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Abstract- Parameters of blood flow measured by ultrasound in radial and ulnar arteries, such

as flow velocity, flow rate and wall shear rate, are widely used in clinical practice and clinical

research. Investigation of these measurements is useful for evaluating accuracies and

providing the knowledge of error sources. A method for simulating the spectral Doppler

ultrasound measurement process was developed with computational fluid dynamics providing

flow-field data. Specific scanning factors were adjusted to investigate their influences on

estimation of the maximum velocity waveform, and flow rate and wall shear rate were derived

using the Womersley equation. The overestimation in maximum velocity increases greatly

(peak systolic from about 10% to 30%, time-averaged from about 30% to 50%) when the

beam-vessel angle is changed from 30o to 70o. The Womersley equation was able to estimate

flow rate in both arteries with less than 3% error, but performed better in the radial artery

(2.3% overestimation) than the ulnar artery (15.4% underestimation) for estimating wall

shear rate. It is concluded that measurements of flow parameters in the radial and ulnar

arteries with clinical ultrasound scanners are prone to clinically significant errors.

Key words: Computational fluid dynamics, Radial artery, Ulnar artery, Flow velocity, Flow

rate, Wall shear rate, Womersley, Doppler ultrasound, Simulation, Field II.
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INTRODUCTION

Measuring blood flow velocity (FV) and related quantities, such as flow rate (FR) and wall

shear rate (WSR) with ultrasound, has been of interest for several decades in clinical practice and in

clinical research (Gill 1985; Hoskins 2011). A large number of studies have concentrated on

measuring and validating these parameters in various arterial sites with ultrasound (Leguy et al.

2009; Ponzini et al. 2010; Osmanski et al. 2012). Reviews of the topic are provided in Hoskins

(1999b) and Hoskins (2008).

Most previous studies focused on the large arteries such as carotid or femoral where

diameters are typically in the range 4-8 mm. There has been less effort in smaller arteries. Of

particular interest in this paper are the radial and ulnar arteries in the wrist where the arterial

diameters are typically about 2-3.5 mm. Clinical studies have used ultrasound to measure velocity

related quantities in these two arteries in relation to the creation of arteriovenous fistula, in

preparation for radial artery harvesting for coronary bypass surgery, and in the study of Raynaud’s

syndrome. For instance, the WSR or its derivative wall shear stress (WSS) has been in the

remodelling of radial artery after arteriovenous fistula for haemodialysis access in many studies (e.g.

Remuzzi et al. 2003; Manini et al. 2014). Furthermore, in radial artery harvesting for coronary

bypass surgery, preoperative assessment of adequacy of the collateral ulnar circulation to the hand

by detecting the FV or FR in the ulnar artery is necessary to avoid postoperative ischemia which

could lead to severe risk (Royse et al. 2008; Habib et al. 2012). The FV and its related parameter FR

also have chosen to help distinguish different types of Raynaud’s syndrome. This differentiation is

important for clinical management (Chikui et al. 1999; Toprak et al. 2011).

Routine clinical ultrasound scanners only provide quantitative FV (frequency shifts) with

spectral Doppler from a single small sample volume. Other flow related parameters, such as FR and

WSR, have to be derived based on the data from this single sample volume. Some studies simply

estimated the FR as the product of maximum FV and blood vessel area (Toprak et al. 2011), and

can only make a rough estimate. The Hagen-Poiseuille model was also used to estimate the FR in
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early studies but this assumes the flow is steady. The Womersley theory was proposed as a more

advanced method to derive the velocity profile under pulsatile flow, from which both the FR and

the WSR can be calculated. Measurements of FR and WSR based on the Womersely theory using

clinical ultrasound, including the evaluations of these measurements, have been conducted in large

arteries such as the carotid and brachial arteries (Blake et al. 2008; Ponzini et al. 2010) and although

the Womersley theory was also applied to estimate the FR and WSR in the small-diameter radial

and ulnar arteries (Remuzzi et al. 2003; Van Canneyt et al. 2013), there are very few studies

evaluating those measurements. Considering the value of the FR and WSR in clinical practice and

research, it is felt necessary to assess this Womersley theory in these two arteries. The authors have

previously reported a flow-phantom study on measurement of FR and WSR in straight vessels with

diameter comparable to the radial and ulnar arteries(Zhou et al. 2016). The flow phantom in that

study was not able to generate a physiologically realistic flow due to its straight tube-like blood

vessel mimic.

While the traditional approach to evaluating velocity measurement errors is by use of

experimental flow phantoms, a less common, but potentially more flexible method, is simulation of

the ultrasound measurement process in the computer. This involves simulation of the ultrasound

system and also simulation of the flow-field. Simulation of the ultrasound system involves

simulation of beam-forming including scattering from seed particles, followed by construction and

processing of RF data (Kerr and Hunt 1992; Jensen and Munk 1997). At this earlier date, the flow

field was obtained by approximated analytical equations to derive the trajectory of moving

scatterers for simulating ultrasound signals.

Computational fluid dynamics (CFD) provides 3D, time-varying, flow-field data using an

iterative approach. This has been developed for simulation of patient-specific blood flow since the

late 1990s (Milner et al. 1998; Taylor and Figueroa 2009; Malkawi et al. 2010) and there is a

growing community using these techniques (Steinman and Taylor 2005; Hoskins and Hardman

2009; Sui et al. 2015). Swillens et al coupled ultrasound simulation with CFD in the investigation of
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velocity measurement errors in arteries (Swillens et al. 2009a; Swillens et al. 2009b; Swillens et al.

2010). The meshed geometry from CFD was transformed into a 3D grid where moving scatterers

were fitted spatially and temporally according to the CFD velocity field. This group reported FV

and FR measurement errors in the radial artery (Van Canneyt et al. 2013), but not of WSR, and not

in the ulnar artery. Furthermore, factors affecting the Doppler ultrasound estimations in these two

arteries remained to be investigated.

In the present study, the technique of coupling CFD and ultrasound simulation is adopted to

evaluate the errors in FV, FR and WSR measured by Doppler ultrasound in the radial and ulnar

arteries.

METHODS

Overall

The basic simulation procedure to investigate the ultrasound-measured flow parameters in

the radial and ulnar arteries is explained below and a schematic for this procedure is shown in

Figure 1 to help conceptualise this simulation method.

 The MRI dataset from a volunteer’s arm was obtained to reconstruct the 3D geometry of the

radial and ulnar arteries, and provide the necessary boundary conditions for CFD simulation.

 CFD simulation was used to calculate the blood velocity field within the 3D geometry.

 Based on the CFD-calculated velocity field, simulated moving scatterers within the 3D

geometry were scanned virtually by an ultrasound simulator to obtain realistic RF data.

 The RF data was used to estimate the FV by applying typical signal processing strategies

that are commonly used in clinical ultrasound imaging. FR and WSR were derived based on

the Womersley theory.



5

 Flow related parameters estimated from ultrasound were compared with the CFD reference

values, giving an objective assessment of ultrasound estimations and the performance of

Womersley equation in estimating FR and WSR.

Imaged-based CFD simulation

MRI scanning of vascular anatomy for establishing 3D geometry and boundary conditions:

MRI imaging data from the left arm of a single healthy male volunteer (aged 27 years) was acquired

on a 3T Magnetom Trio (Siemens, Erlangen, Germany). A 4-channel flex surface coil was wrapped

around the lower arm for MR signal reception, and the volunteer was positioned head first and

supine in the scanner with echocardiogram (ECG) leads on the chest. Scanning was performed on

the left arm of the volunteer, and the arm was by the side of the body in a comfortable position as

close as possible to the central axis of the scanner bore. Localiser images were initially acquired for

anatomical orientation, followed by a high spatial resolution 3D gradient echo Multi-Echo Data

Image Combination (MEDIC) sequence with water excitation acquired in the axial oblique plane

(perpendicular to the long-axis of the lower arm). The images were acquired with a repetition time

(TR) of 29ms, echo time (TE) of 16 ms and flip angle (FA) of 8o. A series of 176 contiguous slices,

each 1.06 mm thick were acquired with an in-plane pixel resolution of 192x256 and a field of view

of 135mm. The total time of the sequence was 8 minutes. A 2D time of flight (2D-TOF) MR

angiography (MRA) sequence was applied in the same orientation, with TR/TE 13.0/5.80 ms and

FA 18o. A series of 128 slices, each 1.50 mm thick were acquired with an in-plane pixel resolution

of 192x256 and a field of view of 140mm. The total duration of this sequence was 6.5 minutes.

Finally, a 2D phase contrast MRI (PCMRI) sequence was applied in the axial oblique plane in order

to establish arterial and venous flow velocities for the radial and ulnar arteries. This single slice

sequence (3mm thick) was acquired with TR/TE 55.80/4.91 ms and FA 30o, with 64 temporal

phases acquired across the cardiac cycle. The in-plane pixel resolution was 168x192 and the field

of view 127 mm. The sequence was run twice with velocity encoding (VENC) values of 65
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mm.sec-1 and 75mm.sec-1 – just above the anticipated peak arterial blood flow velocities. This study

followed the local Ethical protocol and written informed consent was given by the volunteer.

Segmentation and meshing. Image processing of the MRI dataset was performed using

Amira software (Amira 5.4.3, FEI, Hillsboro, Oregon, USA). This involved segmentation of the

vessels by manually extracting the lumen-vessel boundaries in each slice of the MRI images.

Surface smoothing was applied in Amira before exporting the stl (stereolithography) surface file, in

an attempt to get a surface free of rough edges but with the minimum loss of the original surface

detail. The region of interest from 40 mm above the bifurcation in brachial artery down to a point

near the wrist was chosen. In order to achieve a fully-developed flow, both the inlet and outlet

sections were extended (Fig. 2). Meshing of the 3D geometry with hexahedral elements was

performed using the open source toolkit pyFormex (http://pyformex.org) by the meshing method

proposed by De Santis et al. (2011). During the meshing, isoparametric transformation is used to

map a parametrically defined quadrilateral surface mesh into the vessel volume after representing

the lumen surface with longitudinal Bezier splines. 351288 hexahedral elements were obtained for

the whole geometry after mesh independence test based on the maximum peak velocity and the

maximum wall shear rate.

CFD simulation. Boundary conditions required for simulating the velocity field included

one inlet in brachial artery, and two outlets in radial and ulnar arteries respectively, plus the vessel

walls. The flow rate waveforms in brachial artery inlet and ulnar artery outlet were obtained from

phase-contrast MRI images as explained and were used as corresponding inlet and outlet flow

conditions for CFD. A parabolic velocity profile was assumed when using flow rate waveforms as

inlet and outlet conditions. The blood pressure waveform measured by applanation tonometry

(SphygmoCor XCEL PWA, AtCor Medical Pty Ltd, Illinois, USA) in the radial artery was scaled to

80-120mmHg and used for the outlet pressure boundary condition. In addition, all waveforms were

scaled to one second with respect to time for conformance although the real cardiac cycles obtained

at different sites from flow and pressure are not exactly one second (60 heartbeats per minute). The
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specific amplitude of these waveforms are shown in Figure 2, where the time-averaged flow rate is

47.2 ml.min-1 in the brachial inlet and 21.4 ml.min-1 in the ulnar artery outlet within one cardiac

cycle (obtained from phase-contrast MRI as explained). The 3D geometry was assumed to have

rigid walls and the no-slip condition was applied to at the walls. One and a half cardiac cycles were

simulated to more than cover a complete cardiac cycle.

Blood was assumed to be a non-compressible, Newtonian fluid having the typical properties

of normal healthy human’s blood, density 1050 kg.m-3 and dynamic viscosity 3.5 mPa.s (Stewart et

al. 2012). Abaqus/CFD (Simula, Inc. Providence, RI, USA) was chosen to solve the Navier-Stokes

equations in the 3D transient domain. The projection method in Abaqus/CFD was used to enable

segregation of pressure and velocity fields for efficient solution, and a second-order least-squares

gradient estimation was used for numerical solution. The time step for results output was set to 5 ms.

This meant 200 values were available for the velocity variable within one cardiac cycle. To save

simulation time, only the sections near insonating positions (as indicated by R and U in Fig. 2) were

chosen to generate velocity field output. The CFD simulation took 11 hours on a PC with 64-bit,

3.40 GHz Intel Core i7-3770 processor.

Ultrasound imaging simulation

The Field II ultrasound simulator was used to simulate the PW Doppler ultrasound. 'Field II

operates by simulation of an acoustic field, both in transmission and reception. The received RF

data is then available for estimation of flow velocity (Jensen and Svendsen 1992; Jensen 1996). In

Field II generic beam forming was accomplished by calculating the time delays of transmitting and

receiving signals for individual elements according to the area of interest. There was no attempt to

replicate the beam-forming of any particular commercial ultrasound system; instead generic beam

forming was undertaken. The acoustic field generated by the Field II has high reported accuracy

when compared with realistic measured acoustic field (Jensen 1990).



8

A linear-array transducer was created in Field II for transmitting and receiving the

ultrasound waves. Parameters of this transducer are listed in Table 1. Each transducer element was

divided into 4 rectangular elements in elevation. The pulse repetition frequency (PRF) varied from

3 kHz to 10 kHz according to the velocity in the vessels under different circumstances. Since an

accurate acoustic field cannot be guaranteed in the near-field region of the simulated sound field in

Field II(Jensen and Svendsen 1992), imaging depths were set between 4-50 mm to investigate its

effect and to make sure the sample volume was located in the far-field area while looking into other

factors. The transmit focus was set to the center of the sample volume which is located at the central

axis of the virtual blood vessel. The scanning positions for the radial and ulnar arteries are indicated

as R and U in Figure 2. The length of the sample volume was set large enough (2.3 mm) to

encompass maximum velocity.

Inputting CFD velocity field to US simulator

Field II simulates the RF signal based on the moving point scatterers within the sample

volume. The trajectories of these were determined by the flow velocity field from CFD. The method

proposed by Swillens et al. (2009b) was applied here to regulate stepwise movement of the

scatterers which are spatially and temporally fitted into the meshed 3D grid. The concentration

depended on the spatial cell resolution of the sound beam, normally 10 scatterers in cubic resolution

cell (Thijssen 2003; Swillens et al. 2009b).

Procedure and protocol

To investigate FV and related FR and WSR in these two arteries, the following steps were

taken:

 Based on the simulated RF data, conventional IQ demodulation and fast Fourier

transformation were used to estimate the velocity spectral sonogram;

 The maximum blood velocity waveform was obtained from the outline of the sonogram;
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 The Womersley equation was used to estimate the velocity profile in the blood vessels based

on the maximum velocity waveform from the PW sonogram and vessel diameter from 3D

geometry (Womersley 1955; Zhou et al. 2016);

 FR and WSR then can be derived from the velocity profile and arterial diameter;

 The FV, FR and WSR estimated from simulated RF data can finally be compared with their

corresponding values from CFD results; the WSR results were available from the velocity

value closest to the vessel wall and its distance from the wall surface in the CFD velocity

field.

The accuracy of estimated FV was investigated under beam-vessel angles of 30 o, 40o, 50 o,

60 o, and 70 o by placing the synthetic blood vessel at the appropriate angle with respect to the sound

beam propagation direction. The flow rate in the blood vessel was set at different levels to

investigate its effect on the ultrasound maximum velocity estimation, ranging from two thirds to

twice the phased-contrast MRI measurement by changing the amplitude of the boundary conditions

(flow rate waveforms in Fig. 2) during CFD simulation. To avoid the influence caused by near-field

approximation in field II, the imaging depth was varied as follows: 4 mm, 10 mm, 20 mm, 30 mm,

40 mm and 50 mm. The effect of the beam-vessel angle, the flow rate and the imaging depth were

each investigated by adopting a standard set of criteria then varying each in turn. The standard

criteria is 60 o for beam-vessel angle, MRI-measured value for flow rate and 40 mm for imaging

depth. For example, flow rate and imaging depth would be fixed at MRI-measured value and 40

mm respectively when investigating beam-vessel angles from 30 o to 70 o.

Using the Field II ultrasound scanning was repeated five times in each case when measuring

the maximum velocity so that the mean values and standard deviations were obtained for these

estimations. Maximum velocity waveform from five individual measurements were averaged to

calculate FR and WSR, with beam-vessel angle of 60o, MRI-measured flow rate and imaging depth

of 40 mm.
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RESULTS

Flow Velocity

The velocity field at the peak systolic point of the cardiac cycle in the transverse plane

where the beam axis passes through is shown in Figure 3. It can be seen that the velocity in the

radial artery is higher than in the ulnar artery, with a peak systolic velocity of over 0.6 m.s-1. The

velocity profiles also differ. Sample volume positions in the PW Doppler ultrasound image are

marked in the transverse plane (Fig. 3).

The diameters of radial and ulnar arteries at the beam axis were measured as 3.22±0.02 mm

and 2.82±0.02 mm respectively from the 3D geometry. Simulated velocity spectral sonogram, based

on the velocity field calculated from CFD, are shown in Figure 4. Maximum velocity waveforms,

extracted from the spectrum, are superposed onto the PW sonogram.

Ultrasound-measured maximum velocity waveforms were compared with CFD maximum

velocity waveforms in two methods. Maximum velocity waveforms in the radial artery from CFD

and ultrasound in the beam direction are compared in Figure 5a, with the beam-vessel angle at 60o.

The CFD maximum velocity waveforms in the direction parallel to the vessel are compared with

ultrasound-measured waveforms in the direction of vessel axis as well according to the 60-degree

beam-vessel angle (Fig. 5b). Similar comparisons for the ulnar artery are shown in Figure 5c and

Figure 5d. In the radial artery the ultrasound overestimation of maximum velocity waveform in the

beam direction (30.9% for systolic peak velocity and 52.6% for time-averaged velocity) is higher

than that in the angle-corrected vessel direction (24.2% for systolic peak velocity and 43.6% for

time-averaged velocity). This overestimation difference between beam direction and vessel

direction is much smaller in the ulnar artery where they are 20.6% and 20.9% (Fig. 5c and 5d) for

systolic peak velocity, and 39.6% and 40.4% for time-averaged velocity.
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Based on the maximum velocity waveforms in CFD, errors in the systolic peak velocity and

time-averaged velocity of the ultrasound estimated maximum velocity waveform are illustrated at

different beam-vessel angles, flow rate and imaging depths (Fig. 6a to Fig. 6f). While changing the

flow rate in CFD from two thirds to two times of the MRI-measured values, the error percentages in

both arteries (Fig. 6a and 6b) are almost constant. However the beam-vessel angle does have an

obvious effect on the maximum velocity estimation (Fig. 6c and 6d). In Figure 6e and 6f, it is seen

the imaging depth has no effect for the radial artery but a very large effect in estimation of the

maximum velocity waveform.

Flow rate

Figure 7a presents FR waveforms derived from virtually ultrasound-measured maximum

velocity waveforms using the Womersley equation. The estimated time-averaged flow rate from

ultrasound is 37.9 ml.min-1 in the radial artery and 29.2 ml.min-1 in the ulnar artery. With reference

to the time-averaged flow rates of 25.8 ml.min-1 in the radial artery and 21.4 ml.min-1 in the ulnar

artery for boundary conditions in CFD, the ultrasound-estimated time-averaged flow rates were

overestimated by 46.9% and 36.3% in the radial and ulnar arteries respectively. FR waveforms

derived from CFD maximum velocity waveforms using Womersley equation are given in Figure 8a.

In this case, the time-averaged flow rates from Womesley equations are 26.3 ml.min-1 for the radial

artery and 20.8 ml.min-1 for ulnar artery, indicating very small errors compared to the true value

from CFD.

Wall shear rate

The WSR was also analysed in two ways. The WSR waveforms calculated from the

virtually ultrasound-measured maximum velocity waveforms and from the CFD maximum velocity

waveforms were both compared with that from the CFD references in the two arteries (Fig. 7b and

Fig. 7c, Fig. 8b and 8c). The CFD reference WSR waveforms at each meshed element (elements are
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shown in Fig. 9 for the radial artery) around a circumference of the vessel wall at the axis of the

sound beam were calculated. It can be seen that the wall shear rate values are not constant around

the circumference. The average WSR waveform was calculated around this circumference in each

case to compare with Womersley-estimated WSR waveform in terms of their systolic peak values

and time-averaged values as shown in Table 2.

DISCUSSION

Blood flow in arteries is complicated due to the characteristics of the cardiovascular system

such as its geometry and pulsatile flow. In modern clinical ultrasound scanners, a dominant source

of error velocity estimation is the geometric spectral broadening which can lead to overestimation in

velocity especially for maximum, and its error is dependent on the beam-flow angle (Hoskins 1996;

Steinman et al. 2001). In PW Doppler a lack of knowledge of the true beam-flow angle (the angle

between the beam and moving target) can cause underestimation or overestimation of flow velocity

in the direction of vessel axis when simply assuming the flow is parallel to blood vessel(Hoskins

1999a; Van Canneyt et al. 2013). The bias in estimating FV would cause errors in estimating the

velocity related parameters, such as FR and WSR.

Flow velocity

In Figure 3, the velocity contours in the transverse planes of these two arteries, where

sample volumes are located, showed that the flow conditions in the radial artery are more

complicated and the velocity profile is not symmetric compared to that in the ulnar artery. This also

showed that even a long sample volume could not guarantee the maximum velocity is located

within when the velocity profile is not symmetric.
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Due to the asymmetric velocity profile, the overestimations in maximum velocity

waveforms in the radial artery were quite different in the beam direction (30.9% for systolic and

52.6% for time-averaged) and in the blood vessel direction (24.2% for systolic and 40.4% for time-

averaged) as shown in Figure 5a and 5b. Note that the velocity in the vessel direction from

ultrasound was estimated based on the velocity in beam direction and the beam-vessel angle. The

difference is caused by the inconsistency between the direction of blood flow and the direction

parallel to the blood vessel. This is more prevalent under a complicated flow condition (Hoskins

1999a; Van Canneyt et al. 2013). As the flow in the ulnar artery is more symmetric (Fig. 3), this

less complicated flow condition keeps the overestimation difference very small between the beam

direction (20.6% for systolic and 39.6% for time-averaged) and vessel axis direction (20.9% for

systolic and 40.4% for time-averaged).

Compared to the error generated by the angle variation, the error caused by different beam-

vessel angles was more severe. When changing the beam-vessel angle from 30o to 70o degrees,

overestimation of both the systolic peak velocity and the time-averaged velocity in the maximum

velocity waveforms increased drastically from about 10% to 50% in both arteries (Fig. 6c and 6d).

Overestimation percentage errors in the time-averaged velocity were higher than that in the systolic

peak velocity. This angle-dependent overestimation in maximum velocity by simulation in this

study is in agreement with previous phantom and in vivo studies, and was believed to be caused by

the geometric spectral broadening (Hoskins 1996; Tola and Yurdakul 2006; Hoskins et al. 2010). It

is noted that the angle that really matters in velocity overestimation caused by geometric spectral

broadening is the angle between sound beam and the true flow direction(Hoskins 1999a). In this

study, this true beam-flow angle changes as a result of changing the beam-vessel angle.

From Figure 6a and 6b, it was found that the amplitude of flow rate in the vessel does not

influence the ultrasound estimation of velocity. When the flow rate in the CFD was set from two

thirds to twice the MRI measured value, the overestimation of FV stays almost constant and is

governed by the 60o beam-vessel angle. In the Field II simulator, the accuracy of the simulated
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acoustic field can only be guaranteed in the far-field region. The far-field region which is about 1.3

mm in this study based on 2 / (4 )l w  , where l is the distance to the field point, w the largest

dimension of the rectangle in element and  the wavelength (Jensen and Svendsen 1992). When the

imaging depth in the ulnar artery was adjusted from 4 mm to 50 mm, the estimated systolic peak

velocity and time-averaged velocity changed markedly initially, and then stayed constant after 40

mm (Fig. 6f). Although the imaging depth does not affect the velocity estimation in the radial

artery (Fig. 6e), it was still set to a constant 40 mm in all the simulations in this study.

It should be noted that the velocity field acting as a basis for the moving scatterers in the

synthetic blood vessel was simulated by the CFD which uses the blood flow rates and arterial 3D

geometry as boundary conditions. The resolution and accuracy of measurements from MRI could

affect the results of the simulated velocity field in CFD. The CFD velocity field then might not be

exactly the same as the real velocity field in the scanned volunteer. Despite this, the velocity field in

CFD is far more realistic than the flow conditions generated in conventional experimental flow

phantoms and this image-based CFD simulation currently remains the main means to obtain the

patient-specific hemodynamic parameters (Taylor and Figueroa 2009; Taylor and Steinman 2010).

Flow rate

Compared to the time-averaged FR used in the boundary conditions for CFD simulation,

there are obvious overestimation in the ultrasound-measured results. The 46.9% and 36.3%

overestimation in time-averaged flow rates in the radial and ulnar arteries, calculated from the FR

waveforms shown in Figure 7a, were caused by the overestimation in ultrasound-measured

maximum velocity waveforms.

The time-averaged FR could be accurately estimated based on the CFD maximum velocity

instead of the ultrasound-measured maximum velocity. In this case the time-averaged flow rates,

calculated from the FR waveforms shown in Figure 8a, are 26.3 ml.min-1 in the radial artery and

20.8 ml.min-1 in the ulnar artery, with very small differences compared to the CFD reference where
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time-averaged flow rates are 25.8 ml.min-1 and 21.4 ml.min-1 in these two arteries respectively.

Therefore, the Womersley theory is able to estimate the time-averaged FR in both arteries on the

condition that the maximum velocity waveforms are provided accurately.

Wall shear rate

The Womersley equation assumes that the blood vessel is an ideal tube and the flow profile

is symmetric, meaning WSR values would be the same around a circumference on the vessel wall.

This assumption is not true in reality. The WSR calculated from near-wall velocity gradient in CFD

(reference value) in this study showed that WSR values vary with position around the vessel wall,

especially during the systolic period of the cardiac cycle. Results in Table 2 show that the

Womersley equation is able to estimate WSR waveform (averaged waveform around a

circumference) in the radial artery in terms of the systolic peak and time-averaged WSR if the

correct velocity waveform is used. The overestimations (peak: 1273 s-1 vs 1078.3 s-1, time-averaged:

191.2 s-1 vs 135.6 s-1) occur only when the ultrasound-overestimated maximum velocity waveforms

were used, and there is only minor overestimation if maximum velocity waveform from the CFD

itself. That is not the case in the ulnar artery where the WSR waveform was not overestimated as in

the radial artery even though the overestimated maximum velocity waveform from ultrasound was

used. The Womersley equation seems partly to compensate for the overestimation in velocity.

When the maximum velocity waveform from CFD velocity field was used, both systolic peak and

time-averaged WSR were then underestimated by the Womersley equation.

It was shown that the performance of the Womersley equation in estimating WSR is

dependent on the flow condition in the arteries and cannot guarantee the Womersley equation would

perform better under a more symmetric flow. Actually it could be worse as it is in the ulnar artery in

this study.
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CONCLUSION

With the flexible simulation platform, the FV, FR and WSR were investigated under

realistic flow conditions in the radial and ulnar arteries. The errors in estimating maximum velocity

waveforms using Doppler ultrasound due to different sources of error were confirmed by simulation

for the first time. Furthermore, the performance of the Womersley equation was proved to vary

under different flow conditions in these two arteries. Since errors in those measurements can lead to

misinterpretation, this study should raise the awareness of researchers and clinicians who need to

use these measurements in these two arteries, such as in preoperative assessment of adequacy of the

collateral ulnar circulation for coronary bypass surgery, in evaluation of the radial artery

remodelling after creation of arteriovenous fistula for haemodialysis access, and to distinguish the

types of Raynaud’s syndrome for clinical management.
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Figures.

Fig. 1. Schematic diagram of the simulation method.

Fig. 2. 3D geometry and boundary conditions for computational fluid dynamics.
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Fig. 3. Contours of flow velocity in the cross-sectional plane

Fig. 4. PW sonograms and the maximum velocity waveforms. (a) for the radial artery. (b) for the ulnar
artery.
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Fig. 5. Maximum velocity estimated from the ultrasound simulation and the reference result from the CFD.
(a) FV waveforms in beam direction in the radial artery. (b) FV waveforms in vessel axis direction in the
radial artery. (c) FV waveforms in beam direction in the ulnar artery. (d) FV waveforms in vessel axis
direction in the ulnar artery. FV=flow velocity, CFD=computational fluid dynamics, US=ultrasound.
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Fig. 6. Percentage errors of peak systolic and time-averaged velocity with different flow rate amplitudes,
beam-vessel angles and imaging depths. (a)-(c)-(e) for the radial artery and (b)-(d)-(f) for the ulnar artery.
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Fig. 7. FR and WSR estimated from ultrasound and from the CFD. (a) FR waveforms estimated from
ultrasound-measured maximum velocity waveforms; (b)-(c) the ultrasound-measured WSR waveform; the
CFD reference WSR waveforms at different sites of a circumference; and the averaged WSR waveform in
CFD along this circumference; (b) for the radial artery and (c) for the ulnar artery. FR=flow rate, WSR=wall

shear rate, CFD=computational fluid dynamics, US=ultrasound.
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Fig. 8. FR and WSR estimated from the CFD. (a) FR waveforms estimated from CFD maximum velocity
waveforms. (b)-(c) the WSR waveform estimated from CFD maximum velocity waveform; the CFD reference
WSR waveforms at different site of a circumference; and the averaged WSR waveform in CFD along this
circumference; (b) for the radial artery and (c) for the ulnar artery. FR=flow rate, WSR=wall shear rate,

CFD=computational fluid dynamics.
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Fig. 9. Elements chosen around a circumference for calculating wall shear rate.
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Tables.

Table 1. Linear array transducer settings in Field II

Parameters Values

Pulse central frequency (f0) 5 MHz

Excitation pulse (P) Sinusoid

Pulse cycles (n) 5

Sound velocity (c) 1540 m/s

RF data sampling frequency (fs) 100 MHz

Element width (w) Half a wavelength

Element height (h) 5 mm

Gap between elements (Kerf) 0.05 mm

Number of elements (N) 64

Pulse repetition frequency (PRF) 3-10 kHz

Transmit focus (F) [0,0,4-50] mm

Table 2. WSR (s-1) calculated from ultrasound-based and

CFD-based maximum velocity waveform

US-based estimations
with WE

CFD-based
estimations with WE

Reference from CFD
velocity field

Systolic
peak

Time-
averaged

Systolic
peak

Time-
averaged

Systolic
peak

Time-
averaged

Radial
artery

1273.0 191.2 1103.2 132.4 1078.3 135.6

Ulnar
artery

627.4 218.5 575.3 156.0 679.8 176.6

WSR= wall shear rate, CFD=computational fluid dynamics,

WE=Womersley equation


