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Abstract. We numerically calculate the evolution of second order cosmological perturbations
for an inflationary scalar field without resorting to the slow-roll approximation or assuming
large scales. In contrast to previous approaches we therefore use the full non-slow-roll source
term for the second order Klein-Gordon equation which is valid on all scales. The numerical
results are consistent with the ones obtained previously where slow-roll is a good approxima-
tion. We investigate the effect of localised features in the scalar field potential which break
slow-roll for some portion of the evolution. The numerical package solving the second order
Klein-Gordon equation has been released under an open source license and is available for
download.
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1 Introduction

The arrival of more and better data in the last couple of years has fundamentally changed
theoretical cosmology. Until only a few years ago it was sufficient to use linear order the-
ory to analyse the data and calculate first order observables, such as the power spectrum;
higher order theory wasn’t required. The new data, in particular the Cosmic Microwave
Background (CMB) anisotropy maps as provided by the Wmap and the Planck satellites
[1, 2], make it possible to go beyond linear order and derive higher order observables such
as the bispectrum from the data. Considerable effort has therefore been spent on extracting
observable signatures beyond the power spectrum and to extend cosmological perturbation
theory beyond linear order.

So far calculations of higher order observables such as the bispectrum, or its popular
parametrisation fNL, have relied heavily on approximations. This meant usually assuming
large scales, that is large compared to the “horizon”, and imposing slow-roll [3]. However,
these restrictions not only constrain the validity of the results, but also limit the number of
models that can be studied, excluding many interesting cases. For example, even in linear
theory it is already well known that interesting and observable effects occur when slow-roll
is violated at the end of inflation [4].

Second order perturbations play a crucial role in our quest to understand the non-linear
physics of the early universe. Previous works by us and collaborators [5, 6] have derived the
equations of motion for second order perturbations in the long wavelength approximation,
the slow-roll approximation and also the full non-slow-roll case for all scales [7].

Previously in Ref. [8] we numerically solved the evolution of second order perturbations
under the assumption that the source term, which consists of convolutions of first order
perturbations and their derivatives, is calculated in the slow-roll approximation. We showed
that the source term closely follows the form of the first order power spectrum. In this paper
we go beyond the slow roll approximation to calculate the full source term equations for
a single scalar field. This full treatment is needed in cases where slow-roll is broken. The
results of the updated calculation are consistent with those of our previous work for the 1

2m
2ϕ2

potential for which the slow-roll approximation is an exceptionally good one. To go beyond
slow-roll in this paper, we study “step” and “bump” potentials, for which slow-roll is broken
as |ηV | > 1 around the feature (ηV denoting one of the slow-roll parameters). Step potentials
have been widely used to create features in the power spectrum of inflationary perturbations
which might more accurately match the observed power spectrum from WMAP [9–14]. In
this paper we will follow the potential forms described by Chen et al. [15, 16]. In addition
to being able to calculate the second order field perturbation in this case, the result of the
full equations seems to be smoother at very early times when the perturbations are highly
oscillatory (due to a larger damping term, which is lost in slow-roll).

The final goal of this continuing work is a numerical calculation of the curvature per-
turbation at second order for all length scales. This will probe effects both inside and outside
the horizon in a way that is not possible using other methods, for example the δN formalism
[17–21], which a priori uses large scales only. The applications of such a calculation are
many and varied and range from an investigation of the non-Gaussian nature of inflationary
perturbations to the exploration of higher order effects such as the sourcing of gravitational
waves at second order [22] and vorticity generation [23].

In the current paper we have only considered the effect of a single scalar field. One
goal of future work is to extend the numerical code to deal with more than one field. In
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a multifield system the curvature perturbation is not the only important observable with
isocurvature components also playing a significant role. Calculating the field evolution is the
only way to gain access to these isocurvature results, in a way that would not be possible
if we had concentrated purely on the curvature perturbations. With this goal in mind we
have fashioned the numerical calculation in terms of a scalar field instead of the curvature
perturbation which might otherwise have been considered a more observationally relevant
quantity in the single field case. We have developed the numerical code considerably from
that used in Ref. [8]. The change from the slow-roll to full equations adds significant complex-
ity to the calculation but this has been countered by optimising the time sensitive functions
and implementing more of them in a compiled language. The numerical code has been re-
leased under an open source license (Modified BSD license) and is available for download [24].

In Section 2 we present the Klein-Gordon equation for second order cosmological per-
turbations. This is the central part of the code described in Section 3. The results we have
obtained are in Section 4 and discussion of these and future goals is contained in Section 5.
Throughout the text we use 8πG and label conformal time derivatives with a prime. We
assume a flat Friedmann-Robertson-Walker background throughout this paper.

2 Second Order Perturbations

2.1 Klein Gordon Equations

Cosmological perturbations beyond linear order have been studied in depth in recent times
and a brief summary can be found in Appendix A or at length in Refs. [25, 26] (see Ref. [27]
for an example of earlier work in this area). In particular the Klein-Gordon equations for
the background, first order and second order perturbations are given in Eqs. (A.15)-(A.17).
These equations are given in real space, however, and in general the dynamics of the scalar
field become clearer in Fourier space. Following Refs. [3] and [7] we will write δϕ(ki) for the
Fourier component of δϕ(xi) such that

δϕ(η, xi) =
1

(2π)3

∫
d3kδϕ(ki) exp(ikix

i) , (2.1)

where ki is the comoving wavenumber. In Fourier space, the closed form of the first order
Klein-Gordon equation (A.16) then transforms into

δϕ1(ki)′′ + 2Hδϕ1(ki)′ + k2δϕ1(ki)

+ a2

[
V,ϕϕ +

8πG

H

(
2ϕ′0V,ϕ + (ϕ′0)2 8πG

H V0

)]
δϕ1(ki) = 0 , (2.2)

where ϕ0 is the background homogeneous scalar field, δϕ1 is the first order scalar field
perturbation, a is the FRW scale factor, H = a′/a is the conformal Hubble parameter and
V is the potential of the scalar field with derivatives w.r.t ϕ denoted by V,ϕ etc. The second
order equation (A.17) requires a careful consideration of terms that are quadratic in the first

order perturbation. Terms at second order of the form
(
δϕ1(xi)

)2
require the use of the

convolution theorem (see for example Ref. [28]). We use convolutions of the form

f(xi)g(xi) −→ 1

(2π)3

∫
d3qd3p δ3(ki − pi − qi)f(pi)g(qi) . (2.3)
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The full closed form, second order Klein-Gordon equation in Fourier space is then given by
[7]

δϕ′′2(ki) + 2Hδϕ′2(ki) + k2δϕ2(ki)

+ a2

[
V,ϕϕ +

8πG

H

(
2ϕ′0V,ϕ + (ϕ′0)2 8πG

H V0

)]
δϕ2(ki)

+ S(ki) = 0 . (2.4)

The source term S contains all the products of δϕ1 in real space which require convolution
integrals. Terms which contain gradients of δϕ1 include additional factors of k and q. The
form of S is given by [7]

S
(
δϕ1(ki), δϕ′1(ki)

)
=

1

(2π)3

∫
d3pd3q δ3(ki − pi − qi)

{

2
8πG

H
[
Qδϕ′1(pi)δϕ1(qi) + ϕ′0a

2V,ϕϕδϕ1(pi)δϕ1(qi)
]

+

(
8πG

H

)2

ϕ′0
[
2a2V,ϕϕ

′
0δϕ1(pi)δϕ1(qi) + ϕ′0Qδϕ1(pi)δϕ1(qi)

]
− 2

(
8πG

2H

)2 ϕ′0Q
H

[
Qδϕ1(pi)δϕ1(qi) + ϕ′0δϕ1(pi)δϕ′1(qi)

]
+

8πG

2H ϕ′0δϕ
′
1(pi)δϕ′1(qi) + a2

[
V,ϕϕϕ +

8πG

H ϕ′0V,ϕϕ

]
δϕ1(pi)δϕ1(qi)

+ 2

(
8πG

H

)
pkq

k

q2
δϕ′1(pi)

(
Qδϕ1(qi) + ϕ′0δϕ

′
1(qi)

)
+ p22

8πG

H δϕ1(pi)ϕ′0δϕ1(qi)

+

(
8πG

2H

)2 ϕ′0
H

[(
plq

l − piqjk
jki

k2

)
ϕ′0δϕ1(pi)ϕ′0δϕ1(qi)

]

+ 2
Q

H

(
8πG

2H

)2 plq
lpmq

m + p2q2

k2q2

[
ϕ′0δϕ1(pi)

(
Qδϕ1(qi) + ϕ′0δϕ

′
1(qi)

) ]

+
8πG

2H

[
4Q

q2 + plq
l

k2

(
δϕ′1(pi)δϕ1(qi)

)
− ϕ′0plqlδϕ1(pi)δϕ1(qi)

]

+

(
8πG

2H

)2 ϕ′0
H

[
plq

lpmq
m

p2q2

(
Qδϕ1(pi) + ϕ′0δϕ

′
1(pi)

) (
Qδϕ1(qi) + ϕ′0δϕ

′
1(qi)

) ]

+
ϕ′0
H

[
8πG

(
plq

l + p2

k2
q2δϕ1(pi)δϕ1(qi)− q2 + plq

l

k2
δϕ′1(pi)δϕ′1(qi)

)

+

(
8πG

2H

)2 kjki
k2

(
2
pipj
p2

(
Qδϕ1(pi) + ϕ′0δϕ

′
1(pi)

)
Qδϕ1(qi)

)]}
, (2.5)

where we have defined the parameter Q = a2(8πGV0ϕ
′
0/H+V,ϕ) for convenience. Calculating

Eq. (2.5) is the main task of the numerical simulation described in Section 3.

2.2 Equations for Numerical Calculation

In the previous section the governing equations of the second order system were given in
terms of conformal time. A more appropriate time variable for the numerical simulation is
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the number of e-foldings, N = log(a/ainit). This is measured from ainit, the value of a at the
beginning of the simulation. We take the value of the scale factor today, a0, as a0 = 1 and
calculate a at the end of inflation by connecting it with a0 (see discussion in Ref. [29] or for
example Eq. (3.19) in Ref. [3]). We also assume that reheating was instantaneous at the end
of inflation. We will use a dagger (†) to denote differentiation with respect to N . Derivatives
with respect to conformal time, η, and coordinate time, t, are then given by

∂

∂η
=

dN
dη

∂

∂N = H ∂

∂N , (2.6)

∂

∂t
=

dη

dt

dN
dη

∂

∂N = H
∂

∂N , (2.7)

respectively, where H = d ln a/dt and H = aH. The background and first order equations,
written in terms of the new time variable N , are

ϕ††0 +

(
3 +

H†

H

)
ϕ†0 +

V,ϕ
H2

= 0 , (2.8)

and

δϕ††1 (ki) +

(
3 +

H†

H

)
δϕ†1(ki) +

[(
k

aH

)2

+
V,ϕϕ
H2

+
8πG

H2
2ϕ†0V,ϕ

+

(
8πG

H

)2 (
ϕ†0
)2
V0

]
δϕ1(ki) = 0 . (2.9)

The three-dimensional convolution integral
∫

dq3 can be rewritten in spherical coordinates
q, θ, ω where q = |qi|. There is no ω dependence in the source term integral but |ki − qi|
and the factors of ki and qi are dependent on θ and this dependence is made explicit below.
Eqs. (2.4) and (2.5) must be written in terms of N , with the θ dependent terms grouped
together, in order to set up the numerical system completely at second order. In the slow-roll
case there were only four different θ dependent terms, here labelled A–D following Ref. [8]:

A(ki, qi) =

∫ π

0
sin(θ)δϕ1(ki − qi)dθ ,

B(ki, qi) =

∫ π

0
cos(θ) sin(θ)δϕ1(ki − qi)dθ ,

C(ki, qi) =

∫ π

0
sin(θ)δϕ†1(ki − qi)dθ ,

D(ki, qi) =

∫ π

0
cos(θ) sin(θ)δϕ†1(ki − qi)dθ . (2.10)

The non-slow-roll source term in Eq. (2.13) that we are now considering requires the use of
three further θ integrals in addition to those in Eq. (2.10), which are

E(ki, qi) =

∫ π

0
cos2(θ) sin(θ)δϕ1(ki − qi)dθ ,

F(ki, qi) =

∫ π

0

sin3(θ)

|ki − qi|2 δϕ1(ki − qi)dθ ,

G(ki, qi) =

∫ π

0

sin3(θ)

|ki − qi|2 δϕ
†
1(ki − qi)dθ . (2.11)

– 5 –



It is worth noting that the term sin3(θ)/|ki − qi|2 tends to zero in the limit where k = q and
θ → 0. The second order Klein-Gordon equation in e-folding time is

δϕ††2 (ki) +

(
3 +

H†

H

)
δϕ†2(ki) +

(
k

aH

)2

δϕ2(ki)

+
1

H2

[
V,ϕϕ + 8πG

(
2ϕ†0V,ϕ + 8πG

(
ϕ†0
)2
V0

)]
δϕ2(ki) + S(ki) = 0 , (2.12)

where the full source equation is given by

S(ki) =
1

(2π)2

∫
dqq2

{
1

(H)2

[
V,ϕϕϕ + 3(8πG)ϕ†0V,ϕϕ

]
δϕ1(qi)A(ki, qi)

+
(8πG)2ϕ†0

(aH)2

[
2a2ϕ†0V,ϕ +Q

(
ϕ†0 −

Q

2(aH)2

)]
δϕ1(qi)A(ki, qi)

− (8πG)2

(aH)2

(ϕ†0)2Q

2
δϕ†1(qi)A(ki, qi)

+
2(8πG)Q

(aH)2
δϕ1(qi)C(ki, qi) +

8πGϕ†0
2

δϕ†1(qi)C(ki, qi)

+
8πG

(aH)2

{
ϕ†0

[(
2k2 +

(
7

2
− 8πG

4
(ϕ†0)2

)
q2 +

3

4

8πG

(aH)2
Q2

)
δϕ1(qi)

+ (8πG)Qϕ†0

(
3

4
+
q2

k2

)
δϕ†1(qi)

]
A(ki, qi)

+

[(
2Q

q

k

(
1− 8πG

(aH)2
Qϕ†0

)
− 9

2
ϕ†0kq − ϕ†0

q3

k

)
δϕ1(qi)

− 2Q(8πG)(ϕ†0)2 q

k
δϕ†1(qi)

]
B(ki, qi)

+

[(
−2 + (8πG)(ϕ†0)2

(
1

4
+

1

2aH

))
Qδϕ1(qi)

+

(
8πG

4
(ϕ†0)2 − 2

)
ϕ†0(aH)2δϕ†1(qi)

]
C(ki, qi)

+

[
2Q

k

q
δϕ1(qi) +

(
2
k

q
− q

k

)
ϕ†0(aH)2δϕ†1(qi)

]
D(ki, qi)

+ (8πG)ϕ†0

[(
1

4
(ϕ†0)2q2 +

Q2

2(aH)2

)
δϕ1(qi) +

Q

2
ϕ†0δϕ

†
1(qi)

]
E(ki, qi)

+ (8πG)2ϕ†0Q

[
− Q

2(aH)2

(
k2

2
+ q2

)
δϕ1(qi)− 1

4
ϕ†0k

2δϕ†1(qi)

]
F(ki, qi)

+ (8πG)2(ϕ†0)2

[
− Q

2

(
k2

2
+

q2

aH

)
δϕ1(qi)− (aH)2

4
ϕ†0k

2δϕ†1(qi)

]
G(ki, qi)

}}
.

(2.13)
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For comparison, the slow-roll expression for the source term is [8]

S(ki) =
1

(2π)2

∫
dq

{
V,ϕϕϕ
H2

q2δϕ1(qi)A(ki, qi)

+
8πG

(aH)2
ϕ†0

[(
3a2V,ϕϕq

2 +
7

2
q4 + 2k2q2

)
A(ki, qi)

−
(

9

2
+
q2

k2

)
kq3B(ki, qi)

]
δϕ1(qi)

+ 8πGϕ†0

[
− 3

2
q2C(ki, qi) +

(
2− q2

k2

)
kqD(ki, qi)

]
δϕ†1(qi)

}
. (2.14)

The increased length of calculation in going from the slow-roll source term in Eq. (2.14) to the
full version in Eq. (2.13) can be clearly seen. The numerical complexity is not significantly
greater, however, once the three terms in Eq. (2.11) have been calculated. In the next section
the implementation of the numerical scheme to calculate the source term in Eq. (2.13) and
solve the second order Klein-Gordon equation is discussed.

3 Code Implementation

We described in Ref. [8] a numerical system which calculated the slow-roll source term as
given in Eq. (2.14). We have improved the system and the full source term calculation has
been implemented. This code has now been released under an open source license [24]. The
basic structure of the system is still the same as outlined in Ref. [8] and follows the form
laid down by Ref. [30–32]. Firstly the background fields are evolved to pinpoint the end of
inflation when εH = −H†/H = 1. The first order Klein-Gordon equation (2.9) is solved
using a fourth order Runge-Kutta scheme with the initial conditions specified by the Bunch-
Davies vacuum Eq. (3.1).1 Following this first order stage the source term is calculated at all
necessary timesteps.2 In the last stage of the numerical calculation, the source term result is
used to evolve the second order perturbation modes using Eq. (2.12).

The major advance reported in this paper is the use of the full (non-slow-roll) source
equation in the third step above. With this advance, seven different terms need to be calcu-
lated at each time step. These vary in k, q and θ and integrals over q and θ are performed,
again at each time step, for each k value. In order to perform these integrals we implement
cutoffs at large and small values of k. These cutoffs and the integration calculations in general
are described in detail in Refs. [8, 29] and we do not discuss them further here. The seven
different terms are functional forms of θ given in Eqs. (2.10) and (2.11). As the first order
results are tabulated at specific k values, it is necessary to interpolate the results for k val-
ues between these points. The increased complexity of the source equation clearly increases
the number of calculations at each time step and hence the overall execution time. The
original slow-roll calculation was numerically intensive so the effect of almost doubling the

1The parameters used in the potential have previously been fixed by fitting the first order power spectrum
to the best fit WMAP value of PR = 2.45× 10−9, five e-foldings after horizon crossing.

2This stage is naively parallelisable as the calculation at each timestep is independent. To shorten execution
time the source term can be calculated for selected k modes only instead of the full range. Note that the first
order calculation still needs to be run with a large range of k modes in order that the convolution integral can
be performed.
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number of calculations could have been dramatic. In fact, optimisation of the code and the
translation of some parts into compiled modules has made the increase in complexity man-
ageable. By selecting only particular modes of interest, for example the WMAP pivot scale
kWMAP = 0.002Mpc−1 = 5.25 × 10−60MPL, the source term calculation can be significantly
shortened.3

In order to solve the ODEs given in Eqs. (2.8), (2.9) and (2.12) initial values of
ϕ0, δϕ1, δϕ2 and their first derivatives must be specified. For the background field initial val-
ues of ϕ0 and ϕ†0 are chosen so that the inflationary period lasts approximately 60 e-foldings
after the scales of interest in the CMB exit the horizon. In the case of the quadratic potential
this requires choosing super-Planckian initial field values, for example ϕ0,init = 18MPL.

The first order perturbation initial conditions are chosen by assuming that sufficiently
far inside the horizon the perturbation modes are in the Bunch-Davies vacuum state. To
implement this early time condition in the numerical system we follow Salopek et al. [30]
who initialise the first order modes at a time when k/aH for the mode equals some arbitrary
factor. In keeping with Ref. [30] we choose this factor to be 50. The first order initial values
are then calculated as

δϕ1|init =

√
8πG

a

e−ikη√
2k

, (3.1)

δϕ†1|init = −
√

8πG

a

e−ikη√
2k

(
1 + i

k

aH

)
, (3.2)

where η is the conformal time again.
The situation of the second order initial conditions is different. At the initial times

when the Bunch-Davies conditions are suitable the perturbations are expected to be highly
Gaussian. In this paper we are interested in the production of second order effects by the
evolution of the first order modes and we make no assumptions about the existence of second
order perturbations before the simulation begins. Therefore, we set the initial condition for
each second order perturbation mode to be δϕ2 = 0, and δϕ†2 = 0 at the time when the
corresponding first order perturbation is initialised.

A numerical solution for the second order perturbation equation will contain a homo-
geneous solution and a particular solution. As stated above we have chosen the initial values
for the second order field to be zero. On their own these initial conditions do not remove
this homogeneous solution from the result for δϕ2 in general. In order to do this, and keep
only the particular solution to the equation, it is necessary to ensure that the homogeneous
solution is the trivial (0, 0) solution throughout the evolution.

In order to only report the particular solution of the second order differential equation
Eq. (2.12) we have added a ramping term to the source term S. This ramp interpolates
between 0 and 1 for about an e-folding of time around the time of the initialisation of the
modes. By starting the solution of δϕ2, δϕ

†
2 at 0, 0 and setting the source term to 0 at this

time through the use of the ramp, the solution for δϕ2 will consist only of the inhomogeneous
part. The homogeneous solution of Eq. (2.12) i.e., the solution without the source term
present, is the same form as the solution for δϕ1 as can been seen by comparing Eqs. (2.12)
and (2.9). Figure 1 shows the effect that incorporating the ramp has on the source term at
early times for the kWMAP mode. The value of δϕ2(kWMAP) is initialised to be equal to zero

3The run time of the source term calculation for a single k mode is approximately two hours on a relatively
modern CPU. Using a cluster of computing nodes shortens the naively parallelisable source term calculation
to a further degree.
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(a) The ramp function used to remove the homoge-
neous solution for δϕ2, here shown around the initial-
isation time for the scale kWMAP.
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(b) The addition of the ramp term to S changes its
value at the initialisation time from the original value
(blue solid line) to the ramped value (green dashed
line), here shown for scale kWMAP.

Figure 1: The ramping function used with the source term results.

at 64.3 e-foldings before the end of inflation, when the ramp value is still zero. The ramp
is added to the source term for each mode at the respective initialisation time and all the
results below were generated using a ramped source term.

4 Results

4.1 Comparison with Slow-Roll Results

The full second order code has been run with a number of different potentials. Firstly in
order to check the consistency of the full equation, the standard slow-roll quadratic potential
was used. Figure 2a shows that the results of the full system are very similar to the slow-roll
results, as expected for this potential. The additional terms in the source equation Eq. (2.13)
subdue some of the oscillatory noise evident in the slow-roll solution at early times when the
mode is inside the horizon.

The second order result is similar in both cases, however there is an appreciable increase
in the amplitude of the second order modes when the full equations are used. This is likely to
be a result of the reduced oscillations mentioned above. The second order values are plotted
in Figure 2b.

The results for background and first order perturbations are robust under small devia-
tions in the initial conditions or the mass parameter in the potential. However, the source
term and second order results are not so robust, with any slight variation in the initial value
of ϕ0 or the mass parameter translating to sizable changes in the magnitude of the results.
For example, a small change in the initial field value of ∆ϕ0,init = 0.01MPL or in the mass of
the inflaton of ∆m = 1× 10−11MPL leads to large differences in the source term and second
order results and Figure 3 shows the effects of these changes.

4.2 Step and Bump Potentials

Beyond the standard quadratic model, a more interesting potential to consider is one with a
feature at a particular scalar field value [9]. Following Chen et al. [15, 16] we have used both
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Figure 2: A comparison of the results from the full equations (red solid line) and the slow-roll
source term (green dashed line) for scale kWMAP.
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Figure 3: The source term and second order results for models with slightly perturbed mass
(green dashed line) and ϕinit (blue dotted line) compared to the standard quadratic model
(red solid line) for scale kWMAP.

a step and a bump potential. The step potential is a modified 1
2m

2ϕ2 potential of the form

Vs(ϕ) =
1

2
m2ϕ2

[
1 + c

(
tanh

(
ϕ− ϕs

d

)
− 1

)]
, (4.1)

and the bump potential is given by

Vb(ϕ) =
1

2
m2ϕ2

[
1 + c sech

(
ϕ− ϕb

d

)]
, (4.2)

where the parameters c, d, ϕs and ϕb control the height, width and central point of the feature
respectively. The step potential used here has an extra (−1) term compared to the one used in
Ref. [15]. This extra term ensures that Vs → 1

2m
2ϕ2 at early times instead of beginning with
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Figure 4: The potential and ηV slow-roll parameter for the step (red solid line), bump (green
dashed line) and quadratic (blue dotted line) potentials.

Step Bump

c 0.0018 0.0005
d 0.022 0.01
ϕs,b 14.84 MPL 14.84 MPL

Table 1: The values of the parameters in the step and bump potentials.

a greater amplitude than the standard quadratic potential and only equalling the quadratic
value exactly at the feature point. The evolution of the Hubble parameter H is different
for both the bump and step potentials compared to the quadratic potential. This changes
the value of a at the end of inflation and therefore the value ainit used at the start of the
run. In order to compare models with similar initial conditions the following results are for
runs where ainit has been made equal in each case. In physical terms this amounts to small
redefinitions of the value of a today away from unity, or the consideration of slightly different
physical scales today. Due to the strong dependence on initial conditions as shown above,
comparison of numerical results is better facilitated by this fixing of ainit than comparing
models with different values of ainit.

Figure 4a shows the step and bump potentials at the relevant ϕ values. The features are
quite shallow for this choice of parameters but can be tuned to be stronger. The values used
in the code are given in Table 1. With these values the slow-roll approximation is temporarily
violated as |η| gets large around the feature as shown in Figure 4b. We have run the step
potential model with a “full” step, corresponding to c = 0.0018, a “half” step with c = 0.0009
and finally with c set equal to zero. As a “sanity check” the c = 0 run gives back the same
results as the standard quadratic potential with no feature. The bump potential model has
also been run with a “full” bump for which c = 0.0005, a “half” bump with c = 0.00025 and
a “zero” bump.

The first order spectrum for the three cases for the step potential is plotted in Figure 5
and the cases for the bump potential in Figure 6. At first order the effect of the feature in both
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Figure 5: The first order results for the full (red solid line), half (green dashed line) and
zero (blue dotted line) step potentials for scale kWMAP.
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Figure 6: The first order results for the full (red solid line), half (green dashed line) and
zero (blue dotted line) bump potentials for scale kWMAP.

potentials is localised around a particular ϕ value and therefore N value. The half step and
bump deviations are smaller than the full ones, however the ratio of the amplitude changes
are not symmetric around the central point of the feature. In the source term calculation
the presence of a feature makes a great difference in the result. Figures 7 and 8 compare the
results for the step and bump potentials again with a full, half and zero feature. For the step
potential the magnitude of the source term deviates from the standard quadratic result quite
far in advance of the feature. Interestingly the change in magnitude around the feature is
almost equal in the full and half cases and is certainly not proportional to the parameter c in
the way the first order results are. The magnitude of the source term is reduced compared to
the quadratic result and this reduction continues beyond the feature. This reduction occurs
before the feature when the step potential should be well approximated by the quadratic one.
The higher order derivatives will be different however and in particular V,ϕϕϕ for the step
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Figure 7: The source term results for the full (red solid line), half (green dashed line) and
zero (blue dotted line) step potentials for scale kWMAP.

potential is given by

V,ϕϕϕ =
cm2

2d3
sech4

[
ϕ0 − ϕs

d

](
3d2 − 4ϕ2

0 +
(
3d2 + 2ϕ2

0

)
cosh

[
2(ϕ0 − ϕs)

d

]
(4.3)

− 6dϕ0 sinh

[
2(ϕ0 − ϕs)

d

])
,

where ϕs is the value of the field at the feature. Unlike the third derivative of the quadratic
potential this is not zero everywhere. The effect on the source term can be understood by
examining Eq. (2.13) and observing that the first term is proportional to V,ϕϕϕ. In addition,
the second term in the equation is proportional to V,ϕϕ and will not be constant as in the
quadratic case. In contrast, the results for the bump potential are not affected beyond the
small region around the feature, as shown in Figure 8. Again the change in magnitude does
not seem to be proportional to the parameter c. Before and after the feature the result is
indistinguishable from the quadratic case even though higher order derivatives of the potential
are different to the values for the quadratic potential.

At second order the differences in the models make themselves even more apparent.
Figure 9 shows the second order solution for kWMAP again for the full, half and zero step
potentials. The amplitude of the step has a marked effect on the amplitude of the second
order modes. The differences in the source term before the feature are carried over to the
second order result. The magnitude of the second order result is much lower for the full step
potential than the the quadratic result. When the amplitude of the step is halved the change
in the magnitude is also reduced. The difference between the full and quadratic results is at
least an order of magnitude and the detailed cause of this difference is a subject for further
investigation. The results for the bump potential are shown in Figure 10. Here the effect of
the feature is only evident around the bump, again carrying over the result from the source
term values.

4.3 Sub- and Super-Horizon Features

For different k modes the feature occurs when the mode is either inside or outside the horizon.
When the mode has already crossed the horizon the result is as in Figure 5. Modes which
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Figure 8: The source term results for the full (red solid line), half (green dashed line) and
zero (blue dotted line) bump potentials for scale kWMAP.
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Figure 9: The second order results for the full (red solid line), half (green dashed line) and
zero (blue dotted line) step potentials for scale kWMAP.

are inside the horizon when they encounter the feature in the potential are not affected in
the same way. Of course the location of the bump can also be changed by varying the ϕb

parameter in the potential. In Figure 11 the first order power spectrum and source term
results are plotted for a potential where the bump feature is located inside the horizon
and ϕb = 15.5MPL and compared with the standard quadratic potential and the normal
bump potential where ϕb = 14.8MPL. When the bump is sub-horizon (the red solid line in
Figure 11) the first order results are slightly perturbed from the standard result, reaching a
slightly altered magnitude after horizon crossing. This does not happen for the super-horizon
bump (green dashed line) which asymptotes back to the quadratic result after the feature.

The source term results also differ depending on the location of the bump. When the
bump is sub-horizon the change in the magnitude of the source term is much more suppressed
compared to when the bump is outside the horizon. In the second case the oscillations of
nearly all the modes have already been dampened by the time the feature is encountered.
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Figure 10: The second order results for the full (red solid line), half (green dashed line) and
zero (blue dotted line) bump potentials for scale kWMAP.

The convolution integral over the modes is then much more affected by the change in the first
order perturbations around the feature. In contrast when the bump is sub-horizon, at least
for the kWMAP scale, most of the other scales considered in the integral are still oscillating
and the net effect is a small change in the magnitude of the source term. At second order
the results are similar to first order. The sub-horizon bump slightly changes the magnitude
away from the quadratic result, in this case reducing it. This change is kept beyond the hori-
zon in contrast to the super-horizon case where the result asymptotes smoothly back to the
quadratic one beyond the feature. Figure 11d shows the ratio of the sub- and super-horizon
bump second order results to the standard quadratic result. Following the sub-horizon bump
the difference between the results is of the order of 2% whereas for the super-horizon bump
the results are indistinguishable from the quadratic results after the feature region.

In this section we have outlined the main results of our new numerical calculation. We
have shown that the source term results using the full non-slow-roll equation (2.13) are more
damped than the corresponding slow-roll results. We have demonstrated the new code by
using feature potentials with a step and a bump added to the standard quadratic potential.
Depending on the position of the feature and the form of the addition to the potential the
effects of the feature can be seen in the source term and second order results beyond the
feature itself. Whether the feature is sub- or super-horizon for a particular mode also affects
the subsequent evolution.

5 Discussion and Conclusion

We describe in this paper the numerical solution of the full Klein-Gordon equation for a single
scalar field at second order in cosmological perturbation theory. We use gauge-invariant
variables in the flat gauge without imposing the slow-roll approximation or using the large
scale limit. This is an extension of previous work, that relied on the slow-roll approximation
to calculate the source term [8]. We have made this extended code publicly available (it can
be downloaded from the website [24]). To validate and test the code, we studied several single
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Figure 11: The first order and source term results for the bump potential when the bump
is inside the horizon when ϕb = 15.5MPL (red solid line) or outside the horizon when ϕb =
14.8MPL (green dashed line). The standard quadratic potential results are also shown as the
blue dotted line and all the results are for the scale kWMAP.

field potentials, including step and bump extensions of the simple chaotic inflation potential,
which violate one of the slow-roll conditions.

We have shown that feature potentials affect the source and second order results and at
least for the step potential these effects are apparent throughout the evolution of the modes
and not just in a narrow region around the feature. This is consistent with the higher order
derivatives of the potentials being non-zero, or at least having different values when computed
without a feature. Is this a problem for feature potentials? At one level the feature potentials
we have used are theoretical toy models which are not motivated by high energy physics. At
first order in perturbation theory the tanh and cosh additions to the quadratic potential
work to localise the deviation to a specific region. This is clearly not the case at second
order for the step potential. To replicate this behaviour at second order, a restricted version
of the step or bump potentials could be used. However, one main benefit of using tanh or
cosh is that they smoothly asymptote to the original potential away from the feature. Any
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attempted patching together of featureless potential and feature in a specific region would
have to be carefully constructed to avoid discontinuities in the derivatives of the potential.
In contrast the results for the bump potential are only affected in a narrow region around
the feature. It is interesting to note, that a step-potential of the form (4.1) has recently been
used to study the generation of magnetic fields in the early universe [33].

Somewhat surprising was the effect the small sub-horizon bump had on the evolution of
the second order field fluctuation δϕ2 on large scales, see Figure 11. Sub-horizon effects like
this can only be studied by codes like the one described here, but would not be calculable by
super-horizon codes, such as the recently proposed one in Refs. [34, 35]. However, it is not
clear yet whether this change in δϕ2 would translate into observational consequences, such
as a change in fNL. We are cautiously optimistic that it might have an observable effect, but
postpone a detailed calculation to future work. In this future work we plan to study more
complicated and also more interesting potentials than in Section 4, and also hope to extend
the code to allow the evolution of more than one field. In addition, to our knowledge there
is currently no expression that exists in closed form for ζ2 or R2 which is valid on all scales
without imposing slow-roll. Constructing such an expression should be possible and would
allow for direct calculation of the evolution of ζ2 and we look forward to making progress
on this issue. A recent work discussing the numerical calculation of fNL used lattice field
theory simulations [36]. Whether in future this method will prove more efficient than the one
discussed here will depend on detailed comparative analyses which are beyond the scope of
the present article. Other recent work by Takamizu et al. [37] matched a perturbative solution
for the curvature of a single field model inside the horizon to a non-linear solution outside the
horizon which uses a gradient expansion. The authors claim this goes beyond the limitations
of the δN formalism and can also deal with temporary violations of slow-roll. It would be
interesting in future work to compare the results of our approach with those of Takamizu
et al. especially in the region where the matching of the solutions takes place. Gong, Noh
and Hwang have also looked at higher order perturbations [38]. Their work concentrates on
evolving the convolution kernels of the curvature perturbation but only for large scales with
slow roll parameters equated to zero. The “Generalized Slow Roll” approximation can also
be used to investigate models which break slow roll transiently around a feature [10, 39, 40].
Adshead et al. [40] have demonstrated calculations of the bispectrum of a single field model
and observe good agreement with analytic results. However, this approach is limited to
superhorizon scales only and can only be applied when there is a single degree of freedom.
Another natural application and extension of our code is to apply it to other problems that
have evolution equations of a similar form. As pointed out in the introduction, two immediate
applications might be the numerical study of the generation of gravitational waves at second
order [22] (see Ref. [41] for earlier numerical work) and the generation of vorticity [23]. In
both cases the source term of the second order quantities is given by a convolution integral
quadratic in first order quantities.

Finally, the numerical calculation of the convolution integral requires cutoffs to be im-
plemented at both large and small scales. We have explained the cutoffs we use explicitly
in Refs. [8, 29] and refer the interested reader to the discussions contained therein. It will
be interesting to implement in future work different cut-off schemes, as outlined for example
in Refs. [42, 43]. Our current choice of cut-offs is pragmatic, however there may be physical
considerations for adopting a different cut-off scheme, which would impact on the higher
order perturbations and therefore affect the non-linear observables.
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A Appendix

The methods adopted for the study of first order perturbations can be extended at second
order to find gauge invariant quantities. Recall that scalar quantities such as the inflaton
field, ϕ, can be split into an homogeneous background, ϕ0, and inhomogeneous perturbations.
Up to second order ϕ becomes

ϕ(η, xµ) = ϕ0(η) + δϕ1(η, xi) +
1

2
δϕ2(η, xi) . (A.1)

The metric tensor gµν must also be perturbed up to second order. Here we consider
only the scalar metric perturbations [26]:

g00 = −a2 (1 + 2φ1 + φ2) ,

g0i = a2

(
B1 +

1

2
B2

)
,i

,

gij = a2 [(1− 2ψ1 − ψ2) δij + 2E1,ij + E2,ij ] , (A.2)

where δij is the flat background metric, φ1 and φ2 are the lapse functions at first and second
order, ψ1 and ψ2 are the curvature perturbations, and B1, B2, E1 and E2 are the scalar
perturbations describing the shear. As well as the first order transformation vector, there is
a second order transformation vector and they are both given by

ξµ1 = (α1, β
i

1, ) , ξµ2 = (α2, β
i

2, ) , (A.3)

where the spatial vector part of the transformation has been ignored.
The transformation of a second order scalar quantity (such as δϕ2) is given by [26, 44]:

δ̃ϕ2 = δϕ2 + ϕ′0α2 + α1

(
ϕ′′0α1 + ϕ′0α

′
1 + 2δϕ′1

)
+
(
2δϕ1 + ϕ′0α1

)
,i
β i

1, , (A.4)

where a tilde (̃ ) denotes a transformed quantity. The metric curvature perturbation trans-

formation at first order is straightforward, ψ̃1 = ψ1 − Hα1, but at second order it becomes
more complicated [25, 26]:

ψ̃2 = ψ2 −Hα2 −
1

4
X kk +

1

4
∇−2X ijij , (A.5)

where Xij is given by

Xij ≡2
[(
H2 +

a′′

a

)
α2

1 +H
(
α1α

′
1 + α1,kξ

k
1

) ]
δij

+ 4
[
α1

(
C ′1ij + 2HC1ij

)
+ C1ij,kξ

k
1 + C1ikξ

k
1 ,j + C1kjξ

k
1 ,i

]
+ 2 (B1iα1,j +B1jα1,i) + 4Hα1 (ξ1i,j + ξ1j,i)− 2α1,iα1,j + 2ξ1k,iξ

k
1 ,j

+ α1

(
ξ′1i,j + ξ′1j,i

)
+ (ξ1i,jk + ξ1j,ik) ξ

k
1 + ξ1i,kξ

k
1 ,j + ξ1j,kξ

k
1 ,i

+ ξ′1iα1,j + ξ′1jα1,i , (A.6)
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and B1i and C1ij are defined as

B1i = B1,i , C1ij = −ψ1δij + E1,ij . (A.7)

Working in the uniform curvature gauge, where spatial 3-hypersurfaces are flat, implies that

ψ̃1 = ψ̃2 = Ẽ1 = Ẽ2 = 0 . (A.8)

These relations can be used at first and then at second order to define gauge invariant
variables. The first order transformation variables in the flat gauge satisfy α1 = ψ1/H and
β1 = −E1. At second order, for the transformation of scalar quantities, as in Eq. (A.4), we
require only α2. This is found by using Eq. (A.5) to have the form

α2 =
ψ2

H +
1

4H
[
∇−2X ij,ij −X kk

]
, (A.9)

where the first order gauge variables have been substituted into Xij .
The Sasaki-Mukhanov variable, i.e., the field perturbation on uniform curvature hyper-

surfaces [45, 46], is given at first order by

δ̃ϕ1 = δϕ1 +
ϕ′0
H ψ1 . (A.10)

At second order the Sasaki-Mukhanov variable becomes more complicated [5, 44]:

δ̃ϕ2 =δϕ2 +
ϕ′0
H ψ2 +

ϕ′0
4H

(
∇−2X ij,ij −X kk

)
+
ψ1

H2

[
ϕ′′0ψ1 + ϕ′0

(
ψ′1 −

H′
H ψ1

)
+ 2Hδϕ′1

]
+

(
2δϕ1 +

ϕ′0
H ψ1

)
,k

ξk1flat , (A.11)

where ξ1flat = −E1,i. From now on we will drop the tildes and only refer to variables calculated
in the flat gauge. The potential of the scalar field can also be separated into homogeneous
and perturbed sectors:

V (ϕ) = V0 + δV1 +
1

2
δV2 , (A.12)

δV1 = V,ϕδϕ1 , (A.13)

δV2 = V,ϕϕδϕ
2
1 + V,ϕδϕ2 . (A.14)

The Klein-Gordon equations are found by requiring the perturbed energy-momentum tensor
Tµν to obey the energy conservation equation ∇µTµν = 0 (see for example Ref. [5]). For the
background field, ϕ0, the Klein-Gordon equation is

ϕ′′0 + 2Hϕ′0 + a2V,ϕ = 0 . (A.15)

The first order equation is

δϕ′′1 + 2Hδϕ′1 + 2a2V,ϕφ1 −∇2δϕ1 − ϕ′0∇2B1 − ϕ′0φ′1 + a2V,ϕϕδϕ1 = 0 , (A.16)

and the second order one is given by

δϕ′′2 + 2Hδϕ′2 −∇2δϕ2 + a2V,ϕϕδϕ2 + a2V,ϕϕϕ(δϕ1)2 + 2a2V,ϕφ2 − ϕ′0
(
∇2B2 + φ′2

)
+ 4ϕ′0B1,kφ

k
1, + 2

(
2Hϕ′0 + a2V,ϕ

)
B1,kB

k
1, + 4φ1

(
a2V,ϕϕδϕ1 −∇2δϕ1

)
+ 4ϕ′0φ1φ

′
1 − 2δϕ′1

(
∇2B1 + φ′1

)
− 4δϕ′1,kB

k
1,

= 0 , (A.17)
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where all the variables are now in the flat gauge.
In order to write the Klein-Gordon equations in closed form, the Einstein field equations

are also required at first and second order. These are not reproduced here, but are presented
for example in Section II B of Ref. [7].
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