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Abstract. We propose a formal approach for relating abstract separa-
tion logic library specifications with the trace properties they enforce
on interactions between a client and a library. Separation logic with ab-
stract predicates enforces a resource discipline that constrains when and
how calls may be made between a client and a library. Intuitively, this
can enforce a protocol on the interaction trace. This intuition is broadly
used in the separation logic community but has not previously been for-
malised. We provide just such a formalisation. Our approach is based
on using wrappers which instrument library code to induce execution
traces for the properties under examination. By considering a separation
logic extended with trace resources, we prove that when a library sat-
isfies its separation logic specification then its wrapped version satisfies
the same specification and, moreover, maintains the trace properties as
an invariant. Consequently, any client and library implementation that
are correct with respect to the separation logic specification will satisfy
the trace properties.

1 Introduction

Separation logic [24,15] provides a powerful formalism for specifying an interface
between a library and a client in terms of resources. For example, a client may
obtain an “opened file” resource by calling an open operation of a file library,
which it can then use to access the file by calling a read operation. Abstract
predicates [23] crucially hide the implementation details — the client is not
aware of what an “opened file” resource actually consists of, which may vary
between implementations of the library, but only the functionality for using it
that the library provides. A client that is verified with respect to the abstract
specification will behave correctly with any implementation of the library.

In separation logic, functions are specified with preconditions and postcon-
ditions. We can think of the precondition as specifying resources that a client
must provide in order to call the function. The postcondition then specifies the
resources that the client receives when the function returns. For example, a sim-
plified specification for a file library might be the following:
{
closed

}
open()

{
open

} {
open

}
close()

{
closed

} {
open

}
read()

{
open

}

http://arxiv.org/abs/1702.02972v1
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A client acquires an open resource, represented by an abstract predicate, by
calling open. With this file resource, the client can call close and relinquish the
resource, or call read and retain the resource. The rules of separation logic allow
us to prove specifications for clients that use the library correctly, such as:

{
closed

}
open(); read(); close()

{
closed

}

On the other hand, we cannot prove any useful specifications5 for programs that
use the library incorrectly, like the following: open(); close(); read().

Intuitively, separation logic specifications imply properties about the trace
of interactions between a library and a client. For example, the specification for
the file library ensures that a file can only be accessed if it has previously been
opened and not subsequently closed. This strongly depends on the fact that the
specification is abstract: a client has no way to obtain the open resource except
by calling the open operation. If the client were able to forge the open resource
then it could violate the trace property. While this intuition is broadly used in
the separation logic community, it has not previously been formalised.

In this paper we present a formal approach to establishing trace properties
from abstract separation logic specifications. We achieve this by placing a wrap-
per between a client and a library that generates a trace of the interactions
between the client and library. The wrapper has no bearing on the underlying
semantics of the program (when traces are ignored) but simply allows us to
formally interpret trace properties. Supposing that the library implements an
abstract separation logic specification, we show that the wrapped library also
satisfies this specification, but moreover maintains the desired trace properties
as an invariant. For the latter step, we recur to a separation logic extended
with trace resources, which can be used for instantiating the abstract predicates
in the original specification. In the context of a client that uses the library in
accordance with the specification, the trace properties are thus guaranteed to
hold.

Our approach establishes temporal trace properties from separation logic
specifications that are not inherently temporal, independently of implementation
details. While ours is not the first approach incorporating temporal reasoning in
program logics, and separation logic in particular (q.v. §7), it is the one to derive
trace properties for libraries that already have separation logic specifications.
Previous approaches [11,9,26,25] achieve temporal reasoning by specifying and
verifying the underlying libraries using trace-oriented specifications; the novelty
of our work is in deriving temporal properties from trace-agnostic specifications.

A motivation for our approach is to justify separation logic specifications,
by showing that they entail more intuitive trace properties. Such justification is
particularly useful if the specification is intended to formally capture an English-
language specification (e.g. the POSIX file system [10]). While we limit our pre-
sentation to the sequential setting and a simple higher-order separation logic, we

5 It is always possible to prove a vacuous specification with precondition ⊥, but a
useful specification should at least have a satisfiable precondition. For complete,
closed programs we would typically expect the precondition to be emp.
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can show trace properties that include elaborate protocols that are, for instance,
parametric on object identifiers or beyond regular languages (q.v §5).

We begin by considering an illustrative example in §2. We introduce the pro-
gramming language (§3) and our separation logic (§4) before we tackle examples
in depth in §5. These examples establish that separation logic specifications can
imply a variety of trace properties, such as:
– An iterator over a collection should only be used if the collection has not

been modified since the iterator was created (§5.2).
– A higher-order function calls its argument exactly once (§5.3).
– A traversal on a stack invokes a given method on each value that has been

pushed (but not popped) in the order in which they will be popped (§5.4).
– Any string received from the user should be sanitised before it is included

in an SQL query (§A).
The semantics of the logic is presented in §6. Finally, we discuss conclusions and
related work in §7.

2 Motivating Example

As a motivating example, consider a library that provides a stack with push and
pop operations. In separation logic, these operations can be specified as follows:

∀α, a.
{
stack(α) ∧ a 6= ()

}
push(a)

{
stack(a :: α)

}

∀α.

{
stack(α)

}
pop()

{
r. (r = () ∧ stack(α) ∧ α = ε) ∨
(∃α′. α = r :: α′ ∧ stack(α′))

}

The push operation simply prepends the given value to the stack, which is rep-
resented by the stack abstract predicate. The value must be distinct from the
unit (), which is used to indicate an empty stack. The pop operation returns ()
if the stack is empty, and otherwise removes and returns the head value.

We can also specify the stack in terms of trace properties that are satisfied
by interactions between a client and a stack library. For instance, a simple trace
property that we might wish to show is this:

Each (non-unit) value returned by an invocation of pop was an argument
of a previous invocation of push.

In order capture trace properties, we define a wrapper that instruments the
library operations with code to emit trace events as:

push′
def

= λv. push(v); emit〈push, v〉 pop′
def

= λ . let r = pop() in emit〈pop, r〉; r

We can then define a language of traces that captures our desired invariant:

L = {t | ∀i, v. t[i] = 〈pop, v〉 ∧ v 6= () =⇒ ∃j. j < i ∧ t[j] = 〈push, v〉}

Our separation logic includes two resources that allow us to reason about
code that emits trace events: trace(t) expresses that t is the current trace; and
inv(I) expresses that the trace invariant is I. The proof rule for emit updates the
trace resource, while requiring that the new trace satisfies the invariant. Using
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these, we can define a ‘wrapped’ version of the abstract stack predicate so that
the wrapped operations will satisfy the same abstract specification, but also
enforce the trace invariant:

stack′(α)
def

= stack(α) ∗ inv(L) ∗ ∃t. trace(t) ∧ t ∈ L ∧ ∀a ∈ α. ∃i. t[i] = 〈push, a〉

The proof of the wrapped push operation proceeds as follows:

{stack′(α) ∧ v 6= ()}
{stack(α) ∧ v 6= () ∗ inv(L) ∗ ∃t. trace(t) ∧ t ∈ L ∧ ∀a ∈ α. ∃i. t[i] = 〈push, a〉}
push(v);

{stack(v :: α) ∗ inv(L) ∗ ∃t. trace(t) ∧ t ∈ L ∧ ∀a ∈ α. ∃i. t[i] = 〈push, a〉}
{stack(v :: α) ∗ inv(L) ∗ ∃t. trace(t) ∧ (t · 〈push, v〉) ∈ L ∧

∀a ∈ (v :: α). ∃i. (t · 〈push, v〉)[i] = 〈push, a〉}
emit〈push,v〉;

{stack(v :: α) ∗ inv(L) ∗ ∃t. trace(t) ∧ t ∈ L ∧ ∀a ∈ α. ∃i. t[i] = 〈push, a〉}
{stack′(v :: α)}

The wrapped pop operation can be verified similarly. We can thus conclude that
the stack indeed satisfies the desired trace property.

The above example demonstrates our technique on a first-order library (the
library cannot make call-backs to the client), but it also applies in a higher-order
setting. For instance, consider extending the stack with a foreach operation that
traverses the stack and calls a client-supplied function on each element in order.
In separation logic, this operation can be specified as:

∀α,f,I.

{
stack(α) ∗ I(ε) ∗ ∀β, a.{
I(β)

}
f(a)

{
I(a :: β)

}
}
foreach(f)

{
stack(α) ∗
I(rev(α))

}

This specification is subtle. The foreach operation takes a function f that is
specified (using a nested triple) with an invariant I(β) whose parameter records
the list of values that f has so far been called on. The operation is given the
predicate I(ε) initially, and it returns with I(rev(α)), where rev (α) is the reversal
of the list α. Note that while the predicate stack is abstract to the client (the
library determines the interpretation), the predicate I is abstract to the library
(the client determines the interpretation). This means that for the library to
obtain the I(rev(α)) predicate for the postcondition from the I(ε) given in the
precondition, it must call f on each element of α in order. Moreover, it cannot
make any further calls to f , since separation logic treats the predicate I(β) as a
resource, which must be given up by the library each time it calls f , and which
the library has no means of duplicating since in separation logic A =⇒ A ∗ A
does not hold in general.

Defining a wrapper for higher-order libraries is more complex than in the first-
order case, since we wish the trace to capture all interactions between the client
and the library, including call-backs between them. The wrapper must therefore
emit events at the call and return of library functions, as well as functions that
are passed as arguments to library functions. We can then specify a number of
properties that traces generated by client-library interactions will have:
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– The trace of push and pop operations obeys the stack discipline.
– Between invocation and return, foreach(f) calls f on each element of the

stack in order, with no further calls.
– The invocations of push, pop and f (the argument of a call of foreach) are

atomic — there are no further events between the call and return.
While the first property can be seen as a straightforward consequence of the push
and pop specifications, the others are more subtle. In particular, they depend on
the foreach specification’s parametricity in I, which prevents the library from
using its argument in an arbitrary fashion. For particular instantiations of I, (e.g.
I(β) = true), foreach could call its argument an arbitrary number of times, or
even store it and call it from future invocations of pop. However, parametricity
ensures that it will behave the same independent of how I is instantiated, and
so it cannot do that sinceI can be instantiated so as to enforce trace properties.

This example illustrates several important aspects of our approach. Firstly,
we support higher-order functions, such as foreach. We also deal with expressive
trace properties: the language of traces is not context-free, since the stack may
be traversed multiple times. Moreover, the connection between the separation
logic specification and the trace properties that follow from it is subtle.

In §5 we revisit this example, among others, in detail. Before doing so, we
present the formal setting of our approach.

3 Programming Language

We define the programming language which will be the object of this study. To
keep the setting general, the language is an untyped call-by-value λ-calculus
with references, named functions, pairs, integers and primitives for arithmetic,
reference usage and conditionals. Our language additionally features an emit
primitive, which is used to output values as trace events. We will formulate
properties in terms of the event traces produced by program evaluation. The
syntactic classes of values (Val), expressions (Exp) and evaluation contexts (Con)
are given respectively as follows.

u, v ::= () | n | x | l | f | 〈u, v〉
e ::= v | λx.e | e e′ | if e1 e2 e3 | 〈e, e′〉 | πi(e) | ref e | !e | e op e′ | emit v
K ::= • | Ke | vK | K op e | v opK | ifK e e′ | 〈K, e〉 | 〈v,K〉 | πi(K) | refK | !K

Above we let i ∈ {1, 2}, n ∈ Z, f ∈ Fun and l ∈ Loc, where Fun and Loc are count-
able sets of function and location identifiers respectively. Moreover, x ranges over
the set of variables Var, and op ∈ {=, :=, . . .} ranges over a set of binary opera-
tors which includes equality test, assignment and arithmetic operators. We use
Lam for the set of λ-abstraction expressions. Note that λ-abstractions are not
values; functional values are represented by function identifiers.

Our operational semantics tracks λ-abstractions in an environment γ : Fun ⇀fin

Lam, where all encountered functions are named and stored. This allows us to
track function usage by emitting trace events that refer to these function names.
In addition, we can reduce expressions that use external functions: in such a case,
an expression e can contain the names of the external functions in its code, and
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γ would provide their bodies. The semantics draws from the open-term trace
semantics used e.g. in [20], the main difference being that we explicitly control
events generated by the reduction via the emit primitive (and also indiscrimi-
nately name λ-abstractions).

Expressions are evaluated inside states (h, γ) ∈ Heap × FEnv comprising a
function environment γ and a heap h. A heap is a finite map from locations to
values and a function environment is a finite map from function identifiers to
λ-abstractions. For any domain/codomain set pair X,Y , map g : X ⇀ Y and
(x, y) ∈ X × Y , we let g[x 7→ y] = {(x, y)} ∪ { (z, g(z)) | z ∈ dom(g) \ {x} }
regardless of whether x ∈ dom(g) or not. The evaluation rules are:

K[λx.e], (h, γ) → K[f ], (h, γ[f 7→ λx. e]) (f /∈ dom(γ))
K[f v], (h, γ) → K[e{v/x}], (h, γ) (γ(f) = λx. e)

K[πi(〈v1, v2〉)], (h, γ) → K[vi], (h, γ) (i ∈ {1, 2})
K[if n e1 e2], (h, γ) → K[e1], (h, γ) (if n > 0)
K[if 0 e1 e2], (h, γ) → K[e2], (h, γ)

K[ref v], (h, γ) → K[l], (h[l 7→ v], γ) (l /∈ dom(h))
K[!l], (h, γ) → K[h(l)], (h, γ) (l ∈ dom(h))

K[l := v], (h, γ) → K[()], (h[l 7→ v], γ) (l ∈ dom(h))

K[emit v], (h, γ)
v
−→ K[()], (h, γ)

The above defines a labelled transition system with labels from Val ∪ {ǫ} and,
by taking its reflexive transitive closure (→∗), we obtain labels from Val∗, which
we shall call traces.

We next relate the behaviour of each expression with that of its counterpart
where all emits have been omitted. We write ê for the expression obtained from e
by replacing all occurrences of emit v by (), and extend this notation to evaluation
contexts and functional environments in the expected manner.

Theorem 1. For all e, e′, h, h′, γ, γ′, if ê, (h, γ̂) →∗ e′, (h′, γ′) then there exists

a trace t, an expression e′′ and an environment γ′′ such that e′ = ê′′, γ′ = γ̂′′

and e, (h, γ)
t
−→∗ e′′, (h′, γ′′).

This theorem justifies the fact that instrumenting terms with emits does not
change their semantics. Its proof is in Appendix C.

4 Logic

In this section we introduce our logic and prove some meta-theoretic results. The
logic is a standard higher-order separation logic for the λ-calculus introduced
in §3, extended with new primitives for reasoning about trace properties and
programs that emit traces.

The logic consists of an assertion logic for reasoning about machine states
and a specification logic for reasoning about the behaviour of programs. The
assertion and specification logics are constructed over the same simply-typed
term language. The types of this simply-typed term language are given below:

σ, τ ::= 1 | Bool | Nat | τ → σ | τ × σ | seq τ | Prop | Spec | Val | Exp | Loc



Trace Properties from Separation Logic Specifications 7

TPointsTo
Γ ⊢ M : Loc Γ ⊢ N : Val

Γ ⊢ M 7→ N : Prop

THoare
Γ ⊢ P : Prop Γ ⊢ M : Exp Γ ⊢ Q : Val → Prop

Γ ⊢
{

P
}

M
{

Q
}

: Spec

TValid
Γ ⊢ P : Prop

Γ ⊢ valid(P ) : Spec

TSpec
Γ ⊢ M : Spec

Γ ⊢ spec(M) : Prop

TFold
Γ ⊢ M : seq τ Γ ⊢ N1 : σ Γ ⊢ N2 : σ×τ → σ

Γ ⊢ fold(M,N1, N2) : σ

Fig. 1. Excerpt of typing rules.

The types include standard base types (unit, Booleans, and natural numbers)
and type formers for functions, products and finite sequences. Additionally, there
is a type for resource assertions (Prop), a type for specifications (Spec), and types
for values, expressions and locations from the programming language (Val, Exp
and Loc, respectively). The type seq τ is the type of finite sequences of elements
of type τ ; we will use this type to represent traces.

The terms of the language are generated by the following grammar. The lan-
guage includes a simply-typed λ-calculus with pairs, a higher-order logic with
equality, primitive operators on finite sequences (nil, cons, fold), primitive sepa-
ration logic resources (emp, ∗, −∗, 7→), Hoare triples and embeddings back and
forth between the specification and assertion logic (valid and spec) and three
trace primitives (trace, hist and inv).

P,Q,N,M ::= x | λx : τ.M | MN | () | (M,N) | πi(M) | ⊥ | ⊤ | P ∨Q | P ∧Q

| P =⇒ Q | ∀x : τ. P | ∃x : τ. P | M =τ N | true | false | if M then N1 else N1

| valid(P ) | emp | P ∗Q | P −∗Q | M 7→ N |
{
P
}
e
{
Q
}
| spec(M) | nilτ

| cons(M,N) | fold(M,N1, N2) | trace(M) | hist(M) | inv(M)

The typing rules for the λ-calculus part are standard and have been omitted.
Figure 1 includes an excerpt of some of the more interesting typing rules.

The typing judgement has the form Γ ⊢ M : τ where Γ is a term con-
text associating types with variables. Note that the typing rule for Hoare triples
(THoare) takes an assertion P as a precondition and a predicate Q as a postcon-
dition to allow the postcondition to refer to the return value of the computation.
Since we are reasoning about a λ-calculus (so that variables are immutable), we
do not distinguish program and logical variables. The expression e in a Hoare
triple is thus typed in the same context as the Hoare triple, allowing us to refer
to logical variables as program variables.

Judgements of the assertion logic have the form Γ | Θ | P ⊢ Q, where Γ
is again a term context, associating types to variables, Θ is context of assumed
specifications, and P and Q are resource assertions. The judgement should be
interpreted as: under the assumption the specifications Θ hold, the resource
assertion P entails the resource assertion Q. The assertion logic consists of the
usual entailment rules for higher-order separation logic [5] with the following
additions,

PSpec

Γ | Θ,S | P ⊢ spec(S)
PValid

Γ | Θ, valid(Q) | P ⊢ Q



8 L. Birkedal, T. Dinsdale-Young, G. Jaber, K. Svendsen, N. Tzevelekos

Hyp

Γ | Θ, S ⊢ S

Ret

Γ, v : Val | Θ ⊢ {⊤} v {r. r = v}

Γ | Θ | − ⊢ P

Γ | Θ ⊢ valid(P )
Valid

Γ | Θ, S ⊢
{

P
}

e
{

R
}

Γ | Θ ⊢
{

P ∗ spec(S)
}

e
{

R
} SpecOut

Γ | Θ ⊢
{

P
}

e
{

Q
}

Γ | Θ ⊢
{

P ∗R
}

e
{

r. Q(r) ∗ R
} Frame

Γ | Θ ⊢
{

P
}

e
{

x.Q
}

Γ, x : Val | Θ ⊢
{

Q
}

K[x]
{

r.R
}

x 6∈ FV (Θ)

Γ | Θ ⊢
{

P
}

K[e]
{

r.∃x : Val. R
} Bind

Γ | Θ | P1 ⊢ P2 Γ | Θ ⊢
{

P2

}

e
{

Q2

}

Γ, x : Val | Θ | Q2(x) ⊢ Q1(x)

Γ | Θ ⊢
{

P1

}

e
{

Q1

} Csq

Γ, x : Val | Θ ⊢
{

P
}

e
{

Q
}

x 6∈ FV (Θ)

Γ | Θ ⊢
{

emp
}

λx. e
{

r.∀x : Val. spec(
{

P
}

rx
{

Q
}

)
} Abs

Write

Γ, v, l : Val | Θ ⊢
{

l 7→
}

l := v
{

r. l 7→ v ∗ r = ()
}

PInvDupl

Γ | Θ | inv(I) ⊢ inv(I) ∗ inv(I)

Read

Γ, v, l : Val | Θ ⊢
{

l 7→ v
}

!l
{

r. l 7→ v ∗ r = v
}

Alloc

Γ, v : Val | Θ ⊢
{

emp
}

ref v
{

r. r 7→ v
}

PHistDupl

Γ | Θ | hist(t) ⊢ hist(t) ∗ hist(t)
PUseHist

Γ | Θ | trace(t1) ∗ hist(t2) ⊢ trace(t1) ∗ t2 ≤pref t1

PAllocHist

Γ | Θ | trace(t) ⊢ trace(t) ∗ hist(t)

Γ | Θ ⊢ I(t · v)

Γ | Θ ⊢
{

trace(t) ∗ inv(I)
}

emit v
{

trace(t · v)
} Emit

Fig. 2. Selected specification and assertion entailments.

which allow us to use the specification context in propositional entailments.
Judgements of the specification logic have the form Γ | Θ ⊢ S, where again Γ

and Θ are term and specification contexts respectively, and S is a specification
The specification logic consists of the usual entailment rules for higher-order
logic, with the addition of the rules in Figure 2. As a notational convention, we
drop the λ in the postcondition:

{
P
}
e
{
r.Q

}
means

{
P
}
e
{
λr : Val. Q

}
, and{

P
}
e
{
Q
}
stands for

{
P
}
e
{
λ : Val. Q

}
.

Example 1. Consider the specification Φ(Pinit , bracket) defined as follows:

∃inv : Prop. valid(Pinit =⇒ inv) ∧ ∀P,Q : Prop. ∀f : Val.
{
inv ∗ P ∗ spec(

{
P
}
f()

{
Q
}
)
}
bracket(f)

{
inv ∗Q

}

This specification describes a module which requires some initial resource Pinit to
establish its invariant inv. The assertion Pinit =⇒ inv permits the invariant to
be constructed; since this is a resource assertion, it is wrapped in valid to produce
the specification which asserts that the implication holds for all resources. The
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module provides one function, bracket , that is specified by the Hoare triple. The
specification states that, when bracket is applied to a function f that takes
precondition P to postcondition Q, then it will behave similarly in the presence
of the invariant inv. The condition on the argument f is specified with a nested
triple in the precondition; since a triple is a Spec and the precondition must be
a Prop, the triple must be wrapped by spec.

As a trivial implementation, we can prove - | - ⊢ Φ(emp, λf. f()). A client
specification S may be proved against an abstract module by proving:

Pinit : Prop, bracket : Val | Φ(Pinit , bracket) ⊢ S

This can then be composed with the module implementation. ⊓⊔

Note that the specification logic lacks an application rule for applying an
argument to a function. Instead, the abstraction rule returns a specification for
the given function, applied to an arbitrary argument x. To use this specification,
we instantiate the specification with the actual function argument and pull out
the nested triple to the context using the SpecOut rule.

Trace primitives. The logic includes three basic assertions, trace(t), hist(t) and
inv(I), for reasoning about traces. The typing rules for these primitive trace
assertions are given below. We use Trace as shorthand for seqVal.

Γ ⊢ t : Trace

Γ ⊢ trace(t) : Prop
TTrace

Γ ⊢ t : Trace

Γ ⊢ hist(t) : Prop
THist

Γ ⊢ I : Trace → Bool

Γ ⊢ inv(I) : Prop
TInv

The trace resource, trace(t), expresses that the trace of events emitted so far
is exactly t and asserts exclusive right to emit further trace events. The trace t
is represented as a finite sequence of values. Since trace(t) asserts exclusive right
to emit events, it cannot be duplicated. The trace resource thus allows a single
owner to reason precisely about the current trace.

The trace(t) resource suffices for examples where only a single resource needs
to refer to the current trace. To improve expresiveness, we use the hist(t) resource
to reason about prefixes of the current trace. The resource hist(t) asserts that the
trace t is a prefix of the trace of events emitted so far. Note that this property
is preserved by emission of new events: if t is a prefix of the current trace then t
is also a prefix of any extension of the current trace. This resource is duplicable,
and given the trace(t) resource we can construct a hist(t). Moreover, if we have
a trace(t1) resource and a hist(t2) resource, we can conclude that t2 is a prefix of
t1. These properties are captured in the axioms PHistDupl, PAllocHist and
PUseHist rules of the extended logic, given in Figure 2.

For several of our examples we require that all traces generated belong to
a restricted language of traces. We express this formally using the invariant
resource, inv(I), which defines a trace invariant that everyone must obey. Here I
is a set of traces and inv(I) asserts that the current trace invariant is given by I.
Since it specifies an invariant, the inv(I) resource is duplicable (axiomPInvDupl

in Figure 2). A triple
{
P
}
e
{
Q
}
expresses that for every initial state satisfying
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P if e executes to a terminal state then the terminal state satisfies Q and the
current trace at every intermediate state (including the initial and terminal state)
satisfies the trace invariant.

To emit an event v we thus require ownership of the trace resource trace(t)
and that the current trace after emitting the event satisfies the trace invariant I.
The proof rule Emit in Figure 2 captures this. Note that the t ·v ∈ I assumption
in the Emit rule is not strictly part of the syntax of our term language, but
may be defined using fold. The same is true of ≤pref and other operations on
finite sequences, such as concatenation, length of a sequence and a subsequence
operation. In subsequent sections we will use these definable operations without
further mention. We will also occasionally need inductively defined predicates on
traces. Since we are working in a higher-order logic, such predicates are definable
within the logic using the usual impredicative Knaster-Tarski definition of least-
fixed points of monotone operators.

5 Proving Trace Properties

In this section we show how to derive trace properties about client-library inter-
actions from the library’s specification. We demonstrate our approach through
a series of increasingly complex examples, starting with the basic file library
example from the Introduction.

The basic idea is to prove that for any library implementation satisfying the
abstract library specification, the wrapped library implementation satisfies the
same abstract specification and moreover the traces generated by the wrapping
satisfy a given invariant. This is achieved by reinterpreting the abstract repre-
sentation predicates of the specifications to additionally relate the abstract state
with the current trace using trace assertions. Client programs verified against
the abstract library interface can thus be linked with the wrapped library im-
plementation to conclude that the traces generated by the wrapping satisfy the
given invariant.

Theorem 2 below formalises this idea. Here Iinit is an initialiser operation to
initialize the internal state P0 of the library. Theorem 2 allows us to prove that
traces generated by running a client e linked with a library implementation Iops,
after running the initialiser, belong to a given language L.

Theorem 2. Given any specification Φ, resource P0, initialiser Iinit , library
implementation Iops , machine states s, s′, trace t, clients e, e′ and language L,
if the following conditions hold then t ∈ L:

– − ⊢ Φ : Prop× Exp → Spec and − ⊢ P0 : Prop
– − | − ⊢ ∀ops , P. Φ(P, ops) =⇒ {P} e {⊤}
– − | − ⊢ {⊤} Iinit {P0}
– − | − ⊢ Φ(P0 ∗ trace(ε) ∗ inv(L), Iops)

– (Iinit ; e[Iops/ops ]), s
t
→∗ e′, s′ 6→

Proof. Follows from soundness of the logic (Lemma 1 in §6). ⊓⊔

The above theorem requires that we provide a library implementation that sat-
isfies the abstract specification Φ and generates traces in the language L. To use
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this theorem to derive a trace property from the separation logic specification,
the idea is to define a suitable wrapper function wrap for the library in question
and prove that if a library implementationM satisfies Φ then so does the wrapped
versionwrap(M) and, additionally, the wrapped version generates traces in the L
language: P0 : Prop, ops : Exp | Φ(P0, ops) ⊢ Φ(P0 ∗ trace(ε) ∗ inv(L),wrap(ops)).

5.1 File Library

To illustrate the idea, we begin by recalling the file library example from the
Introduction. We prove that the associated separation logic specification enforces
that clients verified against the specification only close and read when the file
is open. To capture this property, we define a wrapper function wrapfile that
instruments an implementation of the file library to emit events about calls to
open, close and read. Formally, we take a file library to be a triple consisting
of an open, a close and a read function.

wrapfile

def

= λ(open , close, read).
(
λ . open(); emit open, λ . close(); emit close, λ . read(); emit read

)

We can now formalize the protocol as constraints on the traces generated by
linking an instrumented file library with a client. In particular, we require that
traces belong to the language Lfile of all strings t ∈ Σ∗ such that t is a valid file
trace, filetrace(t), where Σ = {open, close, read} and filetrace is defined as:

filetrace(t)
def

= ∀n. t[n] = read ∨ t[n] = close =⇒ isopen(t, n)

noclose(t, n,m)
def

= ∀k. n < k < m =⇒ t[k] 6= close

isopen(t, n)
def

= ∃m < n. t[m] = open ∧ noclose(t,m, n)

The valid file trace predicate, filetrace(t), expresses that the trace t only contains
read and close events when the file is open. Recall the SL specification of the file
library from the Introduction, here written more formally.

Φfile(P0, (open , close, read))
def

= ∃open, closed :Prop. valid(P0 =⇒ closed) ∧
{
closed

}
open()

{
open

}
∧
{
open

}
close()

{
closed

}
∧
{
open

}
read()

{
open

}

To prove the specification enforces the intended protocol, we proceed by proving
that the wrapping preserves satisfaction of the specification and generates traces
in Lfile.

Lemma 1. P0, ops | Φfile(P0, ops) ⊢ Φfile(P0 ∗ trace(ε) ∗ inv(Lfile),wrapfile(ops)).

Proof (sketch). We first need to define new wrapped versions of the abstract
representation predicates, which relate the abstract resources to the current trace.
The idea is that the wrapped open resource, open

w
, should express that the

current trace t is in Lfile and that the trace t is open. Likewise, the wrapped
closed resource, closedw should simply express that the current trace is in Lfile.

open
w

def

= open ∗ ∃t ∈ Lfile. trace(t) ∗ inv(Lfile) ∗ isopen(t, |t|+ 1)

closedw
def

= closed ∗ ∃t ∈ Lfile. trace(t) ∗ inv(Lfile)
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We need to prove that P0∗trace(ε)∗inv(Lfile) =⇒ closedw assuming P0 =⇒ closed,
which follows trivially from the definition of closedw. It remains to prove that
the wrapped methods satisfy their specifications. Below we give a proof outline
for the wrapped open method.

{closedw}
{closed ∗ ∃t ∈ Lfile. trace(t) ∗ inv(Lfile)}
open();
{open ∗ ∃t ∈ Lfile. trace(t) ∗ inv(Lfile)}
emit open;
{open ∗ ∃t ∈ Lfile. trace(t) ∗ inv(Lfile) ∗ isopen(t, |t|+ 1)}
{openw}

Here we use the assumed specification of the underlying open method to verify
the call to open and we used the following property of Lfile and isopen to prove
that emitting open would result in a trace in Lfile that was open.

∀t ∈ Lfile. t · open ∈ Lfile ∧ isopen(t · open, |t · open|+ 1)

The proof outlines for the close and read operations are similar, but use the
following property to justify the emits.

∀t ∈ Lfile. isopen(t, |t|+ 1) =⇒ t · close ∈ Lfile ∧ t · read ∈ Lfile ⊓⊔

5.2 Iterators on Collections

We consider a collections library that provides methods for modifying a collection
as well as iterating over it. To ensure a well-defined semantics for iterators, we
require the following property:

An iterator over a collection should only be used if the underlying collec-
tion has not been destructively modified since the iterator was created.

This is a trace property of the interaction between the collections library and
clients. To capture it formally, we first define a suitable wrapper for the library
that produces appropriate trace events. We take a collections library to be a
tuple consisting of five operations: size, add, remove, iterator and next. The
size operation is non-destructive and returns the size of the given collection.
The add and remove operations destructively modify the given collection by
adding or removing an element from the collection. Finally, iterator returns a
new iterator for the collection, while next returns the next element of a given
iterator.

The instrumentation is fairly straightforward and simply emits a suitable
event indicating the operation called and the argument and/or return value of
the given operation, when relevant:

wrapcoll

def

= λ(size, add , remove, iter , next).


λy. let r = size(y) in emitsize; r, λy. add(y); emit add,
λy. remove(y); emit remove, λ . let r = iter() in emit〈iterator, r〉; r,
λy. let r = next(y) in emit〈next, y〉; r
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The traces ignore the arguments to add and remove and the return values of
size and next, as they are irrelevant for the protocol.

With this instrumentation we can now express the informal protocol as a
language of permissible interaction traces between the client and library. We let
the trace alphabet be the countable set:

Σ = {size, add, remove} ∪ {〈next, ℓ〉, 〈iterator, ℓ〉 | ℓ ∈ Loc}

The language Lcoll of safe behaviours contains all strings t ∈ Σ∗ such that, for
all 1 ≤ i ≤ |t|:

if t[i] = 〈next, ℓ〉 then there is j < i such that t[j] = 〈iterator, ℓ〉 and,
for all j < k < i, t[k] /∈ { add, remove}.

That is, every call to the next method of an iterator ℓ must be preceded by a
call to iterator() which returns ℓ. In addition, there should be no modification
of the collection between those two events.

To enforce this protocol we use a cut-down version of the iterator specification
in [19] that does not track the contents of the underlying collections.

Φcoll(P0,(size, add, remove, iterator, next))
def

=

∃coll : Val → Prop. ∃iter : Val× Val → Prop.valid(P0 =⇒ ∃c : Val. coll(c)) ∧

∀c : Val.
{
coll(c)

}
size()

{
coll(c)

}
∧

∀c, x : Val.
{
coll(c)

}
add(x)

{
∃c′ : Val. coll(c′)

}
∧

∀c : Val.
{
coll(c)

}
remove(x)

{
∃c′ : Val. coll(c′)

}
∧

∀c : Val.
{
coll(c)

}
iterator()

{
r. coll(c) ∗ iter(r, c)

}
∧

∀c, x : Val.
{
coll(c) ∗ iter(x, c)

}
next(x)

{
coll(c) ∗ iter(x, c)

}

The specification introduces two types of resources, coll and iter, to formally
capture the protocol. The coll(c) resource is indexed by an abstract version num-
ber c while the iter(p, c) resource expresses that p is an iterator and the version
number of the underlying collection was c when the iterator was created. The
operations that destructively update the collection consume a coll(c) resource
and produce a coll(c′) resource for an existentially quantified version number c′.
As a result, after a destructive update, we should no longer be able to satisfy
the precondition of next, as it requires ownership of a coll resource and an iter
resource with a common version number c.

To establish this intuition formally we prove that, for an arbitrary library
implementationM that satisfies the collections specification, the wrapped library
implementation wrapcoll(M) also satisfies the collections specification and the
traces generated by the wrapped implementation are in the language Lcoll.

Lemma 2. P0, ops | Φcoll(P0, ops) ⊢ Φcoll(P0∗trace(ε)∗ inv(Lcoll),wrapcoll(ops)).

Proof (sketch). To prove that the wrapped implementation satisfies the col-
lections specification and produces traces in Lcoll, we first need to define new
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wrapped versions of the coll and iter resources that relate the abstract version
number to the trace state. The idea is that the collection parameter of the
wrapped coll resource will consist of a pair (c, n), where the c component is the
parameter of the underlying coll resource and n is the index in the trace of the
last add or remove event. We want the wrapped coll((c, n)) resource to assert
that there are no add or remove events in the current trace after the n-th ele-
ment. Likewise, the wrapped iter(r, (c, n)) resource should assert that there is an
iterator event for iterator r in the current trace after the n-th element. Hence,
if we own both coll((c, n)) and iter(r, (c, n)) then we know that no add or remove
events were emitted since the iterator r was created.

Let coll and iter denote the non-wrapped representation predicates that exist
by the Φcoll(P0, ops) assumption and define the wrapped representation predi-
cates collw and iterw as follows:

collw(x)
def

= ∃y : Val. ∃n : Nat. x = (y, n) ∗ coll(y) ∗

∃t ∈ Lcoll. trace(t) ∗ inv(Lcoll) ∗ add, remove 6∈ t[n+ 1..] ∗ n ≤ |t|

iterw(r, x)
def

= ∃y : Val. ∃n : Nat. x = (y, n) ∗ iter(y) ∗

∃t ∈ Lcoll. hist(t) ∗ 〈iterator, r〉 ∈ t[n+ 1..]

We use t[n..] as notation for the subtrace of t starting from the n-th element.

It thus remains to show that the wrapped library satisfies the collections
specification. First, we need to prove that we obtain a wrapped collection re-
source from the initial resources: P0 ∗ inv(Lcoll) ∗ trace(ε) =⇒ ∃c : Val. collw(c).
This follows easily from the P0 =⇒ ∃c′ : Val. coll(c′) assumption by taking the
second component of c to be 0.

Next, we have to show that each of the wrapped operations satisfies the
corresponding Hoare specification. The size method is particularly simple, as
any trace t ∈ Lcoll can trivially be extended with a size event t · size ∈ Lcoll.
We will thus skip the size method. The add method is more interesting, as we
have to update the index into the trace for the last add event. Below is a proof
outline for the wrapped add method applied to argument z.

[Context c, z : Val]
{collw(c)}
{∃x, n, t. c = (x, n) ∗ coll(x) ∗ trace(t) ∗ inv(Lcoll) ∗ t ∈ Lcoll

∗ add, remove 6∈ t[n+ 1..] ∗ n ≤ |t|}
add(z);
{∃x′, n, t. coll(x′) ∗ trace(t) ∗ inv(Lcoll) ∗ t ∈ Lcoll ∗ add, remove 6∈ t[n+ 1..] ∗ n ≤ |t|}
emit add;
{∃x′, n, t. coll(x′) ∗ trace(t · add) ∗ inv(Lcoll) ∗ t ∈ Lcoll

∗ add, remove 6∈ t[n+ 1..] ∗ n ≤ |t|}
{∃c′ : Val. collw(c′)}

This leaves us with two proof obligations: firstly, we have to show that we are
allowed to emit the add event (i.e., that t · add ∈ Lcoll); and secondly for the last
step we have to show that:
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∀x′, n, t.

(
coll(x′) ∗ trace(t · add) ∗ inv(Lcoll) ∗ t ∈ Lcoll

∗ n ≤ |t| ∗ add, remove 6∈ t[n+ 1..]

)
=⇒ ∃c′ : Val. collw(c

′)

This follows easily by taking c′ to be (x′, |t · add|), as t · add contains no add or
remove events after the |t · add|-th element.

The proof for remove follows the same structure as for add. For the iterator
method, we emit an iterator event and create a new hist resource to record the
trace at the time of the creation of the iterator. Below we give a proof outline
for the iterator method:

[Context c : Val]
{collw(c)}
{∃x, n, t. c = (x, n) ∗ coll(x) ∗ trace(t) ∗ inv(Lcoll) ∗ t ∈ Lcoll

∗ add, remove 6∈ t[n+ 1..] ∗ n ≤ |t|}
let r = iterator() in
{∃x, n, t. c = (x, n) ∗ coll(x) ∗ iter(r, x) ∗ trace(t)
∗ inv(Lcoll) ∗ t ∈ Lcoll ∗ add, remove 6∈ t[n+ 1..] ∗ n ≤ |t|}

emit〈iterator, r〉;
{∃x, n, t. c = (x, n) ∗ coll(x) ∗ iter(r, x) ∗ trace(t · 〈iterator, r〉)
∗ inv(Lcoll) ∗ t ∈ Lcoll ∗ add, remove 6∈ t[n+ 1..] ∗ n ≤ |t|}

{collw(c) ∗ iterw(r, c)}
r
{r. collw(c) ∗ iterw(r, c)}

As before, we are left with two proof obligations: t · 〈iterator, r〉 ∈ Lcoll and:

∀x, n, t. ( c = (x, n) ∗ coll(x) ∗ iter(r, x) ∗ trace(t · 〈iterator, r〉) ∗ inv(Lcoll)

∗ t ∈ Lcoll ∗ add, remove 6∈ t[n+ 1..] ∗ n ≤ |t|) =⇒ collw(c) ∗ iterw(r, c)

To discharge this last proof obligation, we use the PAllocHist rule to intro-
duce a history resource hist(t · 〈iterator, r〉) and since n ≤ |t| it follows that
〈iterator, r〉 ∈ (t · 〈iterator, r〉)[n+ 1..], as required by iterw(r, c).

We are left with next, which is the most interesting case as it requires us to
prove the iterator we are trying to use is still valid. We give a proof outline for
the next method applied to an argument x:

[Context c, x : Val]
{collw(c) ∗ iterw(x, c)}
{∃y, n, t, t′. c = (y, n) ∗ coll(y) ∗ iter(x, c) ∗ trace(t) ∗ hist(t′) ∗ inv(Lcoll)

∗ t, t′ ∈ Lcoll ∗ add, remove 6∈ t[n+ 1..] ∗ n ≤ |t| ∗ 〈iterator, x〉 ∈ t′[n+ 1..]}
let r = next(x);
{∃y, n, t, t′. c = (y, n) ∗ coll(y) ∗ iter(x, c) ∗ trace(t) ∗ hist(t′) ∗ inv(Lcoll)

∗ t, t′ ∈ Lcoll ∗ add, remove 6∈ t[n+ 1..] ∗ n ≤ |t| ∗ 〈iterator, x〉 ∈ t′[n+ 1..]}
emit〈next, x〉;
{∃y, n, t, t′. c = (y, n) ∗ coll(y) ∗ iter(x, c) ∗ trace(t · 〈next, x〉) ∗ hist(t′) ∗ inv(Lcoll)

∗ t, t′ ∈ Lcoll ∗ add, remove 6∈ t[n+ 1..] ∗ n ≤ |t| ∗ 〈iterator, x〉 ∈ t′[n+ 1..]}
{collw(c) ∗ iterw(x, c)}
r
{collw(c) ∗ iterw(x, c)}
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To verify the emit expression, we further have to prove that t · 〈next, x〉 ∈ Lcoll,
that is, that the iterator x is still valid. This relies on the following key property
of the Lcoll language:

t ∈ Lcoll∧add, remove 6∈ t[n+1..]∧〈iterator, x〉 ∈ t[n+1..] =⇒ t·〈next, x〉 ∈ Lcoll

To apply this property we use PUseHist to conclude from trace(t)∗hist(t′) that
t′ ≤pref t and thus that 〈iterator, x〉 ∈ t′[n+1..] =⇒ 〈iterator, x〉 ∈ t[n+1..].

5.3 Well-bracketing Protocols

Libraries that allow clients to acquire, access and release resources often impose a
well-bracketing protocol whereby clients are required to acquire resources before
accessing and releasing them. The file library in §5.1 was a particularly simple
example of such a protocol. In this section we consider a more advanced and
realistic variant thereof for a library with a higher-order function that takes care
of acquiring and releasing the underlying resource for clients.

Consider a library with a higher-order method withRes for acquiring, access-
ing and subsequently releasing some resource (e.g. a file) and an operation op

for accessing the resource. The withRes operation takes as argument a function
f provided by the client for accessing the resource and takes care of acquiring
the resource before f is called and subsequently releasing it again. For such a
library, we wish to ensure that 1) clients only access the resource after they have
acquired it, and 2) clients do not try to acquire resources they already hold.

To express this property formally, we first define a wrapping function that
instruments the library to emit events about the interaction between client and
library. Formally, we take a library implementation to be a tuple consisting of a
withRes function and an operation op. Below we define a wrapping function for
such a library that emits call and return events for all calls where control passes
between client and library.

wrapbrac

def

= λ(withRes , op). ( λf. emit〈call, withRes, f〉;

withRes(λx. emit〈call, f〉; f(x); emit〈ret, f〉);

emit〈ret, withRes, f〉,

λx. emit〈call, op〉; op(x); emit〈ret, op〉 )

We can now state the desired property as a well-bracketing property of the traces
generated by the instrumented library. Let us define Lbrac ⊆ Val∗ as the prefix
closure of the language of all strings s that are of the form:

〈call, withRes, f〉 · 〈call, f〉 · sop · 〈ret, f〉 · 〈ret, withRes, f〉 · s
′

for some f ∈ Fun, sop ∈ (〈call, op〉·〈ret, op〉)∗ and s′ ∈ Lbrac. That is, the strings
in Lbrac are well-bracketed sequences of events formed of subsequences adhering
to the pattern 〈call, withRes, f〉 · 〈call, f〉 ·sop · 〈ret, f〉 · 〈ret, withRes, f〉, and
subsequences thereof, where sop a sequence of consecutive calls and returns of
op.
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This trace property is enforced by the following separation logic specification.

Φbrac(P0, (withRes, op))
def

=

∃locked : Prop. ∃unlocked : Val→Prop. valid(P0 =⇒ locked) ∧

∀P,Q : Prop. ∀f : Val.

{locked ∗ P ∗ S(P,Q, unlocked, f)}withRes(f){locked ∗Q} ∧

∀x, y : Val. {unlocked(y)} op(x) {unlocked(y)}

S(P,Q, unlocked, f)
def

= ∀y, x : Val. spec({unlocked(y) ∗ P} f(x) {unlocked(y) ∗Q})

This uses two abstract resources, unlocked and locked to capture the well-bracketing
aspect of the protocol. In particular, calling withRes requires the client to relin-
quish ownership of the locked resource. Since the function provided by the client
is only given ownership of the abstract unlocked resource, it cannot itself call
withRes. Furthermore, to call op requires ownership of the unlocked resource,
thus ensuring that only the callback provided by the client to withRes can call
op. This specification ensures that withRes is forced to call the function provided
by the client exactly once, as it is required to transform the abstract resource P
into Q and the only way it can achieve this is by calling the function provided
by the client.

To prove that the specification enforces the trace property we proceed as
usual, by proving that for any implementation M that satisfies the specification,
the wrapped implementation wrapbrac(M) also satisfies the specification and the
traces generated by the wrapped implementation are in Lbrac.

Lemma 3. P0, ops | Φbrac(P0, ops) ⊢ Φbrac(P0∗trace(ε)∗inv(Lbrac),wrap
brac

(ops)).

Proof (Proof sketch). To prove that the wrapped version satisfies the specifica-
tion and produces traces in Lbrac, we first need to define wrapped versions of the
abstract representation predicates. The idea is to let the wrapped locked resource,
lockedw, express that the current trace t is in Lbrac and the 〈call, withRes, f〉
and 〈ret, withRes, f〉 events in t are well-balanced and well-bracketed. For the
wrapped unlocked resource, unlockedw(x), the idea is to use the argument x to
track the name f of the last unbalanced 〈call, withRes, f〉 event in t.

To simplify the definitions and subsequent proofs, we first introduce a number
of auxiliary resources, T0, T1, T2 and T3. T0 expresses that the current trace is
well-balanced. We set O = (〈call, op〉 · 〈ret, op〉)∗. T1(f) expresses that the
current trace t has the form s · 〈call, withRes, f〉 where s is well-balanced. T2(f)
expresses that the current trace t has the form s ·〈call, withRes, f〉·〈call, f〉·s′

where s is well-balanced and s′ ∈ O. Finally, T3(f) expresses that the current
trace t has the form s · 〈call, withRes, f〉 · 〈call, f〉 · s′ · 〈ret, f〉 where s is
well-balanced and s′ ∈ O.

T0 = ∃t ∈ Lbrac. trace(t) ∗ inv(Lbrac) ∗ (|t| > 0 =⇒ ∃f. t[|t|] = 〈ret, withRes, f〉)

T1(f) = ∃t ∈ Lbrac. trace(t) ∗ inv(Lbrac) ∗ t[|t|] = 〈call, withRes, f〉

T2(f) = ∃t ∈ Lbrac. trace(t) ∗ inv(Lbrac) ∗ ∃n < |t|. t[n] = 〈call, withRes, f〉

∧ t[n+ 1] = 〈call, f〉 ∧ t[n+ 2..] ∈ O
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T3(f) = ∃t ∈ Lbrac. trace(t) ∗ inv(Lbrac) ∗ ∃n < |t|. t[n] = 〈call, withRes, f〉

∧ t[n+ 1] = 〈call, f〉 ∧ t[n+ 2..(|t| − 1)] ∈ O ∧ t[|t|] = 〈ret, f〉

With these resources, we can now define unlockedw and lockedw:

unlockedw(x)
def

= ∃y, z : Val. x = (y, z) ∗ unlocked(y) ∗ T2(z)

lockedw
def

= locked ∗ T0

It follows easily that P0 ∗ trace(ε) ∗ inv(Lbrac) =⇒ lockedw from trace(ε) ∗
inv(Lbrac) =⇒ T0 and the assumption P0 =⇒ locked.3

It remains to show that the two instrumented operations satisfy their specifi-
cations. We begin by showing that the instrumented withRes operation satisfies
its specification:

∀P,Q : Prop. ∀f : Val.

{lockedw ∗ P ∗ S(P,Q, unlockedw, f)}π1(wrapbrac(withRes, op))(f) {lockedw ∗Q}

assuming withRes satisfies its specification:

∀P,Q : Prop. ∀f : Val. {locked∗P ∗S(P,Q, unlocked, f)} withRes(f) {locked∗Q}

We give a proof outline for the instrumented withRes operation:

[Context P,Q : Prop, f : Val]
{lockedw ∗ P ∗ S(P,Q, unlockedw, f)}
{locked ∗ T0 ∗ P ∗ S(P,Q, unlockedw, f)}
emit〈call, withRes, f〉;

{locked ∗ T1(f) ∗ P ∗ S(P,Q, unlockedw, f)}
let g = λx. emit〈call, f〉; f(x); emit〈ret, f〉 in

{locked ∗ T1(f) ∗ P ∗ S(P ∗ T1(f), Q ∗ T3(f), unlocked, g)}
withRes(g);

{locked ∗ T3(f) ∗Q}
emit〈ret, withRes, f〉

{locked ∗ T0 ∗Q}
{lockedw ∗Q}

The interesting step is showing that from the assumed specification of f we can
derive the desired specification for the instrumented version of f :

∀P,Q :Prop. ∀f : Val. S(P,Q, unlockedw, f)

=⇒ S(P ∗ T1(f), Q ∗ T3(f), unlocked, λx. emit〈call, f〉; f(x); emit〈ret, f〉)

This follows from the following proof outline

[Context P,Q : Prop and f, x, y : Val]
{unlocked(y) ∗ P ∗ T1(f) ∗ S(P,Q, unlockedw, f)}
emit〈call, f〉;

{unlocked(y) ∗ P ∗ T2(f) ∗ S(P,Q, unlockedw, f)}
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{unlockedw((y, f)) ∗ P ∗ S(P,Q, unlockedw, f)}
f(x);

{unlockedw((y, f)) ∗Q}
{unlocked(y) ∗Q ∗ T2(f)}
emit〈ret, f〉

{unlocked(y) ∗Q ∗ T3(f)}

Lastly, we need to show that the instrumented op function satisfies its specifica-
tion. Below we give a proof outline for the instrumented op function applied to
an argument x:

[Context x, y : Val]
{unlockedw(y)}
{∃a, f. y = (a, f) ∗ unlocked(a) ∗ T2(f)}
emit〈call, op〉;

{∃a, f. y = (a, f) ∗ unlocked(a) ∗ ∃t ∈ Lbrac. trace(t) ∗ inv(Lbrac) ∗ p(t, f)}
op(x);

{∃a, f. y = (a, f) ∗ unlocked(a) ∗ ∃t ∈ Lbrac. trace(t) ∗ inv(Lbrac) ∗ p(t, f)}
emit〈ret, op〉

{∃a, f. y = (a, f) ∗ unlocked(a) ∗ T2(f)}
{unlockedw(y)}

where p(t, f) = ∃n< |t|. t[n] = 〈call, withRes, f〉 ∧ t[n + 1] = 〈call, f〉 ∧
t[n+ 2..] ∈ (〈call, op〉 · 〈ret, op〉)∗ · 〈call, op〉. ⊓⊔

5.4 Traversable stack example

To further demonstrate that our approach can express and enforce strong trace
properties, recall the stack example from §2. We have a stack with a push and a
pop method, and a foreach method that takes a function argument and applies
the given function to every element of the stack, in order, starting from the top-
most element. Here the protocol on the interaction between client and library
imposes restrictions on both the client and the library. In particular, we wish to
ensure that the function provided by the client cannot call back into the stack-
library and potentially modify the underlying stack during the iteration of the
stack. We also wish to ensure that the library calls the function provided by the
client with every element currently on the stack and in the right order.

To express this protocol, we first define a suitable library wrapper that tracks
all calls to push and pop and all calls to the function argument provided by the
client when calling foreach.

wrapstack(push, pop, foreach)
def

=

(λa. emit〈call, push, a〉; push(a); emit〈ret, push〉,
λ . emit〈call, pop〉; let x = pop() in emit〈ret, pop, x〉;x,

λf. emit〈call, foreach, f〉; foreach
(
λa. emit〈call, f, a〉; f(a);

emit〈ret, f〉
)
; emit〈ret, foreach〉)

Let Σst be the stack alphabet. We can formalize the intended protocol as the
language Lstack defined as the prefix closure of the language of all traces t ∈ Val∗
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such that stktr(t, ε) holds, where, given α ∈ Σ∗
st, we define stktr(t, α) by:

stktr(t, α)
def

= (t = α = ε) ∨

(t = t′ ·〈call, push, a〉 ·〈ret, push〉 ∧ α= a ::α′∧ stktr(t
′, α′))∨

(t = t′ · 〈call, pop〉 · 〈ret, pop, ()〉 ∧ α = ε ∧ stktr(t
′, ε)) ∨

(t = t′ · 〈call, pop〉 · 〈ret, pop, a〉 ∧ stktr(t
′, a :: α)) ∨

(t = t′ · 〈call, foreach, f〉 · t′′ · 〈ret, foreach〉 ∧ stktr(t
′, α) ∧ trav(t′′, α, f))

trav(t, α, f)
def

= (t = α = ε) ∨

(t = 〈call, f, a〉 · 〈ret, f〉 · t′ ∧ α = a :: α′ ∧ trav(t′, α′, f))

A higher-order separation logic specification for such a stack data structure is
the following.

Φ(Pinit , (push, pop, foreach))
def

=

∃stack : Val seq → Prop. valid(Pinit =⇒ stack(ε)) ∧

∀α, a. {stack(α) ∧ a 6= ()} push(a) {stack(a :: α)} ∧

∀α. {stack(α)} pop() {r. (r = () ∧ stack(α) ∧ α = ε)

∨ (∃α′. α = r :: α′ ∧ stack(α′))} ∧

∀α, f, I. {stack(α) ∗ I(ε) ∗ ∀β, a. spec({I(β)} f(a) {I(a :: β)})}

foreach(f){stack(α) ∗ I(rev(α))}

It asserts existence of an abstract stack representation predicate stack(α) that
tracks the exact sequence of elements currently on the stack using the mathemat-
ical sequence α. The specification for push and pop is straightforward: pushing
and popping elements pushes or pops elements from this mathematical sequence,
with a few special cases for pushing () or popping from an empty stack. The spec-
ification for foreach is more interesting. It is parametrised by a predicate I, to
be chosen by the client. This predicate is indexed by a sequence α and I(α) is
intended to capture the client’s state after the function provided by the client
has been called on each element of α, in reverse order. This accounts for the
I(rev(α)) in the post-condition, where rev is the reverse operator on sequences.

Lemma 4. P0, ops | Φ(P0, ops) ⊢ Φ(P0 ∗ inv(Lstack) ∗ trace(ε),wrapstack(ops)).

Proof (Proof sketch). We proceed by defining a wrapped version of the stack
predicate that asserts that the sequence of elements α matches the expected
contents of the stack as per the current trace t.

stackw(α)
def

= stack(α) ∗ ∃t. stktr(t, α) ∗ trace(t) ∗ inv(Lstack)

Clearly we have that Pinit ∗ inv(Lstack) ∗ trace(ε) =⇒ stackw(ε) as stktr(ε, ε) and
Pinit =⇒ stack(ε).

It remains to prove the wrapped library methods satisfy the specification
instantiated with the wrapped stack predicate. The proofs for push and pop are
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straightforward and have been omitted. For foreach we are given a predicate I
from the client and need to prove the following triple:

{stackw(α) ∗ I(ε) ∗ ∀β, a. spec({I(β)} f(a) {I(a :: β)})}

π3(wrapstack(ops))(f){stackw(α) ∗ I(rev(α))}

In the call to the underlying foreach method, we can pick a suitably wrapped
version of the I predicate, Iw(β). The idea is that it should assert I(β) and that
we have emitted an opening foreach call and called the function argument on
all the elements of β so far.

Iw(β)
def

= I(β) ∗ ∃t1, t2. stktr(t1, α) ∧ trav(t2, rev(β), f) ∧ trace(t1 · 〈call, foreach, f〉 · t2)

We need to prove that the wrapped function argument updates the wrapped I
predicate appropriately. This follows from:

[Context α, β, f : Val]
{Iw(β)}
{I(β) ∗ ∃t1, t2. stktr(t1, α) ∗ trav(t2, rev(β), f) ∗ trace(t1 · 〈call, foreach, f〉 · t2)}
emit 〈call, f , a〉;
{I(β) ∗ ∃t1, t2. stktr(t1, α) ∗ trav(t2, rev(β), f)

∗ trace(t1 · 〈call, foreach, f〉 · t2 · 〈call, f, a〉)}
f(a);
{I(a :: β) ∗ ∃t1, t2. stktr(t1, α) ∗ trav(t2, rev(β), f)

∗ trace(t1 · 〈call, foreach, f〉 · t2 · 〈call, f, a〉)}
emit 〈ret, f〉;
{I(a :: β) ∗ ∃t1, t2. stktr(t1, α) ∗ trav(t2, rev(β), f)

∗ trace(t1 · 〈call, foreach, f〉 · t2 · 〈call, f, a〉 · 〈ret, f〉)}
{I(a :: β) ∗ ∃t1, t2. stktr(t1, α) ∗ trav(t2, rev(a :: β), f) ∗ trace(t1 · 〈call, foreach, f〉 · t2)}
{Iw(a :: β)}

The second to last step follows from the following property:

∀α, a, t. trav(t, α, f) =⇒ trav(t · 〈call, f, a〉 · 〈ret, f〉, α · a, f)

Now the rest of the proof of foreach is just an application of the specification
of the underlying foreach method and the Emit rule for the emission of the
foreach call and return events.

6 Semantics

We give a denotational semantics for the logic introduced previously and es-
tablish soundness of the logic. The semantics is based on an interpretation of
resources as members of a suitable resource monoidM. In fact,M is a partial com-
mutative monoid (|M|, •, 1) whereby the multiplication operator acts as the se-
mantic analogue of separating conjunction. We shall also use the partial order re-
lation yielded by monoid multiplication: m1 ≤ m2 ⇐⇒ ∃m ∈ |M|. m1 •m = m2

for all m1,m2 ∈ |M|. In the sequel we shall frequently abuse notation and write
|M| simply as M. The semantics of resources is parametrised on worlds, that is,
partially ordered sets W specifying functional environments and trace invariants.
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The monoid models heap resources and trace resources. It is constructed as

the product of two partial commutative monoids: M
def

= Heap× Trace, where:

Heap
def

= (Heap,⊎, ∅) Trace
def

= ({hs, tr} ×Val∗, • , (hs, ε))

The monoid multiplication on Heap is disjoint union (⊎), which is only defined
between heaps with disjoint domains. The empty heap ∅ is the unit.

The monoid multiplication for the trace monoid is defined by:

(hs, t1) • (hs, t2)
def

=





(hs, t1) if t2 ≤pref t1

(hs, t2) if t1 ≤pref t2

undefined otherwise

(tr, t1) • (hs, t2)
def

= (hs, t2) • (tr, t1)
def

=

{
(tr, t1) if t2 ≤pref t1

undefined otherwise

(tr, t1) • (tr, t2) undefined

where ≤pref is prefix ordering on finite sequences. The idea is that trace(t) is
modelled by (tr, t), while hist(t) is modelled by (hs, t). The monoid multiplication
ensures that (tr, t) is a unique resource, which grants the right to extend the
trace. (It does not permit arbitrary changes to the trace: updates must preserve
all frames, and hence all prefixes of the trace.) The resource (hs, t) is duplicable,
and only ensures that t is a prefix of the trace. It is easy to see that (hs, ε) (where
ε denotes the empty sequence) is the unit of this monoid.

Worlds model the information contained in assertions that does not behave
like a resource. Worlds include the function environment and a trace invariant.
We thus define W

def

= FEnv × P(Val∗) with (γ1, I1) ≤ (γ2, I2) iff γ1 ⊆ γ2 and
I1 = I2 . The ordering on worlds describes how they may change with time. This
ordering allows new functions to be named, but enforces that the trace invariant
does not change with time.

Assertions are interpreted as monotone functions from worlds to upwards

closed sets of resources: [[Prop]]
def

= W →mon P↑(M) where P↑(M)
def

= { p ⊆ M |
∀m ∈ p. ∀m′ ∈ M. m ≤ m′ =⇒ m′ ∈ p }. The rest of the types are interpreted
as shown below, where the ordering on {⊥,⊤} is ⊥ < ⊤.

[[1]]
def

= {∗} [[Bool]]
def

= {true, false} [[Loc]]
def

= Loc [[τ → σ]]
def

= [[τ ]] → [[σ]]

[[Nat]]
def

= N [[Val]]
def

= Val [[Exp]]
def

= Exp [[τ × σ]]
def

= [[τ ]] × [[σ]]

[[seq τ ]]
def

= ([[τ ]])∗ [[Spec]]
def

= W →mon {⊥,⊤}

The semantics of a term Γ ⊢ M : τ is defined inductively as in Figure 3. (We
give selected cases; for full details see Appendix B.) The semantics is defined
in terms of a variable environment ρ ∈ [[Γ ]] that maps variables of type τ to
elements of [[τ ]]: [[Γ ]] = {ρ : dom(Γ ) →

⋃
τ [[τ ]] | ∀(x : τ) ∈ Γ. ρ(x) ∈ [[τ ]]}

The definition of the weakest precondition wp(Q), used to define the seman-
tics of Hoare triples, enforces the invariant on traces generated by the considered
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[[Γ ⊢ P ⇒ Q : Prop]]ρ(w)
def

=

{

m

∣

∣

∣

∣

∀m′ ≥ m.∀w′ ≥ w.m′ ∈ [[Γ ⊢ P : Prop]]ρ(w
′)

=⇒ m′ ∈ [[Γ ⊢ Q : Prop]]ρ(w
′)

}

[[Γ ⊢ P ∗Q : Prop]]ρ(w)
def

=

{

m

∣

∣

∣

∣

∃m1,m2.m1 ∈ [[Γ ⊢ P : Prop]]ρ(w)
∧m2 ∈ [[Γ ⊢ Q : Prop]]ρ(w) ∧m = m1 •m2

}

[[Γ ⊢ M 7→ N : Prop]]ρ(w)
def

= {m ∈ M | m([[Γ ⊢ M : Loc]]ρ) = [[Γ ⊢ N : Val]]ρ}

[[Γ ⊢ spec(M) : Prop]]ρ(w)
def

= {m ∈ M | [[Γ ⊢ M : Spec]]ρ(w) = ⊤}

[[Γ ⊢ valid(P ) : Spec]]ρ(w)
def

= ( [[Γ ⊢ P : Prop]]ρ(w) = M )

[[Γ ⊢ trace(t) : Prop]]ρ(w)
def

= {(h, τ ) | τ ≥ (tr, [[Γ ⊢ t : seq Val]]ρ)}

[[Γ ⊢ hist(t) : Prop]]ρ(w)
def

= {(h, τ ) | τ ≥ (hs, [[Γ ⊢ t : seq Val]]ρ)}

[[Γ ⊢ inv(I) : Prop]]ρ(w)
def

= {m |π2(w) = {t | [[Γ ⊢ I : seq Val → Bool]]ρ(t) = true}}

[[Γ ⊢
{

P
}

e
{

Q
}

: Spec]]ρ(w)
def

=
∀w′ ≥ w. [[Γ ⊢ P : Prop]]ρ(w

′)
⊆ wp([[Γ ⊢ Q : Val → Prop]]ρ)(ρ(e))(w

′)

[[Γ ⊢ M =τ N : Spec]]ρ(w)
def

= ( [[Γ ⊢ M : τ ]]ρ = [[Γ ⊢ N : τ ]]ρ )

wp(Q)
def

= νwp
′
. λe,w.











m

∣

∣

∣

∣

∣

∣

∣

∀r, t, s. t, s �w m • r =⇒
(e, s 9 =⇒ e ∈ Val ∧m ∈ Q(e)(w))

∧ ∀a, e′, s′. e, s
a
−→ e′, s′ =⇒

∃w′ ≥ w,m′. (t · a), s′ �w′ m′ • r ∧m′ ∈ wp′(e′)(w′)











t, (h, γ) �(γ′,I) (h
′
, (tr, t′))

def

= (t = t
′ ∧ h = h

′ ∧ γ = γ
′ ∧ t ∈ I)

t, (h, γ) �(γ′,I) (h
′
, (hs, t′))

def

= (t′ ≤pref t ∧ h = h
′ ∧ γ = γ

′ ∧ t ∈ I)

Fig. 3. Semantics of terms (selected cases).

terms. It is defined as a greatest fixed-point, which establishes that the updates
to the concrete state (the trace t, heap h, and function context γ) simulate up-
dates to the abstract state (the resource m and world w), with respect to the
erasure relation (�). Updates to the concrete state are according to the opera-
tional semantics, while updates to the abstract state must preserve frames (r)
and increase the world. When a terminal configuration is reached, the abstract
state must satisfy the postcondition.

The semantics of entailment in the logic is defined as:

Γ | Θ |= S
def

= ∀w ∈ W.∀ρ ∈ [[Γ ]]. [[Γ ⊢ Θ]]ρ(w) ≤ [[Γ ⊢ S : Spec]]ρ(w)

Γ | Θ | P |= Q
def

= ∀w ∈ W.∀ρ ∈ [[Γ ]]. [[Γ ⊢ Θ]]ρ(w) = ⊤

=⇒ [[Γ ⊢ P : Prop]]ρ(w) ⊆ [[Γ ⊢ Q : Prop]]ρ(w)

where [[Γ ⊢ Θ]]ρ(w) =
∧

T∈Θ[[Γ ⊢ T : Spec]]ρ(w) (here
∧

is lub in {⊥,⊤}).
Soundness of the logic is proved by induction on the structure of derivations

(cf. Appendix B). Using soundness, we can relate a proof of a triple
{
P
}
e
{
Q
}

to the store and trace obtained from the reduction of e.

Theorem 3 (Soundness). If Γ | Θ ⊢ S then Γ | Θ |= S.

Corollary 1. Suppose Γ | − ⊢
{
P
}
e
{
Q
}
and let w ∈ W, ρ ∈ [[Γ ]] and m ∈

[[Γ ⊢ P ]]ρ(w). Then, for all r, t, s such that t, s �w m and ρ(e), s
t′

−→ ∗ e′, s′ 6→,
for some s′, t′, we have that e′ ∈ Val and ∃w′ ≥ w. ∃m′ ∈ [[Γ ⊢ Q]]ρ(e

′)(w′). (t ·
t′), s′ �w′ m′.
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7 Conclusions

In this paper we demonstrated a formal approach for relating library specifica-
tions, expressed in separation logic, with the trace properties they enforce on the
interaction between clients verified against the specified library and the library
itself. The distinctive strength of our technique is that it is based purely on the
abstract library specification and is independent of both client and library im-
plementations. As such, it differs from the standard verification approach where
one verifies a program against a given specification expressing the desired prop-
erty. Since our main goal has been to establish a theoretical foundation relating
specifications and trace properties, we focused on expressiveness rather than
automation.

7.1 Related Work

Several lines of work have targeted static verification of safety trace properties
of object-oriented and higher-order programs.

A particularly influential approach has been Typestates [29,8]. These can be
seen as specifying trace properties using pre/post-conditions. They have been
used to check safety temporal properties of programs, by associating abstract
states to objects, then specifying which methods can be called at each state
and how they make the state evolve. In [3,4] they are combined with aliasing
information to give a sound and modular analysis of API usage protocols, and
to check a specification for the iterator module similar to ours, yet based on a
single object. Multi-object properties, like the iterator one, can be captured by an
extension of typestates using tracematches to specify intensional properties [22].

Static analyses based on type systems have been widely used to check resource
usage, like our file module example. Linear types are used in [7] to develop
Vault, a programming language used to design device drivers, where resource
management protocols can be specified explicitly using annotations in the source
code. An automatic analysis has then been developed in [14].

Type and effect systems have been used in [28] to infer resource usage, repre-
sented by an LTS, and combined with model checking to verify trace properties of
programs. Such systems have been applied to Featherweight Java in [27], where
challenges coming from object orientation like inheritance and dynamic dispatch
are tackled.

Higher-order model checking has been used to provide a sound and complete
resource usage analysis, using higher-order recursion scheme model checking for
a fragment of the µ-calculus [18].

Those approaches have been designed to support automated static verifica-
tion and thus trade off expressiveness for automation. Here we have made the
opposite trade-off and focused on being able to capture expressive trace proper-
ties. As seen, we can specify non-regular properties (5.3, the language is visibly
pushdown [1]), others that rely on tracking an unbounded number of objects
(5.2 and Appendix A, where we need to track all valid iterators and strings re-
spectively), and we can even go beyond context-free languages (5.4, the language
requires an order-2 pushdown automaton [21]). On an orthogonal direction, work-
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ing with a logic with quantification we can specify traces from infinite alphabets
of trace events (5.2, 5.3, 5.4 and Appendix A).

Our key contribution is a technique for formally relating separation logic spec-
ifications with the temporal properties they enforce, through wrapping abstract
resources with assertions about traces. On the other hand, a very active line of
work has targeted the verification of fine-grained concurrent data structures us-
ing program logics with histories [11,9] and separation logics [26,25]. Fine-grained
concurrent algorithms use locking at the level of individual memory operations
and their correctness often relies on subtle temporal properties about internal
interactions within libraries. These approaches include primitives for reasoning
explicitly about traces [11,9] or assign to (fine-grained) separation logic primi-
tives history-oriented interpretations [26]. Temporal reasoning is thus achieved
in a different way than herein, namely by specifying and verifying the underlying
libraries themselves, whereas we derive temporal properties from specifications
that are not themselves temporal.

The F7 and F∗ programming languages provide another technique for reason-
ing about trace properties [30,2]. The technique is primarily aimed at verifying
cryptographic primitives, but has also been applied to access control policies
about interactions between a client and resources managed through libraries [6].
It is based on extending the base programming language with a primitive for
assuming that a given formula holds and an assert primitive that fails if a given
formula does not follow from all previously assumed formulas. Access control
policies are encoded by inserting appropriate assume and assert statements and
proving that no assert can fail. In comparison to our work, the approach does not
establish a formal connection between the inserted assume/assert statements and
the property enforced on the execution. It is also non-local in that any assume
statement can introduce a contradiction and break adequacy.

7.2 Further Directions

We demonstrated the power of even a basic higher-order separation logic for
enforcing elaborate trace properties. A more expressive logic with better support
for shared-resource reasoning would allow us to enforce even more elaborate
protocols. In the future we therefore intend to apply our technique to a fully
featured concurrent higher-order separation logic [17].

In the concurrent setting, linearisability [13] is a trace property that is com-
monly used to specify that operations of a library behave as if they were atomic.
Several concurrent separation logics adopt a different approach to specifying
atomicity, due to Jacobs and Piessens [16]. Although there is a strong intuitive
argument that this approach implies linearisability, a formal connection has not
been made. Our technique could be used to formalise such a connection.

Another direction concerns the description of the captured protocols via for-
mal language tools, such as automata. Note that such a step is not to be taken
lightly, as one would need to establish a formal link between the description
and the logical specification. A related area for future work would be a formal
(and, ideally, automated) procedure for deriving separation logic specifications
for enforcing a given protocol from a formal definition of the protocol.
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A String Sanitisation

Another interesting example is string sanitisation [12]. Suppose strings are fetched
from a web form, processed internally and passed as part of an SQL query to a
database server. To avoid injection attacks, all inputs from the web form should
be sanitized before being passed to the database server. We can express this as
a taint protocol. Strings received from the user are considered tainted initially.
Taint remains with a string and is also passed to any string produced by pro-
cessing some tainted string. The only way to remove taint from a string is by
sanitising it. A protocol we may require is:

No tainted string can reach the database server.

To express this trace property formally, we first define a suitable wrapping around
a string library, that emits events describing the interaction between library and
client. Suppose that a string library consists of five methods: an input method
for obtaining strings from the user via a web form, a constantmethod for declar-
ing string constants in the code, a sanitize method, a concatenation method,
concat, and a sink method, sink, for sending a given string to the database
server. Formally, we represent the library as a 5-tuple of these operations. We
can now define a wrapper that takes a string library and returns an instrumented
string library. The instrumentation is fairly straightforward and simply emits a
suitable event indicating the operation called and the argument and/or return
value of the given operation, when relevant:

wrapstr

def

= λ(input , constant , sanitize, concat , sink). (

λ . let r = input() in emit〈input, r〉; r,

λy. let r = constant(y) in emit〈constant, r〉; r,

λy. sanitize(y); emit〈sanitize, y〉,

λ(y1, y2). let r = concat(y1, y2) in emit〈concat, r, y1, y2〉; r,

λy. sink(y); emit〈sink, y〉 )

We can now define the trace property as a constraint on the traces generated
by linking a client with an instrumented library. We let the alphabet be the
following countable set:

Σ = {〈e, s〉 | e ∈ {constant, input, sanitize, sink}, s ∈ Loc}

∪ {〈concat, s, s1, s2〉 | s, s1, s2 ∈ Loc}

Intuitively, we want to constrain traces such that for any 〈sink, s〉 event in the
trace, all the strings s′ used to construct s are safe to emit, meaning that the
trace contains a corresponding constant event or sanitize event for such s′.
We first define, by induction on t, a predicate esafe(s, t) to express that the string

s is safe to emit given that the current trace is t. We let esafe(s, ε)
def

= ⊥ and:

esafe(s, h :: t)
def

= esafe(s, t) ∨ h = 〈constant, s〉 ∨ h = 〈sanitize, s〉 ∨
(∃s1, s2. h = 〈concat, s, s1, s2〉 ∧ esafe(s1, t) ∧ esafe(s2, t))
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Note such inductive predicates are definable in higher-order logic.
We wish to ensure that once a string has been sanitised it can never become

tainted again or, stated in terms of esafe, once a string is safe for t then it is also
safe for all future histories t′ such that t ≤pref t

′. To ensure this we require the
library to ensure that input, constant and concat always return fresh string
pointers that have never been used before. We thus define the language of valid
traces, Lstr, as the set of all strings t ∈ Σ∗ such that strtrace(t), where:

strtrace(t)
def

= (∀n, s. t[n] = 〈sink, s〉 =⇒ esafe(s, t)) ∨ notfresh(t)

allocs(s, t, n)
def

= t[n] = 〈constant, s〉 ∨ t[n] = 〈input, s〉 ∨

∃s1, s2. t[n] = 〈concat, s, s1, s2〉

notfresh(t)
def

= ∃n,m, s. n 6= m ∧ allocs(s, t, n) ∧ allocs(s, t,m)

The strtrace(t) predicate expresses that either every sink event in t uses a safe
string s or the library does not ensure sufficient freshness of string pointers. In
the latter case we do not constrain the client at all. We thus have the following
crucial property, which ensures that if a string s is safe for the current trace t
then it is also safe for any future trace t′ with sufficiently fresh string pointers:

∀s, t1, t2. t1 ≤pref t2 ∧ esafe(s, t1) =⇒ esafe(s, t2) ∨ notfresh(t2)

Below we define a separation logic specification for the string sanitisation
library that ensures clients only call sink with safe strings. The specification
uses a resource R for the local state of the sanitisation library, a string resource
str(x) for each string and a safe resource safe(x) which expresses that the string
x is safe. As expected, sanitize turns a string into a safe string and concat

applied to safe strings yields a safe string.

Φstr(P0, (input , constant , sanitize, concat , sink))
def

=

∃R : Prop. ∃str, safe : Val → Prop.

valid(P0 =⇒ R) ∧ valid(∀s. safe(s) =⇒ safe(s) ∗ safe(s)) ∧
{
R
}
input()

{
r.R ∗ str(r)

}
∧ ∀s.

{
R
}
constant(s)

{
r.R ∗ str(r) ∗ safe(r)

}
∧

∀s.
{
R ∗ str(r)

}
sanitize(s)

{
R ∗ str(r) ∗ safe(s)

}
∧

∀s1, s2. {R ∗ str(s1) ∗ str(s2)} concat(s1, s2){r.R ∗ str(s1) ∗ str(s2) ∗ str(r)} ∧

∀s1, s2. {R ∗ str(s1) ∗ str(s2) ∗ safe(s1) ∗ safe(s2)}

concat(s1, s2){x.R ∗ str(s1) ∗ str(s2) ∗ str(x) ∗ safe(x)} ∧

∀s.
{
R ∗ str(s) ∗ safe(s)

}
sink(s)

{
R ∗ str(s)

}

As usual, we proceed by proving that the instrumentation preserves the library
specification and generates traces in Lstr.

Lemma 5. P0, ops | Φstr(P0, ops) ⊢ Φstr(P0 ∗ trace(ε) ∗ inv(Lstr),wrapstr(ops)).

Proof (Proof sketch). To prove that the instrumentation preserves the library
specification we first have to define instrumented versions of the abstract repre-
sentation predicates. We let the local state resource Rw take ownership of the
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trace resource and let safew assert the existence of some trace prefix in which
the given string is safe or for which the library failed to ensure sufficiently fresh
string pointers:

Rw

def

= ∃t ∈ Lstr.R ∗ trace(t) ∗ inv(Lstr), strw(s)
def

= str(s)

safew(s)
def

= ∃t ∈ Lstr. safe(s) ∗ hist(t) ∗ (esafe(s, t) ∨ notfresh(t))

It remains to show that the instrumentation preserves the specifications of each
of the library methods. The most interesting cases are sink, and concat when
on two safe strings. For the latter we have:

[Context s1, s2 : Val]
{Rw ∗ strw(s1) ∗ strw(s2) ∗ safew(s1) ∗ safew(s2)}
{R ∗ str(s1) ∗ str(s2) ∗ safe(s1) ∗ safe(s2) ∗ ∃t, t1, t2 ∈ Lstr. trace(t) ∗ inv(Lstr)
∗hist(t1) ∗ hist(t2) ∗ (esafe(s1, t1) ∨ notfresh(t1)) ∗ (esafe(s2, t2) ∨ notfresh(t2))}

let s = concat(s1, s2) in
{R ∗ str(s1) ∗ str(s2) ∗ str(s) ∗ safe(s) ∗ ∃t, t1, t2 ∈ Lstr. trace(t) ∗ inv(Lstr)
∗hist(t1) ∗ hist(t2) ∗ (esafe(s1, t1) ∨ notfresh(t1)) ∗ (esafe(s2, t2) ∨ notfresh(t2))}

emit〈concat, s, s1, s2〉;
{R ∗ str(s1) ∗ str(s2) ∗ safe(s) ∗ ∃t, t′ ∈ Lstr.

trace(t) ∗ inv(Lstr) ∗ hist(t′) ∗ (esafe(s, t′) ∨ notfresh(t′))}
{Rw ∗ strw(s1) ∗ strw(s2) ∗ strw(s) ∗ safew(s)}

here we use the following properties of esafe to verify the emit:

∀s, s1, s2, t. esafe(s1, t) ∧ esafe(s2, t) =⇒ esafe(s, t · 〈concat, s, s1, s2〉)

∀s, s1, s2, t. esafe(s1, t) ∧ esafe(s2, t) =⇒ t · 〈concat, s, s1, s2〉 ∈ Lstr

For the sink case, we have:

[Context s : Val]
{Rw ∗ strw(s) ∗ safew(s)}
{R ∗ str(s) ∗ safe(s) ∗ ∃t, t′ ∈ Lstr. trace(t) ∗ inv(Lstr) ∗ safe(s) ∗ hist(t′) ∗ esafe(s, t′)}
sink(s);
{R ∗ str(s) ∗ ∃t, t′ ∈ Lstr. trace(t) ∗ inv(Lstr) ∗ safe(s) ∗ hist(t′) ∗ (esafe(s, t′) ∨ notfresh(t′))}
emit〈sink, s〉;
{R ∗ str(s) ∗ ∃t ∈ Lstr. trace(t · 〈sink, s〉) ∗ inv(Lstr)}
{Rw ∗ strw(s)}

B Soundness

The semantics of all terms is given in Figure 4.

Theorem 3 (Soundess). If Γ | Θ ⊢ S then Γ | Θ |= S.

Soundness is established by showing that each of the proof rules is semanti-
cally valid.

As a notational convenience, given f, g : Exp → [[Prop]] we write f ⊑ g just if
∀e, w. f(e)(w) ⊆ g(e)(w). We moreover define f ⊔ g as λe, w. f(e)(w) ∪ g(e)(w),
and extend this notation to arbitrary unions

⊔
S for S ⊆ Exp → [[Prop]].
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[[Γ ⊢ x : τ ]]ρ
def

= ρ(x)

[[Γ ⊢ ⊥ : Prop]]ρ(w)
def

= ∅

[[Γ ⊢ ⊤ : Prop]]ρ(w)
def

= [[Γ ⊢ emp : Prop]]ρ(w)
def

= M

[[Γ ⊢ λx : τ.M : τ → σ]]ρ
def

= λv ∈ [[τ ]]. [[Γ, x : τ ⊢ M : σ]]ρ[x 7→v]

[[Γ ⊢ M N : σ]]ρ
def

= [[Γ ⊢ M : τ → σ]]ρ([[Γ ⊢ N : τ ]]ρ)

[[Γ ⊢ ∀x : τ. P : Prop]]ρ(w)
def

=
⋂

v∈[[τ ]]
[[Γ, x : τ ⊢ P ]]ρ[x 7→v](w)

[[Γ ⊢ P ∧Q : Prop]]ρ(w)
def

= [[Γ ⊢ P : Prop]]ρ(w) ∩ [[Γ ⊢ Q : Prop]]ρ(w)

[[Γ ⊢ P ⇒ Q : Prop]]ρ(w)
def

=

{

m

∣

∣

∣

∣

∀m′ ≥ m.∀w′ ≥ w.m′ ∈ [[Γ ⊢ P : Prop]]ρ(w
′)

=⇒ m′ ∈ [[Γ ⊢ Q : Prop]]ρ(w
′)

}

[[Γ ⊢ P ∗Q : Prop]]ρ(w)
def

=

{

m

∣

∣

∣

∣

∃m1,m2.m1 ∈ [[Γ ⊢ P : Prop]]ρ(w)
∧m2 ∈ [[Γ ⊢ Q : Prop]]ρ(w) ∧m = m1 •m2

}

[[Γ ⊢ P −∗Q : Prop]]ρ(w)
def

=







m

∣

∣

∣

∣

∣

∣

∀w′ ≥ w.∀m′ ≥ m.∀m′′ ∈ M.

m′ •m′′ defined ∧m′′ ∈ [[Γ ⊢ P : Prop]]ρ(w
′)

=⇒ m′ •m′′ ∈ [[Γ ⊢ Q : Prop]]ρ(w
′)







[[Γ ⊢ M 7→ N : Prop]]ρ(w)
def

= {m ∈ M | m([[Γ ⊢ M : Loc]]ρ) = [[Γ ⊢ N : Val]]ρ}

[[Γ ⊢ spec(M) : Prop]]ρ(w)
def

= {m ∈ M | [[Γ ⊢ M : Spec]]ρ(w) = ⊤}

[[Γ ⊢ M =τ N : Spec]]ρ(w)
def

= ( [[Γ ⊢ M : τ ]]ρ = [[Γ ⊢ N : τ ]]ρ )

[[Γ ⊢ valid(P ) : Spec]]ρ(w)
def

= ( [[Γ ⊢ P : Prop]]ρ(w) = M )

[[Γ ⊢ trace(t) : Prop]]ρ(w)
def

= {(h, τ ) | τ ≥ (tr, [[Γ ⊢ t : seq Val]]ρ)}

[[Γ ⊢ hist(t) : Prop]]ρ(w)
def

= {(h, τ ) | τ ≥ (hs, [[Γ ⊢ t : seq Val]]ρ)}

[[Γ ⊢ inv(I) : Prop]]ρ(w)
def

= {m | π2(w) = {t | [[Γ ⊢ I : seq Val → Bool]]ρ(t) = true}}

[[Γ ⊢
{

P
}

e
{

Q
}

: Spec]]ρ(w)
def

=
∀w′ ≥ w. [[Γ ⊢ P : Prop]]ρ(w

′)
⊆ wp([[Γ ⊢ Q : Val → Prop]]ρ)(ρ(e))(w

′)

wp(Q)
def

= νwp
′
. λe,w.















m

∣

∣

∣

∣

∣

∣

∣

∣

∀r, t, s. t, s �w m • r =⇒
(e, s 9 =⇒ e ∈ Val ∧m ∈ Q(e)(w))

∧ ∀a, e′, s′. e, s
a
−→ e′, s′ =⇒

∃w′ ≥ w,m′. (t · a), s′ �w′ m′ • r ∧m′ ∈ wp′(e′)(w′)















where t, (h, γ) �(γ′,I) (h
′
, (tr, t′)) ⇐⇒ t = t

′ ∧ h = h
′ ∧ γ = γ

′ ∧ t ∈ I

t, (h, γ) �(γ′,I) (h
′
, (hs, t′)) ⇐⇒ t

′ ≤pref t ∧ h = h
′ ∧ γ = γ

′ ∧ t ∈ I

Fig. 4. Semantics of terms (all cases).



32 L. Birkedal, T. Dinsdale-Young, G. Jaber, K. Svendsen, N. Tzevelekos

Moreover, for each p, q ∈ [[Prop]], we let p∗q stand for λw. p(w)∗q(w); whereby,
for eachX,Y ⊆ M,X∗Y = {m ∈ M | ∃m1,m2. m = m1•m2∧m1 ∈ X∧m2 ∈ Y }.

Lemma 6 (Hyp rule).
Γ | Θ,S |= S

Proof. Let ρ ∈ [[Γ ]]. Since ∀w ∈ W.
∧

T∈(Θ,S)[[Γ ⊢ T : Spec]]ρ(w) ≤ [[Γ ⊢ S :

Spec]]ρ(w), we have Γ | Θ,S |= S by definition.

Lemma 7 (Ret rule).

Γ, v : Val | Θ |=
{
⊤
}
v
{
r. r = v

}

Proof. Let ρ ∈ [[Γ, v : Val]] and w ∈ W = FEnv× Trace.

wp([[Γ, v : Val ⊢ λr. r = v : Val → Prop]]ρ)(ρ(v))(w)

= {m ∈ M | m ∈ [[Γ, v : Val ⊢ λr. r = v : Val → Prop]]ρ(w)(ρ(v))}

= M

⊇ [[Γ, v : Val ⊢ ⊤ : Prop]]ρ(w)

Hence Γ | Θ |=
{
⊤
}
v
{
r. r = v

}
.

Lemma 8 (Monotonicity of wp). For all p1, p2 : Val → [[Prop]] and w ∈
W, if ∀v, w′ ≥ w. p1(v)(w

′) ⊆ p2(v)(w
′) then ∀e, w′ ≥ w.wp(p1)(e)(w

′) ⊆
wp(p2)(e)(w

′).

Proof. Straightforward, by co-induction.

Lemma 9. For all q : Val → Val → [[Prop]], e ∈ Exp, evaluation contexts K,
and w ∈ W,

wp(λv.wp(q(v))(K[v]))(e)(w) ⊆ wp(
⊔

q)(K[e])(w)

where
⊔
q

def

= λu. λw.∪v∈[[Val]]q(v)(u)(w).

Proof. By co-induction. Assume m ∈ wp(λv.wp(q(v))(K[v]))(e)(w) and that
r, t, s are such that t, s �w m • r. If K[e], s 9 then e, s 9 and thus e ∈ Val
and m ∈ wp(q(e))(K[e])(w) as required, using continuity of wp. Suppose that

K[e], s
a
−→ e′, s′. If e ∈ Val then, as above, m ∈ wp(q(e))(K[e])(w). Otherwise,

there exists e′′ such that e′ = K[e′′] and e, s
a
−→ e′′, s′. It then follows from

the assumption that there exist w′ ≥ w and m′ with (t · a), s′ �w′ m′ • r and
m′ ∈ wp(λv.wp(q(v))(K[v]))(e′′)(w′). By the co-inductive assumption, m′ ∈
wp(

⊔
q)(K[e′′])(w′) and so m ∈ wp(

⊔
q)(K[e])(w) as required.

Corollary 2 (Bind rule). If

Γ | Θ |=
{
P
}
e
{
x.Q

}

Γ, x : Val | Θ |=
{
Q
}
K[x]

{
r. R

}

where x /∈ FV (Θ), then

Γ | Θ |=
{
P
}
K[e]

{
r. ∃x : Val. R

}
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Proof. Follows from Lemmas 9 and 8.

Corollary 3 (Csq rule). If

Γ | Θ | P1 |= P2

Γ | Θ |=
{
P2

}
e
{
Q2

}

Γ, x : Val | Θ | Q2(x) |= Q1(x)

then
Γ | Θ |=

{
P1

}
e
{
Q1

}

Proof. Let ρ ∈ [[Γ ]] and w ∈ W be such that [[Γ ⊢ Θ]]ρ(w). Suppose that m ∈
[[Γ ⊢ P1 : Prop]]ρ(w). By the first assumption, it follows that m ∈ [[Γ ⊢ P2 :
Prop]]ρ(w). By the second assumption, it follows that m ∈ wp([[Γ ⊢ Q2 : Val →
Prop]]ρ)(ρ(e))(w). By the third assumption, we have [[Γ ⊢ Q2 : Val → Prop]]ρ ⊑
[[Γ ⊢ Q1 : Val → Prop]]ρ. By Lemma 8, it then follows that m ∈ wp([[Γ ⊢ Q1 :
Val → Prop]]ρ)(ρ(e))(w), as required.

Lemma 10 (Framing). For all p : [[Prop]], q : [[Val]] → [[Prop]], e ∈ Exp and
w ∈ W,

(p ∗ wp(q)(e))(w) ⊆ wp(λv. p ∗ q(v))(e)(w)

Proof. By co-induction. It suffices to show that, for all e, w, (p ∗wp(q)(e))(w) ⊆
H(λe′. p∗wp(q)(e′))(e)(w) where H is such that wp(λv. p∗ q(v)) = νwp′. H(wp′)
(as implied in the definition of wp). Take any w, m ∈ (p ∗ wp(q)(e))(w), r, t, s
with s �w m • r. Then there exist m1,m2 such that m′ = m1 •m2, m1 ∈ p(w)
and m2 ∈ wp(q)(e)(w). If e, s 9 then, since t, s �w m2 • (m1 • r), it follows
that e ∈ Val and m2 ∈ q(e)(w); we can hence conclude that m ∈ H(λe′. p ∗

wp(q)(e′))(e)(w). If e, s
a
−→ e′, s′ then since m2 ∈ wp(q)(e)(w), it follows that

there are w′ ≥ w and there exists m′
2 such that (t · a), s′ �w′ m′

2 • (r •m1) and
m′

2 ∈ wp(q)(e′)(w′); hence m1 •m′
2 ∈ (p ∗ wp(q)(e′))(w′) and we thus have that

m ∈ H(λe′. p ∗ wp(q)(e′))(e)(w), as required.

Corollary 4 (Frame rule). If Γ | Θ |=
{
P
}
e
{
Q
}
then Γ | Θ |=

{
P ∗R

}
e
{
λr.Q(r) ∗R

}
.

Proof. Let ρ ∈ [[Γ ]] and w ∈ W be such that [[Γ ⊢ Θ]]ρ(w). By assumption,

[[Γ ⊢ P : Prop]]ρ(w) ⊆ wp([[Γ ⊢ Q : Val → Prop]]ρ)(ρ(e))(w)

It follows by monotonicity of ∗ and Lemma 10 that

[[Γ ⊢ P ∗R : Prop]]ρ(w)

= [[Γ ⊢ P : Prop]]ρ(w) ∗ [[Γ ⊢ R : Prop]]ρ(w)

⊆ wp([[Γ ⊢ Q : Val → Prop]]ρ)(ρ(e))(w) ∗ [[Γ ⊢ R : Prop]]ρ(w)

⊆ wp(λv. [[Γ ⊢ Q : Val → Prop]]ρ(v) ∗ [[Γ ⊢ R : Prop]]ρ)(ρ(e))(w)

as required.
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Lemma 11 (Abs rule). If

Γ, x : Val | Θ |=
{
P
}
e
{
Q
}

where x /∈ FV (Θ), then

Γ | Θ |=
{
emp

}
λx. e

{
r. ∀x : Val. spec(

{
P
}
rx

{
Q
}
)
}

Proof. Let ρ ∈ [[Γ ]] and w ∈ W be such that [[Γ ⊢ Θ]]ρ(w). Let m ∈ M. Suppose

that t, (h, γ) �w m • r and (λx. ρ(e)), (h, γ)
a
−→ f, (h′, γ′). Then it must be that

a = ǫ, f ∈ Fun\dom(γ), h′ = h and γ′ = γ[f 7→ λx. ρ(e)]. Let w′ = (γ′, π2(w)) =
(π1(w)[f 7→ λx. ρ(e)], π2(w)), so w′ ≥ w and t, (h, γ′) �w′ m • r. Moreover,
[[Γ ⊢ Θ]]ρ(w

′) by monotonicity. By assumption, we have, for all v ∈ Val, [[Γ, x :
Val ⊢

{
P
}
e
{
Q
}
]]ρ[x 7→v](w

′). Consequently,

m ∈ [[Γ ⊢ λr. ∀x : Val. spec(
{
P
}
rx

{
Q
}
) : Val → Spec]]ρ(w

′)(f)

= wp([[Γ ⊢ λr. ∀x : Val. spec(
{
P
}
rx

{
Q
}
) : Val → Spec]]ρ)(f)(w

′)

and so Γ | Θ |=
{
emp

}
λx. e

{
r. ∀x : Val. spec(

{
P
}
rx

{
Q
}
)
}
as required.

Lemma 12 (SpecOut rule). If

Γ | Θ,S |=
{
P
}
e
{
R
}

then
Γ | Θ |=

{
P ∗ spec(S)

}
e
{
R
}

Proof. Let ρ ∈ [[Γ ]] and w ∈ W be such that [[Γ ⊢ Θ]]ρ(w). Let m ∈ [[Γ ⊢ P ∗
spec(S)]]ρ(w). Then [[Γ ⊢ S]]ρ(w) and m ∈ [[Γ ⊢ P ]]ρ(w). Hence [[Γ ⊢ Θ,S]]ρ(w),
and thus by assumption

[[Γ ⊢ P : Prop]]ρ(w) ⊆ wp([[Γ ⊢ Q : Val → Prop]]ρ)(ρ(e))(w)

It follows that s ∈ wp([[Γ ⊢ Q : Val → Prop]]ρ)(ρ(e))(w), as required.

Lemma 13 (Alloc rule).

Γ, v : Val | Θ |=
{
emp

}
ref v

{
r. r 7→ v

}

Proof. Let ρ ∈ [[Γ, v : Val]] and w ∈ W be such that [[Γ, v : Val ⊢ Θ]]ρ(w). Let

m ∈ M. Suppose that t, (h, γ) �w m • r and ref ρ(v), (h, γ)
a
−→ l, (h′, γ′). Then it

must be that a = ǫ, l ∈ Loc\dom(h), h′ = h[l 7→ ρ(v)] and γ′ = γ. Consequently,
t, (h′, γ′) �w (m • [l 7→ ρ(v)]) • r. Now

m • [x 7→ρ(v)] ∈ [[Γ, v : Val ⊢ λr. r 7→ v : Val → Prop]]ρ(l)(w)

= wp([[Γ, v : Val ⊢ λr. r 7→ v : Val → Prop]]ρ)(l)(w)

as required.
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Lemma 14 (Read rule).

Γ, l, v : Val | Θ |=
{
l 7→ v

}
!l
{
r. l 7→ v ∗ r = v

}

Proof. Let ρ ∈ [[Γ, l, v : Val]] and w ∈ W be such that [[Γ, l, v : Val ⊢ Θ]]ρ(w). Let

m ∈ [[l 7→ v]]ρ(w). Suppose that t, (h, γ) �w m • r and !ρ(l), (h, γ)
a
−→ e, (h′, γ′).

(Note that since h(ρ(l))) = (m • r)(ρ(l)) = ρ(v), we do not have !ρ(l), (h, γ) 9.)
It must be that a = ǫ, e = ρ(v), h′ = h and γ′ = γ. Now

m ∈ [[Γ, l, v : Val ⊢ λr. l 7→ v ∗ r = v : Val → Prop]]ρ(ρ(v))(w)

= wp([[Γ, l, v : Val ⊢ λr. l 7→ v ∗ r = v : Val → Prop]]ρ)(ρ(v))(w)

as required.

Lemma 15 (Write rule).

Γ, l, v : Val | Θ |=
{
l 7→

}
l := v

{
r. l 7→ v ∗ r = ()

}

Proof. Let ρ ∈ [[Γ, l, v : Val]] and w ∈ W be such that [[Γ, l, v : Val ⊢ Θ]]ρ(w). Let
m ∈ [[l 7→ ]]ρ(w). Suppose that t, (h, γ) �w m • r and (ρ(l) := ρ(v)), (h, γ) →
e, (h′, γ′). (Note that since h(ρ(l)) = m(ρ(l)) = v0 for some v0 ∈ Val, we do not
have (ρ(l) := ρ(v)), (h, γ) 9.) It must be that a = ǫ, e = (), h′ = h[ρ(l) 7→ ρ(v)]
and w′ = w. Let m′ = (h′, π2(m)) = (π1(m)[ρ(l) 7→ ρ(v)], π2(m)), so that
t, (h′, γ) �w m′ Now

m′ ∈ [[Γ, l, v : Val ⊢ λr. l 7→ v ∗ r = () : Val → Prop]]ρ(())(w)

= wp([[Γ, l, v : Val ⊢ λr. l 7→ v ∗ r = () : Val → Prop]]ρ)(())(w)

as required.

Lemma 16 (Emit rule). Let Γ ′ = Γ, t : seq Val, v : Val, I : seq Val → Bool. If

Γ ′ | Θ |= t · v ∈ I

then
Γ ′ | Θ |=

{
trace(t) ∗ inv(I)

}
emit v

{
r. trace(t · v) ∗ r = ()

}

Proof. Let ρ ∈ [[Γ ′]] and w ∈ W be such that [[Γ ′ ⊢ Θ]]ρ(w). Let m ∈ [[trace(t) ∗
inv(I)]]ρ(w). Suppose that t0, s �w m • r. It follows that t0 = ρ(t) and, by the

assumption, t0 · ρ(v) ∈ π2(w). Suppose also that emit ρ(v), s
a
−→ e, s′. (Note

that we do not have emit ρ(v), (h, γ) 9.) It must be that a = ρ(v), e = () and
s′ = s. Let m′ = (π1(m), π2(m) · ρ(v)) = (π1(m), t0 · a). It must also be that
t0 · a �w m′ • r. Now

m′ ∈ [[Γ ′ ⊢ λr. trace(t · v) ∗ r = () : Val → Prop]]ρ(())(w)

= wp([[Γ ′ ⊢ λr. trace(t · v) ∗ r = () : Val → Prop]]ρ)(())(w)

as required.
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Lemma 17. Suppose that Γ | − ⊢
{
P
}
e
{
Q
}

and let w ∈ W, ρ ∈ [[Γ ]] and
m ∈ [[Γ ⊢ P ]]ρ(w). Taking r, t, s such that t, s �w m, suppose that there exists

s′, t′ with ρ(e), s
t′

−→
∗

e′, s′ 6→. Then e′ ∈ Val and there exists w′ ≥ w and
m′ ∈ [[Γ ⊢ Q]]ρ(e

′)(w′) such that (t · t′), s′ �w′ m′.

Proof. From Theorem 3, we get that Γ | − |=
{
P
}
e
{
Q
}
, i.e. ∀w ∈ W.∀ρ ∈

[[Γ ]].[[Γ ⊢
{
P
}
e
{
Q
}
: Spec]]ρ(w) = ⊤. Thus, we get that [[Γ ⊢ P : Prop]]ρ(w) ⊆

wp([[Γ ⊢ Q : Val → Prop]]ρ)(ρ(e))(w). So taking m, r, t, s such that m ∈ [[Γ ⊢
P ]]ρ(w) and t, s �w m, we know that m ∈ wp([[Γ ⊢ Q : Val → Prop]]ρ)(ρ(e))(w).
Writing q for [[Γ ⊢ Q : Val → Prop]]ρ, from

– m ∈ wp(q)(ρ(e))(w)
– t, s �w m

– s, e
t′

−→
∗

s′, e′

we prove by induction on the length of this reduction above that e′ ∈ Val and
there exists w′ ≥ w and m′ ∈ q(e′)(w′) such that (t · t′), s′ �w′ m′.

For the base case, s′ = s, e′ = ρ(e) and t′ = ε. Unfolding the definition of
wp, since ρ(e), s 6→ it follows that ρ(e) ∈ Val and that m ∈ q(ρ(e))(w), so that
we take w′ = w and m′ = m.

For the inductive case, assume ρ(e), s
a
−→ e′′, s′′

t′

−→
n

e′, s′ 6→. Unfolding the
definition of wp, it follows that there exists w′ ≥ w and m′ such that

t · a, s′′ �w′ m′ m′ ∈ wp(q)(e′′)(w′)

By the induction hypothesis, it follows that there exists w′′ ≥ w′ and m′′ ∈
q(e′)(w′′) such that t · a · t′, s′ �w′′ m′′.

C Erasure of instrumentation

Lemma 18. For all e, e′, h, h′, γ, γ′, if e, (h, γ) → e′, (h′, γ′) (without emitting

any events) then ê, (h, γ̂) → ê′, (h′, γ̂′).

Proof. By case analysis on the reduction step, using the fact that K̂[e] = K̂[ê].

Theorem 1. For all e, e′, h, h′, γ, γ′, if ê, (h, γ̂) →∗ e′, (h′, γ′) then there exists

a trace t, an expression e′′ and an environment γ′′ such that e′ = ê′′, γ′ = γ̂′′

and e, (h, γ)
t
−→∗ e′′, (h′, γ′′).

Proof. By induction on the (lexicographic order of the) length of the reduction
of ê, (h, γ̂) →∗ e′, (h′, γ′) and the number of emits in e. If ê, (h, γ̂) is irreducible,
then either:

– e, (h, γ) is irreducible, so that we can define t as the empty trace, e′′ as e
and γ′′ as γ.

– or e = K[emitu] so that e, (h, γ)
u
−→ K[()], (h, γ). Then we can apply the

induction hypothesis since K[()] has strictly fewer emits than e, and ê =

K̂[()].
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Otherwise, there exist e1, γ1, h1 such that ê, (γ̂, h) → e1, (γ1, h1) →
∗ e′, (γ′, h′).

There are two possibilities:

– Either there exist e′1, (γ
′
1, h

′
1), such that e, (h, γ) → e′1, (γ

′
1, h

′
1) without emit-

ting any events, in which case, from the previous lemma and the determinism

of the reduction, we get that ê′1 = e1, γ̂′
1 = γ1 and h′

1 = h1. We now use the
IH to prove the claim.

– Or e = K[emit u] so that e, (h, γ)
u
−→ K[()], (h, γ). Then we can apply the IH

since K[()] has strictly fewer emits than e, and ê = K̂[()].
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