Cosmological perturbations

Malik, KA; Wands, D
http://dx.doi.org/10.1016/j.physrep.2009.03.001

For additional information about this publication click this link. http://qmro.qmul.ac.uk/xmlui/handle/123456789/19646

Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact scholarlycommunications@qmul.ac.uk

C osm ologicalm atter perturbations

Jiun H uei P roty W u
A stronom y D epartm ent, U niversity of C alifornia, B erkeley, 601 C am pbell H all, B erkeley, C A 94720-3411, U SA

Abstract

W e investigate m atter density perturbations in m odels of structure form ation w ith or w ithout causal/acausal source. Under the uid approxim ation in the linear theory, we rst derive full perturbation equations in at space w ith a cosm ological constant. W e then use G reen-function technique to obtain analytic solutions form atter perturbations in a at $=0 \mathrm{model}$. Som e incorrect solutions in the literature are corrected here. A sim ple yet accurate extrapolation schem e is then proposed to obtain solutions in curved or $\Leftrightarrow 0$ cosm ologies. Som e general features of these solutions are revealed. In particular, we analytically prove that the resulting m atter density perturbations are independent of the way the causal source was com pensated into the background contents of the universe when it was rst form ed. W e also use our G reen-fiunction solutions to investigate the com pensation m echanism for pertunbations w ith causal seeds, and yield a m athem atically and physically explicit form in interpreting it. W e found that the com pensation scale depends not only on the dynam ics of the universe, but also on the properties of the seeds near the horizon scale. It can be accurately located by em ploying our G reen functions.

I. IN TRODUCTION

T he standard cosm ology w as lack of a m echanism to produce cosm ologicalperturbations. In order to com pensate for this aw in the standard model , there are currently two m ain paradigm s for structure form ation \mid in ation fil and topological defects [3]. W hile the beauty and sim plicity of the form er appears to have entioed m ore adherents and studies, the latter has proved com putationally much m ore challenging to m ake robust predictions w ith which to confront observations $\mathrm{G}^{-12]}$]. T hese tw o paradigm s are fundam entally di erent in the w ay they generate cosm ological pertunbations. T he standard adiabatic in ation produces prim ordialperturbations on all.scales ofcosm ologicalinterest via quantum uctuations and the causal constraint during in ation, and these pertunbations grow over time in an uncorrelated m anner. A s a consequence, the pertunbations today can be thought of as sim ply transfered from the in itial irregularities that in ation set up, and this transfer function can be easily obtained in the linear theory and thus well understood in the literature. O n the other hand, topological defects are the byproducts of the spontaneous sym m etry-breaking phase transition in the early universe, and hence carry energy that w as carved out of the originally hom ogeneous background energy of the universe. T herefore due to causality, defects induce perturrations only on sub-horizon scales, via gravitational interactions while evolving. This m echanism that prevents the grow th of superhorizon perturbations is called the com pensation m echanism '. In addition, due to the certain topology of the defect netw ork, the resulting perturbations are correlated and thus non-G aussian, in contrast to the standard adiabatic in ationary perturbations. It then follows that to com pute the perturbations in m odels w ith defects, we need to know the evolution history of defects for the entire dynam ic range during which the cosm ologicalpertundations of our interest were seeded. T his is w hat m akes the com putation of defect-induced perturbations so di cult.

In the literature the pow er spectra of this kind ofm odels have been investigated using the fulle instein B oltzm ann equations. H ow ever, the study of the phase inform ation of these perturbations still rem ains di cult because of the lim ited com putation power. A though there have been som e detailed treatm ents for theories w ith causal seeds [14, 15], we shall in this paper present a sim pler form alism, which is an approxim ation to the full E instein B oltzm ann equations, to provide not only a physically transparent w ay for understanding the evolution of density perturbations in models w ith source, but also a com putationally econom ical schem e to investigate the phase inform ation of the resulting cosm ological perturbations. This form alism is parallel to those presented in R ef. 16] and R ef. [17], but we give som emodi cations to inconporate the inclusion of the cosm ological constant and a m ore detailed treatm ent for the e ect of baryon-photon coupling/decoupling. W e also note that part of the solutions in Ref. 16] are incorrect due to the incorrect in itial conditions and the incorrect assum ptions about the form of the subsequent perturbations induced by the source (see text later). W e shall correct these mistakes and further provide a com plete and explicit set of analytic solutions for the m atter density perturbations. W ith an accurate extrapolation schem e, these solutions becom e also valid for m odels w ith any reasonably chosen background cosm ology. T he form alism and its solutions to be developed here w illbe com pletely general and thus suitable for any m odels w ith or w thout causal/acausalsource.

The structure of this paper is as follows. In section I, under the uid approxim ation, we rst derive in the
synchronous gauge the fullperturbation equationsw ith source term s, in at cosm ologies w ith a cosm ologicalconstant . This is done by considering the stress-energy conservation of the uids (IIA and the source (IIB), and the linearly perturbed E instein equations IIC). The uid com ponents considered here are cold dark m atter (CDM), baryons (B), and photons (), and we em ploy the baryon-photon tight-coupling approxim ation to derive the perturbation equations before the last-scattering epoch. In th is context, we also investigate the role of the so-called stress-energy pseudotensor (IID) . The initial conditions of these pertunbation equations are discussed IIE), and we use the approxim ation of instantaneous decoupling to dealw ith the decoupling of photons and baryons at the epoch of last scattering [IIF). W e then num erically justify the accuracy of this form alism in the context of standard CDM models, by com paring its results w th those of the full E instein Boltzm ann solver [13] IIG). W thin reasonable ranges of cosm ological param eters, our approach provides satisfactory precision at greatly reduced num erical cost.

In section we derive the m atter perturbation solutions of the equation s presented in section \mathbb{Z}. T he perturbations of radiation and m atter are rst divided into two parts: the in itial and the subsequent perturbations. W ith som e change of variables, these equations are then ready to be solved by the G reen-function technique IIIA). W ith this technique, we nd the exact solutions on scales much larger or much sm aller than the horizon size, nam ely the super-horizon or the sub-horizon solutions respectively IIIB). Som e degeneracy am ong the G reen functions for the m atter perturbation solutions is then found and used to reduce their e ective number (IIIC). W ith this great sim pli cation, solutions on interm ediate scales are then easily obtained by an accurate intenpolation schem e based on the well-known standard CDM transfer function IIID). We also discuss the e ect of baryons IIIE. A simple and accurate extrapolation schem e is then introduced to obtain solutions in the $K \in 0$ or 0 cosm ologies (IIF), w here K is the curvature of the universe (see A ppendix A). A ll our G reen-fiunction solutions are num erically veri ed to high accuracy.

In section $\mathbb{I V}$, we use our G reen-fiunction solutions to investigate som e im portant properties of cosm ologicalm atter density perturbations. We rst dem onstrate the relation between our solutions and the standard CDM transfer function IV A). We also prove that in m odels w ith causal source, the resulting m atter perturbations today are independent of the way the source energy is initially com pensated into the background contents of the universe IV B). F inally we use our G reen-function solutions to study the com pensation m echan ism and the scale on which it operates (IVC). We nd that this com pensation scale is determ ined not only by the dynam ics of the universe, but also by the properties of the source near the horizon scale. O nce the detailed features of the source near the horizon scale are know n, th is com pensation scale can be accurately located using our G reen functions. A sum m ary and conclusion is given in section V. In appendix A, we de ne the convention of som e notations used in this paper, and present for reference the solutions for the dynam ics of various background cosm ologies, including the consideration of non-zero curvature and a cosm ological constant.

II. SYNCHRONOUS GAUGE PERTURBATION THEORY

In this section, we derive the linear evolution equations for cosm ological perturbations. To calculate the density and m etric perturbations, wem odel the contents of the universe as perfect uids: radiation (photons and neutrinos) and pressureless m atter (CDM and baryons). We shall use the photon-baryon tight-coupling approxim ation until the epoch of last scattering, at which we assum e instantaneous decoupling, also taking into account the e ect of Silk dam ping due to the photon di usion. A fter the decoupling, the baryonic perturbations originating from the perturbations of the photon-baryon coupled uid are then m erged linearly into the CDM content. In scenarios w ith causal seeds, the radiation and m atter elds are assum ed to be initially uniform, and then perturbed by the causal seeds after they are form ed. The radiation, m atter, and causal seeds are assum ed to interact only through gravity, m eaning that their stress-energy tensors are separately covariantly conserved.
W e shall work in the synchronous gauge, in which the perturbations h to the spacetim e m etric g obey the constraint $h_{0}=0$. Throughout this paper, we use a signature $(+++)$ for the spacetim emetric, and units in which $h=c=k_{B}=1$. Thus the pertunbed at Friedm ann Robertson $-W$ alker (F RW) m etric is given by

$$
\begin{equation*}
g_{00}=a^{2}() ; \quad g_{i j}=a^{2}()\left[i j+h_{i j}(; x)\right]: \tag{2.1}
\end{equation*}
$$

W e shall work in the linear theory, requiring $\eta_{i j} j \quad 1$. Greek alphabet $w i l l$ denote the spacetim e indices (e.g.
$=0 ; 1 ; 2 ; 3)$, and m id-alphabet Latin letters the spatial indices (e.g. $i=1 ; 2 ; 3$). A though the synchronous gauge is som etim es criticised in the literature due to its residual gauge freedom, it is still w ell suited to m odels in which the universe evolves from being perfectly hom ogeneous and isotropic. In such m odels, all perturbation variables can be in itially set to zero (before the causalseeds are generated), and th is is nom ally referred to as the initially unperturbed
synchronous gauge' (IU SG) 16]. It possesses no residual gauge freedom. T hus the E instein equations are com pletely causal in $\mathbb{U} S G$, w ith the values of all perturbation variables at a given spacetim e point being com pletely determ ined by initial conditions w thin the past light cone of the point. O ne exam ple of such m odels is the cosm ic defect m odels, which have been ofm ost interest in the study ofm odels w ith causal seeds.

In section IIA, we derive in the \mathbb{U} SG the conservation equations of radiation and m atter elds. In section IIB, we consider the conservation of source stress energy. In section IIC, we derive the linearly perturbed E instein equations. T hen, in section IID, we em ploy the concept of stressenergy pseudotensor to investigate the intemalenergy transfer am ong various elds. In section IIF, we describe the approxim ation of instantaneous decoupling of photons and baryons at the epoch of last scattering. In section IIG, we num erically verify the accuracy of our form alism for the standard CDM model, in com parison w ith the results from CM BFAST 13], a fast E instein Boltzm ann solver.

$$
\text { A. Stress-energy conservation of radiation and } m \text { atter elds }
$$

The contents of the universe are considered as perfect uids, whose energy-m om entum tensors have the form

$$
\begin{equation*}
\mathrm{T}_{\mathrm{N}}=\left({ }_{\mathrm{N}}+\mathrm{p}_{\mathrm{N}}\right) \mathrm{u}_{\mathrm{N}} \mathrm{u}_{\mathrm{N}}+\mathrm{p}_{\mathrm{N}} ; \quad ; \quad \mathrm{w} \text { th } \mathrm{u}_{\mathrm{N}} \mathrm{u}_{\mathrm{N}}=1: \tag{2,2}
\end{equation*}
$$

Here ${ }_{\mathrm{N}}, \mathrm{p}_{\mathrm{N}}$, and u_{N} are the density, pressure, and four-velocity of the N th uid respectively. In the hom ogeneous background, we have $u_{N}=\left(a^{1} ; 0\right)$, which im plies that $u_{N}^{0}=0$ to rst order. W e thus de ne the velocity perturbation as $v_{N}^{i}=a u_{N}^{i}$, i.e., $u_{N}=\left(0 ; v_{N}=a\right)$. The equation of state and the sound speed are de ned respectively as

$$
\begin{equation*}
{ }_{N}=\frac{p_{N}}{{ }_{N}} ; \quad C_{N}^{2}=\frac{p_{N}}{{ }_{N}}: \tag{2.3}
\end{equation*}
$$

C onsequently, the covariant conservation of stress energy for each uid T_{N}; 0 gives 16]

$$
\begin{align*}
\pi+\left(1+{ }_{N}\right)\left(r \quad{ }_{N} N+\frac{1}{2} h\right)+3 \frac{a}{a}\left(c_{N}^{2} \quad{ }_{N}\right){ }_{N} & =0 ; \tag{2.4}\\
\underline{V}_{N}+\frac{\underline{a}}{a}\left(1 \quad 3 \mathcal{C}_{N}^{2}\right) v_{N}+\frac{c_{N}^{2}}{1+{ }_{N}} r & =0 ; \tag{2.5}\\
{ }_{N}^{?}+ & \frac{a}{a}\left(\begin{array}{ll}
1 & \left.3 द_{N}^{2}\right) v_{N}^{?}
\end{array}=0 ;\right. \tag{2.6}
\end{align*}
$$

where ${ }_{N}={ }_{N}={ }_{N}$, $h \quad h_{i i}$ is the spatial trace of h, and we have decom posed the velocities as $\mathrm{V}_{\mathrm{N}}=\mathrm{V}_{\mathrm{N}}^{\mathrm{k}}+\mathrm{V}_{\mathrm{N}}$? with $r \quad V_{N}^{k}=0$ and $r \quad{ }_{N}^{2}=0$.

In the regim e of photon-baryon tight coupling, we have only tw omain uids: the CDM com ponent and the tightlycoupled photon-baryon uid. They will be denoted as $N=C$; B respectively, and discussed separately as follow s. N ote that we have ignored the neutrinos in the radiation.

1. CDM uid

W e rst consider the CDM uid, i.e. $N=C . W$ ith $c=C_{c}^{2}=0$ forpressurelessm atter, the equations of stress-energy conservation 2.4) (2.6) becom e

$$
\begin{equation*}
\tau+r \quad d=\quad \frac{1}{2} h ; \quad \underline{v}_{c}+\frac{a}{a} v_{c}=0: \tag{2.7}
\end{equation*}
$$

As we can see, any perturbations in the CDM velocity w ill decay as a ${ }^{1}$. Thuswe can simply choose $v_{c}=\theta$ in the IU SG. O nce $V_{C}=0$, it will rem ain so as there is no linear gravitational source. A s a consequence, the CDM obeys a single nontrivial conservation law resulting from equation (2.7)

$$
\begin{equation*}
h+2_{c}=0=1 h=2_{c} ; \tag{2.8}
\end{equation*}
$$

where the second equation results from the initial condition $h={ }_{c}=0$, as required by the $\mathbb{I U} S G$.

2. Photon-baryon tightly coupled uid and its photon com ponent

For the tightly-coupled photon-baryon (B) uid, we have

$$
\begin{equation*}
v_{\mathrm{B}}=\mathrm{v}=\mathrm{v}_{\mathrm{B}} ; \quad \mathrm{P}_{\mathrm{B}}=\mathrm{p} ; \quad \mathrm{B}=+\mathrm{B}_{\mathrm{B}} \text { : } \tag{2.9}
\end{equation*}
$$

Thuswe can de ne

$$
\begin{equation*}
R=\underline{B}=\frac{3 \mathrm{~B}}{4} ; \tag{2.10}
\end{equation*}
$$

w here the second result com es from the fact that $/ a^{4}$ and B / a^{3}. De nitions (2.3) then give

$$
\begin{equation*}
B_{B}=\frac{1}{3+4 R} ; \quad C_{B}^{2}=\frac{1}{3(1+R)}: \tag{2.11}
\end{equation*}
$$

W ith these results, the equations of stressenergy conservation for the B uid can be obtained from equations (2.4) \{ 2.8) :

$$
\begin{align*}
-_{B}+\frac{4+4 R}{3+4 R}\left(\begin{array}{rl}
r & V_{B}
\end{array}\right)+\frac{\underline{a}}{a} \frac{R}{(1+R)(3+4 R)} \quad & =0 ; \tag{2.12}\\
\underline{v_{B}}+\frac{\underline{a}}{a} \frac{R}{1+R} v_{B}+\frac{3+4 R}{12(1+R)^{2}} r \quad & =0 ; \tag{2.13}\\
\underline{v}_{B}+\frac{a}{a} \frac{R}{1+R} v^{?}{ }_{B} & =0 ; \tag{2.14}
\end{align*}
$$

In cosm ological applications, such as CM B anisotropies, we are more interested in the photon perturbations rather than the perturbations in the B uid. Therefore by using equations (2.9) and 2.10, we can extract the photon com ponent from the above equations to yield 18]]

$$
\begin{align*}
I^{+}+\frac{4}{3} r \quad \mathrm{Y} \quad \frac{4}{3} \tau & =0 ; \tag{2.15}\\
\underline{\mathrm{v}}_{r}+\frac{\mathrm{a}}{\mathrm{a}} \frac{\mathrm{R}}{1+\mathrm{R}} \mathrm{v}_{r}+\frac{1}{4+4 \mathrm{R}} \mathrm{r}_{\mathrm{r}} & =0 ; \tag{2.16}
\end{align*}
$$

where we have ignored neutrinos in the radiation so as to replace the subscript w ith r. The velocity can then be elim inated to yield a single second-order equation:

$$
\begin{equation*}
r \quad \frac{4}{3} c+\frac{R}{1+R}\left(-\frac{4}{3} \tau\right) \quad \frac{1}{3+3 R} r_{r}^{2}=0: \tag{2.17}
\end{equation*}
$$

W e note that although the photon velocities are m issing in this equation, they can be recovered at any given m om ent using equation 2.13).

A n altemative presentation of equations 2.15) and 2.17) is via the entropy perturbation s. It is de ned as the uctuation in the num ber of photons per dark m atter particle

$$
\begin{equation*}
\mathrm{s}=\frac{3}{4} \mathrm{r} \quad \mathrm{c}: \tag{2.18}
\end{equation*}
$$

Thus equations 2.15 and 2.17) can be rew ritten as

$$
\begin{align*}
& \underline{s}=r y \tag{2.19}\\
& s=\frac{R}{1+R} \underline{s}+\frac{1}{3+3 R} r^{2}(s+c): \tag{2.20}
\end{align*}
$$

A s we shall see, r can only have a white noise power spectrum on super-horizon scales. From equation 2.16), this im plies a k^{2} pow er spectrum in v_{r} on these scales. A dding the fact that the entropy uctuation s starts from zero on super-horizon scales due to the xed num ber of dark m atter particles per photon, it then follow sfrom equation 2.19) that both s and s have a k^{4} fallo outside the horizon. Therefore in num erical sim ulations, as long as the in itial horizon size is sm aller than the scales of our interest, we can sim ply set $s=\underline{s}=0$ as part of the initial condition.

The causal source we shall consider is weak, so it will appear only as rst-order term s in the perturbed E instein equations. Thus in the linear theory we are considering here, they can be treated as being sti, m eaning that their evolution depends only on their ow n self-interactions and the background dynam ics of the universe, but not on their self-gravity or on the weak gravitational eld of the inhom ogeneities they produce. T his assum ption willenable us to separate the calculation of their dynam ics from that of the inhom ogeneities they induce, allow ing us to evolve them as if they are in a com pletely hom ogeneous background. Since the source is sti, its energy m om entum tensor need only be locally covariantly conserved w ith respect to the background:

$$
\begin{align*}
& 00 ; 0+\frac{\frac{a}{a}}{a}+=0 i ; i \tag{2.21}\\
& 0 i ; 0+2 \frac{a}{a} 0 i=i j ; j \tag{2.22}
\end{align*}
$$

where + $=00^{+}$ii.
A nother im portant aspect of cosm ic structure form ation w ith causal seeds like cosm ic defects is the fact that the sources, form ed at very early tim es, w ill ultim ately create under-densities in the initially hom ogeneous background, out of which they are carved. This is a direct result of energy conservation in the universe, and is norm ally term ed rom pensation'. W e shall discuss this issue in m ore detail later.

$$
C . L \text { inearly P erturbed } E \text { in stein equations }
$$

At rst we have ten E instein equations

$$
\begin{equation*}
R \quad=8 G\left(T \quad \frac{1}{2} g \quad T\right)+g ; \tag{2.23}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\mathrm{G} \quad \mathrm{R} \quad \frac{1}{2} g \quad \mathrm{R}_{\mathrm{S}}=8 \mathrm{GT} \quad \mathrm{~g} \text {; } \tag{2.24}
\end{equation*}
$$

where R is the R iccitensor, G is the gravitationalconstant, $T=g T \quad$, is the cosm ologicalconstant, G is the E instein tensor, and $R_{S} \quad g R$ is the scalar curvature. Linearly perturbing the above equations, we obtain

$$
\begin{equation*}
\mathrm{R} \quad=8 \mathrm{G}\left(\mathrm{~T} \quad \frac{1}{2} \mathrm{~h} \quad{ }^{\mathrm{rs}} \mathrm{~T}_{\mathrm{rs}} \quad \frac{1}{2} \quad{ }^{r s} \mathrm{~T}_{\mathrm{rs}}+\frac{1}{2} \quad \mathrm{~h}_{\mathrm{pq}}{ }^{\mathrm{rp}}{ }^{\mathrm{sq}} \mathrm{~T}_{r s}\right)+\mathrm{a}^{2} \mathrm{~h} \quad ; \tag{225}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\mathrm{G}=8 \mathrm{G} \mathrm{~T} \quad \mathrm{a}^{2} \mathrm{~h} ; \tag{2.26}
\end{equation*}
$$

where

$$
\begin{equation*}
T=\quad+a^{2} X_{N}^{X}\left(h_{r} T_{N}^{r}+\mathrm{s}_{\mathrm{N}}^{\mathrm{S}}\right): \tag{2.27}
\end{equation*}
$$

A closed set of the ten linearly perturbed E instein equations are then

$$
\begin{align*}
& +\widetilde{\mathrm{h}}_{\mathrm{ik} ; \mathrm{kj}}+\widetilde{\mathrm{K}}_{\mathrm{jk} ; \mathrm{ki}} \quad \frac{2}{3}{ }_{i j} \widetilde{\mathrm{~h}}_{\mathrm{k} 1 ; k l}=16 \mathrm{G} \sim_{i j}+\mathrm{a}^{2} \widetilde{\mathrm{~K}}_{\mathrm{ij}} ; \tag{2.29}\\
& 2 G_{00}=\check{K}_{i j ; i j} \quad \frac{2}{3} r^{2} h+2 \frac{a}{a} h=6 \frac{\frac{a}{a}^{2}}{a}{ }_{N} \quad N_{N}+16 G \quad 00 ; \tag{2.30}\\
& 2 G_{0 i}=\tilde{K}_{i j i j} \quad \frac{2}{3} h_{; i}=6 \frac{\underline{a}^{2}}{a}{ }_{N}{ }^{0}\left(1+{ }_{N}\right) N_{N} V_{N}^{i}+16 G \quad 0 i ; \tag{2.31}
\end{align*}
$$

where the traceless parts are de ned by $R_{i j}=R_{i j} \quad{ }_{i j} R^{k}{ }_{k}=3$, and sim ilarly for $\check{n}_{i j}$ and $\sim_{i j}$. The prim e over the sum in equation 2.31) indicates the sum over all uids except CDM.We note from the above results that in the IU SG the cosm ological constant does not appear as extra term s in the perturbation equations except in (29), the hj^{\prime} com ponent.

W ithin the photon-baryon tight-coupling regim e, the above perturbation equations sim plify as:

$$
\begin{align*}
& \text { h } \frac{a}{a} h=+3 \frac{\underline{a}^{2}}{a}\left[(2+R) r r^{2}+c c\right]+8 G+; \tag{2.32}
\end{align*}
$$

$$
\begin{align*}
& \check{K}_{i j ; i j} \quad \frac{2}{3} r^{2} h+2 \frac{a}{a} h=6 \frac{\underline{a}^{a}}{}{ }^{2}[c c+(1+R) r r]+16 G \quad 00 ; \tag{2.34}\\
& \widetilde{K}_{i j ; j} \quad \frac{2}{3} h_{; i}=8 \frac{\underline{a}^{2}}{a}(1+R){ }_{r} v_{r}^{i}+16 G \quad 0 i:
\end{align*}
$$

W e note that if the source obeys the covariant conservation equations 2.21) and 2.23), then equations 2.34) and 2.35) are preserved by equations 2.32).

In the standard CDM m odelwhere the source is absent, equation 2.32) can be greatly sim pli ed on super-horizon scales ($k \quad 1$) in the radiation or m atter era:

$$
\begin{array}{r}
c+\frac{1}{-}_{c} \frac{2(2+R)}{2}{ }_{c}=0 \text {; in radiation era, } \\
c+\frac{2}{c}_{c} \quad \frac{6}{2} c=0 ; \text { in m atter era: } \tag{2.37}
\end{array}
$$

Since $R=3$ во $a=4 \quad$ co $a_{\text {eq }}$ by de nition, we know $R \quad 1$ deep in the radiation era. Thus the above equationsboth have a grow ing m ode c $/{ }^{2}$. This result has an im portant im plication for num erical sim ulations of structure form ation w ith causal sources. In this case, if num erical errors appear as white noise on super-horizon m odes $\mathrm{k}<1=$, then they will have a grow ing behavior $S(k)=4 k^{3} P(k) / k^{3}$. For the horizon crossing m ode $k \quad 1=$, this becom es $S(k) /$ 17. This m eans that although energy conservation together w ith causality should forbid the grow th of perturbations on super-horizon scales, any num ericalerrors seeded from early tim es would induce a spurious grow ing m ode on these scales. To overcom e this problem, one needs to perfectly com pensate the source energy in the in itially hom ogeneous background. In the follow ing section, we shall discuss one of the m ethods that can achieve this.

D. Stress-energy conservation of the pseudotensor

The concept of the stress-energy pseudotensor in an expanding universe was rst rem arked in this context by Veeraraghavan and Stebbins [16], and further investigated by Pen, Spergeland Turok [17]. To introduce this concept, we start from a perturbed M inkow ski space $\hat{g}=+\hat{h}$, where the B ianchi identity $r G=0$ leads to an ordinary conservation law @ $G{ }_{(1)}=0$ at linear order in \hat{h}. Adding the fact that the E instein equations give $\mathrm{G}_{(1)}=8 \mathrm{GT} \quad \mathrm{G}_{\text {(} \mathrm{n})} \mathrm{w}$ here $\mathrm{G}_{\text {(nl) }}$ is the sum of non-linear term s in $\hat{\mathrm{h}}$, we see that the right-hand side of this equation provides an ordinarily conserved tensor, the stress-energy pseudotensor.
T he generalization of th is result to an FRW m odel is straightforw ard, w ith only the corrections due to the expansion of the universe. M oving all these corrections (derivatives of the scale factor) to the right-hand side of the E instein equations while keeping only the linear term s in $h \quad$, we obtain a pseudo-stress-energy tensor $\quad G \quad(1)=8 \mathrm{G}$:

$$
\begin{align*}
& 00=\frac{3}{8 G} \frac{\underline{a}}{}^{2}[\mathrm{cc}+(1+R) r r] \frac{1}{8 G} \frac{a}{a}+00 ; \tag{2.38}\\
& 0 i=\frac{1}{2 G} \frac{a}{a}^{2}(1+R){ }_{r} v_{r}^{i}+0 i ; \tag{2.39}\\
& { }_{i j}={ }_{i j} \frac{1}{8 G} \frac{\underline{a}}{}^{2} \quad \text { rr } \frac{1}{8 G} \frac{a}{a}\left(\widetilde{r}_{i j} \quad \frac{2}{3} h_{i j}\right)+{ }_{i j}: \tag{2.40}
\end{align*}
$$

This tensor obeys an ordinary conservation law ; = 0 according to the E instein equations, or equivalently

$$
\begin{gather*}
00=0 i \tag{2.41}\\
; 0 \tag{2.42}\\
; i \\
i 0={ }_{i j} ; \\
; 0
\end{gather*}
$$

This is not a fundam entally new conservation law, but it describes the interchange of energy and mom entum am ong the di erent com ponents in the universe, i.e. the radiation, m atter, and the source in our case. This description appears to be physically m ore transparent than the originalE instein equations.

A nother advantage of invoking this form alism is that it is easier for num erical sim ulations to specify the initial conditions and to m aintain proper com pensation on super-horizon scales. A swe shallexplain later, ij can only have a white-noise pow er spectrum on super-horizon scales. Thus integrating equations (2.41) and 2.42) over tim e show s that 00 has a k^{4} power spectrum and that $0 i$ has a k^{2} power spectrum. Therefore, as long as the horizon size at the beginning of the sim ulation is sm aller than the scales of our interest, we can set $00=0 i=0$ as the in itial condition, allow ing for perturbations to grow only inside the horizon and for 00 to fallo as k^{4} outside the horizon. For sim ulations of structure form ation w ith causal source, a check of $00 / k^{4}$ on super-horizon m odes w ill tell us whether or not the com pensation is w ell obeyed.

To m ake use of the pseudo-stress-energy tensor form alism in the study of cosm ological perturbations, we com bine the conservation equation for radiation (220), the de nition of pseudoenergy 2.38), and one of the altemative E instein equations using the pseudo-stress-energy tensor 2.41), to yield a convenient closed set of equations:

$$
\begin{align*}
& s=\frac{R}{1+R} \underline{s}+\frac{1}{3+3 R} r^{2}(s+c) ; \tag{2.43}\\
& \tau=4 \mathrm{G} \frac{\mathrm{a}}{\mathrm{a}}(00000) \frac{\mathrm{a}}{\mathrm{a}} \frac{3}{2}{ }_{c}+2(1+R){ }_{r}{ }_{c}+2(1+R)_{r} S \text {; } \tag{2.44}\\
& \omega_{00}=0_{i, i}+\frac{1}{2 G} \frac{\underline{a}}{a}^{2}(1+R) \quad r \underline{S}: \tag{2.45}
\end{align*}
$$

H ere we have used equations 2.8), 2.18), 2.19) and 2.39) to elim inate h, r, v_{r}^{i} and oi respectively. By analogy to the results in Ref. [17], here we have built both the pseudoenergy 00 and the entropy uctuation s into the above form alism.

E. In itial conditions of causalm odels

A s required by the $\mathbb{I U} S G$, all perturbation variables are zero before any m echanism of structure form ation starts to act on the initially hom ogeneous and isotropic universe. In causalm odels, causality also requires that local physical processes can never induce correlated perturbation s on scalesm uch larger than the horizon. T herefore, when the in itial irregularities of the universe are rst form ed (e.g. via the form ation of cosm ic defects, or the presence of in ation), the spatialpart of , and h can only have white-noise pow er spectra on super-horizon m odes| their spatial perturbations being uncorrelated on scales larger than the horizon size 11]. The sam e applies to N and therefore h . It then follows from equations (2.18), (2.22) and (2.42) respectively that the power spectra of v_{r}, $0 i$ and $0 i$ all fall - as k^{2} outside the horizon. From equations 2.19) and (2.41), we also have the spectra of s, sand oo proportional to k^{4} on these scales, as previously discussed. A s a sum m ary, we have for super-horizon m odes $k \quad 1=$ that

$$
\begin{align*}
& \mathrm{V}_{\mathrm{r}} \text {; 0i; 0i/ } \mathrm{k}^{1} \text {; } \tag{2.46}\\
& \text { s; } \underline{i} ; 00 / \mathrm{k}^{2} \text {; } \tag{2.47}
\end{align*}
$$

where $y k^{n}$ 'm eans the pow er spectrum is proportionalto $k^{2 n}$.
Since the production tim e of the in itial irregularities is norm ally so early that the horizon size i at that time is m uch $s m$ aller than the cosm ological scales $k_{\text {cos }}^{1}$ of our interest (i.e. $\mathrm{k}_{\mathrm{cos}} \mathrm{i} \quad 1$), the above conditions can be regarded as general initial conditions for all scales of cosm ological interest. If we require $k_{\text {cos }}$ i 1 in our analysis, we can sim ply choose

$$
\begin{equation*}
v_{r}^{i}=0 i=0 i=s=s=00=0 ; \tag{2.49}
\end{equation*}
$$

as the initial conditions, because their pow er spectra all decay as either k^{2} or k^{4} outside the horizon.
W ith such a choice, we can see from equation 2.38) that there is still freedom for the choice of c, r and h into which to compensate 00 when 00 was rst form ed. N evertheless, as we shall analytically prove later, no m atter how 00 w as com pensated into the background contents of the universe when the causal source was rst form ed, the resulting m atter density perturbations today would be the sam e. W e note that this was rst num erically observed in Ref. [17], and here we shall provide a thorough interpretation to it using our analytical solutions to be obtained later. W e also note that none of the above argum ents w ill hold if the initial perturbations are seeded in an acausal way, which is nevertheless not of our current interest.

F.approxim ation of instantaneous decoupling

O ne thing we have not included in our form alism is the treatm ent at and after the decoupling epoch d . Before this epoch, photons and baryons are assum ed to be tightly coupled, form ing a single B uid. At the decoupling epoch d, baryons and photons are assum ed to be instantaneously decoupled from each other, so that and b evolve separately afterw ards. A num erical to the redshift of the decoupling epoch is 19]

$$
\begin{align*}
& \mathrm{z}_{\mathrm{d}}=1291 \frac{\left(\mathrm{moh}^{2}\right)^{0: 251}}{1+0: 659\left(\mathrm{moh}^{2}\right)^{0: 828}} 1+\mathrm{b}_{1}\left(\mathrm{Bo}^{2}\right)^{\mathrm{b}_{2}} ; \tag{2.50}\\
& \mathrm{b}_{1}=0: 313\left(\mathrm{moh}^{2}\right)^{0: 419} 1+0: 607\left(\mathrm{moh}^{2}\right)^{0: 674} ; \tag{2.51}\\
& \mathrm{b}_{2}=0: 238\left(\mathrm{moh}^{2}\right)^{0: 223}: \tag{2.52}
\end{align*}
$$

A though this is the result for the decoupling epoch ofbaryons and there is another t for that of photons, these tw o epochs| the recom bination of baryons and the last scattering of photons| coincide approxim ately in the absence of subsequent reionization 20,21].

In addition, the photons and baryons are not in fact perfectly coupled, and this leads to the di usion dam ping of photons and Silk dam ping of baryons 22] during the decoupling epoch. To model these e ects, we apply dam ping envelopes to both and B at the decoupling epoch z_{d}, i.e.

$$
\begin{equation*}
\hat{N}_{\mathrm{N}}(\mathrm{~d})=\mathrm{e}_{\mathrm{N}}(\mathrm{~d}) \mathrm{D}_{\mathrm{N}}(\mathrm{k}) ; \quad \mathrm{N}=; \mathrm{B} ; \tag{2.53}
\end{equation*}
$$

where the tilde indicates the Fourier transform of a quantity and k is the w ave num ber. T he photon di usion dam ping envelope can be approxim ated by the form 21]

$$
\begin{equation*}
\mathrm{D} \quad(\mathrm{k})^{\prime} \mathrm{e}^{(\mathrm{k}=\mathrm{k})^{\mathrm{m}}} ; \tag{2.54}
\end{equation*}
$$

where

$$
\begin{align*}
\frac{\mathrm{k}}{\mathrm{Mpc}} & \left(\underline{2} \arctan \frac{\mathrm{~F}_{2}}{2} \frac{\mathrm{~F}}{1}_{\mathrm{p} 2=\mathrm{p} 1}^{\left.\left(\mathrm{Boh}^{2}\right)^{\mathrm{p} 2}\right)^{\mathrm{p} 1=\mathrm{p} 2} \mathrm{~F}_{1} ;}\right. \tag{2.55}\\
\mathrm{m} & =1: 46\left(\mathrm{moh}^{2}\right)^{0: 0303} 1+0: 128 \arctan \ln \left(32: 8 \mathrm{Bo} \mathrm{~h}^{2}\right)^{0: 643} ; \tag{2.56}\\
\mathrm{p}_{1} & =0: 29 ; \tag{2.57}\\
\mathrm{p}_{2} & =2: 38\left(\mathrm{moh}^{2}\right)^{0: 184} ; \tag{2.58}\\
\mathrm{F}_{1} & =0: 293\left(\mathrm{moh}^{2}\right)^{0: 545} 1+\left(25: 1 \mathrm{moh}^{2}\right)^{0: 648} ; \tag{2.59}\\
\mathrm{F}_{2} & =0: 524\left(\mathrm{moh}^{2}\right)^{0: 505} 1+\left(10: 5 \mathrm{moh}^{2}\right)^{0: 564}: \tag{2.60}
\end{align*}
$$

Silk dam ping for the baryons can likew ise be approxim ated as 21]

$$
\begin{equation*}
\mathrm{D}_{\mathrm{B}}(\mathrm{k})^{\prime} \mathrm{e}^{\left(\mathrm{k}=\mathrm{k}_{\mathrm{s}}\right)^{\mathrm{m}} \mathrm{~s}} ; \tag{2.61}
\end{equation*}
$$

where

$$
\begin{align*}
\frac{\mathrm{k}_{\mathrm{S}}}{\mathrm{Mpc}^{1}} & =1: 38\left(\mathrm{moh}^{2}\right)^{0: 398}\left(\mathrm{вoh}^{2}\right)^{0: 487} \frac{1+\left(96: 2 \mathrm{moh}^{2}\right)^{0: 684}}{1+\left(346 \mathrm{Boh}^{2}\right)^{0: 842}} \tag{2.62}\\
\mathrm{~m}_{\mathrm{S}} & =1: 40 \frac{\left(\mathrm{во} \mathrm{~h}^{2}\right)^{0: 0297}\left(\mathrm{moh}^{2}\right)^{0: 0282}}{1+\left(781 \text { во }^{2}\right)^{0: 926}}: \tag{2.63}
\end{align*}
$$

In som e scenarios w ith causal sources, the dam ping envelopes 2.54) and 2.61) m ay depart from the form of exponential fall-o here to a pow er-law decay tow ards sm aller scales. This is due to the survival of perturbations which are actively seeded during the decoupling process. For exam ple , in m odels w ith cosm ic strings, the departure appears on scales sm aller than of order a few arc-m inutes (i.e. the multipole index $1>$ 3000) 23]. Certainly th is is beyond the scale range of our interest. M oreover, since the decoupling process is relatively a short instant in the entire evolution history of the pertunbations, the contribution from these survived sm all-scale perturbations should be relatively sm all. A dding the fact that we expect the post-decoupling contribution in the pertunbations seeded by defects to have a pow er-law fall-o on sm all scales due to a certain topology of the source 用, the sm all-scale pow er in the nal pertunbations is likely to be dom inated by this post-decoupling contribution, rather than the prim ary pertunbations (those seeded before and during the decoupling, whose pow er spectrum rst exponentially decays and then tums to a power-law fallo). Therefore, on the scales of our interest, the dam ping approxim ation em ployed here should be still appropriate for m odels w ith cosm ic defects.
N ow we consider the evolution of and B after the decoupling epoch z_{d}. From the energy conservation law (2.4) \{ 2.4), we have for the baryon perturbations

$$
B \quad C+\frac{\mathrm{a}}{\mathrm{a}}\left(\begin{array}{ll}
\mathrm{B} & \tau \tag{2.64}
\end{array}\right)=0:
$$

This implies ($B \quad \tau$)/ a^{1}, meaning that the evolution of B and $c w i l l$ soon converge to the sam ebehavior. W e also know that m atter pertunbations grow $a s^{2}$ in the m atter era so that $\left[\begin{array}{l}\mathrm{B}(\mathrm{d}) \quad \mathrm{c}(\mathrm{d}) \text {] is relatively sm all when }\end{array}\right.$ com pared w ith either bo or co. As a consequence, in the calculation of B 0 and co to linear order, it is appropriate to combine B and c at the decoupling epoch z_{d} as

$$
\begin{equation*}
e_{m(d)}=\frac{\mathrm{BO}_{\mathrm{B}(\mathrm{~d})}+{ }_{c 0} e_{c(d)}}{B 0^{+}}=\frac{30}{\mathrm{c}_{\mathrm{B} 0^{e}}{ }_{(d)} \mathrm{D}_{\mathrm{B}}=4+{ }_{c 0} e_{c(d)}} \text {; } \tag{2.65}
\end{equation*}
$$

and the sam e for their tim e derivatives. Then we have only two uids after the decoupling: the photon uid () and the m atter uid, which is linearly combined from the CDM and baryon uids $\left(\mathrm{m}=\mathrm{c}^{+} \mathrm{B}\right)$. Eventually we can take the m atter perturbations at the present epoch to be $e_{c 0} \quad e_{B 0} \quad e_{m 0}$.

To sum up, we rst evolve the CDM and B perturbations up to the decoupling epoch z_{d} given by 2.5d), noting that our form alism extracts the photon component from the B uid. W e then apply damping envelopes to $e_{\text {(d) }}$ and $e_{c(d)}$, as ilhustrated by equation 2.53), to account for the photon di usion and Silk dam ping. $e_{m}(d)$ is then obtained by linearly combining $e_{c(d)}$ and $e_{B(d)}$, as shown in equation 2.65). Finally we carry on the evolution of e_{m} and e_{r} from the epoch z_{d} to the present, using our previous perturbation equationswith $R=0$ and the subscript C^{\prime} replaced by m^{\prime}.

> G. A ccuracy for the standard CDM m odels

To verify our schem e for evolving cosm ologicalperturbations, we rst calculate the CDM transfer function in the context of the adiabatic in ationary CDM model:

$$
\begin{equation*}
\mathrm{T}_{\mathrm{C}}(\mathrm{k} ; 0)=\frac{\mathrm{e}_{\mathrm{c}}(\mathrm{k} ; 0) \mathrm{e}_{\mathrm{c}}(0 ; 0)}{\mathrm{e}_{\mathrm{c}}(\mathrm{k} ; 0) \mathrm{e}_{\mathrm{c}}(0 ; 0)} ; \tag{2.66}
\end{equation*}
$$

where 0 is the present conform al tim e. To this end, we em ploy equations 2.43), 2.44) and 2.43) in the absence of the source term s, and the approxim ation of instantaneous decoupling described above. W e start the evolution in the deep radiation era when $m \quad r \quad 1, R \quad 1$, and $i \quad 1=k$ for a given m ode k. In th is case, one choice of the initial conditions is

$$
\begin{equation*}
s=\underline{s}=0 ; \quad c={ }_{i}^{2} ; \quad 00=\frac{1}{G}: \tag{2.67}
\end{equation*}
$$

Figure 1 show s our results for the CDM transfer functions $T_{C}(k ; 0)$ at the present epoch in di erent cosm ologies, together w ith the results obtained from CM BFAST [13]. It is clear that they agree very well. The discrepancy of the tw o reaches its maxim um of about 5\% at the scale $k \quad 1 \mathrm{hM} \mathrm{pc}^{1}$ in the open m odelw ith co $=0: 15$ and $\quad \mathrm{Bo}=0: 05$. W e have also checked our results against those in Ref. 24], and they are in agreem ent again within a 5\% error. In

FIG.1. C om parison of our CDM transfer functions at the present epoch $T_{C}(k$; 0) w ith results obtained from CM BFAST 13]. On the top are results in at models w ith a cosm ological constant (i.e. $\quad 0+c_{0}+\quad$ bo $=1$). At the bottom are results in open models w ithout a cosm ological constant. R esults using our form alism are plotted as solid lines, while the results from CM BFA ST are plotted as dashed lines. W e have used $h=0: 7$ throughout. T he m ass fraction of H elium $-4 Y_{H}=0: 24$ and the num ber of neutrino species $N=3: 04$ have been used in obtaining the results from CM BFAST.
addition, from the bottom curves in Figure ${ }^{1}$, we notice the oscillations resulting from the photon-baryon coupling before d in cosm ologies w ith high baryon fractions $\mathrm{B} 0={ }_{\mathrm{m} 0} 0$.
N ext, we calculate the radiation transfer function at the decoupling epoch, since the radiation perturbations at th is epoch will appear as the intrinsic CM B anisotropies. W e de ne this transfer function as:

$$
\begin{equation*}
T_{r}(k ; d)=\frac{e_{r}(k ; d) e_{c}(0 ; 0)}{e_{c}(k ; 0) e_{c}(0 ; 0)} ; \tag{2.68}
\end{equation*}
$$

where we nom alize the radiation pertunbations at do both the am plitude of the super-horizon CD M pertunbations today and the initialCDM power spectrum, as we did for $T_{C}(k ; 0)$ (see eq. 2.66]). This de nition will enable us to verify not only the scale dependence of the evolution of perturbations, but also their norm alizations. Figure 2 show s our results, again as a com parison w ith the results from CM BFAST.W e see that although the scale dependence of our results is slightly di erent from that of the CM BFAST results, the overall norm alisation appears to be quite accurate. The sidew ay shift of the oscillatory peaks in our results when com pared w th the peaks from CM BFAST has a m axim um of about 5\% in the at modelw ith $c 0=0: 95$ and $\mathrm{B} 0=0: 05$. This discrepancy results naturally from the instantaneous-decoupling approxim ation in our form alism. A s a result, despite the sm all inaccuracy, our form alism provides a m uch m ore num erically e cient w ay than the fulle instein B oltzm ann schem e in calculating the density perturbations.
III. SOLUTIONSOFMATTER PERTURBATIONS
A. D ecom position of perturbations

W e rst consider density perturbations about a at FRW m odelw ith a cosm ologicalconstant, which are causally sourced by an evolving source eld w ith the energy mom entum tensor (x ;) . A s seen in the previous section, w ith the photon-baryon tight coupling approxim ation in the synchronous gauge, the linear evolution equations of the radiation and CD M perturbations can be given by equations 2.43), 2.44) and 2.45), which are derived from equations 2.20), 2.38) and 2.41). This set of equations has the advantage in controling the initial condition for num erical sim ulations, as well as understanding the law of stressenergy conservation. For analytic sim plicity, how ever, we shall drop the use of 00 in this section, and em ploy equations 2.17) and 2.32) to form an altemative set of evolution equations for density perturbations:

$$
\begin{gather*}
r \frac{4}{3} c+\frac{R}{1+R}\left(\mp \frac{4}{3} \tau\right) \frac{1}{3(1+R)} r^{2}{ }_{r}=0 ; \tag{3.1}\\
c+\frac{\frac{a}{a}}{a} \tau \frac{3}{2} \frac{\frac{a}{2}^{2}}{a}[c c+(2+R) r r]=4 G+: \tag{3.2}
\end{gather*}
$$

W e note again that the cosm ologicalconstant a ects only the background dynam ics (i.e., the evolution of the scale factor a), but does not contribute extra term s in the above perturbation equations. A fter the decoupling epoch d, the treatm ent is essentially the sam e as that introduced in section IIF. W e have num erical veri ed in the context of the adiabatic in ationary CD M m odel that the set of equations 3.1) and 3.2 and the set of equations 2.43), 2.44) and 2.45) indeed give identicaltransfer functions of density perturbations, w ith a num erical discrepancy of less than $0: 1 \%$.

A ssum ing that the causalsource was form ed at som e initialtim e i and then evolved to the current time, it proves useful to split the source-seeded linear perturbations into initial (I) and subsequent (S) parts 16]:

$$
\begin{equation*}
{ }_{N}(x ;)={ }_{N}^{I}(x ;)+{\underset{N}{S}}_{N}(x ;) ; N=C ; r: \tag{3.3}
\end{equation*}
$$

The initial perturbations ${ }_{\mathrm{N}}^{\mathrm{N}}(\mathrm{x}$;) originate from the source con guration at i , while the subsequent perturbations ${ }_{N}^{S}(x ;)$ are actively and cum ulatively seeded by the later evolution of the source at each \wedge, where ${ }_{i}<\wedge<$. This is equivalent to having the initial conditions

$$
\begin{array}{r}
\stackrel{I}{N}(i)=N(i) ; \quad \frac{I}{N}(i)=\mathbb{N}(i) ; \\
 \tag{3.5}\\
\underset{N}{S}(i)=\frac{S}{N}(i)=0:
\end{array}
$$

B ecause the source induces isocurvature pertunbations, ${ }^{I}(x ;) m$ ust com pensate ${ }^{S}(x ;)$ on com oving scales jx $x^{0} j>$ to prevent acausalperturbation grow th on super-horizon scales. O ne of the aim sof this paper is to show analytically

FIG. 2. C om parison of our radiation transfer functions at the decoupling epoch $T_{r}(k ; d) w$ ith results obtained from CM BFAST [13]. On the top are results in at models w ith a cosm ological constant (i.e. $0_{0}+c 0+B 0=1$). At the bottom are results in open m odels w thout a cosm ological constant. O ur results are plotted as solid, dot-dashed, and dotted lines, while the CM BFA ST results are plotted as dashed lines. N ote that th is transfer function has been norm alised to both the am plitude of the super-horizon CDM perturbationstoday and the initialCDM power spectrum (see eq. 2.68]).
how this compensation mechanism can be achieved. Now we can solve the system of equations 3.1) and 3.2) by em ploying the integral equation w ith G reen functions:

$$
\begin{align*}
& \underset{N}{S}(x ;)=4 G \quad d^{\wedge} \quad d^{3} x^{0} G^{N s}\left(X ; ;^{\wedge}\right)+\left(x^{0} ;^{\wedge}\right) ; \tag{3.7}
\end{align*}
$$

w here $X=j \quad X^{0} j$. The easiest m ethod of obtain ing the G reen-function solutions is to go to Fourier space and solve the resulting hom ogeneous system of ordinary di erential equations w ith appropriate initial conditions. Since the G reen functions depend only on the m odulus of $X=\dot{x} \quad x^{0} j$ it follow s that their Fourier am plitudes m ust depend only on the m odulus of k. T hus we have

$$
\begin{align*}
& \mathrm{e}_{\mathrm{N}}^{\mathrm{S}}(\mathrm{k} ;)=4 \mathrm{G} \quad \mathrm{e}^{\mathrm{N}}\left(\mathrm{k} ; ;^{\wedge}\right) \mathrm{e}_{+}\left(\mathrm{k} \text {; }^{\wedge}\right) \mathrm{d}^{\wedge} \text { : } \tag{3.9}
\end{align*}
$$

W e notice that equation 3.9) is di erent from the form in R ef. 16], where the authors identi ed our $\mathbb{E}^{N} s$ as \mathbb{E}_{2}^{N}. T his identi cation is incorrect, because $\mathcal{G}^{N} \mathrm{~s}$ and $\mathbb{E}_{2}^{N}{ }^{\mathrm{c}}$ have di erent initial conditions, as we shall see.

For sim plicity, we assum e no baryons and therefgre set $R=0$ for now, and shall relax this constraint later. W ith the change of variable $y=1+A=2$ where $A=2(\overline{2} \quad 1)={ }_{\text {eq }}$ (leading to $a=a_{e q}=y^{2} \quad 1$), and w th the form alism 3.8) and 3.9), we can rew rite equations 3.1) and 3.2) in Fourier space as

$$
\begin{align*}
& \mathbb{G}^{\mathrm{r} \infty} \frac{4}{3} \mathbb{G}^{c \infty}+\frac{4 \mathrm{k}^{2}}{3 \mathrm{~A}_{\#}^{2}} \mathbb{E}^{\mathrm{r}}=0 ; \tag{3.10}\\
& \left(1 \quad y^{2}\right) \mathbb{E}^{c \infty} \quad 2 y e^{c 0}+6 \frac{12 \mathcal{E}^{2}=\mathcal{E}^{c}}{1} \mathbb{y}^{2} \quad \mathbb{E}^{c}=0 \text {; } \tag{3.11}
\end{align*}
$$

where a prim e represents a derivative w ith respect to y, $\mathcal{E}^{c} \mathcal{E}_{1}^{c N}$, $\mathcal{E}_{2}^{c N}$ or $\mathcal{E}^{c s}$, and $\mathcal{E}^{r} \mathcal{E}_{1}^{\mathrm{nN}}$, $\mathcal{E}_{2}^{n N}$ or $\mathcal{G}^{r s}$. A ccording to equations 3.8) and 3.9), the initial conditions 3.4) and 3.5) now becom e:

$$
\begin{align*}
\mathbb{E}_{1}^{c c}=\mathbb{E}_{2}^{c c}=\mathbb{E}_{1}^{r r}=\mathcal{E}_{2}^{m r}=1 & \text { at } \tag{3.12}\\
\mathcal{G}^{c s}=\frac{3}{4} \mathcal{G}^{r s}=1 & \text { at } \quad=\wedge ; \tag{3.13}
\end{align*}
$$

w ith all the other G reen functions and their tim e derivatives vanishing. There are three things we should notice here. F irst, it is required that $\mathcal{E}_{\mathrm{i}}^{N}{ }^{N}(\mathrm{k} ; ~ ; ~ i)=0$ for \quad, and that $\mathcal{E}^{N \mathrm{~s}}\left(\mathrm{k} ; ;^{\wedge}\right)=0$ for $\quad \wedge$. Second, the G reen functions $\mathbb{E}_{i}^{N}{ }^{N}{ }^{0}$ only describe the tim e dependence of the hom ogeneous version of equations 3.1) and 3.2), while the G reen functions \mathcal{E}^{N} s are, by the conventionalde nition, the true G reen functions used to solve the inhom ogeneous equations $3.1)$ and 3.2). F inally, since there are only four variables in equations 3.10) and 3.11) (i.e. $\mathcal{E}^{c}, \mathcal{E}^{r}$, E^{c} and E^{r}), there m ust exist som e dependence am ong the ve sets of G reen functions (i.e. $\mathcal{E}_{1}^{N}{ }^{c}, \mathcal{E}_{1}^{N}{ }^{r}, \mathcal{E}_{2}^{N}{ }^{c}, \mathcal{E}_{2}^{N r}$ and $\mathcal{E}^{N s}$). This dependence can be observed from the initial conditions 3.12) and 3.13), which yield

$$
\begin{equation*}
\mathcal{E}^{N s}=\mathcal{E}_{2}^{N}+\frac{4}{3} \mathbb{E}_{2}^{N r}: \tag{3.14}
\end{equation*}
$$

In Ref. 16], the authors ignored the fact that $=4=3$ in the initial condition 3.13). This ignorance led to the absence of the second term in equation 3.14) (and thus the identi cation of $\mathcal{G}^{N}{ }^{s}=\mathcal{E}_{2}^{N}$), and consequently the incorrect solutions of G reen functions in their nal results. B ased on equations 3.10) and 3.11) w ith the in itial conditions 3.12) and (3.13), in the follow ing subsections we shall analytically derive a com plete set ofg reen-fiunction solutions for the m atter pertunbations, which w ill then be num erically veri ed.

U nder the \lim it $k \quad 1$ or $k \quad 1$, the ratio $\mathbb{C}^{r}=\mathbb{C}^{c} w$ ill approach a constant (see below), so that equation 3.11) becom es the associated Legendre equation, w ith solutions com posed of the associated Legendre functions $P_{2} \quad(y)$ and $Q_{2}(y)$, where $=12 \mathcal{E}^{r}=\mathcal{E}^{c}$. We shall use subscripts 1 and 0 to denote solutions in the lim its $k \quad 1$ and $k \quad 1$ respectively. For sim plicity, we shall denote both \wedge and i as ${ }^{\wedge}$ in the follow ing solutions.
 expansion tim e and its e ect is therefore negligible. By setting $\mathcal{G}^{r}=\mathcal{C}^{c}=0$, equation 3.11) can be solved as

$$
\begin{equation*}
\mathcal{E}_{1}^{c}\left(;^{\wedge}\right)=E(\wedge) P_{2}^{0}(y)+F(\wedge) Q_{2}^{0}(y) ; \tag{3.15}
\end{equation*}
$$

where $E(\wedge)$ and $F(\wedge)$ are functions of \wedge. This gives the sub-horizon solutions.
2.k 1: W hen the wavelengths are m uch longer than the horizon size, we have $\mathcal{E}^{r}=\mathcal{G}^{c}=4=3$ as the consequence of zero entropy (see eqs. 2.18] and 2.49]), giving $=4$. Thus equations (3.10 and (3.11) yield

$$
\begin{align*}
& \mathcal{E}_{0}^{r}\left(;^{\wedge}\right)=\frac{4}{3} \mathcal{E}_{0}^{c}\left(;^{\wedge}\right)+i(\quad \wedge)+i ; \tag{3.16}\\
& \mathcal{E}_{0}^{c}\left(;^{\wedge}\right)=G(\wedge) P_{2}^{4}(y)+H(\wedge) Q_{2}^{4}(y) \\
& +12 \underset{y_{i}}{\mathrm{y}} \frac{\mathrm{Q}_{2}^{4}(\mathrm{x}) \mathrm{P}_{2}^{4}(\mathrm{y})}{\mathrm{Q}_{2}^{4}(\mathrm{x}) \mathrm{P}_{2}^{4^{0}}(\mathrm{x})} \mathrm{P}_{2}^{4}(\mathrm{x}) \mathrm{P}_{2}^{4}(\mathrm{x}) \mathrm{Q}_{2}^{4}(\mathrm{y})(\mathrm{x}) \mathrm{A} \frac{\mathrm{i}+2 \mathrm{i}(\mathrm{x} \quad \mathrm{y})}{\mathrm{A}\left(\mathrm{x}^{2} \quad 1\right)^{2}} \mathrm{dx} \text {; } \tag{3.17}
\end{align*}
$$

where i and i are constants, and $G(\wedge)$ and $H(\wedge)$ are functions of \wedge, all determ ined by the initial conditions. T hese are the super-horizon solutions.

C om bined w ith the in itialconditions 3.12) and 3.13), equations 3.13) and 3.17) can be solved to yield the follow ing results. For clarity, we shall denote $\hat{y}=1+A \xlongequal{\prime}=2$ in $\mathcal{G}^{N s}$ and $y_{i}=1+A \quad i=2$ in $\mathcal{C}_{i}^{N}{ }^{0}{ }^{0}$ both as w :

$$
\begin{align*}
& \mathcal{E}_{11}^{c c}=\frac{1}{2}\left(3 y^{2} \quad 1\right)\left(3 w^{2} \quad \text { 2) } \quad \frac{9}{2} w y\left(w^{2} \quad 1\right)\right. \tag{3.19}\\
& +\frac{3}{4} w\left(w^{2} \quad 1\right)\left(3 y^{2} \quad 1\right) \log \frac{(y+1)(w \quad 1)}{(y \quad 1)(w+1)} \text {; } \tag{3.20}\\
& \mathcal{E}_{10}^{c c}=\frac{2 y w^{5} \quad 20 y^{3}+20 y^{2} w^{2}+20 w^{2} \quad 30 y w \quad 15 y \quad 5+3 y^{6}+25 y^{2}}{5\left(y^{2} \quad 1\right)^{2}\left(w^{2} \quad 1\right)} ; \tag{3.21}\\
& \mathcal{E}_{21}^{c c}=\mathcal{E}_{1}^{c s} ; \tag{3.22}\\
& \mathcal{E}_{20}^{c c}=\mathcal{E}_{0}^{c s} \quad \frac{4}{3} \mathcal{E}_{20}^{c r} ; \tag{3.23}\\
& e_{11}^{c r}=0 ; \tag{3.24}\\
& \left.\mathcal{E}_{10}^{c r}=\frac{3\left(y^{6} \quad 5 y^{2} w^{4}+4 y w^{5}+10 y^{2} w^{2} \quad 5 y^{4}\right.}{} \quad 5 w^{4}+10 y^{2} \quad 20 y w+10 w^{2}\right), \tag{3.25}\\
& \mathcal{E}_{21}^{c r}=0 ; \tag{3.26}\\
& \mathcal{E}_{20}^{c r}=\frac{3}{10 A} \frac{\left(y^{2}+4 y+5\right)(y \quad 1)^{2}}{(y+1)^{2}} \log \frac{y \quad 1}{w \quad 1}+\frac{\left(y^{2} \quad 4 y+5\right)(y+1)^{2}}{(y \quad 1)^{2}} \log \frac{w+1}{y+1} \\
& +2(\mathrm{w} \quad y) \frac{\left(4 y w^{3} \quad 6 y^{2} w^{2} \quad 10 w^{2}+y^{5} w \quad 4 y^{2} w+7 y w+6 y^{2} \quad 4 y^{3}+5+y^{4}\right)}{\left(w^{2} \quad 1\right)\left(y^{2} \quad 1\right)^{2}}: \tag{3.27}
\end{align*}
$$

W e note that equations 3.22), (3.23) and 3.26) result directly from the initial conditions 3.12) and 3.13). They are consistent w ith equation (3.14).

D espite the com plicated form s presented here, all these G reen functions have sim ple asym ptotic behaviors in the radiation-orm atter-dom inated regin es. Since we are m ore interested in the m atter perturbations today and we know from equation 3.11) that $\mathcal{E}^{c} / 2 /$ a when $=$ eq ! 1 , we can design a source transfer function' as

$$
\begin{equation*}
\mathbb{E}^{c}(\mathrm{k} ; \wedge) \lim _{=\mathrm{eq}!} \frac{a_{\mathrm{eq}}}{a} \mathbb{E}^{\mathrm{c}}\left(\mathrm{k} ; ;^{\wedge}\right): \tag{3.28}
\end{equation*}
$$

N ote that this is di erent from the de nition of the standard CD M transfer function 2.66) . Equations 3.18, (3.27) then lead to the source transfer functions:

$$
\begin{align*}
& \mathrm{P}_{1}^{\mathrm{cs}}=\frac{3}{4 \mathrm{~A}}\left(\mathrm{w}^{2} \quad 1\right)\left(3 \mathrm{w}^{2} \quad 1\right) \log \frac{\mathrm{w}+1}{\mathrm{w}-1} \quad 6 \mathrm{w} ; \tag{3.29}\\
& \mathrm{P}_{0}^{\mathrm{cs}}=\frac{2 \mathrm{w}}{5 \mathrm{~A}\left(\mathrm{w}^{2} 1\right)} ; \tag{3.30}\\
& \mathrm{P}_{11}^{c c}=\frac{3}{2}\left(3 \mathrm{w}^{2} \quad 2\right)+\frac{9}{4} \mathrm{w}\left(\mathrm{w}^{2} \quad 1\right) \log \frac{\mathrm{w}}{\mathrm{w}+1} \text {; } \tag{3.31}\\
& \mathrm{P}_{10}^{\mathrm{cc}}=\frac{3}{5\left(\mathrm{w}^{2} \mathrm{1}\right)} ; \tag{3.32}\\
& \mathrm{P}_{21}^{\mathrm{cc}}=\mathrm{F}_{1}^{\mathrm{cs}} ; \tag{3.33}\\
& \mathrm{P}_{20}^{c c}=\mathrm{P}_{0}^{c s} \quad \frac{4}{3} \mathrm{P}_{20}^{c r}=\frac{2}{5 \mathrm{~A}} \frac{\mathrm{~W}}{\mathrm{~W}^{2} \quad 1} \quad \log \frac{\mathrm{~W}+1}{\mathrm{~W} 1} ; \tag{3.34}\\
& \mathrm{P}_{11}^{\mathrm{cr}}=0 ; \tag{3.35}\\
& \mathrm{e}_{10}^{\mathrm{cr}}=\frac{3}{5\left(\mathrm{w}^{2} 1\right)^{2}} ; \tag{3.36}\\
& \mathrm{P}_{21}^{c r}=0 \text {; } \tag{3.37}\\
& \mathrm{P}_{20}^{\mathrm{cr}}=\frac{3}{10 \mathrm{~A}} \frac{2 \mathrm{w}}{\mathrm{w}^{2} 1} \quad \log \frac{\mathrm{w}+1}{\mathrm{w} 1}: \tag{3.38}
\end{align*}
$$

W e plot these source transfer functions in F igures目, 4, and 5. They are now only functions of the initial tim e, but not of the nal time. In the context of topological defects, the defect source was form ed at i eq. Therefore it would be also interesting to investigate the asym ptotic behaviors of the source transfer functions w ith very early initial tim es. For i eq, equations 3.29) \{ 3.38) becom e:

F IG . 4. The source transfer functions $\mathbb{P}_{10}^{c c}$ (dashed), $\mathbb{P}_{11}^{c c}$ (solid), $\mathbb{e}_{20}^{c c}$ (dotted), and $\mathbb{e}_{21}^{c c}$ (dot-dashed). W e have taken the absolute value of ${ }_{20}^{c c}$, because it becom es negative when $<0: 6$ eq .

FIG.5. The source transfer functions $\mathbb{P}_{10}^{c r}$ (dashed) and $\mathbb{P}_{20}^{c r}$ (solid). W e note that $\mathbb{P}_{11}^{c r}=\mathbb{P}_{21}^{c r}=0$.

$$
\begin{align*}
& \frac{3 \mathrm{~A}}{2} \mathrm{P}_{0(\mathrm{i})}^{\mathrm{cs}}=\mathrm{P}_{10(\mathrm{i})}^{\mathrm{cc}}=\frac{3 \mathrm{~A}}{2} \mathrm{P}_{20(\mathrm{i})}^{c \mathrm{cc}}=\mathrm{A} \frac{\mathrm{i}}{\mathrm{eq}} \mathrm{P}_{10(\mathrm{i})}^{c r}=\mathrm{A}_{20(\mathrm{i})}^{\mathrm{Cr}}=\frac{3 \mathrm{eq}}{5 \mathrm{~A}} ; \tag{3.39}
\end{align*}
$$

where the subscript (i) denotes the condition i eq. These asym ptotic behaviors can be clearly seen in F igures $\mathrm{B}_{\text {, }}$, 4 and 5. W e note that on sub-horizon scales, $\mathrm{e}_{1}^{c s}$ has a maxim um at eq as seen in F igure 3 . A dding the fact that cosm ic defects seed m atter pertunbations only on sub-horizon m odes due to the com pensation m echanism, it follow s that the defect-induced m atter pertunbations are seeded m ainly during the radiation-m atter transition era. This is a generically di erent m echanism from in ationary m odels, in which m atter perturbations are seeded during in ation in the deep radiation era when all the m odes are well outside the horizon. N evertheless, the defect and in ationary m odels both provide scale-invariant perturbations at horizon crossing, and these perturbations evolve sim ilarly after horizon crossing.

C.D egeneracy of the G reen functions

In principle we need ten G reen functions (ve for $C={ }_{C}^{I}+{ }_{c}^{S}$ and ve for $r={ }_{r}^{I}+{ }_{r}^{S}$) in order to solve equations 3.1) and (3.2) by using the form alism (3.8) and (3.9). H ow ever, in addition to the dependence 3.14) by which we can reduce the e ective num ber of the G reen functions by tw O, there is another constraint we can invokel the zero entropy uctuation on super-horizon scales in the initial conditions, i.e. $s=\underline{s}=0$ at i formodes $k \quad 1={ }_{i}$ (see eqs. 2.18] and 2.49]) Since the form ation tim e_{i} of the active source is nom ally so early that the condition $k \quad 1={ }_{i}$ (and thus $s=\underline{s}=0$) is generally satis ed on the scales of our cosm ological interest, we can rew rite equation 3.8) as

$$
\begin{equation*}
e_{N}^{I}(k ;)=\Theta_{3}^{N}(k ; ~ ; ~ i) e_{c}(k ; ~ i)+\Theta_{4}^{N}(k ; ~ ; ~ i) e_{c}(k ; ~ i) ; \tag{3.41}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{E}_{i}^{N}=\mathcal{E}_{i}^{N}{ }_{2}^{c}+\frac{4}{3} \mathcal{E}_{i}^{N} r 2 ; \quad i=3 ; 4: \tag{3.42}
\end{equation*}
$$

From equations 3.20, 3.21), 3.24) and 325, we can get

$$
\begin{align*}
\mathbb{E}_{31}^{c}=\mathcal{E}_{11}^{c c} ; \quad \mathbb{E}_{30}^{c}= & 5\left(w^{2} \quad 1\right)^{2}\left(y^{2} \quad 1\right)^{2} 1^{1} y^{6}+3 y^{6} w^{2} \quad 5 y^{4} \quad 15 w^{2} y^{4}+15 y^{2} \\
& +45 w^{2} y^{2}+2 w^{7} y \quad 10 w^{3} y \quad 6 y w^{5} \quad 50 y w+5+15 w^{2}: \tag{3.43}
\end{align*}
$$

U sing equation (3.14), we can also obtain $\mathbb{E}_{4}^{c}=\mathcal{E}^{c s}$, so that

$$
\begin{equation*}
\mathbb{E}_{41}^{c}=\mathbb{E}_{1}^{c s} ; \quad \mathbb{E}_{40}^{c}=\mathbb{E}_{0}^{c s}: \tag{3.44}
\end{equation*}
$$

T hese results yield the source transfer functions:

$$
\begin{equation*}
\mathrm{P}_{31}^{\mathrm{c}}=\mathrm{P}_{11}^{\mathrm{cc}} ; \quad \mathrm{P}_{30}^{\mathrm{c}}=\frac{3 \mathrm{w}^{2}+1}{5\left(\mathrm{w}^{2} 1\right)^{2}} ; \quad \mathrm{P}_{41}^{\mathrm{c}}=\mathrm{P}_{1}^{\mathrm{cs}} ; \quad \mathrm{P}_{40}^{\mathrm{c}}=\mathrm{P}_{0}^{\mathrm{cs}}: \tag{3.45}
\end{equation*}
$$

If the initial tim e is deep in the radiation era, i.e. i eq, we further have

$$
\begin{align*}
& \mathrm{P}_{30(\mathrm{i})}^{\mathrm{c}}=\frac{4 \underset{\text { eq }}{2}}{5 \mathrm{~A}^{2}{ }_{\mathrm{i}}^{2}} /{ }_{\mathrm{i}}{ }^{2} ; \quad \quad \mathrm{P}_{31}^{\mathrm{c}}(\mathrm{i})=\mathrm{P}_{11}^{\mathrm{cc}}(\mathrm{i})=\frac{3}{2} / \quad{ }_{\mathrm{i}}^{0} ; \tag{3.46}
\end{align*}
$$

where the last proportionality is only an approxim ation. Figure ${ }^{1}$ show s the solutions of \mathbb{P}_{30}^{c} and $\mathcal{F}_{31}^{c}\left(=\mathcal{F}_{11}^{c c}\right)$, while $\mathrm{P}_{40}^{c} \quad \mathrm{P}_{0}^{c s}$ and $\mathrm{P}_{41}^{c} \quad \mathrm{e}_{1}^{c s}$ are already show n in F igure 3 . W e note the the asym ptotic behaviors indicated in equations 3.46) and 3.47) can be clearly seen in F igures 3 and 6 . Therefore, the original ten G reen functions for solving e_{c} and e_{r} have now been reduced to four functions: two for $e_{c}\left(\mathcal{E}_{4}^{c} \quad \mathcal{E}^{c s}\right.$ and \mathcal{E}_{3}^{c}), and two for e_{r} (\mathcal{E}_{4}^{r} Gers and \mathcal{E}_{3}^{r}). W e shall concentrate only on the solutions of e_{c}, while leaving those of e_{r} elsew here 25]. To calculate $\mathrm{es}_{c}^{\mathrm{S}}$ we need ect using equation 3.9); to calculate ${\underset{c}{I}}_{\mathrm{E}}^{\mathrm{w}}$ we need $\mathcal{E}_{4}^{c}=\mathcal{E}^{c s}$ and \mathcal{E}_{3}^{c} using equation 3.41). In solving ${ }_{c}^{\mathrm{E}}$, we note that \mathcal{E}_{3}^{c} transfers the in itialperturbations ofboth m atter and radiation $\left.e_{c}(i)+e_{r}(i)\right]$ to today, while e ecs transfers the in itial perturbations of their tim e derivatives $\left[e_{c}(i)+e_{r}(i)\right]$ to the present.

F IG . 6. The source transfer functions P_{30}^{c} (dashed line) and $\mathrm{P}_{31}^{c}\left(=\mathcal{P}_{11}^{c c}\right.$; solid line).
D. Solutions on interm ediate scales

W ith \mathcal{E}_{3}^{c} and $\mathcal{E}_{4}^{c}\left(=\mathcal{E}^{c s}\right)$ as the two basis G reen functions, we can now w ork out the solutions on interm ediate scales, using results derived in previous sections. In the matter era, $\mathcal{E}_{i}^{r} \mathcal{E}_{i}^{c}$ on all scales so from equation 3.11) we know
 the perturbations $\left[e_{c}(i)+e_{r}(i)\right]$ or $\left[e_{c}(i)+e_{r}(i)\right]$ that were seeded well before the horizon crossing will evolve in the sam e way as in the standard CDM m odel due to the sam e zero entropy uctuation initial condition. Therefore the solution interpolating betw een $\mathscr{E}_{i 0}^{c}\left(\mathrm{k}\right.$; 0 ; i) and $\mathcal{E}_{\mathrm{i} 1}^{c}(\mathrm{k}$; 0 ; i) for $i \quad$ eq $w i l l$ be the standard CDM transfer function. Thus we can write down a t of the solution for the full gam ut of k and i as

$$
\mathbb{E}_{i}^{c}(k ; 0 ; i)=\mathcal{E}_{i 1}^{c}(0 ; i)+\mathcal{E}_{i 0}^{c}(0 ; i) \quad \mathbb{E}_{i 1}^{c}(0 ; i)^{i} T(k) I(k ; i) ; \quad i=3 ; 4 ;
$$

where

$$
\begin{align*}
T(k) & =1+\frac{\left(0: 0534+\frac{2: 75}{1+3: 83 k}\right) \mathrm{k}^{2}}{\ln (2 e+0: 11 k)} ; \tag{3.49}\\
I(k ; i) & =\frac{1+30 i}{1+30_{i}\left(1+\frac{k_{i}}{2}\right)} ; \tag{3.50}
\end{align*}
$$

and k is in units of eq (see equation A11)). Here $T(k) \quad T_{C}(k ; 0 ; ~ B o=0)$ is the standard CDM transfer function w ithout baryons (m odi ed from R ef. [19]; see eq. 2.66] for the de nition of $T_{c}(k ; 0)$), and $I(k$; i) is a sm all correction near the horizon crossing to m ake the analytic solutions (3.48) t the num erical results. For a given mode which is initially outside the horizon, the background contents of the universe com pensate the defect source until horizon crossing. Therefore the detailed behavior of these G reen functions near the horizon scale will a ect the so-called com pensation scale, beyond which no perturbations can grow. This means that the correction function $I(k$; i) in equation (3.48) actually plays an im portant role in getting the com pensation scale right, and we shall discuss this further in section $\mathbb{I V}$ C. W e have veri ed num erically for both \mathcal{E}_{3}^{c} and \mathcal{E}_{4}^{c} that the t (3.48) is accurate w ith in a 4% error for any k and i (note that the initial conditions of \mathbb{E}_{3}^{c} and \mathbb{E}_{4}^{c} in the num ericalveri cations can be obtained from eqs. 3.12], 3.13] and 3.42]). F igure 7 show s the num erical solutions of \mathcal{E}_{3}^{c} and $\mathcal{E}_{4}^{c}\left(=\mathcal{E}^{c s}\right)$ within a chosen dom ain of (k ; i). It con m s the asym ptotic behavions indicated by equations in 3.45) (see also eqs. 3.29], 3.30] and 3.31]), and plotted in F igures 3 and 6 . The asym ptotic behaviors show n by equations 3.46) and 3.47) can be also m arginally observed from F igure .

F IG . 7. The num erical solutions of $\mathbb{E}_{3}^{c}(k ; 0 ; i)$ (upper panel) and $\mathbb{E}_{4}^{c}(k ; 0 ; i)\left(=\mathcal{E}^{c s}(k ; ~ 0\right.$; i); low er panel). They both have been norm alized to the scale factor today, $a_{0}=a_{e q}$. E ach line has a di erent in itial tim e i, whose sm allest and largest values are labeled in both plots. Successive lines have even logarithm ic tim e intervals, and is in units of eq.

FIG.8. Three dom ains on the (k; i) plane for the solutions of G reen functions \mathbb{E}_{3}^{c} and $\mathbb{E}_{4}^{c}: R e g i o n ~ I(k<k e q=1=e q)$, Region II ($k>k_{\text {eq }}$ and $k>1={ }_{i}$), and Region III ($k_{e q}<k<1={ }_{i}$). These three regions are divided by the thick solid lines. A lso show n are the $i=d$ (horizontaldashed line), and the $k=k_{s(d)}$ (vertical dashed line).

Schem atically, we can divide the (k; i)-plane into three regions for the solutions of $\mathcal{E}_{i}^{c}(i=3 ; 4)$. As shown in Figure 8, these three dom ains are: Region I ($k<k_{\text {eq }}=1={ }_{e q}$), Region II ($k>k_{\text {eq }}$ and $k>1={ }_{i}$), and Region III $\left(k_{\text {eq }}<k<1={ }_{i}\right)$. In Region I, the solution of \mathcal{E}_{i}^{c} is $\mathcal{E}_{i 0}^{c}$ because the horizon crossing happens after eq, after which $\mathcal{E}_{i 0}^{c}=\mathcal{E}_{i 1}^{c}$ as argued before. In Region II, the solution is $\mathbb{E}_{i 1}^{c}$ because allm odes in this region are inside the horizon all the tim e. We notice that $\mathcal{E}_{i 0}^{c} m$ erges with $\mathscr{E}_{i 1}^{c}$ at the boundary of R egions I and II, where $i>$ eq. In $R e g i o n$ III, the solution along the k direction is in the sam efom as the standard CDM transfer function. This is because m odes w ith larger k cross the horizon earlier, so that their perturbations are suppressed after the horizon crossing for longer until eq. In addition, the solution along the i direction in Region III is in the sameform as $\mathbb{E}_{i 0}^{c}$. This is because m odes in this region are initially on super-horizon scales, and a given m ode w ith di erent initialtim $e i w$ ill experience the sam e am ount of suppression resulting from the period betw een the horizon crossing and eq. Therefore, Regions I, II and III ilhustrate the intrinsic property of the solution 3.48).

E.The e ect of baryons

There is one im portant issue which we have not discussed| the e ect of baryons. P rior to the photon-baryon decoupling at d, the CDM and baryons are dynam ically independent. In this era, the photon-baryon uid propagates as acoustic waves w ith a sound speed given by equation (2.11), preventing baryons from collapsing on sm all scales. T herefore there exists a sound horizon at the decoupling epoch $\mathrm{d}_{\mathrm{s}(\mathrm{d})}$ (hereafter sim ply the sound horizon) which is the distance such w aves can travelprior to d , and which is the largest scale at which the baryons can a ect the evolution of density perturbations. It has been shown that inside the sound horizon $d_{s(d)}$, not only are the CDM perturbations seeded before a suppressed due to the presence ofbaryons (e.g. 24, 19, 21]), but also the baryons them selves have an exponentially decaying pow er due to the Silk dam ping 22] (see also eq. 2.53]), w ith acoustic oscillations due to the velocity overshoot 26,27]. A fter the decoupling, baryons evolve in the sam ew ay as the CDM does, so the m atter perturbations today can be obtained by linearly com bining the CDM and baryonic uctuations at a (see section IIF and eq. 2.65]), and then evolving them to today.

It follow s that the baryonic e ects tend to suppress the m atter perturbations seeded before the decoupling epoch (< d, see the horizontaldashed line in F igure G) and on scales inside the sound horizon (i.e. for $k>k_{s(d)} \quad 1=d_{s(d)}$, see the verticaldashed line in F igure (G). T he perturbations seeded after a or on scales $k<k_{s(d)} w i l l$ not be a ected by the baryons. W ith this argum ent, we can im pose a suppression factor on our current solution (3.48) to account
for the e ect of baryons, i.e. the solution w ith the inclusion of baryons can be w ritten as
where $B(k ; i ; h ; m 0 ; B o)$ accounts for the baryonic suppression:

$$
\begin{align*}
& \frac{\mathrm{T}(\mathrm{k} ; \mathrm{h} ; \mathrm{m} 0 ; \mathrm{B} 0)}{\mathrm{T}(\mathrm{k} ; \mathrm{h} ; 1 ; 0)} \text {; for } \mathrm{i} \mathrm{~d} \text {; } \tag{3.52}\\
& \text { 1; for } i>d \text { or } k<k_{s(d)} \quad 1=\mathrm{d}_{(d)} \text {; }
\end{align*}
$$

where $T(k ; h ; ~ m 0 ; ~ B o)$ is the usual standard CDM transfer function w ith the baryonic dependence. O ne accurate t
 sound horizon ($\left.k<k_{s(d)} \quad 1=d_{(d)}\right)$, and is less than unity inside the sound horizon. R eferring to Figure 8, equation 3.52) m eans that the value of $\mathrm{B}(\mathrm{k} ; \mathrm{i} ; \mathrm{h}$; m 0 ; Bo) is less than unity in the region to the right and above the dashed lines, and is unity otherw ise. W e also note that in the low -m 0 m odels, the sound horizon can be sm aller than the radiation m atter equality horizon, i.e., it is possible that $\mathrm{k}_{\mathrm{s}(\mathrm{d})} \quad 1=\mathrm{d}_{(\mathrm{d})}>\mathrm{k}_{\mathrm{eq}}$ 19]. In addition, there is a transition era ($i<d$) which is not included in equation 3.52). This is because in this era the baryonic e ects do not fully operate as in the regime i d so that a good t is not trivial to obtain. W e have num erically veri ed equation 3.52), although an accurate t to the m issing era $i<d$ has yet to be found.

F. Solutions in K or 0 models

The solutions we have obtained so far have assum ed $K==0$. For $K \in 0$ or 0 , the grow ing behavior of the CDM perturbations departs from that of a $=0 \mathrm{~m}$ odel only at very late tim es in the m atter era (see later for a m ore detailed argum ent). This allow s us to apply a universal suppression factor on $\mathcal{C}^{(B)}$ to account for the e ects of curvature or :
where k is in units of $\mathrm{moh}^{2} \mathrm{M} \mathrm{pc}^{1}$, and $\mathrm{g}(\mathrm{mo} ; 0)$ is given by 28]

In equation 3.53), the leading factor $m \mathrm{~m}^{2}$ results from the fact that the ratio of scale factors $\mathrm{a}_{0}=\mathrm{a}_{\text {eq }}$ is proportional to $m o h^{2}$ and that the G reen function $\mathcal{E}_{i}^{C(B)}=\mathcal{P}_{i}^{C(B)} a_{0}=a_{\text {eq }}$ is proportional to this ratio. The factor $g(m 0$; 0$)$ accounts for the suppression of the linear grow th of density perturbations in a $K \Leftrightarrow 0$ or -universe relative to an $\mathrm{mo}=1$ and $0=0$ universe 28] (also veri ed in Ref . 29). The reason for k to have the unit $\mathrm{moh}^{2} \mathrm{M} \mathrm{pc}{ }^{1}$ in equation 3.53) is that the horizon size at radiation -m atter equality eq is proportional to ($\left.\mathrm{m} \mathrm{oh}^{2}\right)^{1}$ (see eq. A11] in A ppendix A).

For $\mathrm{K} \in 0$ or 0 , the extrapolation scheme $\quad 3.53 \mathrm{w}$ ill be inaccurate $\mathrm{when} \wedge$ is close to 0 , i.e., when the background dynam ics at ${ }^{\wedge}$ signi cantly departs from that of a at $=0 \mathrm{~m}$ odel. $\mathrm{Nevertheless}$, schem e is still appropriate for m ost m odels w ith active source for tw o reasons. F irst, in the context of cosm ic defects, the pow er ofm atter perturbations on the scales of our interest ($k \quad 0: 01\left\{1 \mathrm{hM} \mathrm{pc}{ }^{1}\right.$) is mainly seeded around eq (see Figure 10 and the discussion after eq. 3.40]). At this tim e, the curvature or e ects are negligible. Second, at late tim es when the curvature or e ects becom e im portant, these scales of our interest are already well inside the horizon so that any curvature term s in the perturbation equations can be neglected. Therefore, the only required change in the perturbation equations to account for the e ects of curvature or is sim ply to inconporate the correct background dynam ics, and this involves only modi cations in $a(), c()$ and $r()$, whose solutions are given in A ppendix A. As can be seen in F igure 10, the presence of curvature or a cosm ologicalconstant a ects the background dynam ics only at late tim es. M ore precisely, we verify that for $(\mathrm{m} 0 ; 0)=(0: 2 ; 0) ;(0: 2 ; 0: 8) ;(1 ; 0)$ and $(2: 0 ; 0)$, the largest observable scale for m atter perturbations $\mathrm{k} \quad 0: 01 \mathrm{hM} \mathrm{pc}{ }^{1}$ corresponds to the horizon sizes at $5 ; 5 ; 27 ; 54$ eq respectively, w hereas in these m odels the curvature or cosm ological-constant dom ination occurs only at a m uch later epoch when
>0. At these m om ents ($5 ; 5 ; 27 ; 54 \mathrm{eq})$, the scale factor in the K 0 or 0 m odels departs from that in the at $=0 \mathrm{~m}$ odel only by less than one percent. Indeed, we have num erically veri ed that the extrapolation schem e 3.53) is accurate w thin a 5\% error for i 60 eq and $0: 85$ in models, for i 20 eq and $\mathrm{m} 0 \quad 0: 2$ in open $=0 \mathrm{~m}$ odels, and for i 200 eq and $\mathrm{mo} 2 \mathrm{in} \mathrm{closed}=0 \mathrm{~m}$ odels. These ranges of cosm ological param eters have apparently covered the values of our interest.

W ith the G reen-function solutions we have found, we can now analytically investigate some im portant aspects about the grow th of cosm ologicalm atter perturbations.
A. The standard CDM m odel

First we investigate the relationship betw een our G reen functions and the standard CDM transfer function, and thereby to justify the use of the standard CDM transfer function in the analytic solution 3.48). In the standard $C D M m$ odel, there are no subsequent perturbations, so we have $e_{N}={\underset{N}{I}}_{\mathrm{I}}^{\mathrm{N}}+\underset{\mathrm{N}}{\mathrm{S}}=\mathrm{e}_{\mathrm{N}}^{\mathrm{I}}$. A s discussed in equations 2.38) and 2.37), we also know that the CDM perturbations have a grow ing mode $e_{c}(k ;) / 2$ on super-horizon scales (k 1) for eq or eq. For the super-horizon m odes in the radiation era and all m odes in the m atter era, this allow s us to w rite

$$
\begin{equation*}
e_{C}(k ;)=A_{j}(k)^{2} ; \quad j=R ; M ; \tag{4.1}
\end{equation*}
$$

w here A_{j} is the coe cient of the grow ing m ode in the radiation era ($j=R$: eq and $k \quad 1$) or in the m atter era ($j=\mathrm{M}$: eq). Thus using our G reen-fiunction solutions 3.41) and 3.48) with the initialconditions $s=s=0$ and $e_{\mathrm{N}}(\mathrm{k} ; \mathrm{i})=2 \mathrm{e}_{\mathrm{N}}(\mathrm{k} ; \mathrm{i})={ }_{i}$ as required by the adiabatic in ationary model, we can derive the standard CDM transfer function as

$$
\begin{align*}
& \frac{A_{M}}{A_{R}}=\frac{e_{c}^{I}(k ;)_{i}^{2}}{e_{C}\left(k ; i_{i}\right)^{2}}=\frac{A^{2}{ }_{i}^{2} a_{e q}}{4{ }_{e q}^{2} a} \mathbb{E}_{3}^{c}+\frac{2}{i} \mathbb{E}_{4}^{c} \tag{4.2}
\end{align*}
$$

where we have used i eq and equations A13), 3.28, 3.46) and 3.47), and the last expression w as obtained based on the form alism 3.48). First, we note that the two term s involving \mathbb{F}_{30}^{c} (i) and $\mathbb{F}_{40 \text { (i) }}^{c}$ are equal, m ean ing that the two sets of initial perturbations $\left[e_{c}(i)+e_{r}(i)\right]$ and $\left[e_{c}(i)+e_{r}(i)\right]$ contribute equally to the present m atter perturbations. Second, the $T(k)$ here is nothing but the standard CDM transfer function which we have de ned earlier. Third, the coe cient $2=5$ in the nal result ofequation (4) is well know n (e.g. 77,4), and here we obtained it using our G reen-fiunction solutions. This coe cient can be also obtained by rst know ing from equation (4.45) that 00 is a constant on superhorizon scales ($\mathrm{k} \quad 1=$), and then using its de nition 2.38 and equation 4.1) to com pare its expressions for $j=R, M$. O ne will nd $00=A_{R}=G=5 A_{M}=2 G$, which implies $A_{M}=A_{R}=2=5$ fork $\quad 1=$. Thus the above derivation and result not only illustrate the relation between our G reen functions and the the standard CDM transfer function $T(k)$, but also justify the use of $T(k)$ in our form alism 3.48).

B. Independence of the in itial conditions

O ne im portant problem for structure form ation with causal seeds is to investigate how the source energy was com pensated into the radiation and m atter background when the seeds were form ed at i. From the result (2.48) we know that the pow er spectrum of the pseudo energy eoo should decay as k^{4} on super-horizon m odes. A s argued in equation 2.49), we can thus take $\theta_{0}=0$ as part of the initial conditions provided that the scales of interest are well outside the horizon initially. For sim ilar reasons we can take $e=\theta=0$, where $s=3 r=4 \quad c$. In addition, from equation 2.38) w thout baryons, we have

$$
\begin{equation*}
00=00+\frac{3}{8 G} \frac{\underline{a}}{a}^{2} X_{N=C ; r} N_{N}+\frac{1}{4 G} \frac{a}{a} \tau_{\tau}: \tag{4.3}
\end{equation*}
$$

Since $00=0$ is required at i, it follows that for a given $00\left(\mathrm{x}_{\mathrm{i}} \mathrm{i}\right)$, one can have di erent ways of com pensating it into betw een N and \mathbb{N}. It is thus vital to check the dependence of the resulting ${ }_{C}^{I}()$ on the way we com pensate
$00(x$; i) into the background initially. C onsider the follow ing two extrem e cases, both satisfying eoo $=\varepsilon=\varepsilon=0$ on super-horizon scales at i :

1. $e_{c}=3 e_{r}=4=0, e_{c}=3 e_{r}=4=\left[4 \mathrm{G}(a=a)^{e} e_{00}\right]_{i}: U$ sing equation 3.41), the norm alized resulting initial perturbations can be calculated as

$$
\begin{equation*}
1(; \quad \text { i })=\frac{e_{c}^{I}(k ;)}{\left[4 G(a=a)^{e} e_{00}\right]_{i}}=E_{4}^{c}=e^{c s}: \tag{4.4}
\end{equation*}
$$

$$
\begin{array}{r}
\text { 2. } e_{c}=3 e_{r}=4=\left[8 G(a=\underline{a})^{2} e_{00}=(4 \quad c)\right]_{i}, e_{c}=3 e_{r}=4=0 \text { : Sim ilarly we have } \\
2(; i)=\frac{e_{c}^{I}(k ;)}{\left[4 G(a=a) e_{00}\right]_{i}}=e_{3}^{c} \frac{2 w\left(w^{2} \quad 1\right)}{A\left(3 w^{2}+1\right)}: \tag{4.5}
\end{array}
$$

To see the di erence in $e_{c}^{I}(k ; 0)$ today resulting from these two cases, one can calculate

$$
\begin{equation*}
\mathrm{D}_{12}(0 ; i)=\frac{2}{1} \quad 1=\frac{2 \mathrm{w}\left(\mathrm{w}^{2}\right.}{\mathrm{A}\left(3 \mathrm{w}^{2}+1\right)} \frac{1}{\mathrm{P}_{30}^{c}}{\underset{\mathrm{P}}{0}}_{\mathrm{cs}}=0 ; \tag{4.6}
\end{equation*}
$$

where we have used equations 3.39), 3.45) and 3.48). This im plies that no matter how the source $00(x ; i)$ is com pensated into the background when it was form ed (i.e. w ith any portions between N and π in itially), it results in the sam $e_{c}^{I}(k ; 0)$ today on scales which were outside the horizon at ${ }_{i}$. W e note that this independence of the initial conditions w as rst num erically observed in Ref. [17], and here we have provided an analytic proof.

C.C om pensation and totalm atter perturbations

W ith a complete set of G reen functions for both initial and subsequent perturbations, we can now investigate the resulting total CDM pertunbations and therefore the com pensation m echanism in m odels with active source. H aving seen the independence of the resulting $e_{c}^{I}(k ; 0)$ on the way the source energy is initially com pensated into various background com ponents, we can invoke equation 4.4) for e_{c}^{I}, and equation 3.9) for e_{c}^{S} to obtain $e_{c}(k$; 0) = $\mathrm{e}_{\mathrm{c}}^{\mathrm{I}}(\mathrm{k} ; 0)+\mathrm{e}_{\mathrm{c}}^{\mathrm{S}}(\mathrm{k} ; 0)$. For a given m ode at which $k{ }_{i} \quad 1$ initially, we have:

$$
\begin{aligned}
& e_{c}(k ; 0)=e_{c}^{I}(k ; 0)+e_{c}^{S}(k ; 0)
\end{aligned}
$$

$$
\begin{align*}
& =\frac{8 G a_{0}}{5 A^{2} a_{e q}} \quad T(k)^{e_{00}}(k ; i)+{ }_{i}^{Z} T^{0}\left(k ;^{\wedge}\right) \frac{\underline{a}(\wedge)}{a(\wedge)} e+\left(k ;^{\wedge}\right) d^{\wedge} \tag{4.8}\\
& ={\frac{8 G a_{0}}{5 A^{2} a_{e q}}}^{n} T(k)^{e_{00}}(k ; 0)+ \\
& T^{0}(k ; \wedge) \frac{a(\wedge)}{a\left(^{\wedge}\right)} e_{+}\left(k ;{ }^{\wedge}\right)+T(k) e_{00}(k ; \wedge) d \wedge ; \tag{4.9}
\end{align*}
$$

where

$$
\begin{equation*}
T^{0}\left(k ;{ }^{\wedge}\right)=\frac{\mathbb{E}_{4}^{c}\left(k ; 0 ;^{\wedge}\right)}{\mathbb{E}_{40}^{c}\left(k ; 0 ;^{\wedge}\right)} ; \tag{4.10}
\end{equation*}
$$

and $\mathcal{E}_{4}^{c}\left(\mathrm{k} ; 0 ;^{\wedge}\right)$ is given by 3.48). The function $T^{0}\left(\mathrm{k} ;^{\wedge}\right)$ is plotted in F igure 9 . H ere we notice that the quantities inside the outer m ost brackets in equations 4.9) and 4.9) are equivalent to nothing but the coe cient of the grow ing m ode in CDM perturbations. U sing equation 4.8), one can obtain the resulting perturbations $e_{c}(k$; o) by know ing the initial $e_{00}(k ; i)$ and integrating the evolution history of $e_{+}\left(k ;^{\wedge}\right) . H$ ence this expression is convenient for num erical punposes. In addition, we see that the rst tem in equation (4.8) com es sim ply from the in itial source energy, serving w ith an opposite sign to account for energy conservation. T his is the so-called com pensation. On the other hand, the

FIG. 9. The function $\mathrm{T}^{0}(\mathrm{k}$;) (solid lines) and the standard CDM transfer function T (k) (the dashed line). Each solid line has di erent, whose highest and lowest values are labeled in units of eq. Successive lines have even logarithm ic tim e intervals.
second term results from the subsequent evolution of $e_{+}(k ; \wedge)$, which actively creates the CDM density perturbations on sub-horizon scales (see later). This tem also provides a way for defects to create non-G aussianity.

A ltematively, equation 4.9) provides a both physically and m athem atically transparent way of intenpreting how the perturbations are seeded by the source. First consider the integral term for a given m ode k. W hen the m ode is welloutside the horizon, i.e. ${ }^{\wedge} \quad 1=k, T^{0}(k ;)$ equals $T(k)$ by de nition. H ence the two term s inside the innerbrackets reduce to $e_{0 i ; i}(k ; \wedge) T(k)$ due to source stress-energy conservation 2.21). Since the pow er spectrum of $e_{0 i ; i}\left(k ;{ }^{\wedge}\right)$ falls - as ${ }^{4}$ outside the horizon (see eq. 2.47]), we expect the quantity inside the brackets to be negligible until the given m ode approaches horizon crossing. N ear horizon crossing, $e_{0 i ; i}\left(k ;{ }^{\wedge}\right)$ is no longer sm all, and $T^{0}(k$;) starts departing from $T(k)$ (i.e. $T^{0}(k ;)$ constant $>T(k) / k^{2}$, see Figure G), so the two term s inside the inner brackets begin to contribute to the integral. This also explains why the correction function $I(k ; i)$ in equation 3.48) is im portant in a ecting the com pensation scale. A fter horizon crossing, the signi cance of the two term s inside the inner brackets then depends on the subhorizon behaviours of their pow er spectra.

As for the rst term in equation 4.9), we see that for a superhorizon m ode today, the integral in (4.9) is negligible as argued above so that only the rst term contributes. It serves to give the opposite sign to the source energy so as to account for energy conservation on superhorizon scales today, and thus for the com pensation at the present epoch 0. O n the other hand, if a given m ode is well inside the horizon today, then the rst term willbe negligible provided that the source energy $e_{00}(k ; 0)$ has a power-law fall-o inside the horizon, as it does for cosm ic strings. Therefore in calculating CDM perturbations on scales of our interest, which are well inside the horizon today, the rst term in equation 4.9) is negligible, so that it w ill not a ect our com pensation argum ent observed from the integral.

This argum ent can be further strengthened by deriving the pseudo-energy today. From the de nition of 00 4.3) and the nal result of equation 4.9), one obtains

$$
\begin{align*}
\Theta_{00}(k ; 0)= & \left.(1 \quad T(k))^{e_{00}(k ;} 0\right)+ \\
& T^{0}(k ; \wedge) \frac{a(\wedge)}{a(\wedge)} e_{+}(k ; \wedge)+T(k) e_{00}(k ; \wedge) d^{\wedge}: \tag{4.11}
\end{align*}
$$

From this result, one can clearly see that for super-horizon modes, $T(k)$ is unity by de nition so that only the integral survives. W e have also seen from an earlier argum ent that on super-horizon scales, the quantity inside the square brackets is nothing but the ${ }^{e_{0 i ; i}}\left(k{ }^{\wedge}\right)$, which has a k^{4} fall-o power spectrum (see eq. 2.47). It follow s im m ediately from equation 4.11) that the pseudo-energy today, $00(0)$, has a k^{4}-decay pow er spectrum outside the horizon. Th is result con m s the super-horizon behavior of 00 presented in equation 2.48). On the other hand, although (1 \quad (k))
is approxim ately unity for sub-horizon m odes, the usual sub-horizon power-law decay in $e_{00}(k$; 0) (as in the case of cosm ic strings) w ill still m ake the rst term in equation 4.11) negligible inside the horizon.

Thus we can see explicitly in a neat m athem atical form how com pensation acts on a given length-scale. From this analysis we can also see that the com pensation scale is determ ined not only by the functions $T^{0}(k$;) and $T(k)$, but also by the properties of the source near the horizon scale. O nce the detailed behavior of the source near the horizon scale is known, we can accurately locate the com pensation scale using equation 4.9) or 4.11). W e note that this result is di erent from the claim in Ref. 30, where m ulti- uid com pensation back-reaction e ects were studied to show that the com pensation scale arises naturally and uniquely from an algebraic identity in the perturbation analysis. Ref. 31] also investigated the com pensation scale, and found constraints on the generation of super-causalhorizon energy perturbations from a sm ooth in itialstate, under a sim ple physicalschem e. The com pensation wavenum berwas found to be constrained w ith $k_{c}>2{ }^{1}$ due to causality, depending on the behavior of the causalevents. This result is not inconsistent w ith our nding above, where we further provide a quantitative w ay to locate the com pensation scale for any given speci c m odel.

> V.SUMMARYAND CONCLUSION

In this paper we present a form alism which can be used to study the evolution of cosm ologicalperturbations in the presence of causal seeds. In th is form alism we invoked the uid approxim ation in the synchronous gauge to m odel the contents of the universe, and assum ed photon-baryon tight coupling until the last-scattering epoch to account for the baryonic e ects. The approxim ation of instantaneous decoupling of photons and baryons was then em ployed at the last-scattering epoch. In particular, we dem onstrated the accuracy of our form alism in the context of the standard CDM model, by com paring our results of density perturbations w th those calculated from CM BFAST.
W e then derived the analytic solutions of m atter density perturbations in a at $=0$ cosm ology. The errors in Ref. 16] w ere corrected to yield a com plete set of G reen-fiunction solutions for the super-horizon and sub-horizon m odes (eqs. 3.3], 3.8], 3.9], 3.18] [3.40]). The degeneracy am ong these G reen functions w as then found by com paring their initial conditions and em ploying the zero-entropy in itial condition (eqs. 3.14], 3.41]). This e ectively reduces the num ber of the G reen functions needed in the perturbation solutions (eqs. 3.3], 3.9], 3.41]\{ 3.47]). W ith this great sim pli cation, the solutions on interm ediate scales were then easily found by the use of the standard CDM transfer function (eq. 3.48]). This com plete set of solutions w ere num erically veri ed to high accuracy. The baryonic e ects were also considered (eq. 3.51]). W e then extrapolated these G reen-fiunction solutions to K 0 or 0 m odels (eq. 3.53]), w ith num erical justi cations to high accuracy.
U sing these G reen-function solutions, we investigated several im portant aspects of structure form ation w ith causal source. W e rst dem onstrated the relation betw een our G reen functions and the standard CDM transfer function (eq. 4.2]). Second we proved that the resulting m atter perturbations today is independent of the w ay the source was initially com pensated into the background contents of the universe (eq. 4.6]). W ith our G reen-function solutions and the use of the pseudo-stress-energy tensor, we nally addressed the com pensation m echan ism in a mathem atically and physically explicit w ay (eqs. 4.8], 4.9], 4.11]). In particular, the com pensation scale w as show n to be dependent not only on the dynam ics of the universe, but also on the properties of the source near the horizon scale. O nce given the detailed behavior of the source near the horizon scale, the com pensation scale can be accurately located using our G reen functions (eq. 4.11]).

A though in the literature, there have been detailed treatm ents of theories w ith causal seeds, the form alism and its analytic solutions presented here w ill provide not only a physically transparent w ay for understanding the evolution of m atter perturbations, but also a com putationally econom ical schem e which is particularly pertinent when one needs to investigate the phase inform ation of the resulting cosm ological perturbations. Follow ing the sam e line of developm ent, we have been also w orking on the analytic solutions for radiation perturbations 25], which w illbe useful in com puting the full-sky CM B anisotropies seeded by topological defects. Finally, we note that although we have been concentrating on investigating the perturbations w ith causalsource, our G reen-function solutions are com pletely general and therefore can be also applied to the study ofm odels w ith acausal source.

A cknow ledgm ents| We thank A ndrew Liddle, P aul Shellard, Radek Stom por, and N eil Turok for useful conversations. W e acknow ledge support from NSF KD I G rant (9872979) and NASA LTSA G rant (NAG5-6552).
[1] A.H.G uth, Phys. Rev.D 23, 347 (1981)
[2] For a review see A.V ilenk in \& E.P.S.Shellard, C osm ic strings and other topological defects', C am bridge U niversity P ress, C am bridge (1994)
[3] P.P.A velino, E.P.S.Shellard, J. H.P.W u \& B.A llen, P hys. R ev. Lett. 81, 2008 (1998)
[4] P.P.A velino, E.P.S. Shellard, J.H.P.W u \& B.A llen, A strophys. J. 507, L101 (1998)
[5] J.H .P.W U,P.P.A velino, E.P.S. Shellard \& B.A llen, C osm ic Strings, Loops, and Linear G row th of M atter perturbations' (see astro-ph/9812156)
[6] U.L.Pen, U. Seljak \& N.Turok, Phys. Rev. Lett. 79, 1615 (1997)
[7] A. A brecht, R.A.Battye \& J. Robinson, Phys.Rev. Lett. 79, 4736 (1997)
[8] R.A. Battye, A.A Ibrecht \& J. R obinson, P hys. Rev. Lett. 80, 4847 (1998)
[9] C. C ontaldi, M . H indm arsh \& J.M agueijo, P hys. Rev. Lett. 82, 679 (1999)
[10] P.P.A velino, R . R . C aldw ell \& C . J.A.P.M artins, P hys. Rev.D 56, 4568 (1997)
[11] B . Allen, R . R . C aldw ell, S.D odelson, L . K nox, E.P.S. Shellard \& A . Stebbins, P hys. R ev. Lett. 79, 2624 (1997)
[12] R.D urrer, M . K unz \& A.M elchiorri, P hys. Rev.D 59, 123005 (1999)
[13] U . Seljak \& M . Zaldarriaga, A strophys. J. 469, 437 (1996)
[14] W .Hu, U. Seljak, M.W hite \& M. Zaldarriaga, Phys. Rev.D 57, 3290 (1998)
[15] W . Hu \& M .W hite, Phys. Rev.D 56, 596 (1997)
[16] S. Veeraraghavan \& A. Stebbins, A strophys. J. 365, 37 (1990)
[17] U.Pen, D. Spergel\& N. Turok, Phys. Rev.D 49, 692 (1994)
[18] W e thank N . Turok for providing the idea of spliting the photon and baryon com ponents here.
[19] D. J. E isenstein \& W . H u, A strophys. J. 496, 605 (1998)
[20] W. Hu \& N. Sugiyam a, A strophys. J. 444, 489 (1995)
[21] W. Hu \& N. Sugiyam a, A strophys. J. 471, 542 (1996)
[22] J. Silk, A strophys. J. 151, 459 (1968)
[23] R.A. B attye, Phys. Rev.D 55, 7361 (1997)
[24] J.R.B ond \& G.E fstathiou, A strophys. J. 285, L45 (1984)
[25] J.H.P.W u, in preparation.
[26] R. Sunyaev \& Ya.B. Zel'dovich, Ap\& SS, 7, 3 (1970)
[27] W . Press \& E.V ishniac, A strophys. J. 236, 323 (1980)
[28] S.M . C arroll, W . H.P ress \& E. L. Tumer, A nnu. Rev. A stron. A strophys. 30, 499 (1992)
[29] D. J.E isenstein, An A nalytic E xpression for the G row th Function in a F lat U niverse with a C osm ological C onstant' (see astro-ph/9709054)
[30] C. Cheung \& J.M agueijo, Phys. Rev.D 56, 1982 (1997)
[31] J. R obinson \& B.D.W andelt, Phys. Rev.D 53, 618 (1996)
[32] A.A.Penzias \& R.W .W ilson, A strophys. J. 142, 419 (1965)
[33] K . C . Jacobs, N ature (London) 215, 1156 (1967)
[34] J.M . C ohen, N ature (London) 216, 249 (1967)
[35] A. D. Chem in, N ature (London) 220, 250 (1968)
[36] C.B.G.M cIntosh, M on.N ot. R.A stron. Soc. 140, 461 (1968)
[37] E.W . K olb \& M . S. Tumer, The Early U niverse', A ddison-W esley, Redw ood C ity, C alifomia (1990)

APPENDIX A:COSMOLOGICALBACKGROUND DYNAM ICS
W ith the discovery of the CM BR in 1964 32], the universe is believed to be m ainly com posed of not only m atter but also radiation. A fter the discovery, several authors worked out the solutions in som e FRW models with both radiation and m atter 333$]$]. In th is appendix, we aim to derive the general solution of $R W \mathrm{~m}$ odels, in the presence ofboth curvature and a cosm ological constant.

W e assum e that the universe is hom ogeneous and isotropic, and is lled w ith two uids, radiation and dark m atter, whose stress-energy tensors are also hom ogeneous and isotropic on average. W e shall ignore the overall contribution of the stress energy from causal seeds like defect elds, because in general they are much smaller than the total energy density of radiation and m atter. Thus in a FRW universe w ith only radiation and m atter com ponents that evolve independently and adiabatically, the scale factor a () is determ ined by the unperturbed E instein equation, or equivalently the Friedm ann equation:

$$
\begin{equation*}
\underline{a}^{2}+K a^{2}=\frac{8 G m_{0} a_{0}^{3}}{3}(1+a)+\frac{-}{3} a^{4} ; \tag{A1}
\end{equation*}
$$

where a dot represents a derivative w ith respect to the conform altim e, K is the curvature, m is the m atter energy density, is the cosm ological constant, and we have norm alized $a_{\text {eq }}=1$. If we de ne

$$
\begin{align*}
\mathrm{m} & =\frac{8 \mathrm{G} \mathrm{~m}}{3 \mathrm{H}^{2}} ; \tag{A2}\\
\mathrm{r} & =\frac{8 \mathrm{G} \mathrm{r}}{3 \mathrm{H}^{2}}=\frac{8 \mathrm{Gm}}{3 \mathrm{aH}{ }^{2}} ; \tag{A3}\\
& =\frac{}{3 \mathrm{H}^{2}} ; \tag{A4}\\
\mathrm{K} & =\frac{\mathrm{K}}{\mathrm{a}^{2} \mathrm{H}^{2}} ; \tag{A5}
\end{align*}
$$

where $H=\underline{a}=a^{2}$ is the H ubble param eter, then we have from A1) that ${ }_{m}+{ }_{r}+\quad+{ }_{k}=1$ and

$$
\begin{equation*}
\frac{0}{\mathrm{~m} 0}=\frac{}{8 G \mathrm{mo}} ; \quad \frac{\mathrm{K} 0}{\mathrm{~m} 0}=\frac{3 \mathrm{~K}}{8 \mathrm{G} \mathrm{moa}_{0}^{2}}: \tag{A6}
\end{equation*}
$$

W e also notice that $\mathrm{r}_{0}=\mathrm{m}_{\mathrm{m}}=\mathrm{a}_{0}{ }^{1} \quad 1 . \mathrm{W}$ e de ne

$$
\begin{equation*}
A=\frac{2\left({ }^{p} \overline{2} 1\right)}{e q} ; \quad B=\frac{k 0}{m_{0} a_{0}} ; \quad C=\frac{0}{m_{0} a_{0}^{3}} ; \tag{A7}
\end{equation*}
$$

where we note that $\mathrm{B} ; \mathrm{C} \quad 1$ due to $\mathrm{a}_{0} 1$ and mo \quad $0 \quad$ o according to the current observational results. T hus we can rew rite equation A 1) as

$$
\begin{equation*}
\frac{d a^{2}}{d}=A^{2}\left(1+a+B a^{2}+C a^{4}\right) ; \tag{A8}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\frac{1}{e q}_{Z_{1}}^{d^{2}} \frac{d a}{\left(1+a+B a^{2}+C a^{4}\right)^{1=2}} \quad A: \tag{A9}
\end{equation*}
$$

Equation A8) can then be num erically evaluated with certain choices of $m 0$, 0 and $k 0$. A ssum ing three species ofneutrinos and using $\left.0=2: 0747 \quad 10{ }^{51} \mathrm{GeV}^{4} 37\right]$ and the fact that at eq both the curvature and the cosm ological constant term s are negligible in A 1), we obtain

$$
\begin{align*}
\mathrm{a}_{0} & =23219 \mathrm{moh}^{2} ; \tag{A10}\\
\mathrm{eq} & =16: 310\left(\mathrm{moh}^{2}\right)^{1} \mathrm{M} \mathrm{pc} ; \tag{A11}\\
t_{\text {eq }} & =3: 4058 \quad 10^{0}\left(\mathrm{moh}^{2}\right)^{2} \mathrm{sec} ; \tag{A12}
\end{align*}
$$

where eq is in the units m easured today. In certain cases, A \&) can be exactly solved:

$$
\text { 1. } \mathrm{K}==0 \text { (i.e. } \mathrm{mo}=1 ; 0=0 \text {): }
$$

$$
\begin{align*}
& a(1)=A^{2}{ }^{2}=4+A ; \tag{A13}\\
& t()=A^{2}=12+A^{2}=2 ; \tag{A14}
\end{align*}
$$

which give eq $=3 t_{e q}=\frac{p}{2}$.
2. $\mathrm{K}<0$; $=0$ (i.e. $\mathrm{mo}<1$; $0=0$):

$$
\begin{align*}
& a(1)=\frac{1}{2 B}^{h} \cosh \left(A^{p} \bar{B}\right)+2^{p} \bar{B} \sinh (A \bar{B}) \quad 1 ; \tag{A15}\\
& t()=\frac{1}{A B} \cosh (A \bar{B})+\frac{1}{2^{P} \bar{B}} \sinh (A \bar{B}) \frac{A}{2} \quad 1: \tag{A16}
\end{align*}
$$

3. $\mathrm{K}>0$; $=0$ (i.e. $\mathrm{mo}>1$; $0=0$):

$$
\begin{align*}
& t()=\frac{1}{A B} \cos (A \bar{B})+\frac{1}{2} \frac{1}{B} \sin (A \bar{B}) \frac{A}{2} \quad 1: \tag{A17}
\end{align*}
$$

F IG .10. The evolution of background dynam ics in various cosm ologies. P lotted are exact solutions of the scale factor a (). T he square, triangle, circle and diam ond m ark the universe today for di erent m odels, each w th $\mathrm{H}_{0}=70 \mathrm{~km} \mathrm{~s}{ }^{1} \mathrm{M} \mathrm{pc}{ }^{1}$.

We notice that at early tim es equations A15((A 16) and A 17 (A18) reduce to equations A 13 (A A4). At late tim es equations A13(A14), A15 (A16) and A 17 (A18) give the asym ptotic form s

$$
\begin{align*}
& \stackrel{8}{<}{ }^{2} ; \quad \mathrm{K}==0 ; \tag{A19}
\end{align*}
$$

or

$$
\begin{align*}
& \stackrel{8}{<t^{2=3}} ; \quad \mathrm{K}==0 ; \tag{A20}
\end{align*}
$$

Figure 10 show s som e exam ples of these solutions. A s we can see, the destin ies of universes in di erent cosm ologies diverge, although all have identical features around or before the radiation-m atter equality $t_{\text {eq }}$. This converging behavior at early tim es helps sim plify the calculation of cosm ologicalperturbations w ith causal source, since we know that this k ind of perturbations are m ainly contributed from the radiation-m atter transition era.

