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Abstract	7 

Geographical Information Systems (GIS) are commonly used in renewable energy resource 8 

analysis to establish optimal locations for development. Previous work focuses either on a 9 

single technology with fixed site-selection criteria, or on small, localised areas. The potential 10 

for combining or co-locating different offshore energy technologies, particularly over a large 11 

region, has been explored previously but at a relatively low level of detail. Here, bespoke 12 

resource data from high resolution co-located, co-temporal wind and wave models are 13 

presented in a GIS with a range of additional environmental and physical parameters. 14 

Dedicated decision-support tools have been developed to facilitate flexible, multi-criteria site 15 

selections specifically for combined wind-wave energy platforms, focusing on the energy 16 

resources available. Time-series tools highlight some of the more detailed factors impacting 17 

on a site-selection decision. The results show that the main potential for combined 18 

technologies in Europe is focused to the north and west due to strong resources and 19 

acceptable depth conditions, but that there are still obstacles to be overcome in terms of 20 

constructability and accessibility. The most extreme conditions generally coincide with the 21 

maximum energy output, and access to these sites is more limited. 22 

 23 

Keywords: Marine renewable energy, combined platforms, geographical information 24 

systems, site selection, Europe 25 

1. Introduction	26 

The MARINA Platform EU FP7 project (Grant agreement number 241402) aimed to 27 

develop ideas for offshore renewable energy platforms, combining wind, wave and/or tidal 28 

current power with shared infrastructure. Over one hundred designs were initially 29 

considered, with ten selected for further investigation; a final three designs have been studied 30 

in detail. To establish the locations around Europe where such platforms might be 31 

constructed, a key outcome of the project is a dedicated geographical information system 32 

(GIS). This paper presents the GIS and the bespoke site-selection support tools developed 33 

within the project, focusing primarily on the suitability of sites in terms of the available 34 

energy resource. 35 

1.1 Combined platforms 36 

A recent review paper [1] presents a wide-ranging overview of many of the possibilities and 37 

challenges of developing combined offshore energy platforms. The authors discuss the 38 

potential synergies to be exploited, including those relating to legislation for marine spatial 39 

planning and technology or project-specific aspects. A key benefit of combining different 40 

offshore renewable energy technologies on a single platform relates to potential for sharing 41 
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space and infrastructure, thus reducing the cost per unit of installed capacity of, for example, 1 

the foundations or electricity network cabling. A further advantage is in the combination of 2 

power outputs from two types of generation. Managing the inherent variability in power 3 

output from wind and wave generators is a prominent issue in renewable energy research. It 4 

was shown in [2] that for sites along the coast of California, co-locating wind and wave 5 

devices would reduce hypothetical power variability and increase the allocated capacity 6 

credit, compared with either technology operating alone.  7 

A similar study for Ireland [3] showed that on the south and west coasts, the variability of 8 

wind and wave power is reduced over several time scales when combined, compared to 9 

either type acting alone. In the more fetch-limited Irish Sea, there was little or no advantage 10 

to combinations, as the two individual resources were strongly correlated in time. Analysis 11 

of the particular correlation between the wind and wave resources was demonstrated in [4], 12 

for three Atlantic-facing sites in Europe. The time lags between the peaks and troughs in the 13 

series were identified, and different optimal proportions of wind and wave devices were 14 

found at each site.  15 

Further studies on combining wind and wave energy at specific sites emphasise the 16 

importance of the correlation between wind and wave resources and the desired output 17 

characteristics of the platform [5]–[7].Clearly the benefit of combination is site-specific and 18 

must be carefully considered as part of a site characterisation study. 19 

1.2 Using GIS for site selection 20 

Using GIS to choose locations for renewable energy technology has become relatively 21 

common. Developers might typically employ GIS at a number of stages, from screening a 22 

whole region to identify suitable sites, down to the point of designing array and detailed 23 

cable layouts. On a more general scale, national and regional assessments have been reported 24 

in the literature. In [8], sites around Portugal’s coast were classified by their suitability for 25 

wave energy installations. Exclusion zones were identified using criteria such as 26 

environmental sensitivity and depth. The remaining area was then assessed by measurement 27 

and weighting against a second set of criteria. All factors were combined to produce a map 28 

highlighting the relative suitability of sites for wave energy development. 29 

An extensive list of criteria was developed for identifying suitable onshore wind power 30 

development sites in the UK in [9], by consultation with a number of public and private 31 

organisations. These included basic resource parameters, but the majority were related to 32 

proximity to existing features, such as dwellings and historic sites. Sites for a small region in 33 

England were rated according to the criteria and their weightings, based on perceived 34 

importance.  35 

[10] followed a similar approach, considering parameters relevant to wind and solar 36 

developments (individually). The energy resource parameters were given the highest 37 

weighting, followed by transmission line proximity, and then other features such as distance 38 

to roads and cities. The authors analysed the suitability of sites within areas containing 39 

different types of land-cover, indicating the types of land use where future development 40 

could take place. 41 

The approaches described so far are mainly focused on individual, mature technologies 42 

(with the exception of [8]) and concern relatively small areas, meaning that a fixed set of 43 

selection criteria and limits can be chosen with confidence. A predecessor to MARINA, the 44 

EU FP7 project, “Offshore Renewable Energy Conversion Platforms – Coordinated Action” 45 
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(ORECCA), carried out Europe-wide site selection for combined offshore energy platforms 1 

using web-based GIS, looking at a number of contributing factors including resource, water 2 

depth, and port facilities, among others [11]. The project made the first attempt at identifying 3 

the areas in Europe suitable for wind and wave in combination, by allocating ratings to sites 4 

based on their resources.  5 

The ORECCA methodology, described in detail in [12], split the region into three parts 6 

(the North and Baltic Seas, the Atlantic, and the Mediterranean). Wind resource maps for 7 

these regions were based on  wind conditions derived from scatterometer data measured by 8 

the NASA QuickSCAT satellite. The authors state that there is, however, a high degree of 9 

inherent uncertainty within this data, and it is particularly problematic close to coasts. The 10 

wave resource maps were provided by Fugro-OCEANOR via a product called 11 

‘WorldWaves’ which combines ECMWF WAM modelling and validation using satellite 12 

records. To provide information on the tidal resource, ORECCA used a combination of 13 

datasets from different sources but concentrating only on a small subset of points with a 14 

resource above a specific threshold. For the purposes of considering site-selection, the 15 

ORECCA methodology considered a set of resource classes, based on the annual mean wind 16 

speed, annual wave power density, or tidal velocity from the resource databases listed 17 

previously. Scenarios of required wind and wave resources for combined offshore energy 18 

platforms were evaluated. For the combined platform resource scenarios, the available 19 

resource in each of 5 depth and 4 distance classes was evaluated, along with the total 20 

available sea area in each of the three regions. 21 

Considering a large climatically diverse continental area, a need was identified for a 22 

spatially coherent resource dataset at an appropriately high resolution for continent-wide 23 

marine spatial planning. The temporal coherence of such data would also help to identify 24 

synergies for combined offshore energy technologies.  A tool with the ability to vary 25 

different needs and priorities was also required to carry out in-depth analysis and facilitate 26 

flexible decision support for designers of combined offshore energy platforms. Where 27 

ORECCA considered in [12] the available resource in depth, distance and regional 28 

categories and qualitatively evaluated the impact of factors such as ports and environmental 29 

considerations, a quantitative analysis of the sensitivity of the amount of area available for 30 

exploitation was not explicitly presented, and thus this idea was developed in MARINA. 31 

2. Methodology	32 

In order to consider European-wide site-selection for combined wind-wave energy platform 33 

designs, two significantly different concepts were chosen from the final three considered in 34 

the MARINA Platform project [13], and will be labelled hereafter as ‘Platform 1’ and 35 

‘Platform 2’. For comparison, a generic floating wind turbine platform which encompasses a 36 

wide range of possible designs (‘Platform 3’) is analysed alongside these. A set of 37 

fundamental physical and resource criteria, dictated by the design of the devices, were 38 

chosen to form the basis for initial site-selection decisions for these concepts, using the 39 

specialised resource data developed for the MARINA project.  Following this initial 40 

selection, a secondary analysis was carried out, building upon the analysis techniques from 41 

the ORECCA project, to  quantify the sensitivity of the selection to decision criteria where 42 

the limits are not clearly defined, for example, distance to port and environmental 43 

exclusions. Finally, a number of ‘case study’ sites were chosen for further detailed analysis 44 

of their suitability based on parameters that are too complex to consider continent-wide but 45 
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where the bespoke resource data offers useful insight. Where insufficient design information 1 

was available for the combined platforms, floating wind turbine designs were used under the 2 

assumption that processes for combined platforms would be somewhat similar. Basic GIS 3 

techniques along with bespoke decision tools were applied for each aspect of the selection 4 

process and analysis. 5 

2.1 Data 6 

The foremost consideration for site selection for marine renewable energy platforms is, of 7 

course, that of the wind, wave and current energy resources. A bespoke model was created 8 

for the project to produce a 10 year (2001-2010) hindcast of the key wind, wave, 9 

oceanographic and tidal current parameters at an hourly resolution on a co-located 0.05° x 10 

0.05° grid, referred to hereafter as the ‘Wind-wave-current (W2C) atlas’. The models and 11 

processes used to generate this atlas are described further in Appendix 7.1.  Statistics based 12 

on the hindcast parameters from the W2C atlas have been calculated and form the resource 13 

map layers in the GIS. The following parameters are available for analysis: 14 

- Wave: Mean annual significant wave height, mean period and power density; 15 

monthly average significant wave height 16 

- Wind: Mean annual wind speed at 10m, power density; monthly average wind speed 17 

at 10m 18 

- Tidal current: Mean, maximum, minimum and modal velocities; Mean and maximum 19 

spring and neap velocities; elevation range, minimum and maximum elevations; 20 

power density 21 

Other parameters of relevance include bathymetry, environmental restrictions and port 22 

locations, which are described further in Appendix 7.2. 23 

2.2 Site selection tools 24 

The suite of decision support tools developed within the MARINA Platform project allow 25 

the user to interact with relevant data on a number of levels. A GIS has been created using 26 

the open-source Quantum GIS (QGIS) software [14], and, by connection with a 27 

PostgresSQL database [15] with PostGIS [16] enabled,  presents the fundamental data in the 28 

form of ‘layers’, that can be used to produce maps and carry out simple queries.  29 

Additional bespoke tools with user-interfaces (GUIs), called ‘plug-ins’, have been 30 

developed within the QGIS framework using the Python programming language. These 31 

interact with the database to facilitate flexible, multi-criteria analysis of the data and more 32 

sophisticated spatial investigation (see Appendix 7.3). Furthermore, the resource database 33 

can be interrogated in greater detail to explore features such as extreme conditions for 34 

individual points and consider weather windows for operations and maintenance activities. 35 

The GIS database along with the plug-in tools for QGIS, is available on request from the 36 

University of Edinburgh, and further information regarding obtaining the full suite of 37 

resource data can be accessed by contacting the authors at NKUA. 38 

2.3 Concept designs 39 

Platform 1 is based on a semi-submersible floating structure which provides the foundation 40 

for an array of twenty 0.5MW oscillating water columns and a single 5MW wind turbine. 41 

Wave power is the dominant technology in this case. Platform 2 is a floating spar structure, 42 

supporting one 5MW wind turbine and one torus-shaped 2MW point-absorbing wave device. 43 
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The dominant technology in this concept is wind. Platform 3 represents a generic floating 1 

wind platform suitable for a wide range of depths, e.g. a semisubmersible-type structure. In 2 

the sections where floating wind turbines have been used as representations of devices 3 

similar to combined platforms, the assumptions are based on a semisubmersible floating 4 

platform hosting a single wind turbine. 5 

 6 
Table 1 Concepts used within the work 7 

Concept Picture Foundation Wind turbine 
Wave energy 
converter Comments 

Platform 1   
(led by wave) 
OWC array 

 

Barge/semi-
submersible 

1x5MW 20x0.5MW 
OWC 
technology 

NREL WT 
characteristics[17] 

      
Platform 2   
(led by wind) 
STC 

 

Spar 1x5MW 1x2MW 
Point absorber 
technology 

NREL WT 
characteristics 
[17] 

Platform 3 (wind 
only) Generic 
floating 
technology 

 Generic float – 
e.g. semi-
submersible 

1 x 5MW` n/a NREL WT 
characteristics 
[17] 

2.4 Primary selection criteria 8 

Table 2 describes the initial set of criteria used to eliminate unsuitable sites for each concept, 9 

i.e. limits to resource and physical  parameters that render a site completely unusable for the 10 

given technology design.  Resources are the main consideration in any siting decision in 11 

order to provide confidence in a minimum financial return for a site. Due to an emphasis on 12 

a different ‘leading’ technology in each case, the wind and wave resource requirements have 13 

been adjusted to reflect this. 14 

A mean annual 10m wind speed of 5m/s is often used (see for example, [9]) as the 15 

minimum required for selection for onshore wind development. A minimum of 6m/s was 16 

applied in [12], which may be reflective of the higher costs of offshore wind. Here, for the 17 

wave-led Platform 1, a minimum annual average 10m wind speed of 6 m/s is required but for 18 

wind-led Platform 2 and for Platform 3, the level has been increased to a minimum of 7m/s. 19 

[12] also states that a typical minimum wave power requirement would be 20-25kW/m for 20 

existing devices, and thus for wave-dominated Platform 1, a minimum power density of 30 21 

kW/m has been set whilst 20 kW/m is required for Platform 2. 22 

The tool has been developed based on points within a 5km resolution grid where the 23 

resource levels indicate a strong potential for energy generation, given some estimated limits 24 

for some machine designs with generic power production characteristics. It is known that 25 

different devices can, to a certain extent, be tuned or resized in order to make optimum use 26 

of different scales of resources but this has not been considered here. 27 

Alongside resources, depth is the main physical parameter to which will impact on a site’s 28 

suitability.  Due to the nature of a floating spar structure with a draft of around 120m [18], 29 

6 m
2 m

Tower: 90 m

z

y

TORUS

SPAR
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200 m
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the minimum depth for Platform 2 is at least 150 m. Given the larger area and much smaller 1 

draft of Platform 1, its minimum depth is set at 70m. In terms of maximum depths, [19] 2 

mentions difficulties with cabling layout at water depths of greater than 100m, but present a 3 

number of upcoming projects that go up to 215m. Currently very few projects exist at depths 4 

greater than 100m, and those that do (e.g. Hywind [20], or the Goto FOWT [21]) are 5 

typically in the early stages of development and testing. Solutions for mooring devices at 6 

great depths and laying both transmission and inter-array cabling have not yet been fully 7 

implemented and tested, and whilst the industry is keen to explore this frontier, the 8 

possibility is still considered somewhat tentative. Assuming combined technology platforms 9 

are some way from commercial development, and can thus be somewhat aspirational, a 10 

maximum depth of 250m is set for all  platforms but with the caveat that 100m might be 11 

considered the current operable limit.  12 

A minimum distance of 15km to shore was chosen to restrict the visibility of 13 

developments and the impact on areas of sensitivity. [22] indicates that, for the UK, areas 14 

greater than 13km from shore are considered to be at lower risk of having an impact on 15 

visual amenity. Maximum distances to shore are not considered at this stage of the selection 16 

but there are many factors to consider as distance to shore increases, including additional 17 

cost and the potential environmental impact from cable-laying, which will be discussed. 18 
Table 2 Case studies for Europe-wide site selection – fixed criteria 19 

Concept 

Minimum wind 
speed @ 10m 

(m/s) 

Minimum wave 
power density 

(kW/m) Depth range (m) 

Minimum 
distance to shore 

(km) 
Platform 1 (led by wave) 

OWC array 6 30 70-250 15 
Platform 2 (led by wind) 

STC 7 20 150-250 15 
Platform 3 (wind only) Generic 

floating technology 7 n/a 70-250 15 

Ranking	20 

Based on the primary selection, points are given a ranking from 1-100. Firstly, the sites are 21 

ranked based on each contributing criterion, i.e. wind resource, wave resource and depth. For 22 

example, in the case of wind rank, the site with the highest wind speed will be ranked 100, 23 

and the lowest, 0. The user, when dictating the terms of the selection, can indicate the 24 

importance of the different criteria so, for example, a platform where the dominant 25 

technology is wind might give wind speed a higher importance than wave height. The final 26 

rank for each site is calculated by ranking the total sum of all ranks multiplied by their 27 

importance, as, 28 

𝑅𝑎𝑛𝑘 𝑅𝑎𝑛𝑘 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟* ×𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟*
*

 29 

2.5 Secondary analyses and case studies 30 

Criteria for several parameters that could be important in a site-selection process have been 31 

applied in a secondary phase as there is less confidence in the reasons for specific limits due 32 

to limited detailed design data. The sensitivity of the selection to these factors is considered 33 

here by assessing the percentage of points on the 0.05° x 0.05° grid (based on the points in 34 

the W2C atlas) where development would be prohibited by applying the various restrictions. 35 
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Electricity	networks	1 

The costs of electricity transmission increase with distance, as losses due to reactive power 2 

increase. In terms of site selection for offshore generation, transmission costs will depend – 3 

among other things – on the amount of energy generated and on choices regarding the use of, 4 

for instance, HVDC (High Voltage Direct Current) transmission over more traditional AC 5 

lines. It is suggested in [23] that for a 400MW offshore wind farm in a location with strong 6 

resources, HVAC transmission costs start to look less favourable than some HVDC options 7 

between 50 and 100km from shore. Beyond 150km, HVAC costs increase significantly. 8 

80km is indicated in [24] as the feasible transition point between AC and DC but also point 9 

out that this distance is reducing with time. The effect of selecting only sites within 50, 100 10 

and 150km of the shore are considered here, with the assumption that suitable connections 11 

can be made to the onshore network. 12 

Logistics	13 

Constructability and maintainability criteria can be applied in the form of maximum 14 

distances to suitable ports. The criteria on which to base suitability of ports for construction 15 

or O&M are selected from the World Port Index categories [25]. Construction ports have 16 

been set to require a minimum channel depth of 9.4m. This is greater than that from [26] as 17 

the towing of semi-submersible structures may require this additional draft. A ‘Repaircode 18 

A’ designation (major shipbuilding facilities) is required for construction; whilst only 19 

‘Repaircode B’ (moderate shipyard facilities) is required for maintenance ports.  20 

Feasible travelling distances to construction ports are based on information from the 21 

offshore wind industry. They are heavily dependent on the technology and vessels involved. 22 

A mass-production scenario is assumed here – longer distances may be feasible in one-off 23 

projects – and that the wind turbine assembly will be performed at the construction yard, and 24 

the whole device then towed to the deployment site. The assembly of the wind turbine in-situ 25 

would make transport simpler, but increase the weather window requirements for 26 

installation, suggesting that this is an area requiring some dedicated research and innovation 27 

in the near future. 28 

 [26], [27] suggest maximum travelling distances from construction ports of 250nm and 29 

300nm (460km and 550km) respectively for fixed foundation wind turbines.  For floating 30 

foundations, since towing is the only existing method for installation, and given that the 31 

towing speed will be 4-5 times lower than the speed of a typical installation vessel and that 32 

only one foundation will be transported at a time, 200km is perhaps more reasonable; the 33 

effect of applying both 200km and 500km limits are presented here. 34 

For operations and maintenance, ideally the travelling distances to the onshore base (port) 35 

would be shorter, but again this will be technology specific and related to detailed design 36 

regarding maintenance planning, which is not available for the technologies considered here. 37 

For that reason, a range of distances from 50-200km are considered. 38 

The distances presented here are calculated on the basis of radial distances from site to 39 

ports to enable fast selection in the GIS; the issue of directly calculating port distances is 40 

explored further later using more detailed routing for individual sites. 41 
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Shipping	traffic	1 

Areas with a high density of shipping traffic would potentially be unsuitable for offshore 2 

energy development. Shipping routes are strongly optimised to minimise travel distances, 3 

and re-routing existing major channels for a relatively small energy development would be 4 

impossible. Whilst arrays of wind turbines can have spacings of up to 1km between devices, 5 

there are additional associated obstacles, such as electricity cables and mooring lines. Here it 6 

is assumed that installing such developments could be prohibited in areas with large amounts 7 

of traffic, and thus, the impact of setting some different thresholds of maximum shipping 8 

traffic density coinciding with selected points is considered.  9 

Global data was obtained from [28], as a raster containing the number of ship tracks 10 

recorded in cells of 1km2 area during the period October 2004 to October 2005. These 11 

numbers are considered by the authors to be an underestimate in high-density areas, but 12 

overall appear to capture the main patterns of commercial shipping traffic. The maximum 13 

number seen in any single cell was 1,158, in a small area between the north of Germany and 14 

the west coast of Denmark, but a typical figure for, for example, cells along the major 15 

English Channel route between Southampton and Le Havre, was around 200-300. The raster 16 

file was reclassified to 5 categories of density according to the distribution over the whole 17 

area and different thresholds applied. 18 

 19 
Table 3. Categories for shipping traffic assessment. 20 
Old	values	(number	of	ship	tracks	
recorded	in	a	single	1km2	cell)	

New	 values	 (reclassified	 into	
ranked	categories)	

Classification	

0	–	25	 1	 Very	low	
25	–	50	 2	 Low	
50	–	75	 3	 Medium	
75	–	100	 4	 Quite	high	
100	–	1000	 5	 Very	high	

Environmental	protection	21 

Various areas around the ocean have particular environmental sensitivities that would be a 22 

barrier to installing and operating energy devices. Additionally, some environmental issues 23 

may require additional monitoring during installation or operation, and this must be fully 24 

considered in site-selection. Here, the marine areas designated under Natura2000 [29] are 25 

excluded from potential site selections and the effect of this on available sites is considered. 26 

The authors in [9] used a number of exclusion criteria based on environmental sensitivity, 27 

and applied an extra 1000m ‘safe distance’ buffer zone around these areas. A similar 28 

approach is taken here, to investigate the impact of excluding development within 1km of 29 

the Natura2000 areas. 30 

2.6 Case studies for particular characteristics 31 

A number of other important met-ocean related characteristics for combined platform 32 

development may be relevant to a site-selection decision. However, the calculations for these 33 

using the W2C atlas for the whole European sea area under consideration would be 34 

unfeasible. In order to investigate some of these types of characteristics, a small subset of 35 

geographically dispersed sites suitable for one or other of the types of platforms have been 36 
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used as case studies. The factors analysed for each case study are: power extraction, 1 

transport routes to port, weather windows, extreme conditions and wind-wave correlations. 2 

3. Site	selection	results	3 

3.1 Primary selection 4 

 5 

 6 
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 1 
Fig. 1 Selection and ranking of sites for Platform 1 (upper panel), Platform 2 (middle  panel) and Platform 3 2 
(lower planel) designs 3 

 4 

Applying first of all the fixed criteria as listed in Table 2, the selection of suitable sites is 5 

presented in Fig. 1. The sites have been ranked from 1-100% according to the resource 6 

parameter of chief importance for each of the concepts, so that out of all the sites indicated,  7 

red highlights the most suitable sites, and blue the least. Wind speeds and wave power 8 

densities are ranked from 1-100% with the highest wind speeds and wave power densities 9 

having the highest rank. Depth is rated from 1-100% where the shallowest water is given the 10 

highest rank – this is indicative of the increasing costs of greater depths. In the case of 11 

Platform 1, wave importance is given a value of 3 and wind 2. For Platform 2, wind and 12 

wave importance is swapped around. For Platform 3, wind is given an importance of 2 and 13 

wave 0. In all three cases, depth is given an importance of 1, to reflect the fact that it is a 14 

critical consideration, but having set limits for each platform, the variation within that range 15 

may not be as important as resources. 16 

Sites in the north-west, off the coasts of Scotland and Ireland, appear to be the most 17 

favourable for the combined platforms, due to the highest importance being given to high 18 

wind and wave resources. Deeper waters are more challenging to develop, and given similar 19 

levels of resource, this leads to the lower ranking of sites in north-west Spain and along the 20 

Norwegian coast. Many sites in these areas that are far enough from shore to meet the 21 

resource thresholds are in water that exceeds the 250m depth limit. For Platform 3, the 22 

highest ranked sites are also off the coasts of Scotland and Ireland, but also to the south and 23 

west of Norway, indicating that whilst the wave resource, and thus the potential for 24 

combined platforms, is less favourable here, the wind resources are still very much 25 

exploitable. 26 

It is interesting to note the specific distribution of points by country. Using the maritime 27 

boundaries as specified in [30], the percentage of the total for each platform design is 28 

specified in Table 4. As indicated by the ranking, the selection strongly favours northern 29 

European countries, where the resource is strong but the change in depth with distance from 30 

shore is also more favourable, particularly in the UK, Ireland and north-western France– that 31 
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is, the depth increases more gradually, giving a greater area along these coastlines with 1 

acceptable depths, as shown in Fig. 2. 2 

 3 
Table 4 Distribution of selected sites by country 4 
Country	 Platform	1	 Platform	2	 Platform	3	
Faroe	Islands	(Denmark)	 6%	 11%	 5%	
Iceland	 7%	 12%	 6%	
Ireland	 21%	 18%	 17%	
Portugal	 1%	 0%	 0%	
Spain	 1%	 1%	 0%	
France	 13%	 8%	 9%	
UK	 36%	 26%	 45%	
Norway	 13%	 22%	 15%	
International	waters	 1%	 2%	 3%	

3.2 Secondary selection 5 

Based on the sites chosen in the primary stage, further analysis has been carried out to 6 

examine some additional selection criteria – namely, distance to shore, logistics and 7 

environmental issues. It is more difficult to prescribe defined criteria limits for these 8 

characteristics as they depend on other factors, such as cost and the availability of different 9 

technologies. 10 
 11 
Table 5 Percentage of sites excluded by specific constraint factors with variable thresholds 12 
	 Exclusion	criteria	 Platform	1	–	

percentage	of	
sites	excluded	

Platform	2	–	
percentage	of	
sites	excluded	

Platform	3	–	
percentage	of	
sites	excluded	

El
ec
tr
ic
al
	

ne
tw

or
ks
	 Maximum	50km	to	shore	 65.35%	 70.21%	 66.45%	

Maximum	100km	to	shore	 30.31%	 33.47%	 34.69%	

Maximum	150km	to	shore	 12.60%	 17.82%	 17.39%	

Lo
gi
st
ic
s	

Maximum	50km	to	O&M	port	 97.08%	 96.36%	 95.69%	
Maximum		100km	to	O&M	port	 74.95%	 77.61%	 74.48%	
Maximum	200km	to	O&M	port	 22.92%	 35.92%	 39.25%	
Maximum	200km	to	Construction	port	 69.17%	 87.17%	 71.50%	
Maximum	500km	to	Construction	port	 26.39%	 40.78%	 21.23%	
Maximum	100km	O&M	port	AND	
Maximum	500km	to	Construction	port	

84.08%	 92.62%	 79.90%	

Sh
ip
p

in
g	

Exclude	Shipping	density	category	2,3,4,5	 5.48%	 3.03%	 4.28%	

Exclude	Shipping	density	category	4,5	 0.38%	 0.15%	 0.27%	

En
vi
r

on
m
e

nt
al
	 Exclude	Natura	2000	 1.32%	 1.29%	 1.01%	

Exclude	Natura	2000	plus	1km	buffer	zone	 1.45%	 1.38%	 1.11%	
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The impact of limiting distance to shore is interesting. Eliminating all sites beyond 50km 14 

from shore excludes 65-70% of the potential sites. This implies that, based on the limits 15 

suggested in [17] and [18],  if connections were confined to using AC technology, only 30-16 

35% of sites would be available. Between 12 and 18% of feasible sites for the two 17 
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technologies considered lie beyond the 150km boundary, where HVDC clearly becomes a 1 

cheaper solution for transmission. Despite the increased resources far offshore, there aren’t 2 

many selected sites beyond this distance, due to the selected maximum depth limit of 250m. 3 

Fig. 2 shows the 250m depth contour, i.e. the limit for the two technologies selected, along 4 

with the 50, 100 and 150km, distance contours. The costs associated with the increased 5 

depth alongside higher transmission costs would likely prohibit development beyond 150km 6 

in the near future. 7 

The environmental impact of increased distance is worthy of further investigation. The 8 

work in [31] identifies the possible effects of electro-magnetic fields related to power cables 9 

on ocean-dwellers, including species that use magnetism for navigation. Clearly, the longer 10 

the cable, the more likely it is to cross the normal territory or routes of sensitive species. 11 

Selecting routes to avoid particularly susceptible areas would increase the distance, and thus 12 

the cost of the development and also the transmission losses. The disturbance of sediment is 13 

also likely to be damaging to the seabed environment, and would ideally be minimised. 14 

Although the resources often indicate a better performance at a higher distance from shore, 15 

the likelihood of having a greater impact on the environment is not trivial. 16 

 17 

 18 
Fig. 2 Distance and depth comparison for the selected area. 19 

 20 

The issue of logistics appears, under the scenarios presented, to be more significantly 21 

limiting than issues surrounding distance. Setting a requirement for a port rated as 22 

‘Repaircode B’ in the World Port Index, i.e. with moderate shipbuilding facilities (and 23 

probable existing local skills), within 50 km eliminates up to 97% of sites, whilst extending 24 

the requirement to 100km eliminates 75-78%. Only 23-36% lie more than 200km from a 25 
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suitable O&M port. Requiring a construction port with a draft of 9.4m and a large shipyard 1 

within 200km – as was mooted for floating platforms – leads to the elimination of 70-90% of 2 

sites, but if 500km is a feasible distance, only 26-50% of sites would be counted out. 3 

Combining a construction and O&M requirement leads to the elimination of a very large 4 

proportion of sites for all platform designs. 5 

It should be noted that the choice of categories in the World Port Index is not definitive, 6 

and it is, by its nature, an over-simplification of information which may not capture an 7 

entirely accurate picture of facilities in every location. As mentioned previously, the 8 

distances have also been calculated radially for reasons of computational speed. This method 9 

will result in some errors, particularly along complex coastline or smaller landmasses where 10 

radial distances are not reasonable approximations for actual shipping distances. However, it 11 

is considered here as an indicator of the broad picture of the restrictions on development due 12 

to ports around Europe. 13 

In terms of applying some blanket exclusion policies for particular areas, the exclusion of 14 

all sites that have a shipping density of greater than class 1 only removes 3-6% of sites for 15 

both platforms, whilst excluding anything above a class 3 site removes less than 1% of sites 16 

in both cases. It is clearly an important consideration but would appear to be sensible to 17 

evaluate it on a case-by-case basis. 18 

Applying a no-development policy to Natura2000 sites excludes only 1.3% of sites for 19 

each type of platform. This is reflective of the fact that the majority of the Natura2000 sites 20 

fall within 15km of shore, and have thus been excluded from the selection in the first step. 21 

Applying a 1km buffer zone around Natura2000 zones to further ensure minimal impact on 22 

these areas only eliminates a very small additional percentage of suitable sites for combined 23 

platforms, reflecting that the majority of the Natura2000 restrictions apply in coastal areas, 24 

which do not meet other criteria for these platform designs. It may be the case that in deeper 25 

waters, different environmental concerns apply, and a monitoring plan for these has been 26 

developed (described in [32]).Comparing the three platform options overall, the wind-only 27 

devices offer the largest number of potential sites overall, as the wave resource is sufficiently 28 

strong in fewer locations. Due to its requirement for deeper waters, Platform 2 is most 29 

affected by distance-based exclusions, i.e. a limit on the distance to shore or distance to port 30 

excludes the highest number of potential sites. These designs would have most to gain from 31 

innovations to increase in the feasible distance to shore that a development can take place, 32 

for example HVDC transmission or a cable-laying technique that reduces sea-bed 33 

interference. All three platforms are similarly affected by the exclusion of Natura2000 areas 34 

or areas with high shipping traffic. 35 

3.3 Case studies 36 

More detailed calculations based on the 10-year hourly wind, wave and current hindcast in 37 

the W2C atlas provide additional information on the characteristics of selected sites as 38 

relevant to machine design requirements. A small set of geographically dispersed points 39 

have been identified that the previous selections and analyses have indicated would be 40 

suitable for combined platforms. These are shown in Fig. 3; the legend indicates their 41 

suitability for the two concepts, and all sites are suitable for wind-only platforms. The issues 42 

of power extraction, wind-wave correlation, extreme conditions and considerations 43 

surrounding ports and weather windows are considered, using data for a semisubmersible 44 

WT as a proxy where design information on combined platforms is limited.  45 
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 1 
Fig. 3 Map of locations for detailed study 2 

 3 
Table 6 Physical, met-ocean and production characteristics for the sites 4 

	 Sh
et
la
nd

	
O
ffs

ho
re
	

Cr
oz
on

	
O
ffs

ho
re
	

N
or
w
ay
	1
	

N
or
w
ay
	3
	

Sy
bi
ll	

He
ad

	

Latitude	(⁰)	 60.2 48.7 58.25 61.85 52.25 

Longitude	(⁰)	 -2.85 -5.75 4.45 4.25 -10.7 

Depth	(ETOPO1)	
(m)	

150 114 178 202 103 

Distance	to	shore	
(km)	

65 75 79 30 17 

Mean	wind	power	
density	(W/m2)	

1126 795 1079 1084 946 

Mean	wave	power	
density	(kW/m)	

67 50 28 47 71 

95%	wind	speed	@	
80m	a.g.l	(m/s)	

18.83 17.12 18.9 19.06 18.15 

95%	significant	
wave	height	(m)	

6.36 5.66 4.85 5.46 6.52 

Wind-wave	
correlation	@	
time=0	

0.70 0.66 0.78 0.67 0.67 

Max	wind-wave	
correlation	

0.73 0.69 0.81 0.70 0.70 

Time	lag	to	max	
(hours)	

4 4 3 3 4 

Platform	1	rank	(%)	 0.77 0.36 n/a 0.27 0.73 

Platform	1	capacity	
factor	(%)	

40 32 n/a 33 38 

Platform	2	rank	(%)	 0.87 n/a 0.34 0.32 n/a 
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Platform	2	capacity	
factor	(%)	

46 n/a 42 42 n/a 

Platform	3	rank	(%)	 0.81 0.19 0.41 0.32 0.39 

Platform	3	capacity	
factor	(%)	

58 50 55 54 53 

%	of	hours	
inaccessible	at	
Hs>2m,	wind	speed	
>10m/s	

74 60 48 65 72 

3.3.1 Power	extraction	1 

For each of the selected sites, the 10-year hourly time series of wind and wave resource 2 

parameters have been combined with wind turbine power curves and wave device power 3 

matrices to derive annual average capacity factors (i.e. total energy extracted divided by 4 

theoretical maximum for the whole device), shown in Table 6. The influence of platform 5 

motions on the performance of floating devices has been neglected and no other losses have 6 

been taken into consideration. Clearly all of the sites have high capacity factors, with sites on 7 

the western seaboard of Europe – as would likely be expected – showing some slight 8 

advantage in this regard. The balance of strength of the input resources is evident: for 9 

example, Norway 3 has slightly stronger wind than Sybill Head, but Sybill Head has 10 

substantially greater wave resources, giving rise to a better performance than Norway 3 in 11 

the wave-led platform. At Norway 1, the wave resource is significantly lower than at the 12 

other sites, but because the wind resource is very strong, it still gives good output for the 13 

wind-led device. In all cases, the addition of wave power reduces the capacity factors 14 

overall, as evidenced by the higher capacity factors for the wind-only Platform 3. 15 

3.3.2 Met-ocean	conditions	16 

Table 6 also includes a parameterisation of the relationship between wind and waves at each 17 

site (see [4] for calculation details). To benefit from smoother power, a lower correlation at 18 

time zero and a longer time lag for the maximum correlation is preferred, as this would 19 

indicate that the wind and wave resources would not ‘peak’ and ‘trough’ simeltaneously. All 20 

the sites have a lag of 3-4 hours in the lag between the wind and wave patterns, but Crozon, 21 

Norway 3 and Sybill Head have a lower correlation at time zero, indicating a weaker 22 

relationship between wind and waves overall, which will likely be beneficial for power 23 

smoothing. 24 

Extreme climatological and oceanographic conditions will impact on site suitability and 25 

machine design. The 95th percentile of significant wave height and 80m wind speed are 26 

presented in Table 6 as proxies for more sophisticated extreme statistics – return period 27 

values would be required for machine design, for example. All the sites experience similarly 28 

high 95th percentile wind speeds, with the two exposed Atlantic sites – Shetland and Sybill 29 

Head – experiencing the highest 95th percentile significant wave heights. The slightly more 30 

sheltered seas around Norway give rise to lower extreme waves but the trade-off with 31 

resources is illustrated, with the slightly lower capacity factors of devices here. 32 

3.3.3 Port	logistics	33 

Port-proximity was considered over the whole European Seas area in section 3.2 3.2 34 

aboveusing a calculation based on a radius from each point. In order to look at the issue with 35 
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more accuracy and detail, the second GIS tool (see Appendix 7.3) has been created to plot 1 

approximate travel routes between sites and nearby ports that can be selected on the basis of 2 

their facilities. Similar basic conditions for distance, port draft and facilities are assumed as 3 

described in section 2.5 with some additional considerations, namely the desirable additions 4 

of at least a small dry-dock and railway, and the capacity of the port to host a minimum 5 

vessel size. 6 

Using the “maximum vessel size” category from [25] as a proxy for minimum quay 7 

length, a ‘large’ size of over 500 feet (approximately 150m) is desired. Although the 8 

maximum dimension of wind turbine components will be approximately 100m, for the load-9 

out and assembly, larger dimensions are required - in [24] it is indicated that accommodation 10 

for vessels up to 140m length would be required. Given the early stages of development of 11 

combined platforms, the installation method for large devices involve many uncertainties. 12 

For this reason the case study has been focused in a semisubmersible WT. It is likely that for 13 

larger projects and where it can serve multiple developments, harbours will be willing to 14 

upgrade to meet additional needs so this analysis should be considered only as indicative of 15 

the current situation. 16 
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Table 7 Parameter values selected from the World Port Index 18 

Concept 

Means of 
installation (special 
transport vessel or 

towage) 
Facilities 
required 

Max distance 
to the site from 

the 
construction 

port (km) 
Min. port draft 
required (m) 

Maximum 
size vessel 

Semisubmersible 
supporting 5MW 

WT 
 

Towage of entire 
structure 

Repaircode 
A 

Dry-dock – 
Small 

Railway - 
Small 

200 K (9.4m 
minimum) L (150m) 
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Fig. 4 and Fig. 5 show two examples of the output of the Marina Ports tool for two of the 20 

case study sites. For Crozon (Fig. 4) there is one port allocated within the 200km maximum 21 

distance that has the draft required for semi-submersible installation – Rade de Brest. There 22 

is a dry-dock and a railway, but the ‘maximum vessel size’ recorded in [25] for this port is 23 

M, so it cannot, in theory, host a 150m vessel. Seeking this would require a journey of 24 

almost 400km to La Rochelle. In the case of Shetland, there are a number of nearby ports but 25 

none meeting all of the criteria within 500km. The closest, and likely most suitable port is 26 

Peterhead, which has a dry-dock and a railway, and is of suitable draft, but is listed in the 27 

World Port Index as Repaircode B, and with a maximum vessel size of M, so could 28 

potentially need some upgrading. There are two ports within shorter traveling distances that 29 

may be suitable as staging hubs – Sullom Voe (Shetland) and Thurso Bay (mainland). 30 
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 1 
Fig. 4 Presented routes for suitable ports near Crozon 2 

 3 
Fig. 5 Presented routes for suitable ports near Shetland 4 

3.3.4 Weather	Windows	5 

Weather windows are a major limiting factor in construction and maintenance of offshore 6 

developments. In terms of the installation process, weather windows along the routes to port 7 

(as estimated by the Marina Ports tool) have been analysed, and the probability, based on the 8 

10 year hindcast, of achieving a suitable access window has been calculated. As in the 9 
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previous case, the estimation of weather windows for the installation of large platforms 1 

involves many uncertainties. For this reason, and in order to recreate a realistic scenario for 2 

the case study, a sequence of typical operations for the installation of a floating semi-3 

submersible wind turbine, described in Table 8, has been proposed based on conservative 4 

guidance provided by experienced companies [33], [34]. Weather windows for completing 5 

the proposed sequence, including travel along the routes to port (as estimated by the Marina 6 

Ports tool) have been analysed using the 10 year hourly wind and wave hindcast, and the 7 

probability, based on the hindcast, of successfully completing installation has been 8 

calculated. 9 

 10 
Table 8 Weather windows constraints for the installation of WT semisubmersible platforms. 11 
	 	Operation	 Maximum	Hs	

(m)	
Maximum	
windspeed	
(m/s)	

Duration	

Installation	of	
semi-
submersible		
supporting	a	
5MW	WT	

1. Towage	 1.5	 15	

€ 

Distance
VesselSpeed

,speed	=	4km/h		

(min.	required	by	regulations)	

	 2. Installation	of	
dynamic	cable	

1.5	 n/a	 5h	(only	including	recovery,	
since	the	initial	cable	laying	
could	be	overlapped	with	the	
platform	towage).	

	 3. Installation	of	
mooring	lines	and	
drag	anchors	(4	
lines	and	anchors)	

1.5	 n/a	 64h	
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Referring to Fig. 6, the significant travelling time (approximately 3 days under the assumed 13 

speed restrictions), followed by installation procedures of a similar duration give rise to a 14 

prohibitively low probability of success (less than 5% in summer) for the Peterhead-Shetland 15 

operation. Based on experience, it is likely that there will be opportunities to pause 16 

operations due to unacceptable conditions, for example after towage, or approximately every 17 

16 hours during the mooring line installation. Considering only the towage and assuming 18 

there can be a break before commencing installation, the probability of a successful and safe 19 

journey is around 10-15% in summer months. This result emphasises the case for selecting a 20 

more local staging port to act as a mid-way point. The use of vessels and procedures which 21 

allow several pauses in operations or vessels which can operate in more severe conditions is 22 

clearly essential for this site. 23 

The shorter route from Brest to Crozon results in a journey time of around 1.3 days but 24 

the average probability of successfully completing towage plus installation in one contiguous 25 

operation is still very low, with a maximum of 5-6% in July-September. Again, assuming 26 

there can be a pause between towage and installation, the average probability of completing 27 

towage alone is around 25% in July-September. Whilst better than Peterhead-Shetland, there 28 

is still clearly a risk in any given summer that these operations cannot be completed and thus 29 

the need for more tolerant vessels and procedures is highlighted. 30 
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 1 

 2 
Fig. 6 Probability of suitable weather window for semi-submersible installation including transport from port 3 

 4 

Due to the stage of the development of the industry, there is a limited amount of knowledge 5 

on the precise requirements for accessibility for operations and maintenance. Two current 6 

EU FP7 projects are attempting to analyse the detail of the required processes for offshore 7 

energy – Leanwind for the wind industry and DT Ocean for the wave and tidal industries. 8 

Here, a basic calculation based on [35] has been carried out to compare the case study sites. 9 

Assuming that operations can be carried out safely at a wind speed less than 10m/s and wave 10 

height of less than 2m, the percentage of hours in the 10 year period of analysis at each site 11 

where this is the case is shown in Table 6. The most accessible site according to these simple 12 

criteria is Norway 1, due to its much less severe wave conditions, but it is still inaccessible, 13 

on average, for around 50% of hours. Crozon is the next most accessible, but operations 14 

requiring a threshold such as that proposed here would be impossible on average 60% of the 15 

time. 16 

3.3.5 Environmental	impacts	and	conflict	with	shipping	17 

None of the case study sites analysed fall within 1km of any of the Natura2000 sites, but in 18 

terms of environmental considerations, the larger distances from shore of Shetland, Crozon 19 

and Norway 1 compared to the relatively close Norway 3 and Sybill Head mean that the 20 

cable-laying involved will have a greater impact on the sea-bed and associated ecology. 21 

Considering existing shipping routes, Shetland and Sybill Head are not likely to cause 22 

unwanted interference but Crozon and the two Norwegian sites are located close to some 23 

existing shipping routes, as found in [28], requiring substantial consideration. 24 

3.3.6 Summary	of	case	study	sites	25 

The example sites presented here all have strong wind and wave resources but do differ in 26 

their overall suitability for development. Shetland and Sybill Head experience the most 27 

extreme conditions and both sites are likely to have the lowest levels of accessibility, both 28 

for installation and operational purposes. Crozon offers the most likely benefit to combining 29 
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wind and wave energy at a single site, given its low correlation between wind and wave 1 

resources and the consequently smoother power production patterns, but it does have the 2 

disadvantage of potential conflicts with shipping routes. The wave resources are generally 3 

lower at the Norwegian sites, and Norway 1 is very far from shore, but Norway 3 is still 4 

feasible for both combined platforms, and has a favourable wind-wave correlation. It may 5 

offer the best compromise between resources and the likely problems caused by low 6 

accessibility and extreme conditions. In all cases, innovation in terms of managing weather 7 

windows and distance-related problems will offer more possibility to access strong 8 

resources. 9 

The analysis presented uses some basic assumptions about installation and operational 10 

procedures, and relies on simplified parameterisations of complex met-ocean analyses such 11 

as extreme values and the relationship between wind and wave resources. The shipping route 12 

information is a snapshot in time and may not capture all of the existing routes, and whilst 13 

using Natura2000 is a good indicator for environmentally sensitive areas, it is not the 14 

complete picture. Further in-depth analysis of all these features is feasible – and sensible –  15 

only at a smaller scale, perhaps country-by-country. 16 

4. Conclusion	17 

This paper has examined a wide range of issues surrounding site selection for offshore 18 

renewable energy platforms, and in particular, has demonstrated the use of a GIS with 19 

bespoke additional tools to help assess multiple sites with multiple selection criteria. It has 20 

been shown that some sites may be suitable for combined wind-wave energy platforms along 21 

the Atlantic-facing coasts of Europe, with case studies indicating that the machines will 22 

produce high capacity factors. There is a potential risk, however, that the sites with the 23 

highest power availability also suffer the most extreme conditions and some compromise 24 

must be sought between the cost of designing for such conditions and the extra energy 25 

extracted. The additional advantage of having a smoother power output from combined 26 

technologies is likely to be greater at the sites with lower correlation at time zero and a 27 

longer lag to the time of peak correlation. 28 

A potential lack of appropriately-located infrastructure has been highlighted, leading to 29 

locations with good resources and suitable physical conditions being under-exploited due to 30 

lack of ports with construction facilities. The analysis of weather windows, which 31 

considered not just the access conditions at the deployment site but also the conditions along 32 

the route taken by the installation vessels, indicate that for many of the suitable locations, 33 

there will be a very high risk of not completing operations in a single event given existing 34 

vessel and operational weather tolerances, even in calmer summer months. 35 

Legislation governing the installation of offshore renewable energy varies between the 36 

countries of Europe – for example, some environmental protection frameworks and the 37 

process of planning a development. As such, on a continent-wide basis, some countries will 38 

thus present more favourable development opportunities than others and this will clearly 39 

form part of a decision-making process for the developer. Conflict with current uses of the 40 

sea – including, as discussed, existing shipping lanes – is often also a more localised issue, 41 

and as such, site-selection decisions at a smaller scale than evaluated here will necessarily 42 

require smaller-scale analysis to incorporate these spatially variable factors. 43 

A series of subsequent EU FP7 projects, funded under the European Commissions 44 

“Oceans of Tomorrow” initiative, have been investigating the potential for inclusion of other 45 
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factors in offshore platforms alongside energy production. TROPOS (FP7-288192 2012-1 

2015), H2Ocean (FP7-288145 2012-2015) and Mermaid (FP7-288710 2012-2016) added 2 

factors such as aquaculture, hydrogen production and transport and leisure facilities to 3 

offshore energy platform designs. The remit of these projects has been to establish if the 4 

European Commission’s “Blue Growth” strategy can be assisted by the deployment of multi-5 

use platforms which share costs and ocean space. The design process for a potential hybrid 6 

platform is discussed in [36]. The multi-purpose nature of these designs further opens up the 7 

possibility to exploit synergies and for cost sharing with other types of technology. 8 

Additionally it offers more opportunity to make the most productive use of precious marine 9 

space [37].  The hybrid nature of such platforms means that the assessment of environmental 10 

benefits and consequences need careful consideration []. 11 
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7. Appendix	28 

7.1 Data: Energy resources 29 

7.1.1 Atmospheric	Model	30 

Atmospheric circulation has been simulated using the SKIRON model, developed at the 31 

National Kapodistrian University of Athens (NKUA) by the Atmospheric Modelling and 32 

Weather Forecasting Group (AM&WFG) in the framework of the national funded project 33 

SKIRON and the EU funded projects MEDUSE, ADIOS and recently CIRCE ([38], [39]). 34 

SKIRON is a full physics non-hydrostatic model with sophisticated convective, turbulence 35 

and surface energy budget scheme. It is based on the ETA/NCEP model, originally 36 

developed by Mesinger [40] and Janjic [41].  37 

The domain is shown in Fig.7, with a spatial resolution of 0.05° x 0.05°, 45 levels in the 38 

vertical (from surface to 50 hPa), and a time step of 15 seconds. The initial condition fields 39 

are from a high-resolution (0.15°) regional reanalysis system, prepared with the 40 

implementation of LAPS assimilation system [42], [43]. The initial guess fields are the 41 

ECMWF 0.5°ixi0.5° operational analysis fields while the lateral conditions are updated 42 

every 3 hours. The model utilizes daily SST fields from NCEP with a resolution of 0.5°. The 43 

model produced raw hourly outputs for a set of variables at chosen vertical levels (10, 40, 44 

80, 120, 180) including, for example, pressure, air density, wind components, turbulent 45 

kinetic energy etc. 46 

 47 
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 1 
Fig.7:  The gray-shading indicates the SKIRON model domain. The green frames show the areas over which 2 
SKIRON passes wind data to the WAM model. 3 

7.1.2 Wave	model	4 

The ECMWF version of the wave model WAM ([44], [45]) CY33R1([46], [47]) has been 5 

adopted for the simulation of the wave parameters. This version contains updates that 6 

increase the capabilities significantly. In particular, the wave model includes new features 7 

that support the better parameterization of bathymetry and shallow water effects that affect 8 

the time evolution of the wave spectrum ([49], and [50]). Moreover, the option of using 9 

nested domains ensure the utilization of accurate boundary conditions and give the choice of 10 

adopting high resolution domains over the area of interest supporting in this way the 11 

accurate simulation of local effects. On the other hand, the credible simulation by wave 12 

models is critically affected by the quality of the atmospheric forcing as pointed out in 13 

different studies ([46], [51], [53], [58], [63]). Towards this direction, the use of Skiron model 14 

is a critical advantage since the system is designed to use either the hydrostatic 15 

approximation or non-hydrostatic dynamics making it able to run on high resolution mode. 16 

SKIRON is a well-established atmospheric system adopted in a great number of previous 17 

technical and operational studies including wave applications ([54], [63], [67]), oil spill 18 

modelling ([58]), as well as air-quality applications [47], renewable energy ([52], [57], [61],  19 

[65]), photochemical processes ([66]), and desert dust studies ([29], [48], [60], [62]). 20 

Concerning the impact of sea surface currents on the local wave climatology, it has been 21 

proven that they may influence the wave generation mechanism and the wave propagation 22 

resulting in associated alterations in the significant wave height and the mean wave period 23 

due to the Doppler shift ([55], [56], [59], [65], [67]). The wave model adopted in our study 24 

makes possible the use of sea surface currents as a second forcing apart the wind speed and 25 

direction. 26 

The wave model is run in two domains (Fig.8): the North Atlantic (20N—75N, 50W—27 

30E) and the Mediterranean and Black Seas  (29N —47N, 6W—42E). The Atlantic domain 28 

extends to the west far beyond the area of interest so as to capture the all-important swell 29 

propagation. A high spatial resolution has been adopted (0.05° x 0.05°). The wave spectrum 30 

is discretized into 25 frequencies (logarithmically spaced in the range: 0.0417—0.5476 Hz) 31 

and 24 equally spaced directions, while the propagation time step is 75 seconds. WAM is 32 

operated in shallow-water mode, driven by 3-hourly wind input (10 m wind speed and 33 

direction) obtained from the SKIRON regional atmospheric model over the areas shown in 34 

Fig.7. 35 
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 1 
Fig.8:  The gray-shading indicates the domain covered by LAPS. The red frames show the domains of the 2 
WAM model. The green frame as in Figure 1. 3 

 4 

 5 
Fig.9: Selected locations at which the full wave spectrum is available. 6 

7.2 Data: Physical limits and other constraints 7 

The bathymetry dataset used within the wave model was ETOPO 1 [48] at the resolution of 8 

the model (0.05°). Two further parameters have been derived from the GEBCO depth data 9 

using QGIS: slope, and ruggedness index (the root-mean-squared difference between the 10 

elevation in the current cell and the elevation of the eight surrounding cells [49]). Distance to 11 

shore can be visualised in the GIS via layers containing boundaries at a range of selected 12 

values between 15 and 200km. This could reflect the minimum distance to, for example, 13 

onshore substations. 14 

Environmental restrictions have been added to the database in the form of the Natura 15 

2000 (2011) areas [29], [50] and ‘Important Bird Areas’, as defined in [51]. These areas do 16 

not absolutely prohibit any development or construction, but suggest areas of particular 17 

environmental sensitivity and where development would be more tightly controlled and 18 

monitored than at other sites.  19 

Port information from the World Port Index [25] has been added as a layer. A subset of 20 

the information has been identified to help with the selection of suitable ports. The 21 

categories of ‘channel depth’ (classified from A - over 23.2m, to Q - up to 1.5m) and 22 

‘maximum vessel size’ (M – less than 500 feet, L – over 500 feet) inform as to the limits on 23 

vessel length and draft at a given port. ‘Repaircode’ (classified A – extensive, to D – 24 

emergency and N – none) indicates the shipbuilding facilities available, whilst ‘Dry-dock’ 25 

and ‘Marine railway’ (if present, S – small, M – medium, L – large) are fairly self-26 

explanatory. 27 

7.3 Data: User interaction 28 

Carrying out site selections based on multiple criteria using in-built QGIS functions is time-29 

consuming and not easily repeatable. A custom tool has been designed (Fig.10), allowing the 30 



 28 

user to input bespoke criteria limits and weightings. This offers more flexibility to cope with 1 

different requirements than in previous work, e.g. [11]. Minimum resource characteristics, 2 

depth ranges and port distances can be specified, and all sites fitting the criteria will be 3 

highlighted in one step. Options are provided for excluding areas within Natura2000 and 4 

coastal visibility zones. 5 

 6 

 7 
Fig.10 The GUI window for the a bespoke query 8 

 9 

For computational speed, the main ‘Marina Query’ tool makes fixed assumptions about 10 

required port facilities, and calculates their distance on a radial basis, rather than along a 11 

feasible shipping route. A second QGIS plug-in tool has been developed (Fig.11) to calculate 12 

travel distance from individual sites to ports with user-defined facilities. It uses the 13 

pgRouting extension for PostGIS [52], which establishes the shortest travelling distance 14 

between two points along a network of paths. In this case, the path network was devised 15 

using a mesh of points spaced at 5km intervals in the offshore areas. 16 

 17 

 18 
Fig.11 GUI for Port Distance Calculator 19 


