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Compressive Millimeter-Wave Phased Array
Imaging
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Abstract—In this paper, we introduce a three-dimensional
(3-D) compressive phased array imaging method. The derived
system model is general and can also be used in other array
configurations. With its compressive sampling capability, the
proposed method can recover images with far fewer samples
than traditionally required in Fourier transform (FT) based
methods. This measurement strategy greatly reduces the data
acquisition time at the expense of higher computational costs.
Imaging results show increased resolving power in both range
and cross-range directions. Moreover, the use of beam steered
data enables better reconstruction quality in the presence of
noise than its counterpart in switched array scheme. Sensing
configurations like array length and number of angles, which
affect the reconstruction performance, are also analyzed.

Index Terms—Phased array, beamforming, antenna array,
three-dimensional imaging, compressive sensing.

I. INTRODUCTION

Microwave and millimeter-wave (MMW) imaging systems
are of great interest in many applications such as nondestruc-
tive testing and evaluation (NDT&E), security scanning, med-
ical diagnosis and through-wall imaging [1]–[5]. Traditional
aperture antennas used in MMW imaging systems like reflec-
tors and lenses offer low-cost hardware and compact design
but suffer from relatively low resolution and slow mechanical
scanning. On the other hand, antenna array solutions provide
electronic flexibility in exciting the elements, allowing for
faster scanning in real time applications.

There are already many array configurations that have been
proposed for imaging applications in the open literature and
in some cases commercially deployed. The simplest one is
to sequentially switch on and off the array elements, e.g.,
[2] combined linear switched array with synthetic aperture
radar (SAR) concept and designed a MMW concealed weapon
detection system that can accomplish data acquisition in nearly
1 second. The disadvantage of the switched array scheme is
its low efficiency, as all elements work separately. Recently,
multiple-input multiple-output (MIMO) array imaging has at-
tracted significant attention [6], [7]. The essence of the MIMO
array concept is to employ multiple transmitters and multiple
receivers sequentially or simultaneously [8]. The increased
spatial diversity of MIMO configuration enables sparse array
design while preserving high resolution image reconstruction.
The switched array and MIMO array are also known as
monostatic array and multistatic array systems, respectively.
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More recently, digital beamforming receiver array concept was
introduced to MIMO array to maximize the signal-to-noise
ratio (SNR) of the imaging system [9]. SNR is a critical
parameter in radar system which essentially describes the
difference between the desired signal and the unwanted noise.
Comparing to the conventional hardware phased array which
employs beamforming in both transmit and receive modes,
digital beamforming receiver array has lower gain but is easier
to implement and can dramatically reduce the system cost.

In order to form three-dimensional (3-D) images, two-
dimensional (2-D) array with wideband signals are often
required [2]. However, the standard Fourier transform (FT)
based image reconstruction methods [7], [10] require a sub-
stantial amount of data to be uniformly sampled during data
acquisition. As the reconstructed 3-D image is a map of the
spatial distribution of the reflectivity function of stationary
targets, the reconstruction can be sparse or compressible in
some representation. Therefore, this issue can be alleviated by
using the recently introduced theory of compressive sensing
(CS) [11], [12]. CS theory guarantees signal reconstruction
from highly undersampled data provided that the signal is
sparse and proper sensing matrix is adopted. By utilizing the
sparse nature of the target scene, CS enables efficient sampling
to speed up the data acquisition process of an imaging system.
The CS technique has been successfully applied to many
imaging applications including (but not limited to) MMW
holography [13]–[15], SAR imaging [16]–[19] and inverse
scattering [20], [21]. Particularly, in [14], a 2-D switched
array MMW holography imaging method was proposed by
combining FT based forward and backward operators with the
CS framework. The performance of this method, together with
the direct CS (D-CS) method, have been thoroughly studied
in [15]. Results indicated that the D-CS method achieves
better resolution than the FT-CS method but requires higher
computing power. The MIMO array case has been discussed in
[22] in the context of SAR imaging. A new mutual coherence
metric was proposed and verified to be effective in examining
the reconstruction quality of various array configurations.

In this paper, a general forward model is derived for
array based imaging systems by taking into consideration the
antenna factors such that it can be easily applied to different
array configurations with slight modifications. Thereafter, we
introduce a 3-D compressive imaging method for phased array
systems. To the best of the authors’ knowledge, this paper for
the first time introduces the CS theory to 2-D phased arrays
for 3-D imaging. This method does not require interpolation
and gives accurate reconstruction of the target’s true reflec-
tivity. Comparing to conventional FT methods, the proposed
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Fig. 1. Three-dimensional imaging using 2-D phased array and wideband
signals. By assigning appropriate weights to each element, the main beam
of the array is focused in the direction of (θ, ϕ) while the sidelobes are
suppressed in the undesired directions.

approach achieves significantly higher image resolution and is
more robust to noise even with only a small number of random
measurements. We also provide an analysis on how to design
the sensing configuration for better CS reconstruction results.

The remainder of this paper is organized as follows. Section
II presents the forward model for array based imaging systems.
In section III, we present the 3-D compressive phased array
imaging method and discuss the reconstruction algorithms.
Section IV evaluates the performance of the proposed method
with both 3-D and 2-D data. Finally, section V summarizes
the results and concludes this paper.

II. PHASED ARRAY IMAGING FORWARD MODEL

The 3-D imaging model shown in Fig.1 is interpreted in
the dimension of range and cross-range. The range (z) is
the direction of wave propagation and the cross-range (x
or y) is the direction parallel to the array aperture. A 2-
D planar array is located in the x-y plane with its center
in the origin. All elements are evenly spaced in both x
and y dimensions. The amplitude and phase of the elements
across the array are adjusted so that the main beam of the
radiation pattern is directed towards a specified direction. By
continuously illuminating the target region with directional
beams of different elevation angle θ and azimuth angle ϕ,
where θ ∈ [0, π/2] and ϕ ∈ [0, 2π), the reflectivity information
of the target region can be reconstructed from the reflected
data.

Assuming an observing point r = (x, y, z) is at the far field
of an antenna element, the electric field radiated from the i-th
antenna at ri = (xi, yi, zi) can be written as [23]

Ei(r, k) = Pi(r)
exp(−jk|r− ri|)

|r− ri|
, (1)

where Pi(r) is the element pattern, k = 2πf/c
is the wavenumber at frequency f and |r − ri| =

√
(x− xi)2 + (y − yi)2 + (z − zi)2 is the distance between

r and ri. In general, it is assumed that all element patterns
are the same. Assuming the mutual coupling effects among
elements can be neglected, the total transmitted electric field
can be calculated by the superposition of all elements

ET(r, k) = P (r)
∑
i

Wi
exp(−jk|r− ri|)

|r− ri|
. (2)

The coefficient Wi = |Wi| exp(−jΨi) is the complex weight
with amplitude |Wi| and phase Ψi added to the ith element.
In order to steer the antenna beam in a certain direction, e.g.,
(θ, ϕ), the phase term has to be in the form of [23]

Ψi = kr̂0 · ri, (3)

where r̂0 = x̂ sin θ cosϕ + ŷ sin θ sinϕ + ẑ cos θ is the unit
vector in the direction of (θ, ϕ). By substituting (3) into (2)
and neglecting the amplitude term, we get the total field when
beam is steered towards (θ, ϕ)

ET(r, k, θ, ϕ) = P (r)
∑
i

exp[−jk(r̂0 · ri + |r− ri|)]
|r− ri|

. (4)

According to the reciprocity theorem, the transmit and
receive properties of an antenna are identical. Therefore, each
element in the phased array shares the same pattern and phase
delay in both transmitting and receiving models. Assuming
there is a point scatterer at the observing point r = (x, y, z)
with frequency independent reflectivity g(r). The reflected
electric field received by the j-th antenna at rj = (xj , yj , zj)
can be denoted as

Ej(r, k, θ, ϕ) = P (r)g(r)ET(r, k, θ, ϕ)

× exp[−jk(r̂0 · rj + |r− rj |)]
|r− rj |

. (5)

Similarly, by summing the electric field of all receiving
elements and combining (4), the total received field of the
phased array due to a point scatterer at r can be written as

ER(r, k, θ, ϕ) = P (r)2g(r)
∑
i

∑
j

× exp[−jk(r̂0 · ri + |r− ri|+ r̂0 · rj + |r− rj |)]
|r− ri||r− rj |

. (6)

Under the assumption of Born approximation, i.e., neglecting
any mutual interaction between the targets, the total reflected
field from all scatterers can be expressed as

s(k, θ, ϕ) =

˚

V

ER(r, k, θ, ϕ) dx dy dz, (7)

where V represents the 3-D target region.
It is worth noting that although we assume using transceiver

module based array, the above forward model is also ap-
plicable to other phased array configurations, e.g., digital
beamforming receiver array case can just ignore the transmitter
beamforming in (2). Moreover, by assigning random complex
weight Wi to each antenna, the forward model can be used
for arrays with arbitrary radiation patterns. Since the far field
assumption in (1) is based on a single antenna and the near
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field region of an array is usually much farther than it is of a
single antenna, the forward model is still effective in the near
field region of an array.

The term P (r) in (6), which is also called the element factor,
plays an important role in the beamforming performance.
In the case of using isotropic antenna which has the same
intensity of radiation in all directions, the P (r) term can be
dropped in the above equations. By doing so and rewriting the
vectors as in the cartesian coordinates, (6) becomes identical
to those in [10] (2-D in range and cross-range) and [24] (2-D
in cross-range). Without loss of generality, we also adopt this
isotropic antenna assumption in the following discussions.

The forward model in (7) describes how electromagnetic
waves interact with targets. Our goal is to reconstruct the
reflectivity function g(r) from the received data. To avoid
missing vital information, the angles ϕ and θ should be chosen
to cover the complete target region. The sampling intervals in
both angle and frequency domains should follow the Nyquist
theorem to avoid aliasing. In conventional FT inversion tech-
niques [10], [24], the term exp(−jk|r − ri|)/|r − ri| and
exp(−jk|r− rj |)/|r− rj | are first decomposed into integrals
over wavenumber domain and then processed with inverse FT
algorithms. As the inverse FT requires uniformly spaced data
in (kx, ky, kz) domain, the received data which is uniformly
spaced in (k, θ, ϕ) domain needs to be interpolated according
to dispersion relations. There are drawbacks in this process.
Firstly, by utilizing the Fourier decomposition, the FT method
is actually trying to solve an approximated model of (7). In
other words, the FT solution is only an approximation to
the true reflectivity. Secondly, the accuracy of interpolation
from (k, θ, ϕ) domain to (kx, ky, kz) domain is highly depen-
dent on the choice of interpolation techniques. Owing to the
approximation nature of interpolation, the inaccuracy of this
process cannot be avoided. In the next section, we will show
the proposed CS method can overcome both issues.

III. COMPRESSIVE SENSING IMPLEMENTATION

A. CS Forward Model

We first rewrite the vectors in (7) into coordinates form.
Suppose Ntx × Nty is the number of antennas in the trans-
mitting aperture and Nrx × Nry is the number of antennas
in the receiving aperture. As the array is 2-D, we denote
by (a(i), b(j)) the x-y coordinates of the (i, j)-th element in
the transmitting array and (u(i), v(j)) the x-y coordinates of
the (i, j)-th element in the receiving array. Thus, (7) can be
rewritten as

s(k, θ, ϕ) =

˚

V

Ntx∑
m1=1

Nty∑
m2=1

Nrx∑
n1=1

Nry∑
n2=1

g(x, y, z)

× C(a(m1), b(m2), x, y, z, k)C(u(n1), v(n2), x, y, z, k)

× exp[−j(Ψ(a(m1), b(m2), k, θ, ϕ)

+ Ψ(u(m1), v(m2), k, θ, ϕ))] dx dy dz, (8)

where

C(x0, y0, x, y, z, k) =

exp(−jk
√
(x− x0)2 + (y − y0)2 + (z − 0)2)√

(x− x0)2 + (y − y0)2 + (z − 0)2
(9)

and

Ψ(x0, y0, k, θ, ϕ) = k(x0 sin θ cosϕ+ y0 sin θ sinϕ). (10)

In order to apply CS algorithms, the target region needs
to be discretized and (8) should be reformulated into the
following matrix multiplication form

s = Hg, (11)

where s and g are the vector versions of s(k, θ, ϕ) and
g(x, y, z), respectively. H is the system response matrix and
can be treated as a dictionary matrix from the perspective of
CS theory. More specifically, suppose the 3-D target region V
can be discretized into P×Q×R voxels and we denote by I ,
J and K the number of frequency points, azimuth angles and
elevation angles used during data acquisition. Then (11) can
be rewritten as

 s(1)
...

s(IJK)

 =

 H1,1 . . . H1,PQR

...
. . .

...
HIJK,1 · · · HIJK,PQR


 g(1)

...
g(PQR)

 ,

(12)

where element Hi,j is determined by the summation in (8)
with certain k, θ, ϕ and voxel coordinates. Specifically, the i-
th column of H is related to the coordinates of the i-th voxel
in g. Each row of H is related to specific values of k, θ and ϕ.
These parameters are of vital importance in determining the
quality of CS reconstruction, which will be discussed in the
next section.

B. CS Reconstruction

In conventional FT methods, the sampling intervals have
to satisfy the Nyquist theorem to avoid aliasing. With CS
theory, we are able to break this restriction by randomly
undersampling in the θ, ϕ and k domains. Mathematically,
this is realized by randomly selecting a set of rows in H. Let
y be the undersampled data and A the row selection matrix,
the final CS model can be written as

y = AHg. (13)

As (13) is an underdetermined system, it has infinite solutions.
CS theory offers an alternative way to solve this by enforcing
a sparsity constraint on the solution:

min
g

∥g∥0 s.t. y = AHg, (14)

where ∥x∥0 is the number of nonzeros of vector x. Unfor-
tunately, (14) is computationally difficult to solve. A more
general approach is to relax the ℓ0 norm to ℓ1 norm:

min
g

∥g∥1 s.t. y = AHg, (15)



IEEE ACCESS, VOL. XX, NO. X, NOV XXXX 4

where ∥x∥1 =
∑

i |(xi)| is the ℓ1 norm of vector x. This
minimization problem is often known as Basis Pursuit (BP)
[12]. Considering the imaging system is always accompanied
with noise, (15) is commonly solved by rewriting it as a Basis
Pursuit Denoising (BPDN) [25] problem:

min
g

∥g∥1 s.t. ∥AHg − y∥22 ≤ ε, (16)

and ε is a nonnegative real parameter that defines the noise
level. There are many algorithms available to solve the above
ℓ1 minimization. We adopt the two-step iterative shrinkage-
thresholding (TwIST) algorithm which solves the Lagrangian
relaxation of (16) with faster convergence rate than traditional
algorithms [26]. The final minimization problem can be ex-
pressed as:

ĝ = argmin
g

1

2
∥AHg − y∥22 + λ∥g∥1, (17)

where λ is the regularization parameter which controls the
tradeoff between the sparsity of the solution and its closeness
to the least squares solution.

The key requirement to ensure the solution to both (14) and
(15) will coincide is the sensing matrix Φ = AH has to satisfy
the Restricted Isometry Property (RIP) [27]. It has been proven
that certain matrices satisfy the RIP with high probability, e.g.,
random Gaussian and Bernoulli matrices. However, verifying
if a deterministic matrix has this property is computationally
infeasible. Fortunately, the mutual coherence [28] is an alter-
native measure of the ability to accurately reconstruct a signal.
The mutual coherence of a matrix Φ, denoted as µ (Φ), is the
largest absolute normalized inner product between different
columns of the matrix:

µ (Φ) = max gij , gij =

∣∣ϕT
i ϕj

∣∣
∥ϕi∥2 · ∥ϕj∥2

(i ̸= j), (18)

where ϕi is the ith column of Φ. This metric was empirically
shown to be proportional to mean-squared-error (MSE) values
for reconstructions [29]. Generally, a sensing configuration
that has lower mutual coherence in Φ gives lower MSE in
reconstruction. Although simple in formulation, the mutual
coherence metric is too conservative in many imaging ap-
plications. This is due to the fact that there might be some
similar columns in Φ, which can unfairly dominate the mutual
coherence. To address this issue, researchers have proposed
average mutual coherence [30], t-average mutual coherence
[31] and t%-average mutual coherence [22]. The t%-average
mutual coherence is defined as:

µt%(Φ) =

∑
i ̸=j gijσij∑
i̸=j σij

, σij =

{
1, gij ∈ Et%
0, otherwise,

(19)

where E% is the set of t% percent of the largest column cross-
correlations gij . This metric mitigates the outlier issue and
hence is better suited as an indication of the reconstruction
performance.

Another key requirement for successful CS reconstruction
is the signal sparsity. The sparser the signal is, the fewer mea-
surements needed for reconstruction are. Just as in the classical
CS theory, the image sparsity in our case can also be classified
into two categories. In the first category, the target region is

(a) (b)

Fig. 2. Three-dimensional reconstruction of 6 point scatterers. (a) Ground
truth of the target scene. (b) Reconstruction by the proposed method.

dominated by few point scatterers, e.g., some SAR imaging
applications. ℓ1 norm as shown in (15) is already enough
to exploit the image sparsity. In the second case, the target
region is much more complicated and the image scene is no
longer sparse in the spatial domain, e.g., security imaging for
concealed weapon detection. In such cases, sparsity transforms
like total variation (TV) [32] are usually added to promote
the image sparsity. It should also be noted that the data
format in the above equations is complex-valued. Conventional
sparsifying transforms and sparsity constraints for real-valued
applications might be less effective for complex data. How to
optimally promote the sparsity of the complex-valued data is
still an open problem and requires further research.

IV. NUMERICAL INVESTIGATIONS AND ANALYSIS

To examine the effectiveness of the proposed method, we
first demonstrate image reconstruction in 3-D space. The imag-
ing capabilities are then thoroughly studied for 2-D imaging
with both qualitative and quantitative results.

A. Imaging of 3-D Scene

The simulation is carried out in the MMW frequency band
centered at 60 GHz. We assume 20 GHz bandwidth for
better range resolution. The length of the array is 6 cm in
both x and y dimensions with element spacing fixed at the
half of the wavelength of the highest frequency, that is, 2.1
mm. It is worth noting that half-wavelength spacing may
violate the Nyquist sampling requirement, but it is chosen
so for two reasons. Firstly, element spacing smaller than
half-wavelength can be challenging in engineering realization.
Secondly, mutual coupling of antenna elements becomes a
big issue with closely spaced elements. The resulting array
geometry consists of 29 elements in each dimension and 841
elements in total. Elevation angle and azimuth angle are varied
within the interval of [0◦, 8◦] and [0, 360◦), respectively, to
cover the target region. During data acquisition, 20 frequency
points, 15 azimuth angles and 15 elevation angles, all evenly
spaced, are deployed to illuminate the target area.

The 3-D target scene, shown in Fig. 2(a), is 45 cm away
from the aperture with dimension of 10 cm×10 cm×10 cm.
We consider 6 point scatterers in the target region, each
with unit reflectivity. The coordinates of the 6 targets are
(±2,−2, 48), (±2, 0, 50) and (±2, 2, 52). Equation (8) is
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adopted to calculate the reflected fields in simulation. In CS
implementation, for the ease of computation, we discretize the
target scene into 41×41×41 voxels. It should be noted that the
selected sampling intervals in frequency and angle domain
already violate the Nyquist criteria according to [10]. Fig.
2(b) gives the reconstruction result of using only 10% random
samples of the undersampled 20×15×15 measurements. As
clearly shown, all 6 targets have been correctly reconstructed
by the proposed method.

B. Imaging of 2-D scene

Comparing to the 2-D imaging, the 3-D case is computation-
ally more expensive and requires higher memory usage. The
construction of the H matrix can be extremely time-consuming
when fine grid spacing is adopted. For these reasons, we
concentrate our analysis on the 2-D imaging in cross-range
(x) and range (z) dimensions, in a similar fashion to the 2-D
SAR imaging. Because the missing y-dimension is the same
as the x-dimension, the results in the 2-D case can be easily
scaled to the 3-D case with suitable computational powers.

In the 2-D case, the azimuth angle ϕ is fixed at 0◦ or 180◦,
hence equation (10) can be simplified to Ψ(x0, k, θ, ϕ) =
kx0 sin θ cosϕ. We assume a linear array of length 8 cm (40
elements) is centered at the origin along the x axis. One
hundred equally spaced elevation angles are scanned from
0◦ to 24◦. The bandwidth is still 20 GHz but 40 frequency
points are used in this case. The reconstructed area is extended
to 30cm in both range and cross-range dimensions. A finer
discretization of 121×121 pixels is adopted. We consider 9×9
equally spaced point scatterers with an interval of 2.5 cm. Fig.
3(a) and Fig. 3(b) represent the reconstruction results of the FT
method [10], [33] with 40% data and 100% data, respectively.
Both figures are very blurry and the reconstructed targets are
barely identifiable. Moreover, Fig. 3(a) exhibits more noise in
the background due to undersampling. In contrast, as shown in
Fig. 3(c), the CS method accurately reconstructed all targets
and is free from background noise.

Given a sensing configuration, the minimum required num-
ber of measurements for accurate reconstruction is determined
by the sparsity of the target scene. Generally, the sparser the
target scene is, the fewer measurements are required. Fig. 3(d)
quantitatively summarizes the reconstruction quality of the
proposed method as a function of undersampling rate. Note the
MSE is averaged over the results of 50 independent trials for
each sampling rate. It can be observed that the curve gradually
becomes flat as the sampling rate reaches 30%, which indicates
the minimum required number of measurements for this case is
around 30% of the full measurements. Increasing the number
of measurements after the 30% threshold is a waste of time as
no obvious improvement can be observed. In most practical
situations, the target scene can be much more complicated.
Therefore, it is of great importance to obtain empirically the
minimum required number of measurements such that the data
acquisition time can be maximally reduced.

The resolution of FT methods is determined by the data
coverage in the wavenumber domain [10]. It is of interest
to establish whether the CS method has the same limitation.

(a) (b)

(c)
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Fig. 3. Reconstruction results of point scatterers by (a) FT method with 40%
data, (b) FT method with 100% data and (c) CS method with 40% data. (d)
Averaged MSE of the CS method as a function of sampling rate.
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Fig. 4. Two-dimensional reconstruction of double-point scatterers at
(0, 0, 50 ± 0.175) and (0,±1, 0). (a and c) CS method with 10% data. (b
and d) FT method with 100% data.

Therefore, we employ several sets of closely spaced double-
point scatterers for test. The CS reconstruction based on 10%
data is compared to full data reconstruction of the FT method.
Reconstructed reflectivity is normalized to [0, 1] for the ease
of comparison. In the first example, two scatterers with a
spacing of 0.35 cm are centered along the range direction.
The two targets can be clearly identified in Fig. 4(a) while
only one single peak is shown in Fig. 4(b). In a similar
manner, the second example compares the reconstructions of
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Fig. 5. One-dimensional slice reconstruction of double-point scatterers at (a)
(0, 0, 50± 0.17), (b) (0, 0, 50± 0.65), (c) (0,±0.4, 0) and (0,±2.3, 0).

2 cm apart point scatterers in the cross-range direction, as
shown in Fig. 4(c) and Fig. 4(d). The CS method again makes
the two targets discernible. To better analyze the resolving
power of the proposed method, we define the resolution
of an imaging system as the distance between two targets
when the intersection of the two peaks is at the half power
level. Fig. 5(a) and Fig. 5(b) demonstrate the one-dimensional
reconstruction intensity of two sets of double-point scatterers
located at (0, 0, 50± 0.17) and (0, 0, 50± 0.65), respectively.
It can be observed the FT method has a range resolution of
1.3 cm whereas the CS method has improved the resolution
to 0.34 cm. Similarly, Fig. 5(c) and Fig. 5(d) show the cross-
range direction case where double-point scatterers are located
at (0,±0.4, 0) and (0,±2.3, 0). The CS method again has
improved the resolution from 4.6 cm to 0.8 cm. Therefore,
it can be concluded that the CS method is able to outperform
the resolution limit of the FT method in both the range and
cross-range directions.

One of the most important advantages of the phased array is
the sharpened main beam with suppressed sidelobes. The re-
sulting high gain pattern greatly maximizes the signal-to-noise
ratio (SNR) of the imaging systems. To verify this, the imaging
results are compared to the results using the switched array
scheme in various noise conditions. To do so, we manually
add independent and identically distributed (i.i.d.) Gaussian
noise to each of the receiving antennas before reconstruction.
The two imaging systems share the same array configuration
and target scene, i.e., same number of antennas in the same
aperture. The main difference is the data acquisition process,
that is, the phased array scheme varies the elevation angle
while the switched array scheme sequentially switch on and
off the linear array (varies antenna locations). It should be
noted that both schemes have the same power generation, i.e.,
the transmitted power of each switched antenna is the same as
the total transmitted power of the phased array. The imaging

(a) (b)

(c) (d)

Fig. 6. CS reconstructions of different array configurations using the same
number of measurements. (a) Switched array and (b) phased array with 20
dB SNR. (c) Switched array and (d) phased array with -50 dB SNR.

forward model of the switched array scheme is based on [15]
by adding the attenuation factor |r− ri|2 as

E(ri, k) =

˚

V

g(r)
exp(−j2k|r− ri|)

|r− ri|2
dx dy dz, (20)

where E(ri, k) stands for the received field at the i-th antenna
in the array.

In the algorithm implementation, we ensure the regular-
ization parameter λ for both schemes are adjusted appro-
priately so that the reconstructed results are optimized. For
fair comparison, the phased array scheme adopts the same
number of samples as the switched array scheme, which is
40% random measurements of the fully sampled switched
array scheme. Fig. 6(a) and Fig. 6(b) demonstrate the CS
reconstruction based on switched array scheme and phased
array scheme, respectively, with 20 dB SNR. Both schemes
show good agreement in reconstruction. However, when the
SNR level is decreased to -50 dB, as shown in Fig. 6(c) and
Fig. 6(d), the switched array scheme fails to reconstruct the
targets as the background is filled with speckles. In contrast,
the phased array scheme shows acceptable reconstruction with
little background noise. More specifically, Fig. 7 depicts the
averaged MSE of the two schemes as a function of SNR from
-70 dB to 30 dB. For each SNR value, 10 independent trails
are used to compare with the ground truth. It can be noticed
that the phased array scheme achieves much lower MSE than
the switched array scheme in the low SNR cases. However,
this advantage gradually disappears as the SNR increases to 30
dB, which indicates both schemes, when combined with CS
theory, have very similar performance when noise contribution
is low.



IEEE ACCESS, VOL. XX, NO. X, NOV XXXX 7

SNR (dB)
-60 -40 -20 0 20

M
S

E

0

0.005

0.01

0.015

Switched array
Phased array

Fig. 7. Averaged MSE comparison of switched array and phased array
schemes as a function of SNR.

Array distance (cm)
50 100 150 200

µ
0.
5%
(H

)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a)

Array length (cm)
10 20 30 40 50

µ
0.
5%
(H

)

0

0.2

0.4

0.6

0.8

(b)

Number of scanning angles
10 20 30 40

µ
0.
5%
(H

)

0.3

0.35

0.4

0.45

0.5

0.55

(c)

Number of frequency points
20 40 60 80

µ
0.
5%
(H

)

0.3

0.35

0.4

0.45

0.5

0.55

0.6

(d)

Fig. 8. The t%-average mutual coherence as a function of (a) array distance,
(b) array length (c) number of angles and (d) number of frequency points.

C. Input Parameters and Coherence Analysis

As previously explained in section III, mutual coherence
of the sensing matrix is proportional to the MSE values of
reconstruction. In our phased array system, the sensing matrix
is determined by many factors like array aperture, scanning
region, frequency range and so on. With these parameters,
we are more interested to design a sensing configuration such
that high quality reconstruction can be achieved. Therefore,
for each realization of H, we measure its t%-average mutual
coherence as a prediction of the reconstruction quality. The
parameter t is set as 0.5, which is shown to better agrees with
the MSE trend [22]. All simulations are based on the 2-D
case for simplicity. Only one parameter is varied at a time
and other parameters are kept fixed to avoid interference. The
reconstruction region is fixed in a 30 cm×30 cm area with a
discretization of 101×101 pixels.

We first vary the distance between the array aperture and
the reconstruction region. Forty frequency points and 80 angles

are adopted for illumination. The array aperture is of length 16
cm in cross-range dimension. Fig. 8(a) shows the µ0.5%(H)
increases as the distance goes farther. This is expected because
the distance difference among adjacent pixels approaches
zero as the distance approaches infinite. In other words, the
columns of H becomes less independent as the distance
increases. Therefore, compressive phased array technique is
better-behaved in the close range of the array aperture. It is
worth noting that, according to the same mechanism, the high
coherence can be avoided by moving the phased array to form
a larger synthetic aperture.

The array length is another important factor in the phased
array system. For an array of fixed element spacing, larger
array means more elements. Increasing the number of elements
further increases the directivity of the array, which results in
more distinct system responses from pixels that are far apart
from one another in cross-range direction. Fig. 8(b) clearly
interprets this relationship when 40 frequency points and 100
angles are adopted for a reconstruction area from 35 cm to 65
cm. However, increasing the array size is less effective when
the length is greater than 20 cm.

Unlike the array length which is usually fixed in a given
system, the range of frequencies and scanning angles are
more easily adjustable. Fig. 8(c) and Fig. 8(d) represent the
µ0.5%(H) variation as a function of the number of angles and
frequency points, respectively. Both curves show coherence
reduction as the number increases. As previously shown in
III, the number of rows of H is determined by the total
number of frequency points and angles used. Increasing the
number of frequency points or angles increases the dimension
of the column vectors in H. With fixed number of columns
in H, increased dimension provide more information and
hence make the columns more unique from one another. Then,
similar to the array length case, when the number is increased
to a certain level, the µ0.5%(H) does not decrease anymore.

V. CONCLUSION

In this paper, a 3-D compressive imaging model has been
derived for phased array systems. With the CS theory, far
fewer angles and frequency points are required for image
reconstruction, which further accelerate the scanning speed
of phased array imaging systems. The image reconstruction
performance of the proposed method are demonstrated both
with qualitative and quantitative results. Particularly, the re-
solving power has been significantly enhanced about 74%
and 68% in range and cross-range dimensions, respectively.
The effect of implementation aspects including array distance,
array length, number of angles and number of frequency points
have also been presented as guidelines on how to design
sensing configurations for better CS reconstruction. Future
work will include techniques to reduce the computational
complexity of the CS method.
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