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Polyphonic Sound Event Tracking using

Linear Dynamical Systems
Emmanouil Benetos, Member, IEEE, Grégoire Lafay, Mathieu Lagrange, and Mark D. Plumbley, Fellow, IEEE

Abstract—In this paper, a system for polyphonic sound event
detection and tracking is proposed, based on spectrogram
factorisation techniques and state space models. The system
extends probabilistic latent component analysis (PLCA) and is
modelled around a 4-dimensional spectral template dictionary of
frequency, sound event class, exemplar index, and sound state.
In order to jointly track multiple overlapping sound events
over time, the integration of linear dynamical systems (LDS)
within the PLCA inference is proposed. The system assumes
that the PLCA sound event activation is the (noisy) observation
in an LDS, with the latent states corresponding to the true
event activations. LDS training is achieved using fully observed
data, making use of ground truth-informed event activations
produced by the PLCA-based model. Several LDS variants are
evaluated, using polyphonic datasets of office sounds generated
from an acoustic scene simulator, as well as real and synthesized
monophonic datasets for comparative purposes. Results show
that the integration of LDS tracking within PLCA leads to an
improvement of +8.5-10.5% in terms of frame-based F-measure
as compared to the use of the PLCA model alone. In addition,
the proposed system outperforms several state-of-the-art methods
for the task of polyphonic sound event detection.

Index Terms—Sound event detection, linear dynamical systems,
probabilistic latent component analysis, sound scene analysis.

I. INTRODUCTION

Sound event detection (SED), also called acoustic event

detection, is a central topic in the emerging field of sound

scene analysis. The main goal of SED is to label temporal

regions within an audio recording, resulting in a symbolic

description with start and end times, as well as labels1 for each

instance of a specific event type [1]. Applications for sound

event detection are numerous, including but not limited to se-

curity and surveillance, urban planning, smart homes, acoustic

ecology, and organisation/navigation of sound archives [1] [2]

[3] [4].

The majority of research in sound event detection is on

detecting one acoustic event at a given time segment, which
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1It should be noted that the concept of SED also includes the identifica-
tion/classification of sound events, in addition to detecting their start and end
times.

is referred to as monophonic sound event detection, or as

detection of non-overlapping acoustic events. Methods that

address the problem of detecting overlapping events from

audio (also called polyphonic sound event detection) include

the work by Heittola et al. [3] on using a context-dependent

Hidden Markov Models (HMMs) with multiple path decoding.

Gemmeke et al. [5] proposed the use of vectorized time-

frequency patches of pre-extracted isolated events within the

context of non-negative matrix factorization (NMF). Dennis

et al. [4] proposed a method for detecting overlapping sound

events using local spectrogram features and a Generalised

Hough Transform voting system. As part of the 2013 IEEE

AASP challenge on Detection and Classification of Acoustic

Scenes and Events (DCASE 2013) [6], a baseline system

was created using NMF with beta-divergence. Also as part

of the DCASE 2013 challenge, Vuegen et al. [7] proposed

a system based on Gaussian mixture models (GMMs), with

Mel-frequency cepstral coefficients (MFCCs) as input features.

More recently, Mesaros et al. [8] proposed the use of coupled

NMF for sound event detection, which bypasses the supervised

construction of class models. Finally, Komatsu et al. [9]

perform sound event detection using NMF with mixtures of

local dictionaries and activation aggregation.

With respect to the use of connectionist approaches to the

problem of sound event detection, Cakir et al. [10] used

multilabel deep neural networks with spectral features as

inputs. This work was continued in [11], which applied bi-

directional long short term memory recurrent neural networks

(BLSTM RNNs) for the same task. It is worth noting that the

methods of [10] [11] were only applied on proprietary data.

Given that SED systems have to produce a series of events

identified by a start and end time, modelling temporal dynam-

ics is crucial. Currently, most systems either produce a frame-

based posteriogram or event activation, which is subsequently

thresholded [5] [8] [12], or they incorporate temporal informa-

tion by computationally expensive convolutional formulations

[13] [14] or vectorized time-frequency patches [5]. A subset of

sound event detection systems incorporate temporal constraints

for polyphonic SED in the form of HMMs. Since HMMs

only support one discrete latent state at a given time instant,

polyphony is supported through multiple Viterbi passes [3] or

through multiple HMMs [12]. The preliminary system of [12]

forms the basis of this current work; it used a spectrogram

factorisation-based sound event detection system which im-

posed temporal constraints on the appearance of each sound

state of an event in the form of independent event-wise HMMs.

While extensions of HMMs, such as factorial HMMs [15], are

able to support several concurrent Markov chains and could be
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used in polyphonic SED, they are in practice computationally

prohibitive in the case of unconstrained polyphony.

In the present work, we propose a system for polyphonic

sound event detection based on spectrogram factorisation

approaches, which uses linear dynamical systems (LDS - see

subsection II-B) for tracking multiple concurrent events across

time. LDS can be viewed as a generalisation of HMMs, where

the latent space in LDS is continuous and multi-dimensional.

The spectrogram factorisation model is based on probabilis-

tic latent component analysis (PLCA - see subsection II-A)

and decomposes an input audio spectrogram into a series

of probability distributions for event activations, exemplar

contributions, and sound state activations. To the authors’

knowledge, this is the first time that LDS have been applied to

the field of sound scene analysis, and this is the first attempt on

jointly tracking multiple sound events instead of using event

independence assumptions, such as was done in the HMM-

based system of [12].

The proposed polyphonic sound event tracking method uses

the event activation output of the PLCA-based spectrogram

factorisation model as the (noisy) observation of an LDS,

where the latent states correspond to the ‘true’ event acti-

vations. Thus, the LDS can provide a mapping between a

noisy system output and a ‘clean’ polyphonic detection. LDS

parameters are learned at a training stage using fully observed

data, which correspond to pairs of sound event detection

outputs and ground truth-informed outputs. The proposed

method is trained on datasets from the DCASE 2013 challenge

[1] and tested on several polyphonic datasets of office sounds,

under variable noise and event density conditions. Results

show that the proposed LDS-based event tracking method can

provide a significant and consistent improvement over the use

of the event activation output directly. At the same time, the

proposed LDS-based event tracking is robust to changes in

acoustic and recording conditions, and the resulting system is

able to outperform several state-of-the-art polyphonic sound

event detection approaches for the same task.

The outline of this paper is as follows. Section II presents

background information on the standard PLCA and LDS mod-

els. The proposed system is described in Section III, including

motivation for this work, pre-processing, the extended PLCA

model, and LDS-based sound event tracking. Evaluation,

including a description of the train/test datasets, evaluation

metrics, and experimental results, is presented in Section

IV. Finally, conclusions are drawn and future directions are

discussed in Section V.

II. BACKGROUND

A. Probabilistic Latent Component Analysis

Probabilistic latent component analysis (PLCA) is a spec-

trogram factorisation technique proposed in [16]. It can be

viewed as a probabilistic extension of non-negative matrix

factorization (NMF) [17] using the Kullback-Leibler cost

function. PLCA can also offer a convenient way to incorporate

priors over the model parameters and control the resulting

decomposition [18] [19]. In PLCA, the input spectrogram

Vf,t is modeled as the histogram of the draw of independent

random variables {f, t} which are distributed according to

the bivariate probability distribution P (f, t), where f denotes

the frequency index and t the time index. The PLCA model

expresses P (f, t) as a mixture of latent factors.

There are two ways of modeling P (f, t), using symmetric

or asymmetric factorisations. The asymmetric model, which

is popularly known as probabilistic latent semantic analysis

(PLSA) in the literature of topic modelling [18], decomposes

P (f, t) as a product of a spectral basis matrix (also called

spectral template matrix) and a component activation matrix:

P (f, t) = P (t)
∑

d

P (f |d)P (d|t) (1)

where d is the component index, P (t) is the l1 norm for

the t-th spectrogram frame (a known quantity), P (f |d) is the

spectral template that corresponds to the d-th component, and

P (d|t) is the activation of the d-th component over t. Using

the same variables as in (1), the symmetric model decomposes

P (f, t) as:

P (f, t) =
∑

d

P (d)P (f |d)P (t|d) (2)

where P (d) corresponds to the component prior and P (t|d)
contains the latent marginal distribution across time t relating

to component d.

In order to estimate P (f |d) and P (d|t) in the asymmet-

ric model or P (d), P (f |d), and P (t|d) in the symmetric

model, iterative update rules are applied using the Expectation-

Maximization (EM) algorithm [20]. The derivation of the EM

algorithm for PLCA can be found in [21]. The update rules

are guaranteed to converge to a local minimum. In the context

of audio signal analysis, the components (or latent factors) d

typically refer to the constituent elements of a spectrogram,

such as acoustic events or sound sources.

B. Linear Dynamical Systems

Sequential data can be represented using a Markov chain of

latent variables, with each observation conditioned on the state

of the corresponding latent variable [22]. If the latent variables

are discrete, we obtain a hidden Markov model (HMM) [23].

State space models (SSMs) are generalisations of HMMs,

where the hidden states are continuous [15]. A special case

of an SSM is where the latent and observed variables are

multivariate Gaussian distributions whose means are linear

functions of their parent states. This model is called a linear-

Gaussian SSM (LG-SSM) or a linear dynamical system (LDS)

[15] [22]. Historically, LDS were developed independently of

HMMs, and are widely known in the signal processing com-

munity as Kalman filters [24]; the relationship between HMMs

and Kalman filters has recently been noted in the context of

machine learning [22] [15]. A graphical representation of an

LDS can be seen in Fig. 1. The representation is equivalent

to that of an HMM, with the exception that in an HMM the

latent variable zt is discrete and one-dimensional.



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 3

z1 z2 z3

y1 y2 y3

...
z4

y4

Fig. 1. Graphical representation of an LDS.

An LDS can be formulated as:

zt = Atzt−1 + ǫt

yt = Btzt + δt

ǫt ∼ N (0,Qt)

δt ∼ N (0,Rt) (3)

where zt is the hidden state, At is the transition model, ǫt
is Gaussian system noise (with covariance Qt), yt is the

observation, Bt is the observation model, and δt is Gaussian

observation noise (with covariance Rt). In the following, the

LDS will be assumed to be stationary, and the subscript t will

be omitted from At,Bt,Qt,Rt. A useful property of LDS

is that they support exact inference, which is expressed by

the Kalman filter equations for estimating the online posterior

P (zt|y1:t), and the Kalman smoother equations for estimating

the offline posterior P (zt|y1:T ) [15] (where T is the length

of the sequence).

Applications of LDS are numerous (see [15] for an

overview), although to the authors’ knowledge LDS have not

yet been applied in the emerging field of sound scene analysis.

Recently, two NMF-based models were proposed for speech

denoising and separation tasks, which incorporated temporal

constraints similar to those of an LDS. In [25], an extension

of NMF was proposed which supported Markovian dynamics:

the observation model operates similarly to standard NMF,

while the latent dynamics capture statistical dependencies

between time frames similarly to LDS. In [26], a dynamic

NMF model is proposed, where the observation model is

similar to NMF/PLCA and follows a multinomial distribution,

and the encoding matrix dynamics are formulated using an

autoregressive model.

III. PROPOSED METHOD

A. Motivation and System Overview

The overall aim of the proposed work is the creation of a

system for polyphonic sound event detection that also supports

joint tracking of sound events over time. In this paper, we aim

to express a sound event as a linear combination of exemplars

for a specific event class, where each exemplar consists of

a collection of sound state spectral templates (a sound state

refers to an instance in the temporal evolution of a specific

exemplar). Thus, the model is based on a 4-dimensional

dictionary of frequency, sound event class, exemplar index, and

sound state index. It should be noted that the proposed PLCA-

based model is expressed as a mixture of latent components

corresponding to sound events, and thus cannot jointly model

AUDIO ERB
MODEL

POST- EVENT LIST

DICTIONARY

SPECTROGRAM

PLCA

PARAMETERS

LDS

PROCESSING

Fig. 2. Proposed system diagram.

multiple concurrent sound events. The model can however

infer the presence of concurrent sound events by calculating

the posterior probability of each sound event over all possible

events (see Sec. III-C).

In addition, the proposed model aims to jointly track multi-

ple concurrent sound events over time using linear dynamical

systems, and improve upon the PLCA-based estimation of

the sound event activation by incorporating LDS-based sound

event tracking. In contrast with HMMs, which support a one-

dimensional discrete latent variable, LDS support a multi-

dimensional and continuous latent variable space. Thus, the

LDS can provide a mapping between an observed combination

of sound events and a ‘true’ combination of sound events.

With respect to previous work on combining NMF with

LDS: while the methods of [25] [26] are able to provide a

component activation matrix that is able to evolve smoothly

over time, in the present work we are primarily interested in

using the LDS in a supervised scenario, to provide a mapping

between the observed ‘noisy’ output of an event detection

system and the latent ‘true’ sound event output, which is not

possible using the aforementioned methods.

A diagram for the proposed system is shown in Fig. 2.

The proposed sound event detection system takes as input an

audio recording and computes a time-frequency representation,

which is subsequently used as input to the proposed model.

The model uses a pre-extracted dictionary of sound event

spectral templates used in the PLCA-based model. Sound

event tracking using LDS can take place within the PLCA

inference (dashed arrow from “LDS parameters” to “Model”

in Fig. 2) or can take place as a post-processing step (dashed

arrow from “LDS parameters” to “Post-processing”). The

model output is finally converted into a list of sound events

identified by a start time, end time, and sound event class.

B. Preprocessing

The proposed model first computes a time-frequency rep-

resentation of an audio recording, denoted as Vf,t, where

f ∈ {1, . . . , F} is the frequency index and t ∈ {1, . . . , T }
is the time index. Here, Vf,t is created by subsampling the

input signal to 22.05kHz and processing it with an equiva-

lent rectangular bandwidth (ERB) filterbank [27], following

the method of [28]. This auditory-motivated and relatively

compact filterbank uses 250 filters that consist of sinusoidally

modulated Hanning windows, linearly spaced between 5Hz

and 10.8kHz on the ERB scale. Each subband is partitioned

into disjoint 23ms time frames, and the root mean square of

the filterbank output is computed for each frame.
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C. PLCA model

The proposed PLCA-based model takes as input the ERB

spectrogram Vf,t and approximates it as a bivariate probability

distribution P (f, t). The model decomposes the approximated

spectrogram P (f, t) into a dictionary of spectral templates

per event class s, exemplar index c, and sound state q, as

well as probability distributions for event activations, exemplar

contributions per class, and sound state activations per event

class. The model is formulated as:

P (f, t) = P (t)
∑

q,c,s

P (f |q, c, s)P (s|t)P (c|s, t)P (q|s, t) (4)

where s ∈ {1, . . . , S} denotes the sound event class, c ∈
{1, . . . , C} denotes the exemplar index, and q ∈ {1, . . . , Q}
the sound state index. P (t) is defined as

∑

f Vf,t, which is

a known quantity, corresponding to the sum of all frequency

bins in the ERB spectrogram for each time frame t. Dictio-

nary P (f |q, c, s) is a 4-dimensional tensor that contains the

spectral templates for sound event s, exemplar c and sound

state q. P (s|t) is the time-varying event activation. P (c|s, t)
denotes the time-varying exemplar contribution for producing

a specific event s at a given time frame t. Finally, P (q|s, t) is

the sound state activation per event class s, across time t.

In the model of (4), spectral templates P (f |q, c, s) are

normalised with respect to f as to sum to one, in order to be

regarded as probabilities. P (s|t), P (c|s, t), and P (q|s, t) are

similarly normalised with respect to s, c, and q, respectively.

Conversely, P (f, t) and P (t) are not normalised since they

carry information on the energy of the spectrogram. However

this does not affect inference since P (t) and P (f, t) are

cancelled out through the partition functions.

The unknown model parameters P (s|t), P (c|s, t), and

P (q|s, t) can be estimated using iterative update rules such as

the Expectation-Maximization (EM) algorithm [20]. For the

E-step, the following posterior is computed:

P (q, c, s|f, t) =
P (f |q, c, s)P (s|t)P (c|s, t)P (q|s, t)

∑

q,c,s P (f |q, c, s)P (s|t)P (c|s, t)P (q|s, t)
.

(5)

For the M-step, P (s|t), P (c|s, t) and P (q|s, t) are updated

using the posterior of (5):

P (s|t) =

∑

q,c,f P (q, c, s|f, t)Vf,t
∑

s,q,c,f P (q, c, s|f, t)Vf,t

(6)

P (c|s, t) =

∑

q,f P (q, c, s|f, t)Vf,t
∑

c,q,f P (q, c, s|f, t)Vf,t

(7)

P (q|s, t) =

∑

c,f P (q, c, s|f, t)Vf,t
∑

c,q,f P (q, c, s|f, t)Vf,t

. (8)

The model of (4) can be further constrained by enforcing

sparsity to certain unknown model parameters. Since for the

sound event detection problem only a few sound event classes

are expected to be active at a given time frame, sparsity

can be imposed on the event activation P (s|t). Likewise, an

active sound event at a given time frame is expected to be

produced by a limited number of exemplars, so sparsity can

also be enforced on P (c|s, t). Here, the sparsity constraints are

achieved in a similar way to the method of [29], by modifying

the update equations (6) and (7) to give:

P (s|t) =

(
∑

q,c,f P (q, c, s|f, t)Vf,t

)κ

∑

s

(
∑

q,c,f P (q, c, s|f, t)Vf,t

)κ (9)

P (c|s, t) =

(
∑

q,f P (q, c, s|f, t)Vf,t

)λ

∑

c

(
∑

q,f P (q, c, s|f, t)Vf,t

)λ
. (10)

By setting κ, λ > 1 (typical values are between 1.1-1.5), the

entropy in P (s|t) and P (c|s, t) is lowered and sparsity is

promoted [29].

No update rule for the sound state templates P (f |q, c, s)
is included, since they are pre-extracted and considered fixed

(see subsection IV-A on dictionary creation). The unknown

parameters P (s|t), P (c|s, t) and P (q|s, t) are initialised2 in

the EM updates with random values between 0 and 1. Eqs. (5)

and (8)-(10) are iterated until convergence: in our experiments,

we found 30 iterations to be sufficient.

The output of the PLCA model is a 2-dimensional non-

binary representation of event activations over time, given by

P (s, t) = P (t)P (s|t) (with dimensions S × T ). Essentially,

the output is created by calculating the posterior probability

of each event over all possible events, i.e. P (s = 1|t),
P (s = 2|t), ... , P (s = S|t), weighted by energy of the ERB

spectrogram.

D. LDS Learning

The PLCA model output P (s, t) contains the non-binary

activation of overlapping sound events s over time t. However

the model of (4) does not incorporate any temporal constraints,

and thus can lead to a temporally fragmented output. Here, we

propose the use of LDS to perform polyphonic event tracking:

to do this, we assume that the event activation P (s, t) is a

‘noisy’ observation yt in an LDS, for which the latent states

zt correspond to our desired output.

LDS learning, i.e. estimating the parameters A,B,Q, and

R, if there is only access to observations, can be achieved

using the EM algorithm [15], in a similar way to the HMM

Baum-Welch algorithm [23]. However in our case we also

have access to the hidden state sequences zt which correspond

to the ‘true’ event detection outputs, which can be used to

perform LDS learning with fully observed data [15]. Obtain-

ing the hidden state sequences is achieved by constraining

the event activation in the PLCA model of (4) using event

ground truth annotations. By initialising P (s|t) in the EM

updates with a binary mask that corresponds to the ground

truth annotations, the resulting output (denoted as P ′(s, t))
only has nonzero activations in the time instants and classes

corresponding to ground truth events. An example ground truth

annotation along with a ground truth-informed event detection

output used for training the LDS can be seen in Fig. 3.

2As shown in [30], the accuracy of the model depends on the initialisation
of unknown parameters. Experiments with multiple runs of the PLCA model
with different random initialisations are shown in Section IV-E.
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Fig. 3. (a) Sound event ground truth annotation for sound recording no.3 from
the DCASE 2013 Challenge - OS development set [1]. (b) The corresponding
ground truth-informed sound event detection output P ′(s, t). Sound classes
s ∈ {1, . . . , 16} are described in subsection IV-A.

Given fully observed data, the LDS model parameters A

and B can be estimated by solving least squares problems for

zt−1 → zt and zt → yt, respectively [15]:

J(A) =
∑

t

(zt −Azt−1)
T (zt −Azt−1)

J(B) =
∑

t

(yt −Bzt)
T (yt −Bzt) (11)

where (·)T denotes vector transpose, yτ = P (s, t = τ) and

zτ = P ′(s, t = τ). Without loss of generality [15], the

system and observation noise covariance matrices Q and R

are here assumed to be diagonal in the form of Q = αI and

R = βI, with scaling parameters α, β ∈ R estimated from

training data (see subsection IV-A for a discussion on training

data). As an example, the transition matrix A estimated for

the proposed sound event detection system is shown in Fig. 4

(see subsection IV-A for the training data used). Note that the

main diagonal is strong, which favours tracking events over

time, apart from event s = 11, which corresponds to a ‘page

turn’ event class which is not present in the training data.

So far, we have assumed that the latent variable space in the

LDS includes a one-to-one correspondence with the observed

variables, where each latent variable corresponds to a sound

event class. We also investigate an LDS variant where the

latent variable space also includes ‘velocity’ values żt for each

event class, signifying the difference in amplitude values in the

event activation matrix P (s, t) across adjacent time frames.

This formulation is inspired by the random accelerations

model used in object tracking using Kalman filters [15]. Using

this approach, the latent variable space is now defined as:

zt =
(

z1t · · · zSt ż1t · · · żSt

)

(12)

where zς,τ = P ′(s = ς, t = τ) and żς,τ = P ′(s = ς, t =
τ)− P ′(s = ς, t = τ − 1).

E. LDS Inference & Postprocessing

LDS inference refers to estimating the model posterior

P (zt|y1:t) in the online case or P (zt|y1:T ) in the offline

S
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Fig. 4. The LDS transition matrix A trained on sequences of office sounds.
Sound class indices 1-16 are listed in subsection IV-A.

case, where t ∈ {1, . . . , T }. Estimating the aforementioned

posteriors can be achieved through the Kalman filter and

Kalman smoother equations, respectively [24] [22]. The LDS

inference process, which is similar to the HMM forward-

backward algorithm [23], is omitted here for brevity. In the

online case (i.e. having access only to past samples), the

posterior is represented as: P (zt|y1:t) = N (zt|µt,Σt), and

the output of the online LDS-based sound event tracking

process is the LDS posterior mean µt (or the first half of

the latent variables corresponding to µt in the case of the

random accelerations model). In the offline case (i.e. having

access to both past and future samples), the LDS posterior is

represented as P (zt|y1:T ) = N (zt|µt|T ,Σt|T ) and the output

of the sound event tracking process is the LDS posterior mean

µt|T .

In this work, the aforementioned LDS-based event tracking

process can either be applied as a post-processing step or can

be integrated in the PLCA update equations. For the former,

the PLCA model output P (s, t) is post-processed using an

LDS and results in the ‘clean’ output, which is the LDS

posterior mean µt or µt|T (for the online and offline case,

respectively).

A second use of the LDS sound event tracking process is to

integrate it during PLCA inference, in the form of a Dirichlet

prior [19]. Following the procedure of [19], we define the

Dirichlet hyperparameter for the ‘clean’ event activation as:

φ(s|t) ∝ µt (13)

Subsequently, we modify the update rule for the event activa-

tion as to include a weighted component with the LDS-based

sound event tracking:

P (s|t) ∝ (w−1)·

(

∑

q,c,f

P (q, c, s|f, t)Vf,t

)κ

+ w·φ(s|t) (14)

where w ∈ {0, 1} is a weight parameter indicating how

much the prior should be imposed. The complete algorithm

that uses the PLCA model with LDS integration can be seen

in Algorithm 1. Although convergence is not guaranteed, it
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Algorithm 1 PLCA-LDS integration

Require: Vf,t, P (q, c, s|f, t), A, C, R, Q, iter

1) Initialise P (s|t), P (c|s, t), P (q|s, t)
2) Compute P (t) =

∑

f Vf,t

3) For i=1:iter

a) Compute P (q, c, s|f, t) from (5)

b) Compute P (q|s, t) from (8)

c) Compute P (c|s, t) from (10)

d) Compute µt or µt|T using the Kalman fil-

ter/smoother equations [24] [22]

e) Compute P (s|t) from (14)

is observed in practice, in terms of a constantly decreasing

Kullback-Leibler divergence between the original and approx-

imated spectrogram. It should be noted that the LDS does not

impose any constraints on the inputs being non-negative or

summing to one (although in practice the LDS posterior values

are in the same range with P (s, t)). Thus, in order to ensure

that the estimated event posterior P (s|t) remains non-negative

in (14), only the non-negative values of µt (or µt|T ) are kept.

Normalisation then takes place to both weighted components

of (14) as part of the equation’s partition function.

The output of the LDS-based post-processing step or the

PLCA-LDS integration of (14) is a smooth non-binary sound

event activation, which needs to be converted into a list of

detected events per time frame. In this work, the LDS output

is binarised by performing class-specific thresholding (each

sound event class is thresholded using (non-negative) value θs,

estimated from a training set; see subsection IV-A). Finally,

detected events with a small duration (here, detected events

shorter than 60ms) are removed.

It should be noted that the value of the LDS posterior

is dependent on the values of P (s, t), which is expressed

by the sound event posterior P (s|t) weighted by the ERB

spectrogram energy P (t). As the number of concurrent sound

events increase, the sound event posterior will always decrease.

However, since an increased number of concurrent sound

events will also lead to an increase in the energy of the

ERB spectrogram, the values of P (s, t) are essentially not

affected by an increasing number of concurrent events. Thus,

in practice the number of concurrent sound events does not

cause any difficulties in finding suitable thresholds θs.

An example event detection output is shown in Fig. 5,

comparing the output of a PLCA-only model, a PLCA model

with HMM constraints on the sound state activation [12],

PLCA with LDS postprocessing, and PLCA-LDS integration.

When comparing the aforementioned outputs with the ground

truth of Fig. 3, the LDS postprocessing (Fig. 5c) and LDS

integration (Fig. 5d) are able to detect instances of class 14

‘printer’ in sec. 50-70 that were not detected in the PLCA-

only and PLCA-HMM models. However LDS postprocessing

(Fig. 5c) also introduces false alarms around sec. 50 which

are not present in the PLCA-LDS integration output (Fig. 5d).
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Fig. 5. Binary sound event detection outputs of the recording shown in Fig.
3. (a) Using the PLCA-only model, reaching a frame-based F-measure of
32.2%. (b) Using the PLCA model with HMM constraints on the sound state
activation [12], reaching and F-measure of 37.3%. (c) Using the PLCA model
with LDS postprocessing, reaching an F-measure of 42.5%. (d) Using the
PLCA model with LDS integration, reaching an F-measure of 51.4%.

IV. EVALUATION

A. Training data

For constructing the pre-extracted dictionary P (f |q, c, s),
the DCASE 2013 Event Detection training dataset is used

[6], [1]. The dataset contains isolated sounds recorded in

an office environment at Queen Mary University of London,

and covers 16 sound event classes (S = 16): alert, clearing

throat, cough, door slam, drawer, keyboard click, keys, door

knock, laughter, mouse click, page turn, pen drop, phone,

printer, speech, and switch. Each sound class contained 20

sound exemplars. Here, the exemplar size is increased by

performing data augmentation in the form of pitch shifting

each isolated sound recording by ±1 semitone, resulting in

C = 60 exemplars per sound event class, i.e. 960 exemplars

in total. Using the training data, we experimented with various

values for the sound state size Q ∈ {1, . . . , 5}, with the

best being Q = 3, which is used in this system. Sound

state templates were extracted by providing each isolated

sound ERB spectrogram as input to the NMF algorithm [17],

with sparsity constraints over time in order to avoid temporal

overlap of templates.

For tuning system parameters for polyphonic and mono-

phonic sound event detection, the development datasets for

the DCASE 2013 Event Detection Office Synthetic (OS)
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Parameter Values

κ, λ (sparsity parameters) 1.1, 1.4

α, β (LDS covariance factors) 0.2, 0.4

w (LDS weight parameter) 0.1

TABLE I
SYSTEM PARAMETERS ESTIMATED FROM THE DCASE 2013 OS

DEVELOPMENT SET.

and Office Live (OL) tasks [6] were respectively used. Both

datasets contain continuous recordings of sound events in an

office environment, in the presence of background noise. The

polyphonic development dataset contains 9 recordings and

is synthesized by artificially concatenating recorded isolated

sound events, using variable event density levels (low, mid,

high) and event-to-background ratio (EBR) levels (-6dB, 0dB,

and 6dB). The Office Live development dataset contains 3

continuous recordings of scripted non-overlapping sequences

of office sounds, recorded at Queen Mary University of

London. The system parameters estimated from the polyphonic

development set are used for testing the polyphonic datasets

described in the following subsection and displayed in Table

I.

B. Test data

For testing, 3 polyphonic datasets of artificially con-

catenated office sounds were used, with varying levels of

polyphony and event-to-background noise ratio (EBR). In

addition, one monophonic recorded dataset of office sounds

is also used, for comparative purposes.

On the polyphonic datasets: firstly the test dataset for the

DCASE 2013 Event Detection OS challenge is used [1].

The dataset, denoted ‘OS test’, contains 12 recordings of

2 minutes duration each, with different event density levels

and different event-to-background ratio levels. The recordings

were generated using the acoustic scene synthesizer of [31] by

concatenating isolated office sounds recorded at Queen Mary

University of London (using different sound sources than the

ones used for the OS development dataset of subsection IV-A).

This polyphonic dataset allows for direct comparison with

other participating systems for the DCASE 2013 polyphonic

event detection task. The second polyphonic dataset uses the

same event ground truth with the OS test dataset, as well

as the same noise level and event density settings, but is

instead generated using samples recorded at IRCCYN, École

Centrale de Nantes, France. This second dataset, denoted

‘OS-IRCCYN’ in the remainder of the paper, is useful for

evaluating the proposed method’s generalization capabilities

to different sound sources as well as differences in recording

and acoustic conditions.

The third polyphonic dataset is also generated using samples

recorded at IRCCYN, using variable event-to-background ratio

levels and event density levels. The primary use of this third

polyphonic dataset, denoted as ‘OS-IRCCYN-2’, is to test

the proposed system’s abilities to detect events under variable

EBR and event density conditions. As for ‘OS-IRCCYN’, this

dataset is generated using samples recorded at IRCCYN, but

instead of keeping the settings of the OS dataset, several event

densities and EBR are used. 3 different event density levels

are used to control the event occurrences: ‘low’ (3 events per

class), ‘medium’ (4 events per class) and ‘high’ (5 events per

class). 3 levels are used to control the event-to-background

noise ratio: -6dB, 0dB, and 6dB. In addition, each setting

configuration (couple EBR-density) is used to simulate three

scenes. For each replication, the samples to use as well as

their time positions are redrawn. In order to fairly evaluate

the influence of the EBR on the algorithm performances, both

the samples and their time positions remain unchanged when

varying the EBR. The dataset is made of 27 recordings (3

EBR x 3 densities x 3 replications), each 2 min long.

For comparative purposes, a monophonic dataset of office

sounds is also employed, namely the Office Live (OL) test

dataset from the DCASE 2013 challenge [1]. The OL dataset

contains 11 scripted recordings of event sequences recorded

at Queen Mary University of London, which were recorded

in different acoustic environments as compared with the OL

development dataset presented in subsection IV-A. Recordings

in the OL test dataset have a variable duration between 1 and

3 minutes.

C. Metrics

For evaluation, we employed event detection metrics both

from the DCASE 2013 challenge [1], as well as the upcoming

DCASE 2016 challenge [32]. Specifically, 3 different metrics

are used: frame-based (used in DCASE 2013), segment-based

(used in DCASE 2016), and class-wise segment-based (used

in DCASE 2016). Frame-based evaluation is performed on a

10 msec step using the post-processed event activation. For

the segment-based metrics, we compare the system output

and reference using a 100 msec segment size (a segment is

assumed to be active if an event is detected within that seg-

ment). Finally, class-wise segment-based metrics also consider

100 msec segment size, with the results being normalized per

class. A key difference between the frame-based and segment-

based metrics is that frame-based metrics are computed per

recording and are averaged across the entire dataset, whereas

segment-based metrics count the number of true positives,

false positives and false negatives across the entire dataset

prior to the metrics computation [32].

In all above cases, metrics were computed using the Pre-

cision, Recall, and F-measure (P-R-F). By denoting as Ngt,

Nsys, and Ncor the number of ground truth, estimated and

correct events for a given 10msec frame, the frame-based P-

R-F frame-based metrics are defined as:

Pfb =
Ncor

Nsys

, Rfb =
Ncor

Ngt

, Ffb =
2PfbRfb

Pfb +Rfb

. (15)

Using (15), similar metrics are defined for segment-based eval-

uations and class-wise segment-based evaluations. The event-

based P-R-F metrics are denoted as Psb,Rsb,Fsb; the class-

wise segment-based metrics are denoted as Pcwsb,Rcwsb,Fcwsb,

respectively.

D. System configurations - comparative approaches

The proposed system is evaluated using various configu-

rations, namely using only the PLCA-based model of sub-
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section III-C, using the PLCA model along with LDS-based

postprocessing, and finally using the PLCA model with the

LDS inference integrated in the PLCA updates, as in eq.

(14). When using the LDS model, the main results presented

are with the offline variant using 32 latent variables, i.e.

corresponding to the random accelerations model (see Section

III-D). For the PLCA-only system, the output is post-processed

using a median filter with a size of 9 samples (approximately

200 msec), in order to perform smoothing over time.

In addition, comparative results are reported for the DCASE

2013 OS test set and the OS-IRCCYN test dataset using

several publicly available state-of-the-art approaches for poly-

phonic sound event detection. All of the systems described

below have been trained using the DCASE 2013 OS training

and development datasets, thus results can be compared with

the proposed system. The systems used for comparison are as

follows:

• Gemmeke et al. [5]: based on NMF, using a frame

stacking approach using time-frequency patches.

• Vuegen et al. [7]: a system using Gaussian mixture mod-

els (GMMs), with Mel-frequency cepstral coefficients

(MFCCs) as input features.

• Stowell et al. [1]: the event detection baseline system

from DCASE 2013, based on NMF with beta-divergence

and using a constant-Q transform spectrogram as input.

• Benetos et al. [12]: a preliminary version of the proposed

system, which is based on PLCA and used independent

class-wise HMMs to constrain the temporal evolution of

each sound state in P (q|s, t). The system of [12] used a

non-augmented dictionary with 20 exemplars per class. In

order to make a direct comparison between the model of

[12] and the proposed models, experiments are carried out

with the system of [12] using the augmented dictionary

presented in Section IV-A.

• A system based on the PLCA model of (4) using HMM

smoothing on the sound event activation is also devel-

oped. The model, which essentially involves PLCA with

HMM integration is presented in the Appendix.

Results are also reported using the DCASE 2013 OS test

dataset for the polyphonic sound event detection system of

Heittola et al. [3], which is based on HMM-based multiple path

decoding. This system is not publicly available, thus results [3]

for are those reported from the DCASE 2013 challenge for the

OS test dataset.

E. Results

Sound event detection results for various configurations of

the proposed system using the polyphonic OS test dataset can

be seen in Table II, also compared with HMM integration

within the PLCA model (presented in the Appendix). When

using the frame-based F-measure, an improvement of +8.6%

can be seen when comparing the PLCA-only system versus

the PLCA system with LDS integration. An improvement of

+7.5% is also reported when using LDS-based postprocessing

over the PLCA-only system with median filtering. In terms of

segment-based F-measure, the improvement over the PLCA-

only system is +11.5% and +9.9% for the LDS integration and

System configuration Ffb Fsb Fcwsb

PLCA model 27.1% 30.2% 28.3%

PLCA model + HMM integration 29.9% 31.2% 29.5%

PLCA model + LDS postprocessing 34.6% 40.1% 32.9%

PLCA model + LDS integration 35.7% 41.7% 31.7%

TABLE II
SOUND EVENT DETECTION RESULTS FOR THE POLYPHONIC DCASE 2013

OS TEST DATASET USING VARIOUS SYSTEM CONFIGURATIONS.

System configuration Ffb Fsb Fcwsb

PLCA model 15.5% 21.7% 20.6%

PLCA model + HMM integration 20.4% 29.5% 21.4%

PLCA model + LDS postprocessing 20.0% 25.5% 21.2%

PLCA model + LDS integration 25.9% 32.9% 22.6%

TABLE III
SOUND EVENT DETECTION RESULTS FOR THE POLYPHONIC OS-IRCCYN

TEST DATASET USING VARIOUS SYSTEM CONFIGURATIONS.

LDS postprocessing, respectively. When considering the class-

wise segment-based F-measure, the improvement is +3.4% and

+4.6%, respectively. The PLCA model with HMM integration

outperforms the PLCA-only model, but is also outperformed

by the models with LDS postprocessing and integration across

all metrics.

Regarding precision and recall, Pfb = 23.2% and Rfb =
35.2% when using the PLCA-only system. This changes to

Pfb = 28.6% and Rfb = 51.0% when using LDS integration.

This indicates that the system is generally favouring recall over

precision, so the system has less missed event detections as

compared to false alarms, and that LDS filtering is primarily

able to improve the system’s recall.

As far as the dependency of model parameters P (s|t),
P (c|s, t) and P (q|s, t) to initialisation with random values is

concerned, 10 runs of the PLCA model of (4) were made using

the DCASE 2013 OS dataset. The frame-based F-measure

when using the PLCA model has a standard deviation of

±0.2%, which shows that random initialisation of unknown

model parameters has overall a small effect.

Results using the OS-IRCCYN dataset are shown in Table

III, using various system configurations. A significant drop in

performance can be seen as compared to the OS test dataset

results. This can be attributed to the different recording equip-

ment and acoustic conditions used to record the isolated sound

samples, as compared to the OS test dataset. Nevertheless,

the proposed LDS-based integration and postprocessing steps

still demonstrate a significant performance improvement when

compared to the PLCA-only system: when considering Ffb, the

improvement when using LDS integration is +10.4%, while

when using LDS postprocessing the improvement is +4.5%.

When comparing Table III with Table II, it can be seen

that the performance improvement when using the proposed

LDS-based methods is similar across the two polyphonic

datasets. Also, LDS postprocessing is outperformed by HMM

integration across all metrics for the the OS-IRCCYN dataset,

although HMM integration is outperformed by LDS integra-

tion.

Table IV provides a comparison between the proposed

system (using PLCA with LDS integration) and several state-

of-the-art approaches for polyphonic sound event detection,
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System / dataset OS test OS-IRCCYN

Stowell et al. [1] 12.8% 13.8%

Vuegen et al. [7] 13.5% 3.5%

Gemmeke et al. [5] 21.3% 10.8%

Benetos et al. [12] 28.0% 16.2%

Proposed method 35.7% 25.9%

TABLE IV
SOUND EVENT DETECTION RESULTS (IN TERMS OF FFB ) USING THE

POLYPHONIC OS TEST AND OS-IRCCYN DATASETS COMPARING

STATE-OF-THE-ART APPROACHES WITH THE PROPOSED SYSTEM (USING

LDS INTEGRATION).

which were described in subsection IV-D. All approaches

(including the proposed system) have been trained using

the DCASE 2013 OS train and development datasets and

optimised using Ffb, so the results can be deemed comparable.

From Table IV it can be seen that the proposed system clearly

outperforms other approaches, when considering both the OS

test dataset (for which the sound events were recorded using

the same equipment as with the OS train and development sets)

and the OS-IRCCYN dataset (which is more challenging, since

the recording and acoustic conditions were different when

compared to the training/development sets). It is also worth

pointing out that all systems (with the exception of the NMF

baseline of [1]) exhibit a performance drop of -10% in terms

of Ffb when comparing the OS test dataset versus the OS-

IRCCYN dataset.

Results with respect to the performance of the proposed

system on detecting various types of office sounds present

in the OS test dataset can be seen in Fig. 6. Class-specific

results vary according to the evaluation configuration: this is

mostly attributed to the way the LDS observation model B

affects the mapping of observed sound events from the PLCA

model to latent sound events. This in turn affects the presence

or absence of specific sound event classes in the detection

output. From Fig. 6 it is seen that the proposed LDS-based

postprocessing approach has the highest scores for the largest

number of event classes, followed by the LDS integration. This

is also explained by the class-averaged Fcwsb, which is slightly

higher for the LDS postprocessing method as compared to the

LDS integration method.

Regarding sound classes that exhibit significant changes in

terms of class-specific F-measure, the ‘printer’ class has an

improvement of approximately +45% when comparing the

LDS postprocessing method with the PLCA-only system. For

the PLCA-only system, the ‘printer’ class has high precision

(63.4%) but low recall (20.2%); the observation matrix B

assigns several detected event classes (e.g. from ‘door slam’)

back to the ‘printer’ class, which leads to a ‘printer’ precision

of 58.8% and a recall of 92.1% for the LDS-based postpro-

cessing approach. On the other hand, the ‘speech’ class drops

at about -15% in terms of F-measure when comparing the

two aforementioned approaches, this time because the LDS

observation model B redistributes certain correctly detected

occurrences of the ‘speech’ class to the ‘clearing throat’ class.

It should be noted that the OS test and OS-IRCCYN datasets

do not contain instances of the ‘page turn’ class (this class is

however used in training the proposed system), hence it is not
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Fig. 6. Sound event detection results per sound class (in terms of Fcwsb) for
the polyphonic OS test dataset, using various system configurations (Conf.
1: PLCA; Conf. 2: PLCA + LDS postprocessing; Conf. 3: PLCA + LDS
integration).

included in the class-wise results of Fig. 6, but is used in the

computation of the frame-based and segment-based metrics.

In order to evaluate the performance of the event tracking

method under different LDS configurations, a comparison is

made between the online and offline versions of LDS infer-

ence, corresponding to the Kalman filter and Kalman smoother

methods (see Section III-D). When considering the online LDS

with the OS test dataset, Ffb = 34.0%, and with the OS-

IRCCYN dataset Ffb = 25.2%. Results when using offline

LDS are at Ffb = 35.7% and Ffb = 25.9%, respectively. This

shows that performance when using the online version, which

only uses information from past samples, is slightly lower as

compared to using the offline method, which takes information

from both past and future samples.

In order to evaluate the effect of only keeping non-negative

values in the LDS posterior as part of eq. (14), a comparative

experiment was carried out using the DCASE 2013 OS dataset

and PLCA-LDS integration. Discarding negative values in the

LDS posterior leads to a frame-based F-measure of 35.7%.

However, if negative values of the LDS posterior are kept

during the estimation of P (s|t), Ffb drops to 33.8%.

Another evaluation of the proposed LDS-based event track-

ing method is made when comparing LDS with 32 latent

variables, corresponding to the random accelerations model

(see Section III-D), with LDS consisting of 16 latent variables,

so only containing one latent variable per sound class. When

considering the OS test dataset, Ffb = 32.8% for the 16-

variable LDS, as opposed to Ffb = 35.7% for the 32-variable

one. For the OS-IRCCYN dataset, Ffb = 24.7% for the 16-

variable LDS, while Ffb = 25.9% for the 32-variable one.

This shows that the random accelerations model is able to
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Fig. 7. Event detection results for the proposed system (in terms of Ffb)
on the OS-IRCCYN-2 dataset, under various (a) polyphony and (b) event-
to-background (EBR) ratio levels. System configurations include Conf. 1
(PLCA), Conf. 2 (PLCA + LDS postprocessing), and Conf. 3 (PLCA + LDS
integration).

provide a small but consistent performance improvement over

that which considers only as latent variables the individual

event activations per sound class.

Results for the polyphonic OS-IRCCYN-2 dataset are pre-

sented in Fig. 7, for groups of recordings with varying EBR

noise ratio and varying event density (polyphony) levels. On

average, the performance of the PLCA-only system on the OS-

IRCCYN-2 dataset reaches Ffb = 17.6%; the performance of

the PLCA system with LDS postprocessing is at Ffb = 23.2%;

and the performance of the PLCA system with LDS integration

is at Ffb = 29.5%. It can be seen from Fig. 7 (a) that for all

system configurations the proposed system exhibits improved

results with increased event density. In addition, the PLCA-

only model and the PLCA model with LDS postprocessing are

fairly stable with respect to varying EBR levels. The PLCA

model with LDS integration, while outperforming the other

2 system configurations, exhibits improved results with high

EBR values, i.e. with less background noise levels.

A final comparative experiment is carried out with respect

to the ability of the proposed method to perform sound

event detection in a monophonic scenario, using the DCASE

2013 Office Live (OL) dataset. Even though the proposed

LDS-based method is mostly suited in the case of detecting

overlapping events, the PLCA system with LDS integration

reaches Ffb = 36.2% as compared with Ffb = 32.0% for

the PLCA-only system. The PLCA system with LDS-based

postprocessing reaches Ffb = 35.7%. This indicates that the

proposed event tracking method is also useful in tracking non-

overlapping events over time.

V. CONCLUSIONS

In this work, a system for polyphonic sound event detection

and tracking was proposed, which combines a dictionary-

based spectrogram factorisation model with a linear dynamical

system. The model, which is based on probabilistic latent

component analysis (PLCA), assumes that a sound event is

produced as a linear combination of sound exemplars for a

specific class, with each exemplar in turn consisting of a

collection of ‘sound state’ spectral templates. By using the

event activation output of the spectrogram factorisation model

as input to a linear dynamical system (LDS) trained from fully

observed data, it is possible to jointly track multiple concurrent

sound events over time. In addition, by integrating the LDS-

based sound event tracking process within the spectrogram

factorisation-based event detection steps, it is possible to guide

the convergence of the frame-based event detection model

towards temporally smooth solutions. Experiments on poly-

phonic datasets of office sounds under variable recording con-

ditions, event density levels, and noise/background conditions

showed that the integration of LDS-based sound event tracking

can lead to a substantial performance improvement over a

temporally-smoothed output of a spectrogram factorisation

model. At the same time, the proposed polyphonic system is

able to outperform several state-of-the-art polyphonic sound

event detection approaches trained on the same data. The

source code3 and created datasets4 for the proposed system

can be found online.

In the future, we will address the problem of adaptation

to different acoustic conditions and sound sources; as shown

by the comparison between the OS test and OS-IRCCYN

datasets, a significant performance drop is reported across sev-

eral event detection methods when the train and test datasets

are disjoint in terms of acoustic and recording conditions.

Further work on integrating supervised dynamical systems

within spectrogram factorisation (and more broadly matrix

decomposition) approaches will also be carried out. To that

end, we will also investigate the application of non-linear

and non-Gaussian dynamical systems (such as the Extended

and Unscented Kalman filters [22], [15]) for the problem of

polyphonic sound event tracking.

APPENDIX

HMM-BASED MODEL

For comparative purposes, a model for sound event detec-

tion is also developed which is based on HMMs for event

tracking. The model, which can be viewed as an extension

of the non-negative HMM model of [33] and is based on the

PLCA model of (4), assumes that st is the latent state at time

t corresponding to event class s, which generates observations

ft (corresponding to the observed spectra at time t). The HMM

is defined by the sound event transitions P (st+1|st), the initial

sound event probabilities P (s1), and the observation model

which is given by:

Pt(ft|st) =
∑

qt,ct

P (ft|qt, ct, st)Pt(ct|st)Pt(qt|st), (16)

where Pt(·) denotes a time-varying distribution. Pt(ft|st) is

essentially the approximated spectrum at time t given sound

event class st.

3https://code.soundsoftware.ac.uk/projects/polyphonic-sound-event-
tracking-using-linear-dynamical-systems

4https://archive.org/details/OS-IRCCYN
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The HMM is integrated to the PLCA model in a similar

way to Section III-E, where inference involves iteratively com-

puting the PLCA posterior of (5), the sound state activation

Pt(qt|st) from (8), the exemplar activation Pt(ct|st) from (10),

and the sound event activation from:

P (s|t) ∝ (w−1)·

(

∑

q,c,f

P (q, c, s|f, t)Vf,t

)κ

+ w·γt(st) (17)

where γt(st) = Pt(st|f) is the HMM posterior, and f corre-

sponds to the complete sequence of observations. The poste-

rior γt(st) is computed at each iteration using the forward-

backward algorithm, following the process described in [33,

Ch. 2.4].

Sound event transitions P (st+1|st) are computed in a

training stage using sound event annotations from the DCASE

2013 OS Development dataset [1]. An important difference

with the proposed system is that in order to learn sound event

transition probabilities, the polyphonic event annotations are

first converted into monophonic ones by assuming that each

event is active from its onset until the onset of the next

event appearing in the annotations. Initial state distributions

P (s1) are assumed to be uniform. Following training with the

DCASE 2013 OS Development set, weight w was set to 0.07.
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