) with

the power P1 = 4.9mW and width wb = 4µm of the solitary wave which was found to

stabilise the vortex in the experiments. Finally, the diffraction coefficients were taken to be

D1 = D2 = 1 and the Frank constant K = 1.2× 10−12N .

The input vortex and nematicon at Z = 0 are taken to have Gaussian profiles, as in the

experiments, so that

u = aue
−r2/w2

u , (10)

v = avre
−r2/w2

veiϕ, (11)

where r2 = X2 + Y 2 and ϕ is the related polar angle.

Figure 5 shows results for an input vortex of power 10.7mW and radius of 2.35µm at

its maximum without a co-propagating nematicon. In non-dimensional variables, wv = 10

and av = 0.25. Figure 5(a) shows the vortex after it has propagated a distance Z = 300,

i.e. the physical distance z = 333µm. It can be seen that the vortex becomes unstable

due to the standard n = 2 symmetry breaking instability and breaks up into two beams20.

Figure 5(b) shows the evolution of the vortex in the (X,Z) plane (Y = 0). Clearly the

vortex beam spreads apart as it becomes unstable, which is most apparent at the upper end

of its propagation range. This is due to it breaking up into two nematicons based on the

azimuthal instability.

Figure 6 shows the corresponding results when the vortex co-propagates with a nematicon

of input power 0.85mW and Gaussian radius 3.33µm, so that wu = 10 and au = 0.5. The co-

propagating nematicon stabilises the vortex, in agreement with the experiments46. Figure

6(a) shows the vortex at Z = 300, after propagating a physical distance of 333µm, and

Figure 6(c) the co-propagating nematicon after the same propagation distance. Figure 6(b)

for the evolution of the vortex shows that it oscillates in amplitude and width, but holds

together and does not broaden as for the isolated vortex of Figure 5(b). Note, the difference

between the evolution of the unstable and stable vortices in the (X,Z) plane (Y = 0) are

most clearly seen around Z = 300 [cf. Figure 5(b) and Figure 6(b)]. The input powers for

the vortex and nematicon are similar to those in the experiments, for which the input vortex
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had power 8mW and width at its maximum of 7µm and the nematicon which stabilised the

vortex had a power of 4.9mW and a Gaussian width of 4µm.

A vortex and a nematicon with the nominal powers and widths as used in the experiments

(i.e. not accounting for input coupling and propagation losses) are far from steady beams

for the nematicon equations (1), so they undergo large amplitude and width oscillations.

The nematicon may split into two filaments18, which is typical solitary wave behaviour for

large power beams47; the vortex initially undergoes significant shape changes, as can be seen

from Figures 5(b) and 6(b), accompanied by the shedding of diffractive radiation. This is

partly due to the Gaussian profile (11) not being the exact vortex solution of the nematic

equations (3)–(5), so radiation shedding moves it towards the vortex solution.

IV. CONCLUSIONS

In conclusion, we have shown experimentally and numerically that two component vec-

tor vortex solitons, for which one of the components carries an optical vortex with a single

topological charge, can be stabilized using the nonlocal reorientational nonlinearity of ne-

matic liquid crystals. We have found that the coupling with the fundamental soliton avoids

astigmatic transformations of the input vortex component into spiralling dipole states that

can occur in this anisotropic medium when a vortex carrying beam propagates alone. Re-

markably, such composite vector solitons are observed for comparable powers of the red and

green light components, indicating a strong nonlinear coupling between them. We expect

that our results will further stimulate the generation of, till now, elusive types of composite

solitons, such as multi-pole or multi-ring complexes and their periodic dynamical transfor-

mations and oscillations. The great potential of such controllable stable routing of vortex

carrying excitations and the information encoded in their non-trivial phase distributions

requires further detailed studies.
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