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Abstract:

• A normal semiparametric mixture regression model is proposed for longitudinal data.

The proposed model contains one smooth term and a set of possible linear predic-

tors. Model terms are estimated using the penalized likelihood method with the

EM-algorithm. A computationally feasible alternative method that provides an ap-

proximate solution is also introduced. Simulation experiments and real data example

are used to illustrate the methods.
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1. INTRODUCTION

Modeling of longitudinal data have been of special interest in statistics dur-

ing recent decades. Depending on the context several approaches have been used:

multivariate analysis, linear and generalized linear mixed and mixture models,

structural equation models, Bayesian methods, quantile-regression etc. For com-

prehensive summaries of different approaches to longitudinal data analysis we

can refer to Fitzmaurice et al. (2011) and Diggle et al. (2013), for example.

In our approach the focus is on the situation, where the studied population

is not completely homogenous over time, but is instead comprised of groups of

individuals with the same kind of mean developmental profiles. One approach

to understanding such heterogeneity is to apply the theory of Finite Mixtures

(FM). Nagin (1999 and 2005) and Jones et al. (2001) applies the generalized

linear models theory to FM with the assumption that observations within a given

mixture are independent. A further extension is to take some model parameters

(e.g., polynomial coefficients) as random variables or (latent factors), see, e.g.,

Muthen and Khoo (1998). These random terms can then be used for modeling

the correlation of the observations within a component mixture. The other kind

of mixture regression application arises if part of the random model parameters

arise from a mixture distribution (see e.g. Verbeke and Lesaffre, 1996).

The focus in the present study is especially on modeling the mean within

the mixture using semiparametric regression techniques (Nummi et al. 2011 and

Nummi et al. 2013). The mean consists of one time-dependent smooth term and

a set of linear predictors that may or may not depend on time. Model terms are

estimated using the penalized likelihood method with the EM algorithm. The

present study also introduces a computationally feasible alternative that provides

an approximate solution using an ordinary linear models methodology developed
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for mixture regression. The data analysis part of the study consists of a simulation

experiment and an analysis of real longitudinal data set of growth characteristics

of Finnish children.

Section 2 introduces the basic multivariate normal mixture model and its

parameter estimation with the maximum likelihood method. Then, the basic

model is extended to the semiparametric mean model. Parameter estimation us-

ing penalized likelihood with the EM algorithm is introduced in detail. Section

3 introduces a method for obtaining a computationally feasible approximate so-

lution for a semiparametric mean trajectory model and a simulation study was

used to demonstrate the performance of the technique. The section closes by

the real data analysis of growth curves of Finnish children. Finally, Section 4

summarizes the main results.

2. DESCRIPTION OF THE PROBLEM

2.1. Theoretical background

The aim is to identify clusters of individuals with the same kind of de-

velopmental curves. Let yi = (yi1, yi2, . . . , yipi)
′ represent the sequence of mea-

surements on individual i over pi periods and let fi(yi|Xi) denote the marginal

probability distribution of yi with possible time dependent covariates Xi. It is

assumed that fi(yi|Xi) follows a mixture of K densities

(2.1) fi(yi|Xi) =
K∑

k=1

πkfik(yi|Xi),
K∑

k=1

πk = 1 with πk > 0,

where πk is the probability of belonging to the cluster k and fik(yi|Xi) is the

density for the kth cluster. If the multivariate normal distribution is assumed we
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get

(2.2) fik(yi|Xi) = (2π)−
pi
2 | Σik |−

pi
2 exp{−

1

2
(yi − µik)

′Σ−1

ik (yi − µik)},

where µik is a function of covariates Xi with parameters θk and Σik is a variance-

covariance matrix within the kth component, involving σk, which is a vector of

unique covariance parameters. The parameter estimates can then be obtained

by maximizing the log-likelihood function for the entire set of N (independent)

individuals y1, . . . ,yN

(2.3) l(φ | y1, . . . ,yN ) =

N∑

i=1

log fi(yi|Xi)

over all unknown parameters φ = (π1, . . . , πK ,θ1, . . . ,θK ,σ1, . . . ,σK)′. A popu-

lar method for the Maximum Likelihood (ML) estimation is the EM (Expectation

and Maximization) algorithm Dempster et al. (1977) that is often used, for ex-

ample, for incomplete data problems. The EM algorithm is an iterative method

consisting of two main steps. The E-step finds the expected log-likelihood under

current parameter estimates, and the subsequent M-step maximizes the expected

log-likelihood function. These two steps are then iterated until convergence. The

mixture model EM algorithm implementation details can be found, for instance,

in McLachlan and Peel (2000).

The basic mean model in applications is often a simple linear model, e.g.

an appropriate low degree polynomial, in time. For many appropriately smooth

curves, this provides a reasonable model. However, in certain cases, a low degree

polynomial may not prove to be sufficient due to irregular or insufficient mea-

suring points or otherwise complicated mean curve forms, for example. The aim

here is to introduce a new, more flexible semiparametric model with one possible

smooth term (time in our application) that can be used for mean curve modeling

with normal mixture components. The important advantage is that smoothing

is done separately for each mixture component and thus a very rich set of curves

are available for modeling.
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2.2. Modeling the conditional mean

The set of covariates Xi is divided into the parametric part Ui and to the

non-parametric part ti, where ti is the vector of measuring times ti1, . . . , tipi . For

the ith individual within the kth mixture we assume the semiparametric model

(2.4) yik = gik +Uibk + ǫik,

where gik = [gk(ti1), . . . , gk(tipi)]
′ is a smooth vector of twice differentiable func-

tions evaluated at ti, Ui is a matrix of h covariates (constant term not included)

and bk is a parameter vector to be estimated. Note that the same measuring

points are used for each individual, but the measurement sequence (number of

measurements actually taken) may vary from individual to individual. The co-

variance matrix of random errors ǫi for the kth group takes the simple form

Σk = σ2
kI (Nagin 1999 and 2005). For more elaborated covariance modeling, we

may refer to, for example, Ye and Pan (2006) and Leng et al. (2010).

We can define the so-called roughness matrix as G = ∇∆−1
∇

′ (from the

penalty
∫
g′′2), where the non-zero elements of banded p× (p− 2) and (p− 2)×

(p− 2) matrices ∇ and ∆ are defined as

∇l,l =
1

hl
, ∇l+1,l = −(

1

hl
+

1

hl+1

),∇l+2,l =
1

hl+1

and

∆l,l+1 = ∆l+1,l =
lk+1

6
, ∆l,l =

hl + hl+1

3
,

where hj = tj+1 − tj , j = 1, 2, ..., (p − 1) and l = 1, 2, ..., (p − 2) (see e.g. Green

and Silverman, 1994). The penalized log-likelihood function is now

(2.5) l(φ | y1, . . . ,yN ) =
N∑

i=1

log{
K∑

k=1

πkfik} −
K∑

k=1

{
αk

2
g′kGgk},

where αk is a smoothing parameter and φ is a vector of unknown parameters.

Maximizing this log-likelihood is computationally intensive. The next section

shows how the solution can be obtained using the iterative EM algorithm.
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2.3. Estimation with the EM algorithm

In this section, we show how the semiparametric mixture model can be

estimated using the EM algorithm. In this implementation, estimation is viewed

as a missing data problem (see also McLachlan and Peel, 2000). We denote

y∗

i = (y′

i, z
′

i)
′,

where zik = 1 if yi stemmed from the kth component; otherwise, zik = 0. The vec-

tors z1, . . . , zN can now be seen as realized values of random vectors Z1, . . . ,ZN

from the multinomial distribution. The complete-data, joint log-likelihood func-

tion of yi and zi can be written as

(2.6) lc(φ) =
N∑

i=1

{
K∑

k=1

zik[log(πk) + log(fik)]} −
K∑

k=1

αk

2
g′

kGgk.

The algorithm’s E step is simply to calculate the conditional expectation of lc(φ)

under current parameter estimates φ̂ and the observed data. This yields

(2.7) E(Zik | φ̂,y1, . . . ,yN ) =
π̂kfik(yi | Xi, ξ̂k)∑K
l=1

π̂lfil(yi | Xi, ξ̂l)
= ẑik,

where ξ̂1, . . . , ξ̂K are vectors consisting of estimates of mixing distribution mean

and variances. In the (M step) the expected log-likelihood for the completed data

(2.8) E[lc(φ)] =

N∑

i=1

{

K∑

k=1

ẑik[log(πk) + log(fik)]} −

K∑

k=1

αk

2
g′kGgk

is maximized. Note that for the kth component we may denote y = (y′

1, . . . ,y
′

N )′,

U = (U ′

1, . . . ,U
′

N )′ and W k = diag(Wk1, . . . ,WkN ), where Wki = ẑikIi. The

expected log-likelihood for the kth component (×2) can be written as

(2.9) −
1

σ2
k

[y − (Ubk +Ngk)]
′W k[y − (Ubk +Ngk)]−Nklog(σ

2
k)− αkg

′

kGgk

where Nk =
∑N

i=1
piẑik. The solutions are obtained at

b̂k = [Ũ ′U ]−1Ũ ′y and Nĝk = S(y −Ub̂k),
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where Ũ = (I−S)W kU and S = N(N ′W kN+αkG)−1N ′W k is the smoother

matrix, where N is an incidence matrix. Note that the maximizing curve ĝk is

a natural cubic smoothing spline with knots at the design points t1, . . . , tp. The

conditions for uniqueness of the solutions turns out to be identical to the fully

parametric regression with explanatory variables ti and Ui (Green and Silverman,

1994). Estimates for σ2
k and πk can be obtained from

σ̂2
k =

1

Nk

[y − (Ub̂k +Nĝk)]
′W k[y − (Ub̂k +Nĝk)] and π̂k =

N∑

i=1

ẑik/N

with
∑K

k=1
π̂k = 1. A further simplification of the M-step is easily obtained for

complete and balanced data (parametric part dropped) using

ĝk = (π̂kNI + αkG)−1

N∑

i=1

ẑikyi

and

σ̂2
k =

1

Nk

N∑

i=1

ẑik(yi − ĝk)
′(yi − ĝk).

To update the value of the smoothing parameter αk the following idea is in-

troduced. The profile log-likelihood for the kth component given y, U1, . . . ,UN ,

t1, . . . , tN and W1, . . . ,WN is written as a function of the smoothing param-

eter only. This yields to l(α) = −Nk − Nklog[σ̂
2
k(α)] and the maximum is ob-

tained when σ̂2
k(α) is minimized with respect to α. When α1, . . . , αK are updated

also the estimates for σ2
1, . . . , σ

2
K , b1, . . . , bK and g1, . . . , gK are readily available.

Since each component is smoothed individually, the method allows a very flexi-

ble modeling tool within each of the K components of the mixture model. The

EM steps are iterated until convergence. However, in some cases, the algorithm

may converge to a local maximum. Therefore, in practice many initial values are

usually tested. For more detailed considerations of the EM algorithm in a similar

kind of context we can refer to Fariaa and Soromenhobre (2010) and to Basford

and McLahlan (1985).

Identifiability is a crucial issue in mixture modeling. This topic for normal

mixture is studied quite extensively in Titterington et al. (1985) and McLachlan
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and Peel (2000). For the studies of normal mixture regression we can refer to

Huang and Yao (2012) and of normal nonparametric mixture regression to Huang

et al. (2013). Especially, the results in the later paper are applicable here since

the semiparametric regression model of this paper can be considered as a special

case of their more general class of models.

Selection of the number of components K is a subject of lively scientific

debate. Many statistical criteria have been presented for the purpose, of which

the most important are the information criterion functions, especially AIC and

BIC. In practice also the overall fit and the interpretability of the components

must be taken into account. See McLachlan and Rathnayake (2014) for a review

article of the topic.

In practical implementations, individuals are often assigned to groups or

clusters c1, . . . , cK according to posterior probabilities ẑik. This is often done

using maximum posterior probability max{ẑik} or by random integers generated

using ẑik as probabilities. This assignment of individuals to specific clusters

can be seen as an important contribution to longitudinal data analysis. This

is because many important latent characteristics manifest themselves only when

analyzing longitudinal data. However, further statistical analysis of the identified

clusters must be accomplished very carefully since they are not fixed constructs,

but are based on probabilities.
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3. DATA ANALYSIS

3.1. Computing using an approximation

In the following, we present a simple method to estimate the semiparametric

model using standard statistical software (e.g. Jones et al. 2001, Leisch 2004,

Muthen and Muthen 2007) developed for mixture regression. The method is

based on the spline approximation. For the ith individual in the kth trajectory

group (indices dropped), we have the semiparametric model

(3.1) µ = g +Ub,

where we have the estimate b̂ = [Ũ ′U ]−1Ũ ′y and ĝ = Sα(y − Ub̂), Sα = (I +

αG)−1 and Ũ = (I − S)U . The whole semiparametric curve is then fitted by

(3.2) µ̂ = Sy + Ũ b̂.

For the smoother matrix S we can show that

(3.3) S = M(I + αΛ)−1M ′,

where M is the matrix of p orthogonal eigenvectors of the roughness matrix G

and Λ is a diagonal matrix of corresponding p eigenvalues λ1, . . . , λp. Note thatG

and S share the same set of eigenvectors, but in the reverse order. Subsequently,

we assume that eigenvectors m1,m2, . . . ,mp of M are ordered according to the

eigenvalues γ = 1/(1 + αλ) of S. The sequence of these eigenvectors appears

to increase in complexity like a sequence of orthogonal polynomials and the first

two eigenvalues are always 1 (corresponding eigenvectors span a straight line

model, see e.g. Ruppert et al., p. 79, 2005). We can then approximate S by

P = McM
′

c, where Mc contains the first c eigenvectors of M . The number c

of needed eigenvectors can be estimated using ordinary model selection criteria
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like AIC, BIC, etc. (for more details see Nummi et al. 2011 and Nummi et al.

2013). The fit of the model (3.2) is approximated by fitting the approximating

mean model

(3.4) µ∗ = Mcγ +Ub.

Thus estimating the semiparametric mean model is now returned to the linear

model framework. Therefore we can quite easily apply the common mixture

regression statistical software for our analysis.

A simulation study was conducted to test how well the approximation

method perform when the data are generated using different, but closely be-

having, curve forms. Following models were used to simulate the data

a) yj = 0.1 + 1.5xj − 0.1x2j + dazj + ǫj ,

b) yj = 0.1 + 1.5xj − 0.1x2j + dbzj + ǫj ,

where ǫj ∼ N(0, 0.25), zj = cos(0.5πxj), xj = j, j = 1, . . . , 10, da = 0.8 and db =

0. The series of 10 measurements were repeated 100 times for each model. For

these 200 series of measurements completely random dropouts were also generated

with a dropout probability for a single measurements as pj = 0.2, j = 2, . . . , 10

(no dropouts in x1).

For the simulated data mixture regression analysis was performed. First,

the true semiparametric mixture model was fitted with g(x) as the nonparametric

term and z as the parametric term (method 1). This is then compared with the

fit provided by approximating model, where first five eigenvectors m1, . . . ,m5

and z are used as explanatory variables (method 2). For both methods 20 runs

with different starting values were tested with K = 1, 2, 3, 4. The following BIC

values were observed: method 1) 1646.629, 1559.574, 1612.512 and 1666.069;

method 2) 1637.456, 1536.163, 1565.656 and 1604.579. Clearly K = 2 gives the

minimum and this is therefore taken as the number of groups for both methods.
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Figure 1: Plot of simulated data and conditional means. Solid line corre-

sponds the true semiparametric model (method 1) and dotted

curve corresponds the linear model approximation with c = 5

(method 2).

Figure 1 gives the plot of simulated data and the means in xj , j = 1, . . . , 10 for

the identified groups.

The fit of these two methods were very close to each other. First the mixing

proportion estimates were very close: π̂11 = 0.46; π̂12 = 0.45 (group 1) and π̂21 =

0.54; π̂22 = 0.55 (group 2). The conditional means at points xj , j = 1, . . . , 10 were

also very close for both groups. For group 1 the fitted curves almost completely

overlap and for the group 2 only a slight difference for the last points of xj (j > 5)

is observed. This demonstrates that the approximation works very well when the

semiparametric mixture regression model with one smooth term and parametric

part is approximated by the proposed linear model.
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Figure 2: AIC, BIC and ICL values of the fitted models for k = 1, . . . , 7

(males on the left-hand side and females on the right-hand side).

3.2. Analysis of height growth

The data used for this study is a part of the data of growth measurements

of 4,223 children collected in Finland (Vuorela 2011 and Nummi et al. 2014).

Birth cohorts from five years were examined in original data: 1974 (n=1,108),

1981 (n=987), 1991 (n=586), 1995 (n=786) and 2001 (n=766). However, for our

study we considered only the birth cohort 1974. The children were measured in

well-baby clinics, schools and health care centers from birth up to age 15. The

data included anthropometric measurements at birth and seven routine health

checkup times: at six months and, 1, 2, 5, 7, 12, and 15 years. In addition, the

gender, the area of residence (urban/rural), and the mother’s pregnancy weeks

were also included.

Understanding human growth during childhood and adolescence has been

of special interest for pediatricians, health scientists, and the clothing industry,
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among others. Statistical models for growth have been investigated by Gasser

et al. (1984), Poortema (1989), and Karlberg (1987), for example. A recent

overview of analytical strategies of human growth is presented in Johnson (2015).

In statistical models, growth is often divided into age periods. For example,

Karlberg (1987) applied the following models:

1. Infancy: y = a+ b{1− exp(−ct)}+ ǫ,

2. Childhood: y = a+ bt+ ct2 + ǫ

3. Puberty: y = a/[1 + exp{−b(t− t∗)}] + ǫ,

where y is height, t is the age, a, b and c are parameters to be estimated, and t∗

is the peak velocity age. Naturally, the age period in which each of the models

applies varies from individual to individual. It is also well known that infant

birth weights influence further childhood development, including mortality and

morbidity. As a result, it could be interesting to use the birth weight as a para-

metric term and evaluate its effects on different mean developmental curves. The

basic model for the ith individual in the kth group takes the form

yij = gk(tij) + βkui + ǫij ,

where ui is the birth weight a child and ǫij is independent and identically normally

distributed random error term with V ar(ǫij) = σ2
k.

The data were first divided into two parts by gender, because it is well

known that the growth curves differ. The actual analysis started by fitting the

cubic smoothing spline over both data sets when K = 1 and the smoothing

parameter was then estimated using the method of generalized cross-validation.

The estimated degrees of freedom (EDF) for a smoother were ≈ 7.998 for both

data sets. Therefore, a natural choice for the approximation model dimension is

c = 7. This gives us seven first eigenvectors of S that are used in approximation

models.
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Figure 3: Fitted trajectory curves µ̂∗k = M5γ̂k + ub̂k of the final models

when birth weight ui is set to the mean value (males on the left

and females on the right hand side).

The approximation model was fitted for k = 1, . . . , 7 and the corresponding

criterion values are plotted in Figure 2. It is clear from Figure 2, that for both

genders, the decrease in criterion values when k > 6 is relatively small. Therefore,

we took k = 6 and k = 7 as possible candidate models. However, the graphical

investigation of the fitted trajectory curves revealed that k = 7 may not provide

any new relevant information from the interpretation point of view. Therefore,

our choice wasK = 6 for both genders. The fitted curves are presented in Figure 3

with model covariates fitted to their mean values.

The parameter estimates of each of the groups are given in Table 1. Clearly,

birth weight has some effect and the effects are not similar for genders. For boys

the estimates β̂km does not vary much over the groups. However, the smallest

estimate β̂3m = 2.042 was obtained for the largest group 3. For girls the estimates

vary depending on the group. Interestingly, the largest estimate β̂6m = 4.043 is
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Table 1: Model parameter estimates for both genders. The groups are

set to decreasing order according to the level of the mean curve

at the end of the follow-up period.

Group π̂M π̂F β̂1M SE(β̂1M ) β̂1F SE(β̂1F )

1: 0.0842 0.1095 2.986 0.3178 2.035 0.259

2: 0.1969 0.2329 2.285 0.1960 1.796 0.223

3: 0.3497 0.0697 2.042 0.1405 3.954 0.353

4: 0.1292 0.3196 2.520 0.2586 2.411 0.174

5: 0.1431 0.1910 2.647 0.2207 2.801 0.264

6: 0.0970 0.0774 2.668 0.2570 4.043 0.790

obtained for the group 6 where the level of the mean curve is the lowest (Figure

3). It seems possible that birth weight is an important factor in the development

of further height growth. Especially, this finding is very interesting for girls.

However, further analysis of this connection is a topic of further research work.

4. CONCLUDING REMARKS

The aim of this study was to apply nonparametric regression techniques

for mean modeling of normal mixtures. Here, the mean consisted of one time-

dependent smooth term and a set of linear predictors that may or may not depend

on time. It was also shown how to obtain a computationally simple approximate

solution. We believe that our approach provides a new, more flexible method,

for the analysis of normal mixtures. Modeling the within-trajectory covariance

matrix remains an interesting challenge for further research. Further analysis

of height or weight growth data with different statistical methods using more

background covariates also remains a topic of a future study.
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