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Abstract 18 

Water diffusion in the vicinity of hydroxyapatite (HAP) crystals is a key issue to describe biomineralization process. In this 19 
study, a configuration of parallel HAP platelets mimicking bone nanopores is proposed to characterize the nanoscopic 20 
transport properties of water molecules at HAP-water surface and interfaces using various potential models such as 21 
combination of the Core-Shell (CS) model, Lennard-Jones (LJ) potentials with SPC or SPC/E water models. When 22 
comparing all these potentials models, it appears that the core-shell potential for HAP together with the SPC/E water model 23 
more accurately predicts the diffusion properties of water near HAP surface. Moreover, we have been able to put into relief 24 
the possibility of observing hydroxyl (OH−) ion dissociation that modifies the water structure near the HAP surface.   25 
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1. Introduction  33 

Investigation of bone-material is very important to understand the physical properties at bone-material 34 

interface [1-5]. Bone mineral phase is made of hydroxyapatite (HAP) [6] which is also present in the teeth 35 

enamel. It is often necessary to understand the phenomena occurring at the nanometric scale of the HAP minerals 36 

of bone (molecular unit formula [Ca10(PO4)6(OH)2]) to understand the macroscopic behaviour of this organ [7-37 

9].  During biomineralization, bone-water interface plays an important role in the mechanism of bone 38 

reorganization [10]. Thus, the investigation of HAP-water interface materials received widespread attention to 39 

understand the chemical, physical and mechanical properties of these materials considering the confinement 40 

effect of water near the HAP surface [5,11-13].  41 

Similarly, HAP scaffolds are often used in bone repair [14] and is thus the prototype model for the biomaterial 42 

adsorption studies [15,16]. The metabolism of bone tissue is characterized by the surface interactions between 43 

HAP crystals, cells, water molecules and bridging proteins [17]. Numerous studies have thus been devoted to 44 

understand the interaction between HAP surfaces with biomolecules, water, ions, and gases using experimental 45 

and theoretical methods [18-25].  46 

In particular, it was shown that the interactions between a surface and water molecules may affect the local 47 

environment of the interface, modifying the diffusion properties of water molecules which tends to reduce when 48 

compared with the bulk phase properties. Several experimental and theoretical reports have been devoted to 49 

understand the unusual dynamics of water under confinement [26-32]. Orientation and diffusion mechanisms 50 

of water molecules in the vicinity of a surface is still unclear. These reports reveals that polarity, hydrogen 51 

bonding (H-bonding) and orientation play a vital role for diffusion of water molecules.  52 

Using a molecular dynamics (MD) approach, we were recently able to tackle the question of the interstitial 53 

bone fluid flows at the nanoscale [5]. These preliminary results have suggested that mobile water can be 54 

observed within HAP pores of the same size as the nanopores measured in bone by Holmes et al. [33]. Based 55 

on a molecular dynamics approach involving inter-atomic potentials models for HAP and water systems 56 
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developed by Leeuw [34], this seminal study was well describing the HAP-water structure at the interface, but 57 

was badly adapted to properly describe the diffusive process of confined water [11]. That is why, in this paper, 58 

we intend to propose a comparison between different HAP-water models in the perspective of their ability to 59 

describe properly the confined diffusion of water in nanopores. 60 

The structure of this paper is therefore rather classical since the different water-HAP models are presented 61 

in a first Materials and methods section. In particular, the simulation strategy is presented. Then, a section is 62 

devoted to present the results and discuss their implications. The peculiar phenomenon of hydroxyl dissociation 63 

is also stressed out. Finally, conclusions and prospects are presented. 64 

 65 

2. Materials and methods 66 

2.1. Simulation boxes 67 

 HAP [Ca10(PO4)6(OH)2] is seen as a hexagonal primitive cell with P63/m space group, each sphere 68 

representing a tetrahedral (PO4
3-) ionic complex. Its natural organization in bone matrix corresponds to a stack 69 

of thin micro-plates with dimensions (L ×  l × e), where L=250-500 Å, l=150-250 Å and e = 25 Å [35].  That is 70 

why, similarly to the configuration in our previous study [11], the dimensions of parallelepipedic shaped 71 

simulation boxes are adjusted to contain (3×3×4) such micro-plates.  72 

Due to partial occupancy of OH sites, the orientation of OH groups always protruded away from the surface 73 

(i.e. c axis). Moreover, the simulation box contains a water layer whose height may be varied (in the c-axis 74 

direction) from 20 Å to 200 Å to mimic bone nanopores size. This variation of the water layer thickness is 75 

performed by adding or removing water molecules.  76 

The position of each atom in the box is given using its Cartesian coordinates (x,y,z) in the orthogonal frame 77 

(e1,e2,e3), see Fig. 1. The HAP platelets and water layers constitute the elementary cell which is repeated 78 

periodically along the e3 axis. The initial coordinates and crystal cell parameters were taken from [36]. 79 

 80 
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2.2. Choice of different intermolecular interactions models 81 

Four types of interatomic potential models were used to describe the interactions in the HAP nanopore-water 82 

systems. In the first model hereafter named CS-water, the interactions between particles were represented by 83 

the core shell interatomic potential developed by de Leeuw and Parker for HAP and water systems [18,37], 84 

which includes electronic polarizability via the shell model of Dick and Overhauser. This model was used in 85 

our previous studies [11,12]. In this CS-water model the phosphate, hydroxyl group, and oxygen–hydrogen 86 

(Hw) bonds are described as the sum of a Morse and a Coulombic potential, the phosphate and water bond angles 87 

by a harmonic potential, and non-bonded interactions by Buckingham potentials. This force field makes use of 88 

a shell model to represent the oxygen’s electronic polarizability in the phosphate and hydroxyl groups, and in 89 

the water molecules, in which each oxygen atom consists of both a core and a massless shell connected by a 90 

spring. 91 

In the second model, hereafter named LJ-SPC, the HAP interactions were described through Lennard-Jones 92 

potentials as proposed in [38] while water molecules were described by the SPC model. 93 

The third model (noted LJ-SPC/E) is the same as the LJ-SPC except that the SPC/E water model was used 94 

instead. This is motivated by the good ability of the simple point charge (SPC/E) model to represent density, 95 

radial distribution functions, self-diffusion coefficient for water; and hydrogen-bond dynamics in good 96 

agreement with experiment [39-41]. The parameters set for the SPC and SPC/E models can be found in [39,40].  97 

In the fourth model (noted CS-SPC/E) the core-shell representation of the HAP mineral of de Leeuw and 98 

Parker [37] was combined with the SPC/E water model. This combination of potentials models was validated 99 

by activation energy (Ea) calculations [42]. 100 

The parameters of these models are listed in Tab. 1 and Supplementary Material (Tables S1 and S2). 101 

 102 
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2.3. Simulation process 103 

Simulations were performed using the DL POLY molecular dynamics package (version 4.05.1) [43]. Each 104 

system was equilibrated in the microcanonical (NVE) ensemble for 50 ps, followed by 100 ps simulations in 105 

the isothermal–isobaric (NPT) ensemble, during which the volume was monitored in order to confirm the 106 

system reached equilibrium. The Melchionna modification of the Nosé-Hoover algorithm [44] was used with 107 

0.5 ps for the thermostat and barostat relaxation times to maintain an average pressure of 1 atm and an average 108 

temperature of 310 K. This choice was made for comparison purpose with our previous work [11], which dealt 109 

with human bone environment under in vivo conditions. Thus, pores sizes typically range to classical bone 110 

nanopore sizes measured by [33] (between 50 Å and 125 Å). 111 

Production runs in the NPT ensemble were then conducted for at least 2000 ps (i.e. 2 ns). The leap-frog 112 

algorithm with a time step of 0.1 fs was used to integrate the equations of motion. Periodic boundary conditions 113 

were applied in all directions of the box. The long range electrostatic interactions between the charges of all 114 

species were computed using the Smoothed Particle Mesh Ewald (SPME) method with the acceptable relative 115 

error of 10-6 [45]. The cut-off for calculation of the non-bonding interactions was set to 9 Å. 116 

 117 

3. Results and discussion 118 

3.1. Self-Diffusion Coefficient of Water 119 

 120 

Our analysis is here focused on describing water diffusion process by depicting the self-diffusion coefficients 121 

of water for the different water models for various degrees of confinement, that is to say for various pore sizes. 122 

The self-diffusion coefficients of water molecules D were calculated from the mean-square displacement 123 

(MSD) using Einstein’s expression: 124 

 125 
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Here, r(t) corresponds to the position of a particle (water molecule) at time t. The chevrons notation stands 127 

for the averaging procedure.  128 

Figure 2 displays the dependence of the self-diffusion coefficient D in terms of pore size H at 310K for the 129 

four HAP-water interaction potentials models. Note that the experimental bulk water self-diffusivity is also 130 

presented by the green bullet. 131 

As expected, it is found from our calculation that the self-diffusivity of water gradually increases with the 132 

pore sizes, whatever be the type of interaction potential model.  133 

Indeed, at 298 K for instance, the bulk water diffusion coefficients for SPC or SPC/E models are 3.85 and 134 

2.3×10-9 m2.s-1, respectively [46]. Here, due to the confinement effect, the calculated values are always lower 135 

even if the higher temperature should induce an increase in the water molecules mobility. This is due to the 136 

strong electrostatic interactions between the HAP surface and water which tend to limit the diffusion process. 137 

This will also affect the orientation of water and cooperative effect between surrounding water molecules. A 138 

similar trend has also been observed for the other nanoporous materials such as SiO2, Fe3O4, CNT, and proteins 139 

[46]. 140 

When focusing on the differences between the different potentials models, it is first to notice that the LJ-141 

SPC model always provides a much higher value of the water diffusivity than the other potentials models (LJ-142 

SPC/E, CS-SPC/E, CS-water) which give more similar values. This may be explained by the charges of the 143 

SPC water model that are lower than the ones of the SPC/E model for instance, causing a faster diffusive 144 

transport.  145 

Furthermore, for the small pores (H < 80 Å), it appears that the CS-water model of our previous study [11] 146 

and the CS-SPC/E present diffusion values that are slightly lower than the LJ-SPC/E predictions. For larger 147 

pores, this trend becomes the opposite.  148 
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It is interesting to note that for small pore sizes (between 20 and 50 Å), the confinement effect on the 149 

diffusivity coefficient is linear, whereas for larger pores, this is no more the case. This clearly states that two 150 

different kind of diffusion mechanism are possible in structures presenting a HAP-water interface. This may be 151 

an evolution from a quasi 1D diffusion process in the narrow pores to anisotropic diffusion of water molecules 152 

for lower confinement.  153 

Moreover, for the largest simulated pore size value H = 200 Å, that is to say for the weakest degree of 154 

confinement, it appears that the value obtained from the CS-SPC/E combination potentials model is in very 155 

close agreement with the experimental bulk water property. Indeed, a comparison of CS-SPC/E and LJ-SPC/E 156 

potentials models gives meaningful insights on the selection of suitable force field for the study of water in 157 

contact with HAP surface. For a 200 Å pore size, the CS-SPC/E calculated value of the water self-diffusion, 158 

respectively its experimental bulk value, is 2.62 × 10-9 m2.s-1, respectively 3.02 × 10-9 m2.s-1. This confirms 159 

earlier reports that concluded that CS potentials are more suited for describing the HAP-water interface 160 

phenomena [2].  161 

The role of interstitial fluid flow in bone activity is central through its contribution to the transmission of 162 

remodeling signals [47,48]. In particular, nanoscopic flows occurring inside the collagen-apatite matrix of bone 163 

may modify the vicinity of the osteocytes [5] which are key actors of bone adaptation. As a result, water 164 

diffusion occurring in the vicinity of the HAP crystals is an avenue of research of great interest in bone 165 

physiology. 166 

 167 

3.2. Observation of Hydroxyl ions dissolution 168 

Due to the strong inductive effect from Ca ion and Ca-Ow bond, water molecules can adsorb/desorb at this 169 

interface. This phenomenon plays a role in the OH- ion reorganization on HAP surface, and may locally affect 170 

the ionic concentration since we observed hydroxyl dissociation through our simulation with the CS-SPC/E 171 

model (see Figures 3 and 4). This anionic specie tends to form multiple H-bonds (acting as a donor as well as 172 
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acceptor) with the surrounding water molecules. Due to this effect, the translational and rotational mobility of 173 

water molecules at this interface become unusual. To describe this phenomenon, atomistic modeling approach 174 

can give valuable information to understand the adsorption/desorption and reorganization mechanism in HAP 175 

interface. This point is crucial during the biomineralization for instance. 176 

It is interesting to note that from our calculations, the hydroxyl dissociation always depends on the pore size. 177 

In most of the cases, OH- ions are dissociated and localized only near the surface (see Figure 3) whereas in the 178 

case of medium pore sizes ( i.e. H=50-70 Å, see Figure 4) we also observed OH- ion slightly moving away from 179 

the HAP surface and becoming fully surrounded by water molecules via H-bonding interactions. Notice that H- 180 

bonding interactions between OH- ion and water molecules are stronger and shorter compared to the normal 181 

water-water H-bonding interactions (see Figure 4). 182 

4. Conclusions and perspectives 183 

We have conducted extensive molecular dynamics simulations of nanopores of HAP containing liquid water 184 

in order to determine the effect of confinement on the diffusion properties of water by comparing various 185 

combination potentials models. When comparing all these potentials models, it appears that the core-shell 186 

potential for HAP together with the SPC/E water model more accurately predicts the diffusion properties of 187 

water, the obtained values of the average diffusion coefficients being in good agreement with the experimental 188 

data from both bulk and bone-water interfaces [49-51]. 189 

Due to the strong interactions between water molecules and the functional groups of HAP which are 190 

dominant in such confined environment, the diffusion in the nanopore direction is significantly faster than in 191 

the direction perpendicular to the HAP surface. As a result the diffusion process depends on H-bonding and 192 

orientation of water molecules on the surface. We showed that water molecules mainly interact with calcium 193 

ions, reducing its adsorption in the vicinity of the phosphate sites. Thus both Ca ion and OH groups protect the 194 

interaction between water and phosphate groups (Fig. S1). 195 

Therefore we propose that strong inductive effect from Ca2+ and electrostatic interactions between water and 196 
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surface tend to limit the diffusion process along the z-direction and at the same time induce the water molecules 197 

to move along x-direction via H-Bonded interactions. Our study can thus provide the valuable information to 198 

understand the mechanism of water movement during the biomineralization process. 199 

  200 
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 323 

TABLES AND FIGURES 324 

Tables 325 

Table 1. Potential parameters used in this work for the Lennard-Jones and water models. 326 

Atomic Partial Charges: (for LJ) 

Atom Types Charges (e) 

Ca +1.5 

P +1.0 

Phosphate Oxygen (O2) -0.8 

Hydroxy Oxygen (O1) -1.1 

Hydroxy Hydrogen (H1) +0.2 

Water Oxygen (Ow) SPC= -0.82; SPC/E= -0.8476 

Water Hydrogen (Hw) SPC= +0.41; SPC/E=+0.4238 

Lennard-Jones (LJ) Potential: 































612

4)(
rr

rU


  

Ion Pair ε (in kcal/mol) σ (in Å) 

Ca-O1 0.10198 3.5 

Ca-O2 0.09539 3.35 

O1-O1 0.08 3.7 

O1-O2 0.07483 3.55 

O2-O2 0.07 3.4 

Ow-O1 0.1115 3.433 

Ow-O2 0.104298 3.283 

Ow-Ca 0.142434 3.233 

Ow-Ow 0.1554 3.166 

Harmonic Potential:  20
2

1
)( rrkrU   

Ion Pair  k(kcal/(mol.Å2)) 
r0(Å) 
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P-O2 430   1.57 

H1-O1 500   0.94 

Ow-Hw 1108.2698   1.00 

Three-body Potential:  20
2

1
)(   kU  

Ion Group k(kcal/(mol.rad2)) 
θ0(º) 

 

O2-P-O2 125 109.47 

Hw-Ow-Hw 91.5392   109.47 

 327 

 328 

  329 
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 330 

Figures 331 

 332 

Fig. 1. Water-HAP system (Ca-green, PO4
3--pink, O-red, H-white):  (a) Molecular arrangement of water 333 

molecules in a 90Å HAP pore; (b) Interaction of water layers with surfaces; (c) Water layer (yellow) adsorbed 334 

on the HAP surface. 335 

  336 
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 337 

Fig. 2. Self-diffusion coefficients of water molecules calculated at 310 K for various pore sizes (H = 20 to 200 Å) with different 338 

potentials models: LJ-SPC, LJ-SPC/E, CS-SPC/E, CS-water. The experimental diffusion coefficient is also presented. 339 

  340 
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 342 

Fig. 3. Hydroxyl ions in HAP-Water system (Ca-green, PO4
3--pink, O-red, H-white and hydroxyl O-blue):  (a) Molecular arrangement of 343 

water molecules and OH- ions in a 50 Å HAP nanopore; (b) Interaction of OH- ions with HAP-water layers; (c) and (d) shows the close 344 

views of H-bonds (distances are in Å) for OH--water and water-water, respectively, at the vicinity of HAP interface. 345 

  346 
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 347 

 348 

Fig. 4. Unusual hydroxyl ion diffusion in HAP-Water system (Ca-green, PO4
3--pink, O-red, H-white and hydroxyl O-blue): (a) Molecular 349 

arrangement of water molecules and OH- ions in a 70 Å HAP pore; (b) and (c) Interactions of OH- ion with water molecules near and far 350 

away from the HAP  surface respectively; (d) H-bonded network between water molecules and Ca2+-water interactions (Distances are in 351 

Å). (e) Schematic representation of HAP and water adsorption sites through H-bonding at interface. 352 
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