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C osm ologicalm atter perturbations

Jiun-HueiProty W u

Astronom y Departm ent,University ofCalifornia,Berkeley,

601 Cam pbellHall,Berkeley,CA 94720-3411,USA

W e investigate m atter density perturbations in m odels ofstructure form ation with or without

causal/acausal source. Under the uid approxim ation in the linear theory, we �rst derive full

perturbation equations in at space with a cosm ologicalconstant �. W e then use G reen-function

techniquetoobtain analyticsolutionsform atterperturbationsin aat� = 0m odel.Som eincorrect

solutions in the literature are corrected here. A sim ple yet accurate extrapolation schem e is then

proposed toobtain solutionsin curved or� 6= 0cosm ologies.Som egeneralfeaturesofthesesolutions

are revealed. In particular,we analytically prove that the resulting m atter density perturbations

are independent ofthe way the causalsource was com pensated into the background contents of

the universe when it was �rst form ed. W e also use our G reen-function solutions to investigate

the com pensation m echanism forperturbationswith causalseeds,and yield a m athem atically and

physically explicitform in interpreting it.W e found thatthe com pensation scale dependsnotonly

on the dynam icsofthe universe,butalso on the propertiesofthe seeds nearthe horizon scale. It

can be accurately located by em ploying ourG reen functions.

I.IN T R O D U C T IO N

The standard cosm ology waslack ofa m echanism to produce cosm ologicalperturbations.In orderto com pensate

for this aw in the standard m odel,there are currently two m ain paradigm s for structure form ation| ination [1]

and topologicaldefects [2]. W hile the beauty and sim plicity ofthe form erappearsto have enticed m ore adherents

and studies,the latterhasproved com putationally m uch m orechallenging to m akerobustpredictionswith which to

confrontobservations[3{12].Thesetwo paradigm sarefundam entally di�erentin theway they generatecosm ological

perturbations.Thestandard adiabaticination producesprim ordialperturbationson allscalesofcosm ologicalinterest

via quantum uctuations and the causalconstraintduring ination,and these perturbations grow overtim e in an

uncorrelated m anner. As a consequence,the perturbations today can be thought ofas sim ply transfered from the

initialirregularitiesthatination setup,and this transferfunction can be easily obtained in the lineartheory and

thuswellunderstood in theliterature.O n the otherhand,topologicaldefectsarethe byproductsofthespontaneous

sym m etry-breakingphasetransition in theearly universe,and hencecarryenergy thatwascarved outoftheoriginally

hom ogeneous background energy ofthe universe. Therefore due to causality,defects induce perturbations only on

sub-horizon scales,via gravitationalinteractionswhile evolving.Thism echanism thatpreventsthe growth ofsuper-

horizon perturbationsiscalled the ‘com pensation m echanism ’.In addition,due to the certain topology ofthe defect

network,the resulting perturbations are correlated and thus non-G aussian,in contrast to the standard adiabatic

inationary perturbations. It then follows that to com pute the perturbations in m odels with defects,we need to

know theevolution history ofdefectsfortheentiredynam icrangeduring which thecosm ologicalperturbationsofour

interestwereseeded.Thisiswhatm akesthe com putation ofdefect-induced perturbationsso di�cult.

In theliteraturethepowerspectra ofthiskind ofm odelshavebeen investigated using thefullEinstein-Boltzm ann

equations. However,the study ofthe phase inform ation ofthese perturbations stillrem ains di�cult because of

the lim ited com putation power. Although there have been som e detailed treatm ents for theorieswith causalseeds

[14,15],weshallin thispaperpresenta sim plerform alism ,which isan approxim ation to thefullEinstein-Boltzm ann

equations,to providenotonly a physically transparentway forunderstanding the evolution ofdensity perturbations

in m odels with source,but also a com putationally econom icalschem e to investigate the phase inform ation ofthe

resulting cosm ologicalperturbations.Thisform alism isparallelto those presented in Ref.[16]and Ref.[17],butwe

give som e m odi�cationsto incorporate the inclusion ofthe cosm ologicalconstantand a m ore detailed treatm entfor

the e�ect ofbaryon-photon coupling/decoupling. W e also note that part ofthe solutions in Ref.[16]are incorrect

due to theincorrectinitialconditionsand the incorrectassum ptionsaboutthe form ofthe subsequentperturbations

induced by the source (see textlater). W e shallcorrectthese m istakesand furtherprovide a com plete and explicit

setofanalyticsolutionsforthem atterdensity perturbations.W ith an accurateextrapolation schem e,thesesolutions

becom e also valid form odelswith any reasonably chosen background cosm ology.The form alism and itssolutionsto

bedeveloped herewillbecom pletely generaland thussuitableforany m odelswith orwithoutcausal/acausalsource.

The structure ofthis paper is as follows. In section II, under the uid approxim ation,we �rst derive in the
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synchronousgaugethefullperturbation equationswith sourceterm s,in atcosm ologieswith a cosm ologicalconstant

�.Thisisdoneby consideringthestress-energyconservation oftheuids(IIA)and thesource(IIB),and thelinearly

perturbed Einstein equations(IIC).Theuid com ponentsconsidered herearecold dark m atter(CDM ),baryons(B),

and photons(),and weem ploy thebaryon-photon tight-couplingapproxim ation toderivetheperturbation equations

beforethelast-scatteringepoch.In thiscontext,wealsoinvestigatetheroleoftheso-called stress-energypseudotensor

(IID). The initialconditionsofthese perturbation equationsare discussed (IIE),and we use the approxim ation of

instantaneousdecoupling to dealwith the decoupling ofphotonsand baryonsatthe epoch oflastscattering (IIF).

W e then num erically justify the accuracy ofthis form alism in the contextofstandard CDM m odels,by com paring

its results with those ofthe fullEinstein-Boltzm ann solver [13](IIG ). W ithin reasonable ranges ofcosm ological

param eters,ourapproach providessatisfactory precision atgreatly reduced num ericalcost.

In section III,wederivethem atterperturbation solutionsoftheequationspresented in section II.Theperturbations

ofradiation and m atter are �rst divided into two parts: the initialand the subsequent perturbations. W ith som e

change ofvariables,these equations are then ready to be solved by the G reen-function technique (IIIA). W ith

this technique,we �nd the exact solutions on scales m uch larger or m uch sm aller than the horizon size,nam ely

the super-horizon orthe sub-horizon solutionsrespectively (IIIB). Som e degeneracy am ong the G reen functionsfor

the m atter perturbation solutions is then found and used to reduce their e�ective num ber (IIIC). W ith this great

sim pli�cation,solutions on interm ediate scales are then easily obtained by an accurate interpolation schem e based

on the well-known standard CDM transferfunction (IIID). W e also discussthe e�ectofbaryons(IIIE). A sim ple

and accurateextrapolation schem e isthen introduced to obtain solutionsin the K 6= 0 or� 6= 0 cosm ologies(IIIF),

whereK isthecurvatureoftheuniverse(seeAppendix A).AllourG reen-function solutionsarenum erically veri�ed

to high accuracy.

In section IV,weuseourG reen-function solutionsto investigatesom eim portantpropertiesofcosm ologicalm atter

density perturbations. W e �rst dem onstrate the relation between our solutions and the standard CDM transfer

function (IV A). W e also prove that in m odels with causalsource,the resulting m atter perturbations today are

independent of the way the source energy is initially com pensated into the background contents ofthe universe

(IV B).Finally weuseourG reen-function solutionsto study thecom pensation m echanism and the scaleon which it

operates(IV C).W e�nd thatthiscom pensation scaleisdeterm ined notonly by thedynam icsoftheuniverse,butalso

by thepropertiesofthesourcenearthehorizon scale.O ncethedetailed featuresofthesourcenearthehorizon scale

areknown,thiscom pensation scalecan beaccurately located using ourG reen functions.A sum m ary and conclusion

isgiven in section V.In appendix A,we de�ne the convention ofsom e notationsused in thispaper,and presentfor

reference the solutionsforthe dynam icsofvariousbackground cosm ologies,including the consideration ofnon-zero

curvatureand a cosm ologicalconstant.

II.SY N C H R O N O U S G A U G E P ER T U R B A T IO N T H EO R Y

In this section,we derive the linear evolution equations for cosm ologicalperturbations. To calculate the density

and m etricperturbations,wem odelthe contentsofthe universeasperfectuids:radiation (photonsand neutrinos)

and pressureless m atter (CDM and baryons). W e shalluse the photon-baryon tight-coupling approxim ation until

the epoch oflast scattering,at which we assum e instantaneous decoupling,also taking into account the e�ect of

Silk dam ping due to the photon di�usion. After the decoupling,the baryonic perturbations originating from the

perturbationsofthe photon-baryon coupled uid are then m erged linearly into the CDM content.In scenarioswith

causalseeds,the radiation and m atter�eldsare assum ed to be initially uniform ,and then perturbed by the causal

seedsafterthey are form ed. The radiation,m atter,and causalseedsare assum ed to interactonly through gravity,

m eaning thattheirstress-energy tensorsareseparately covariantly conserved.

W e shallwork in the synchronous gauge,in which the perturbations h�� to the spacetim e m etric g�� obey the

constrainth0� = 0.Throughoutthispaper,weusea signature(� + + + )forthespacetim em etric,and unitsin which

�h = c= kB = 1.Thusthe perturbed atFriedm ann-Robertson-W alker(FRW )m etric isgiven by

g00 = � a
2(�); gij = a

2(�)[�ij + hij(�;x)]: (2.1)

W e shallwork in the linear theory,requiring jhijj � 1. G reek alphabet willdenote the spacetim e indices (e.g.

�= 0;1;2;3),and m id-alphabetLatin lettersthespatialindices(e.g.i= 1;2;3).Although thesynchronousgaugeis

som etim escriticised in the literature due to itsresidualgauge freedom ,itisstillwellsuited to m odelsin which the

universe evolvesfrom being perfectly hom ogeneousand isotropic. In such m odels,allperturbation variablescan be

initially settozero(beforethecausalseedsaregenerated),and thisisnorm allyreferred toasthe‘initially unperturbed
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synchronousgauge’(IUSG )[16].Itpossessesno residualgaugefreedom .ThustheEinstein equationsarecom pletely

causalin IUSG ,with thevaluesofallperturbation variablesata given spacetim epointbeing com pletely determ ined

by initialconditionswithin thepastlightconeofthepoint.O neexam pleofsuch m odelsisthecosm icdefectm odels,

which havebeen ofm ostinterestin the study ofm odelswith causalseeds.

In section IIA,wederivein theIUSG theconservation equationsofradiation and m atter�elds.In section IIB,we

considertheconservation ofsourcestressenergy.In section IIC,wederivethelinearly perturbed Einstein equations.

Then,in section IID,weem ploy theconceptofstress-energy pseudotensorto investigatetheinternalenergy transfer

am ong various �elds. In section IIF,we describe the approxim ation ofinstantaneous decoupling ofphotons and

baryonsatthe epoch oflastscattering. In section IIG ,we num erically verify the accuracy ofourform alism forthe

standard CDM m odel,in com parison with the resultsfrom CM BFAST [13],a fastEinstein-Boltzm ann solver.

A .Stress-energy conservation ofradiation and m atter �elds

The contentsofthe universeareconsidered asperfectuids,whoseenergy-m om entum tensorshavethe form

T
�
N � = (�

N
+ p

N
)u�

N
u
N � + p

N
�
�
�; with u�

N
u
N � = � 1: (2.2)

Here �
N
,p

N
,and u

�
N
are the density,pressure,and four-velocity ofthe N th uid respectively. In the hom ogeneous

background,wehaveu
�
N
= (a� 1;~0),which im pliesthat�u0

N
= 0to�rstorder.W ethusde�nethevelocityperturbation

asvi
N
= a�ui

N
,i.e.,�u

�
N
= (0;v

N
=a).The equation ofstate and the sound speed arede�ned respectively as

�
N
=
p
N

�
N

; c
2
N
=
�p

N

��
N

: (2.3)

Consequently,the covariantconservation ofstressenergy foreach uid T
��
N ;� = 0 gives[16]

_�
N
+ (1+ �

N
)(r � v

N
+
1

2
_h)+ 3

_a

a
(c2

N
� �

N
)�

N
= 0; (2.4)

_v
N
+

_a

a
(1� 3c2

N
)v

N
+

c2
N

1+ �
N

r �
N
= 0; (2.5)

_v?
N
+

_a

a
(1� 3c2

N
)v?

N
= 0; (2.6)

where �
N
= ��

N
=�

N
,h � hii isthe spatialtrace ofh��,and we have decom posed the velocitiesasv

N
= v

k

N
+ v?

N
,

with r � v
k

N
= 0 and r � v?

N
= 0.

In theregim eofphoton-baryon tightcoupling,wehaveonly two m ain uids:theCDM com ponentand thetightly-

coupled photon-baryon uid. They willbe denoted as N = c;B respectively,and discussed separately as follows.

Note thatwehaveignored the neutrinosin the radiation.

1. CDM uid

W e�rstconsidertheCDM uid,i.e.N = c.W ith �c = c2c = 0forpressurelessm atter,theequationsofstress-energy

conservation (2.4){(2.6)becom e

_�c + r � vc = �
1

2
_h; _vc +

_a

a
vc = 0: (2.7)

Aswe can see,any perturbationsin the CDM velocity willdecay asa� 1. Thuswe can sim ply choose vc = ~0 in the

IUSG .O nce vc = ~0,itwillrem ain so asthere isno lineargravitationalsource.Asa consequence,the CDM obeysa

singlenontrivialconservation law resulting from equation (2.7)

_h + 2 _�c = 0 =) h = � 2�c; (2.8)

wherethe second equation resultsfrom the initialcondition h = �c = 0,asrequired by the IUSG .
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2. Photon-baryon tightly coupled uid and its photon com ponent

Forthe tightly-coupled photon-baryon (B)uid,wehave

vB = v = vB ; pB = p; �B = � + �B : (2.9)

Thuswe can de�ne

R =
��B

��
=
3�B

4�
; (2.10)

wherethe second resultcom esfrom thefactthat� / a� 4 and �B / a� 3.De�nitions(2.3)then give

�B =
1

3+ 4R
; c

2
B =

1

3(1+ R)
: (2.11)

W ith these results, the equations of stress-energy conservation for the B uid can be obtained from equations

(2.4){(2.6):

_�B +
4+ 4R

3+ 4R
(r � vB � _�c)+

_a

a

R

(1+ R)(3+ 4R)
�B = 0; (2.12)

_vB +
_a

a

R

1+ R
vB +

3+ 4R

12(1+ R)2
r �B = 0; (2.13)

_v?B +
_a

a

R

1+ R
v
?

B = 0: (2.14)

In cosm ologicalapplications,such asCM B anisotropies,we are m ore interested in the photon perturbationsrather

than the perturbations in the B uid. Therefore by using equations (2.9) and (2.10),we can extract the photon

com ponentfrom the aboveequationsto yield [18]

_�r+
4

3
r � vr�

4

3
_�c = 0; (2.15)

_vr+
_a

a

R

1+ R
vr+

1

4+ 4R
r �r = 0; (2.16)

where we have ignored neutrinosin the radiation so asto replace the subscript with r. The velocity can then be

elim inated to yield a singlesecond-orderequation:

��r�
4

3
��c +

_R

1+ R
(_�r�

4

3
_�c)�

1

3+ 3R
r 2

�r = 0: (2.17)

W enotethatalthough thephoton velocitiesarem issing in thisequation,they can berecovered atany given m om ent

using equation (2.15).

An alternative presentation ofequations(2.15)and (2.17)is via the entropy perturbation s. It is de�ned as the

uctuation in the num berofphotonsperdark m atterparticle

s=
3

4
�r� �c: (2.18)

Thusequations(2.15)and (2.17)can be rewritten as

_s= � r � vr; (2.19)

�s= �
_R

1+ R
_s+

1

3+ 3R
r 2(s+ �c): (2.20)

Aswe shallsee,�r can only have a white noise powerspectrum on super-horizon scales. From equation (2.16),this

im pliesa k2 powerspectrum in vr on thesescales.Adding thefactthattheentropy uctuation s startsfrom zero on

super-horizon scalesdueto the�xed num berofdark m atterparticlesperphoton,itthen followsfrom equation (2.19)

that both s and _s have a k4 fallo� outside the horizon. Therefore in num ericalsim ulations,as long as the initial

horizon size issm allerthan the scalesofourinterest,wecan sim ply sets= _s= 0 aspartofthe initialcondition.
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B .Stress-energy conservation ofthe source

The causalsource we shallconsiderisweak,so itwillappearonly as�rst-orderterm s in the perturbed Einstein

equations. Thusin the lineartheory we are considering here,they can be treated asbeing sti�,m eaning thattheir

evolution dependsonly on theirown self-interactionsand the background dynam icsofthe universe,butnoton their

self-gravity oron theweak gravitational�eld oftheinhom ogeneitiesthey produce.Thisassum ption willenableusto

separate the calculation oftheirdynam icsfrom thatofthe inhom ogeneitiesthey induce,allowing usto evolve them

asifthey are in a com pletely hom ogeneousbackground. Since the source issti�,itsenergy-m om entum tensor� ��

need only be locally covariantly conserved with respectto the background:

� 00;0 +
_a

a
� + = � 0i;i ; (2.21)

� 0i;0 + 2
_a

a
� 0i = � ij;j ; (2.22)

where� + = � 00 + � ii.

Anotherim portantaspectofcosm ic structure form ation with causalseedslike cosm ic defectsisthe factthatthe

sources,form ed atvery early tim es,willultim ately create under-densitiesin the initially hom ogeneousbackground,

outofwhich they are carved. Thisisa directresultofenergy conservation in the universe,and isnorm ally term ed

‘com pensation’.W e shalldiscussthisissuein m oredetaillater.

C .Linearly Perturbed Einstein equations

At�rstwe haveten Einstein equations

R �� = 8�G (T�� �
1

2
g��T)+ �g��; (2.23)

orequivalently,

G �� � R�� �
1

2
g��R S = 8�G T�� � �g��; (2.24)

whereR �� istheRiccitensor,G isthegravitationalconstant,T = g��T��,� isthecosm ologicalconstant,G �� isthe

Einstein tensor,and R S � g��R �� isthe scalarcurvature.Linearly perturbing the aboveequations,weobtain

�R �� = 8�G (�T �� �
1

2
h���

rs
Trs �

1

2
����

rs
�Trs +

1

2
���hpq�

rp
�
sq
Trs)+ a

2�h ��; (2.25)

orequivalently,

�G �� = 8�G �T �� � a
2�h ��; (2.26)

where

�T�� = � �� + a
2
X

N

(h�rT
r
N � + ��s�T

s
N �): (2.27)

A closed setofthe ten linearly perturbed Einstein equationsarethen

2�R 00 = � �h �
_a

a
_h = + 3

�
_a

a

� 2 X

N

(1+ 3c2
N
)
N �N + 8�G � + ; (2.28)

2

(

�~R ij �

"
�a

a
+

�
_a

a

� 2
#

~hij

)

=
�~hij + 2

_a

a

_~hij � r2~hij �
1

3
h;ij +

1

9
�ijr

2
h

+ ~hik;kj + ~hjk;ki�
2

3
�ij
~hkl;kl = 16�G ~� ij + a

2�~hij ; (2.29)

2�G 00 = ~hij;ij �
2

3
r 2

h + 2
_a

a
_h = 6

�
_a

a

� 2 X

N


N �N + 16�G � 00 ; (2.30)

2�G 0i =
_~hij;j �

2

3
_h;i = � 6

�
_a

a

� 2 X

N

0

(1+ �
N
)
N v

i
N
+ 16�G � 0i ; (2.31)
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wherethetracelesspartsarede�ned by ~R ij = R ij � �ijR
k
k=3,and sim ilarly for~hij and ~� ij.Theprim eoverthesum

in equation (2.31)indicates the sum overalluids exceptCDM .W e note from the above resultsthatin the IUSG

the cosm ologicalconstant� doesnotappearasextra term sin the perturbation equationsexceptin (2.29),the ‘ij’

com ponent.

W ithin the photon-baryon tight-coupling regim e,the aboveperturbation equationssim plify as:

� �h �
_a

a
_h = + 3

�
_a

a

� 2

[(2+ R)
r�r+ 
c�c]+ 8�G � + ; (2.32)

�~hij + 2
_a

a

_~hij � r2~hij �
1

3
h;ij +

1

9
�ijr

2
h + ~hik;kj + ~hjk;ki�

2

3
�ij
~hkl;kl = 16�G ~� ij + a

2�~hij ; (2.33)

~hij;ij �
2

3
r 2

h + 2
_a

a
_h = 6

�
_a

a

� 2

[
c�c + (1+ R)
r�r]+ 16�G � 00 ; (2.34)

_~hij;j �
2

3
_h;i = � 8

�
_a

a

� 2

(1+ R)
rv
i
r+ 16�G � 0i : (2.35)

W e note thatifthe source obeys the covariantconservation equations(2.21)and (2.22),then equations(2.34)and

(2.35)arepreserved by equations(2.32).

In thestandard CDM m odelwherethesourceisabsent,equation (2.32)can begreatly sim pli�ed on super-horizon

scales(k�� 1)in the radiation orm atterera:

��c +
1

�
_�c �

2(2+ R)

�2
�c = 0;in radiation era, (2.36)

��c +
2

�
_�c �

6

�2
�c = 0; in m atterera: (2.37)

SinceR = 3
B 0a=4
c0aeq byde�nition,weknow R � 1deep in theradiationera.Thustheaboveequationsboth have

a growing m ode �c / �2. Thisresulthasan im portantim plication fornum ericalsim ulationsofstructure form ation

with causalsources. In this case,ifnum ericalerrorsappear as white noise on super-horizon m odes k <
� 1=�,then

they willhave a growing behaviorS(k)= 4�k3P (k)/ k3�4. Forthe horizon crossing m ode k � 1=�,this becom es

S(k) / � [17]. This m eans that although energy conservation together with causality should forbid the growth of

perturbationson super-horizon scales,any num ericalerrorsseeded from early tim eswould inducea spuriousgrowing

m odeon thesescales.To overcom ethisproblem ,oneneedsto perfectly com pensatethesourceenergy in theinitially

hom ogeneousbackground.In thefollowing section,we shalldiscussoneofthe m ethodsthatcan achievethis.

D .Stress-energy conservation ofthe pseudotensor

The concept ofthe stress-energy pseudotensor in an expanding universe was �rst rem arked in this context by

Veeraraghavan and Stebbins[16],and furtherinvestigated by Pen,Spergeland Turok [17].To introducethisconcept,

we start from a perturbed M inkowskispace ĝ�� = ��� + ĥ��,where the Bianchiidentity r �G �� = 0 leads to an

ordinary conservation law @�G ��(1) = 0 at linear order in ĥ��. Adding the fact that the Einstein equations give

G ��(1) = 8�G T�� � G��(nl) where G ��(nl) is the sum ofnon-linearterm sin ĥ��,we see thatthe right-hand side of

thisequation providesan ordinarily conserved tensor,the stress-energy pseudotensor.

Thegeneralization ofthisresulttoan FRW m odelisstraightforward,with only thecorrectionsduetotheexpansion

ofthe universe. M oving allthese corrections(derivatives ofthe scale factor)to the right-hand side ofthe Einstein

equationswhile keeping only the linearterm sin h��,weobtain a pseudo-stress-energy tensor��� � G��(1)=8�G :

�00 =
3

8�G

�
_a

a

� 2

[
c�c + (1+ R)
r�r]�
1

8�G

_a

a
_h + � 00 ; (2.38)

�0i = �
1

2�G

�
_a

a

� 2

(1+ R)
rv
i
r + � 0i ; (2.39)

�ij = �ij
1

8�G

�
_a

a

� 2


r�r�
1

8�G

_a

a
(
_~hij �

2

3
_h�ij)+ � ij : (2.40)

Thistensorobeysan ordinary conservation law ���;� = 0 according to the Einstein equations,orequivalently
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�
00
;0 = �

0i
;i ; (2.41)

�
i0
;0 = �

ij

;j
: (2.42)

Thisisnota fundam entally new conservation law,butitdescribesthe interchangeofenergy and m om entum am ong

the di�erent com ponents in the universe,i.e.the radiation,m atter,and the source in our case. This description

appearsto be physically m oretransparentthan the originalEinstein equations.

Another advantage ofinvoking this form alism is that it is easier for num ericalsim ulations to specify the initial

conditionsand to m aintain propercom pensation on super-horizon scales.Asweshallexplain later,�ij can only have

a white-noise powerspectrum on super-horizon scales.Thusintegrating equations(2.41)and (2.42)overtim e shows

that�00 hasa k
4 powerspectrum and that�0i hasa k

2 powerspectrum . Therefore,as long asthe horizon size at

the beginning ofthe sim ulation is sm aller than the scales ofour interest,we can set �00 = �0i = 0 as the initial

condition,allowing forperturbationsto grow only inside the horizon and for�00 to fallo� ask
4 outsidethe horizon.

For sim ulations ofstructure form ation with causalsource,a check of�00 / k4 on super-horizon m odes willtellus

whetherornotthe com pensation iswellobeyed.

To m ake use ofthe pseudo-stress-energy tensorform alism in the study ofcosm ologicalperturbations,we com bine

theconservationequation forradiation (2.20),thede�nition ofpseudoenergy(2.38),and oneofthealternativeEinstein

equationsusing the pseudo-stress-energy tensor(2.41),to yield a convenientclosed setofequations:

�s= �
_R

1+ R
_s+

1

3+ 3R
r 2(s+ �c); (2.43)

_�c = 4�G
_a

a
(�00 � �00)�

_a

a

��
3

2

c + 2(1+ R)
r

�

�c + 2(1+ R)
rs

�

; (2.44)

_�00 = � 0i;i+
1

2�G

�
_a

a

� 2

(1+ R)
r_s: (2.45)

Herewehaveused equations(2.8),(2.18),(2.19)and (2.39)to elim inate _h,�r,v
i
r and �0i respectively.By analogy to

the resultsin Ref.[17],here we have builtboth the pseudoenergy �00 and the entropy uctuation s into the above

form alism .

E.Initialconditions ofcausalm odels

Asrequired by theIUSG ,allperturbation variablesarezero beforeany m echanism ofstructureform ation startsto

acton the initially hom ogeneousand isotropic universe.In causalm odels,causality also requiresthatlocalphysical

processescan neverinducecorrelated perturbationson scalesm uch largerthan thehorizon.Therefore,when theinitial

irregularitiesofthe universe are �rstform ed (e.g.via the form ation ofcosm ic defects,orthe presence ofination),

the spatialpartof� ��,��� and h�� can only havewhite-noise powerspectra on super-horizon m odes| theirspatial

perturbationsbeing uncorrelated on scaleslargerthan thehorizon size[16].Thesam eappliesto �N and thereforeh.

Itthen followsfrom equations(2.16),(2.22)and (2.42)respectively thatthe powerspectra ofvr,� 0i and �0i allfall

o� ask2 outsidethe horizon.From equations(2.19)and (2.41),wealso havethespectra ofs,_s and �00 proportional

to k4 on thesescales,aspreviously discussed.Asa sum m ary,wehaveforsuper-horizon m odesk � 1=� that

�c;�r;h;hij;� ij;�ij / k
0
; (2.46)

vr;� 0i;�0i / k
1
; (2.47)

s;_s;�00 / k
2
; (2.48)

where‘/ kn’m eansthe powerspectrum isproportionalto k2n.

Since the production tim e ofthe initialirregularitiesisnorm ally so early thatthe horizon size �i atthattim e is

m uch sm allerthan the cosm ologicalscalesk� 1cos ofourinterest(i.e.kcos�i� 1),the aboveconditionscan be regarded

as generalinitialconditions for allscales ofcosm ologicalinterest. Ifwe require kcos�i � 1 in our analysis,we can

sim ply choose

v
i
r = � 0i = �0i = s= _s= �00 = 0; (2.49)

asthe initialconditions,becausetheirpowerspectra alldecay aseitherk2 ork4 outsidethe horizon.
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W ith such a choice,we can see from equation (2.38)thatthere isstillfreedom forthe choice of�c,�r and _h into

which to com pensate � 00 when � 00 was�rstform ed. Nevertheless,as we shallanalytically prove later,no m atter

how � 00 wascom pensated into thebackground contentsoftheuniversewhen thecausalsourcewas�rstform ed,the

resulting m atter density perturbationstoday would be the sam e. W e note that this was�rstnum erically observed

in Ref.[17],and here we shallprovide a thorough interpretation to itusing ouranalyticalsolutionsto be obtained

later. W e also note thatnone ofthe above argum entswillhold ifthe initialperturbationsare seeded in an acausal

way,which isneverthelessnotofourcurrentinterest.

F.approxim ation ofinstantaneous decoupling

O nething wehavenotincluded in ourform alism isthetreatm entatand afterthedecoupling epoch �d.Beforethis

epoch,photonsand baryonsare assum ed to be tightly coupled,form ing a single B uid. Atthe decoupling epoch

�d,baryons and photons are assum ed to be instantaneously decoupled from each other,so that � and �B evolve

separately afterwards.A num erical�tto the redshiftofthe decoupling epoch is[19]

zd = 1291
(
m 0h

2)0:251

1+ 0:659(
m 0h
2)0:828

�
1+ b1(
B 0h

2)b2
�
; (2.50)

b1 = 0:313(
m 0h
2)� 0:419

�
1+ 0:607(
m 0h

2)0:674
�
; (2.51)

b2 = 0:238(
m 0h
2)0:223: (2.52)

Although thisistheresultforthedecoupling epoch ofbaryonsand thereisanother�tforthatofphotons,thesetwo

epochs| the recom bination ofbaryonsand the lastscattering ofphotons| coincide approxim ately in the absence of

subsequentreionization [20,21].

In addition,the photonsand baryonsare notin factperfectly coupled,and thisleadsto the di�usion dam ping of

photonsand Silk dam ping ofbaryons[22]during the decoupling epoch. To m odelthese e�ects,we apply dam ping

envelopesto both � and �B atthe decoupling epoch zd,i.e.

�̂N (d) =
e�N (d)D N (k); N = ;B; (2.53)

wherethetildeindicatestheFouriertransform ofaquantity and k isthewavenum ber.Thephoton di�usion dam ping

envelopecan be approxim ated by the form [21]

D (k)’ e
� (k=k )

m 

; (2.54)

where

k

M pc
� 1

=

(
2

�
arctan

"
�

2

�
F2

F1

� p2=p1

(
B 0h
2)p2

#) p1=p2

F1 ; (2.55)

m  = 1:46(
m 0h
2)0:0303

�
1+ 0:128arctan

�
ln
�
(32:8
B 0h

2)� 0:643
�	�

; (2.56)

p1 = 0:29; (2.57)

p2 = 2:38(
m 0h
2)0:184; (2.58)

F1 = 0:293(
m 0h
2)0:545

�
1+ (25:1
m 0h

2)� 0:648
�
; (2.59)

F2 = 0:524(
m 0h
2)0:505

�
1+ (10:5
m 0h

2)� 0:564
�
: (2.60)

Silk dam ping forthe baryonscan likewisebe approxim ated as[21]

D B (k)’ e
� (k=kS )

m S

; (2.61)

where

kS

M pc� 1
= 1:38(
m 0h

2)0:398(
B 0h
2)0:487

1+ (96:2
m 0h
2)� 0:684

1+ (346
B 0h
2)� 0:842

; (2.62)

m S = 1:40
(
B 0h

2)� 0:0297(
m 0h
2)0:0282

1+ (781
B 0h
2)� 0:926

: (2.63)
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In som e scenarios with causalsources,the dam ping envelopes (2.54) and (2.61) m ay depart from the form of

exponentialfall-o� here to a power-law decay towards sm aller scales. This is due to the survivalofperturbations

which are actively seeded during the decoupling process.Forexam ple,in m odelswith cosm ic strings,the departure

appears on scales sm aller than oforder a few arc-m inutes (i.e.the m ultipole index l>� 3000) [23]. Certainly this

isbeyond the scale range ofourinterest. M oreover,since the decoupling processisrelatively a shortinstantin the

entire evolution history ofthe perturbations,the contribution from these survived sm all-scale perturbationsshould

be relatively sm all.Adding the factthatwe expectthe post-decoupling contribution in the perturbationsseeded by

defectsto have a power-law fall-o� on sm allscalesdue to a certain topology ofthe source [5],the sm all-scalepower

in the �nalperturbations is likely to be dom inated by this post-decoupling contribution,rather than the prim ary

perturbations(those seeded before and during the decoupling,whose powerspectrum �rstexponentially decaysand

then turns to a power-law fall-o�). Therefore,on the scales ofour interest,the dam ping approxim ation em ployed

hereshould be stillappropriateform odelswith cosm icdefects.

Now we consider the evolution of� and �B after the decoupling epoch zd. From the energy conservation law

(2.4){(2.6),wehaveforthe baryon perturbations

��B � ��c +
_a

a
(_�B � _�c)= 0: (2.64)

This im plies (_�B � _�c) / a� 1,m eaning that the evolution of�B and �c willsoon converge to the sam e behavior.

W e also know thatm atterperturbationsgrow as�2 in the m atterera so that[�B (d) � �c(d)]isrelatively sm allwhen

com pared with either�B 0 or�c0.Asa consequence,in thecalculation of�B 0 and �c0 to linearorder,itisappropriate

to com bine �B and �c atthe decoupling epoch zd as

e�m (d) =

B 0�̂B (d)+ 
c0

e�c(d)


B 0 + 
c0

=
3
B 0

e�(d)D B =4+ 
c0
e�c(d)


B 0 + 
c0

; (2.65)

and thesam efortheirtim ederivatives.Then wehaveonly two uidsafterthedecoupling:thephoton uid (
 )and

the m atteruid,which islinearly com bined from the CDM and baryon uids(
 m = 
c + 
B ). Eventually we can

takethe m atterperturbationsatthepresentepoch to be e�c0 � e�B 0 � e�m 0.

To sum up,we �rstevolvethe CDM and B perturbationsup to the decoupling epoch zd given by (2.50),noting

thatourform alism extractsthe photon com ponent from the B uid. W e then apply dam ping envelopesto e�(d)

and e�c(d),as illustrated by equation (2.53),to account for the photon di�usion and Silk dam ping. e�m (d) is then

obtained by linearly com bining e�c(d) and
e�B (d),asshown in equation (2.65).Finally we carry on the evolution ofe�m

and e�r from the epoch zd to the present,using ourpreviousperturbation equationswith R = 0 and the subscript‘c’

replaced by ‘m ’.

G .A ccuracy for the standard C D M m odels

To verify ourschem e forevolving cosm ologicalperturbations,we �rstcalculate the CDM transferfunction in the

contextofthe adiabaticinationary CDM m odel:

Tc(k;�0)=
e�c(k;�0)e�c(0;0)

e�c(k;0)e�c(0;�0)
; (2.66)

where �0 is the presentconform altim e. To this end,we em ploy equations (2.43),(2.44)and (2.45)in the absence

ofthe source term s,and the approxim ation ofinstantaneousdecoupling described above. W e startthe evolution in

the deep radiation era when 
m � 
r � 1,R � 1,and �i� 1=k fora given m ode k.In thiscase,one choiceofthe

initialconditionsis

s= _s= 0; �c = �
2
i; �00 =

1

�G
: (2.67)

Figure 1 shows our results for the CDM transfer functions Tc(k;�0) at the present epoch in di�erent cosm ologies,

togetherwith theresultsobtained from CM BFAST [13].Itisclearthatthey agreevery well.Thediscrepancy ofthe

two reachesitsm axim um ofabout5% atthescalek � 1hM pc� 1 in theopen m odelwith 
c0 = 0:15 and 
B 0 = 0:05.

W e have also checked ourresultsagainstthose in Ref.[24],and they are in agreem entagain within a 5% error. In
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FIG .1. Com parison ofour CD M transfer functions at the present epoch Tc(k;�0) with results obtained from CM BFAST

[13].O n the top are resultsin atm odelswith a cosm ologicalconstant(i.e.
 � 0 + 
 c0 + 
 B 0 = 1).Atthe bottom are results

in open m odelswithouta cosm ologicalconstant.Resultsusing ourform alism are plotted assolid lines,while the resultsfrom

CM BFAST are plotted asdashed lines.W e have used h = 0:7 throughout.The m assfraction ofHelium -4 YH e = 0:24 and the

num berofneutrino speciesN � = 3:04 have been used in obtaining the resultsfrom CM BFAST.
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addition,from the bottom curvesin Figure 1,we notice the oscillationsresulting from the photon-baryon coupling

before�d in cosm ologieswith high baryon fractions
B 0=
m 0.

Next,wecalculatetheradiation transferfunction atthedecoupling epoch,sincetheradiation perturbationsatthis

epoch willappearasthe intrinsicCM B anisotropies.W e de�ne thistransferfunction as:

Tr(k;�d)=
e�r(k;�d)e�c(0;0)

e�c(k;0)e�c(0;�0)
; (2.68)

wherewenorm alizetheradiation perturbationsat�d to both theam plitudeofthesuper-horizon CDM perturbations

today and the initialCDM powerspectrum ,aswe did forTc(k;�0)(see eq.[2.66]).Thisde�nition willenable usto

verify notonly the scaledependence ofthe evolution ofperturbations,butalso theirnorm alizations.Figure2 shows

ourresults,again asa com parison with the resultsfrom CM BFAST.W e see thatalthough the scale dependence of

our results is slightly di�erent from that ofthe CM BFAST results,the overallnorm alisation appears to be quite

accurate. The sideway shiftofthe oscillatory peaksin ourresultswhen com pared with the peaksfrom CM BFAST

hasa m axim um ofabout5% in the atm odelwith 
 c0 = 0:95 and 
B 0 = 0:05. Thisdiscrepancy resultsnaturally

from the instantaneous-decoupling approxim ation in our form alism . As a result,despite the sm allinaccuracy,our

form alism providesa m uch m orenum erically e�cientway than thefullEinstein-Boltzm ann schem ein calculating the

density perturbations.

III.SO LU T IO N S O F M A T T ER P ER T U R B A T IO N S

A .D ecom position ofperturbations

W e�rstconsiderdensity perturbationsabouta atFRW m odelwith a cosm ologicalconstant�,which arecausally

sourced by an evolving source �eld with the energy-m om entum tensor � ��(x;�). As seen in the previous section,

with thephoton-baryon tightcoupling approxim ation in thesynchronousgauge,thelinearevolution equationsofthe

radiationand CDM perturbationscan begiven byequations(2.43),(2.44)and (2.45),which arederived from equations

(2.20),(2.38) and (2.41). This set ofequations has the advantage in controling the initialcondition for num erical

sim ulations,aswellasunderstanding thelaw ofstress-energy conservation.Foranalyticsim plicity,however,weshall

drop the use of�00 in this section,and em ploy equations (2.17)and (2.32) to form an alternative set ofevolution

equationsfordensity perturbations:

��r�
4

3
��c +

_R

1+ R
(_�r�

4

3
_�c)�

1

3(1+ R)
r 2

�r = 0; (3.1)

��c +
_a

a
_�c �

3

2

�
_a

a

�2
[
c�c + (2+ R)
r�r]= 4�G � + : (3.2)

W enoteagain thatthecosm ologicalconstant� a�ectsonly thebackground dynam ics(i.e.,theevolution ofthescale

factora),butdoesnotcontribute extra term sin the above perturbation equations. Afterthe decoupling epoch �d,

the treatm entisessentially the sam e asthatintroduced in section IIF.W e havenum ericalveri�ed in the contextof

theadiabaticinationary CDM m odelthatthesetofequations(3.1)and (3.2)and thesetofequations(2.43),(2.44)

and (2.45)indeed giveidenticaltransferfunctionsofdensity perturbations,with a num ericaldiscrepancy oflessthan

0:1% .

Assum ing thatthecausalsourcewasform ed atsom einitialtim e�iand then evolved to thecurrenttim e�,itproves

usefulto splitthe source-seeded linearperturbationsinto initial(I)and subsequent(S)parts[16]:

�N (x;�)= �
I
N (x;�)+ �

S
N (x;�);N = c;r: (3.3)

The initialperturbations�IN (x;�)originate from the source con�guration at�i,while the subsequentperturbations

�SN (x;�)areactively and cum ulatively seeded by the laterevolution ofthe sourceateach �̂,where �i< �̂ < �.This

isequivalentto having the initialconditions

�
I
N (�i)= �N (�i); _�IN (�i)=

_�N (�i); (3.4)

�
S
N (�i)=

_�SN (�i)= 0: (3.5)

Becausethesourceinducesisocurvatureperturbations,�I(x;�)m ustcom pensate�S(x;�)on com ovingscalesjx� x0j>

�topreventacausalperturbation growth on super-horizon scales.O neoftheaim softhispaperistoshow analytically
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FIG .2. Com parison ofourradiation transferfunctionsatthe decoupling epoch Tr(k;�d)with resultsobtained from CM B-

FAST [13]. O n the top are resultsin atm odelswith a cosm ologicalconstant(i.e.
 � 0 + 
 c0 + 
 B 0 = 1).Atthe bottom are

results in open m odels without a cosm ologicalconstant. O urresults are plotted as solid,dot-dashed,and dotted lines,while

theCM BFAST resultsare plotted asdashed lines.Notethatthistransferfunction hasbeen norm alised to both theam plitude

ofthe super-horizon CD M perturbationstoday and the initialCD M powerspectrum (see eq.[2.68]).
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how this com pensation m echanism can be achieved. Now we can solve the system ofequations (3.1) and (3.2) by

em ploying the integralequation with G reen functions:

�
I
N (x;�)=

X

N 0

Z

d
3
x
0GN N

0

1 (X ;�;�i)�N 0(x0;�i)+

Z

d
3
x
0GN N

0

2 (X ;�;�i)_�N 0(x0;�i); (3.6)

�
S
N (x;�)= 4�G

Z �

�i

d�̂

Z

d
3
x
0GN s(X ;�;̂�)� + (x

0
;�̂); (3.7)

whereX = jx � x0j.Theeasiestm ethod ofobtaining theG reen-function solutionsisto go to Fourierspaceand solve

the resulting hom ogeneous system ofordinary di�erentialequations with appropriate initialconditions. Since the

G reen functionsdepend only on the m odulusofX = jx � x0j,itfollowsthattheirFourieram plitudesm ustdepend

only on the m odulusofk.Thuswehave

e�IN (k;�)=
X

N 0

h
eGN N

0

1 (k;�;�i)e�N 0(k;�i)+ eGN N
0

2 (k;�;�i)
_e�N 0(k;�i)

i

; (3.8)

e�SN (k;�)= 4�G

Z �

�i

eGN s(k;�;�̂)e� + (k;�̂)d�̂: (3.9)

W e notice thatequation (3.9)is di�erent from the form in Ref.[16],where the authorsidenti�ed our eGN s as eGN c
2 .

Thisidenti�cation isincorrect,because eGN s and eGN c
2 havedi�erentinitialconditions,aswe shallsee.

Forsim plicity,we assum e no baryonsand therefore setR = 0 fornow,and shallrelax thisconstraintlater.W ith

the change ofvariable y = 1+ A�=2 where A = 2(
p
2� 1)=�eq (leading to a=aeq = y2 � 1),and with the form alism

(3.8)and (3.9),wecan rewriteequations(3.1)and (3.2)in Fourierspaceas

eGr00�
4

3
eGc00+

4k2

3A 2
eGr = 0 ; (3.10)

(1� y
2)eGc00� 2yeGc0+

"

6�
12eGr=eGc

1� y2

#

eGc = 0 ; (3.11)

wherea prim erepresentsa derivativewith respectto y,eGc � eGcN1 ,eGcN2 or eGcs,and eGr � eGrN1 ,eGrN2 or eGrs.According

to equations(3.8)and (3.9),the initialconditions(3.4)and (3.5)now becom e:

eGcc1 =
_eGcc2 = eGrr1 =

_eGrr2 = 1 at �= �i; (3.12)

_eGcs =
3

4

_eGrs = 1 at �= �̂; (3.13)

with alltheotherG reen functionsand theirtim ederivativesvanishing.Therearethreethingsweshould noticehere.

First,itisrequired that eGN N
0

i (k;�;�i)= 0for�� �i,and that eG
N s(k;�;�̂)= 0for�� �̂.Second,theG reen functions

eGN N
0

i only describe the tim e dependence ofthe hom ogeneousversion ofequations(3.1)and (3.2),while the G reen

functions eGN s are,by theconventionalde�nition,thetrueG reen functionsused to solvetheinhom ogeneousequations

(3.1) and (3.2). Finally,since there are only four variables in equations (3.10)and (3.11)(i.e. eGc, eGr,
_eG
c

and
_eG
r

),

there m ustexistsom e dependence am ong the �ve setsofG reen functions(i.e. eGN c
1 , eGN r

1 , eGN c
2 , eGN r

2 and eGN s). This

dependence can be observed from the initialconditions(3.12)and (3.13),which yield

eGN s = eGN c
2 +

4

3
eGN r
2 : (3.14)

In Ref.[16],the authors ignored the fact that
_eGrs = 4=3 in the initialcondition (3.13). This ignorance led to the

absence ofthe second term in equation (3.14) (and thus the identi�cation of eGN s = eGN c
2 ),and consequently the

incorrect solutions ofG reen functions in their �nalresults. Based on equations (3.10) and (3.11) with the initial

conditions(3.12)and (3.13),in thefollowing subsectionsweshallanalytically derivea com pletesetofG reen-function

solutionsforthe m atterperturbations,which willthen be num erically veri�ed.
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B .Super-horizon and sub-horizon m odes

Underthe lim itk� � 1 ork� � 1,the ratio eGr=eGc willapproach a constant(see below),so thatequation (3.11)

becom estheassociated Legendreequation,with solutionscom posed oftheassociated LegendrefunctionsP
� �

2 (y)and

Q
�

2(y),where�=

q

12eGr=eGc.W e shalluse subscripts1 and 0 to denote solutionsin the lim itsk�� 1 and k�� 1

respectively.Forsim plicity,weshalldenote both �̂ and �i as �̂ in the following solutions.

1.k�� 1:W hen thewavelengthsarem uch sm allerthan thehorizon size,theradiation oscillatesm any tim esper

expansion tim e and itse�ectisthereforenegligible.By setting eGr=eGc = 0,equation (3.11)can be solved as

eGc
1
(�;�̂)= E (̂�)P 0

2 (y)+ F (̂�)Q 0
2(y); (3.15)

whereE (̂�)and F (̂�)arefunctionsof�̂.Thisgivesthe sub-horizon solutions.

2.k�� 1:W hen thewavelengthsarem uch longerthan thehorizon size,wehave eGr=eGc = 4=3 astheconsequence

ofzero entropy (seeeqs.[2.18]and [2.49]),giving �= 4.Thusequations(3.10)and (3.11)yield

eGr0(�;�̂)=
4

3
eGc0(�;�̂)+ � i(�� �̂)+ �i; (3.16)

eGc0(�;�̂)= G (̂�)P � 4
2 (y)+ H (̂�)Q 4

2(y)

+ 12

Z y

yi

Q 4
2(x)P

� 4
2 (y)� P

� 4
2 (x)Q 4

2(y)

Q 4
2(x)P

� 40

2 (x)� P
� 4
2 (x)Q 40

2 (x)

A�i+ 2�i(x � yi)

A(x2 � 1)2
dx; (3.17)

where �i and �i are constants,and G (̂�)and H (̂�)are functionsof�̂,alldeterm ined by the initialconditions.

Thesearethe super-horizon solutions.

Com bined with theinitialconditions(3.12)and (3.13),equations(3.15)and (3.17)can besolved to yield thefollowing

results.Forclarity,weshalldenote ŷ = 1+ A �̂=2 in eGN s and yi= 1+ A�i=2 in eGN N
0

i both asw :

eGcs
1
=

1

4A
(w 2� 1)

�

(3w 2� 1)(3y2� 1)log

�
(w + 1)(y� 1)

(w � 1)(y+ 1)

�

� 6(y� w)(3wy+ 1)

�

; (3.18)

eGcs0 =
2(y6w � w6y� 5y4w + 5w 4y+ 15y2w � 15yw2 + 5w � 5y)

5A(y2 � 1)2(w 2 � 1)
; (3.19)

eGcc11 =
1

2
(3y2 � 1)(3w2 � 2)�

9

2
wy(w 2 � 1)

+
3

4
w(w 2 � 1)(3y2 � 1)log

�
(y+ 1)(w � 1)

(y� 1)(w + 1)

�

; (3.20)

eGcc10 =
2yw 5 � 20yw3 + 20y2w 2 + 20w 2 � 30yw � 15y4 � 5+ 3y6 + 25y2

5(y2 � 1)2(w 2 � 1)
; (3.21)

eGcc21 = eGcs
1
; (3.22)

eGcc20 =
eGcs0 �

4

3
eGcr20 ; (3.23)

eGcr11 = 0; (3.24)

eGcr10 =
3(y6 � 5y2w 4 + 4yw 5 + 10y2w 2 � 5y4 � 5w4 + 10y2 � 20yw + 10w2)

5(y2 � 1)2(w 2 � 1)2
; (3.25)

eGcr21 = 0; (3.26)

eGcr20 =
� 3

10A

�
(y2 + 4y+ 5)(y� 1)2

(y+ 1)2
log

�
y� 1

w � 1

�

+
(y2 � 4y+ 5)(y+ 1)2

(y� 1)2
log

�
w + 1

y+ 1

�

+ 2 (w � y)
(4yw 3 � 6y2w 2 � 10w2 + y5w � 4y2w + 7yw + 6y2 � 4y3 + 5+ y4)

(w 2 � 1)(y2 � 1)2

�

: (3.27)

W e note thatequations(3.22),(3.23)and (3.26)resultdirectly from the initialconditions(3.12)and (3.13). They

areconsistentwith equation (3.14).
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FIG .3. The source transferfunctions eT cs
0 (k� � 1,dashed line)and eT cs

1 (k� � 1,solid line).

Despite the com plicated form spresented here,allthese G reen functionshave sim ple asym ptotic behaviorsin the

radiation-orm atter-dom inated regim es.Sincewearem oreinterested in them atterperturbationstoday and weknow

from equation (3.11)that eGc / �2 / a when �=�eq ! 1 ,wecan design a ‘sourcetransferfunction’as

eT
c(k;�̂)� lim

�=�eq! 1

aeq

a
eGc(k;�;�̂): (3.28)

Note thatthisisdi�erentfrom the de�nition ofthe standard CDM transferfunction (2.66).Equations(3.18){(3.27)

then lead to the sourcetransferfunctions:

eT
cs
1
=

3

4A
(w 2 � 1)

�

(3w 2 � 1)log

�
w + 1

w � 1

�

� 6w

�

; (3.29)

eT cs
0 =

2w

5A(w 2 � 1)
; (3.30)

eT
cc
11 =

3

2
(3w 2 � 2)+

9

4
w(w 2 � 1)log

�
w � 1

w + 1

�

; (3.31)

eT cc
10 =

3

5(w 2 � 1)
; (3.32)

eT cc
21 = eT cs

1
; (3.33)

eT
cc
20 =

eT
cs
0 �

4

3
eT
cr
20 = �

2

5A

�
w

w 2 � 1
� log

�
w + 1

w � 1

��

; (3.34)

eT
cr
11 = 0; (3.35)

eT cr
10 =

3

5(w 2 � 1)2
; (3.36)

eT cr
21 = 0; (3.37)

eT cr
20 =

3

10A

�
2w

w 2 � 1
� log

�
w + 1

w � 1

��

: (3.38)

W e plotthese source transferfunctionsin Figures3,4,and 5. They are now only functionsofthe initialtim e,but

not ofthe �naltim e. In the context oftopologicaldefects,the defect source was form ed at �i � �eq. Therefore

itwould be also interesting to investigate the asym ptotic behaviorsofthe source transferfunctionswith very early

initialtim es.For�i� �eq,equations(3.29){(3.38)becom e:
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eT
cc
11 (i) =

3

2
; eT

cs
1 (i) =

eT
cc
21 (i) =

3�i

2�eq
log

4�eq

A�i
; eT

cr
11 (i) =

eT
cr
21 (i) = 0; (3.39)

3A

2
eT cs
0(i) =

eT cc
10(i) = �

3A

2
eT cc
20(i) = A

�i

�eq

eT cr
10(i) = A eT cr

20(i) =
3�eq

5A�i
; (3.40)

wherethe subscript(i)denotesthe condition �i� �eq.Theseasym ptoticbehaviorscan be clearly seen in Figures3,

4 and 5.W enotethaton sub-horizon scales,eT cs
1
hasa m axim um at�� �eq asseen in Figure3.Adding thefactthat

cosm ic defectsseed m atterperturbationsonly on sub-horizon m odesdue to the com pensation m echanism ,itfollows

thatthe defect-induced m atterperturbationsareseeded m ainly during theradiation-m attertransition era.Thisisa

generically di�erentm echanism from inationary m odels,in which m atterperturbationsare seeded during ination

in the deep radiation era when allthe m odesare welloutside the horizon. Nevertheless,the defectand inationary

m odelsboth providescale-invariantperturbationsathorizon crossing,and these perturbationsevolvesim ilarly after

horizon crossing.

C .D egeneracy ofthe G reen functions

In principleweneed ten G reen functions(�vefor�c = �Ic + �Sc and �vefor�r = �Ir+ �Sr)in orderto solveequations

(3.1)and (3.2)by using the form alism (3.8)and (3.9). However,in addition to the dependence (3.14)by which we

can reduce the e�ective num berofthe G reen functionsby two,there isanotherconstraintwe can invoke| the zero

entropy uctuation on super-horizon scales in the initialconditions,i.e.s = _s = 0 at �i for m odes k � 1=�i (see

eqs.[2.18]and [2.49]).Sincetheform ation tim e�ioftheactivesourceisnorm ally soearly thatthecondition k � 1=�i
(and thuss= _s= 0)isgenerally satis�ed on the scalesofourcosm ologicalinterest,we can rewriteequation (3.8)as

e�IN (k;�)=
eGN3 (k;�;�i)

e�c(k;�i)+ eGN4 (k;�;�i)
_e�c(k;�i); (3.41)

where

eGNi = eGN c
i� 2 +

4

3
eGN r
i� 2 ; i= 3;4: (3.42)

From equations(3.20),(3.21),(3.24)and (3.25),wecan get

eGc31 = eGcc11 ; eGc30 =
�
5(w 2 � 1)2(y2 � 1)2

�� 1 �
y
6 + 3y6w 2 � 5y4 � 15w2y4 + 15y2

+ 45w 2
y
2 + 2w 7

y� 10w3y� 6yw5 � 50yw + 5+ 15w2
�
: (3.43)

Using equation (3.14),we can also obtain eGc4 =
eGcs,so that

eGc41 = eGcs
1
; eGc40 =

eGcs0 : (3.44)

Theseresultsyield the sourcetransferfunctions:

eT
c
31 = eT

cc
11 ;

eT
c
30 =

3w 2 + 1

5(w 2 � 1)2
; eT

c
41 = eT

cs
1
; eT

c
40 =

eT
cs
0 : (3.45)

Ifthe initialtim e isdeep in the radiation era,i.e.�i� �eq,wefurtherhave

eT
c
30(i) =

4�2eq

5A 2�2i
/ �

� 2

i ; eT c
31 (i)

= eT cc
11 (i)

= 3

2
/ �0i; (3.46)

eT c
40(i) =

eT cs
0(i) =

2�eq

5A 2�i
/ �

� 1

i
; eT c

41 (i)
= eT cs

1 (i)
=

3�i
2�eq

log
4�eq

A �i
/ �i; (3.47)

wherethelastproportionality isonly an approxim ation.Figure6 showsthesolutionsof eT c
30 and

eT c
31 (= eT cc

11 ),while

eT c
40 �

eT cs
0 and eT c

41 � eT cs
1
arealready shown in Figure3.W enotethetheasym ptoticbehaviorsindicated in equations

(3.46)and (3.47)can be clearly seen in Figures3 and 6. Therefore,the originalten G reen functions forsolving e�c

and e�r have now been reduced to four functions: two for e�c (eG
c
4 �

eGcs and eGc3),and two for e�r (eG
r
4 �

eGrs and eGr3).

W eshallconcentrateonly on thesolutionsofe�c,whileleaving thoseofe�r elsewhere[25].To calculatee�
S
c weneed

eGcs

using equation (3.9);to calculate e�Ic we need
eGc4 =

eGcs and eGc3 using equation (3.41). In solving e�Ic,we note that
eGc3

transferstheinitialperturbationsofboth m atterand radiation [e�c(�i)+ e�r(�i)]to today,while eGcs transferstheinitial

perturbationsoftheirtim e derivatives[
_e�c(�i)+

_e�r(�i)]to the present.
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FIG .6. The source transferfunctions eT c
30 (dashed line)and eT c

31 (= eT cc
11 ;solid line).

D .Solutions on interm ediate scales

W ith eGc3 and
eGc4 (=

eGcs)asthetwobasisG reen functions,wecan now work outthesolutionson interm ediatescales,

using resultsderived in previoussections.In the m atterera, eGri �
eGci on allscalesso from equation (3.11)we know

that eGci0(k;�0;�i)=
eGci1 (k;�0;�i)when �i� �eq.Thiscan beclearly seen from Figures3 and 6.In theradiation era,

the perturbations[e�c(�i)+ e�r(�i)]or[
_e�c(�i)+

_e�r(�i)]thatwere seeded wellbefore the horizon crossing willevolve in

the sam e way asin the standard CDM m odeldue to the sam e zero entropy uctuation initialcondition. Therefore

the solution interpolating between eGci0(k;�0;�i) and
eGci1 (k;�0;�i) for �i � �eq willbe the standard CDM transfer

function.Thuswecan write down a �tofthe solution forthe fullgam utofk and �i as

eGci(k;�0;�i)=
eGci1 (�0;�i)+

h
eGci0(�0;�i)�

eGci1 (�0;�i)

i

T(k)I(k;�i); i= 3;4; (3.48)

where

T(k)=

"

1+
(0:0534+ 2:75

1+ 3:83k
)k2

ln(2e+ 0:11k)

#� 1

; (3.49)

I(k;�i)=
1+ 30�i

1+ 30�i(1+
k�i
2�
)
; (3.50)

and k isin unitsof�� 1eq (see equation (A11)).Here T(k)� Tc(k;�0;
B 0 = 0)isthe standard CDM transferfunction

withoutbaryons(m odi�ed from Ref.[19];seeeq.[2.66]forthede�nition ofTc(k;�0)),and I(k;�i)isa sm allcorrection

near the horizon crossing to m ake the analytic solutions (3.48) �t the num ericalresults. For a given m ode which

isinitially outside the horizon,the background contentsofthe universe com pensate the defectsource untilhorizon

crossing. Therefore the detailed behavior ofthese G reen functions near the horizon scale willa�ect the so-called

com pensation scale,beyond which no perturbations can grow. This m eans that the correction function I(k;�i) in

equation (3.48)actually plays an im portant role in getting the com pensation scale right,and we shalldiscuss this

furtherin section IV C. W e have veri�ed num erically forboth eGc3 and
eGc4 thatthe �t(3.48)isaccurate within a 4%

errorforany k and �i(notethattheinitialconditionsofeG
c
3 and

eGc4 in thenum ericalveri�cationscan beobtained from

eqs.[3.12],[3.13]and [3.42]).Figure7 showsthe num ericalsolutionsof eGc3 and
eGc4 (=

eGcs)within a chosen dom ain of

(k;�i). Itcon�rm sthe asym ptotic behaviorsindicated by equationsin (3.45)(see also eqs.[3.29],[3.30]and [3.31]),

and plotted in Figures3and 6.Theasym ptoticbehaviorsshown by equations(3.46)and (3.47)can bealsom arginally

observed from Figure7.

18



10
−3

10
−2

10
−1

10
0

10
1

10
0

10
5

10
10

k (h Mpc−1)

G
c 3 (

k;
 η

0, η
i )

 a
eq

 / 
a 0

η
i
=10−5

η
i
=179

10
−3

10
−2

10
−1

10
0

10
1

10
−2

10
0

10
2

10
4

k (h Mpc−1)

G
c 4 (

k;
 η

0, η
i )

 a
eq

 / 
a 0

η
i
=10−5

η
i
=179

FIG .7. Thenum ericalsolutionsofeGc
3(k;�0;�i)(upperpanel)and eGc

4(k;�0;�i)(= eG
cs
(k;�0;�i);lowerpanel).They both have

been norm alized to the scale factor today,a0=aeq. Each line has a di�erentinitialtim e �i,whose sm allest and largest values

are labeled in both plots.Successive lineshave even logarithm ic tim e intervals,and �i isin unitsof�eq.
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Also shown are the �i= �d (horizontaldashed line),and the k = ks(d) (verticaldashed line).

Schem atically,we can divide the (k;�i)-plane into three regions for the solutions of eGci (i= 3;4). As shown in

Figure 8,these three dom ains are: Region I(k < keq = 1=�eq),Region II(k > keq and k > 1=�i),and Region III

(keq < k < 1=�i). In Region I,the solution of eGci is
eGci0 because the horizon crossing happensafter�eq,afterwhich

eGci0 =
eGci1 asargued before.In Region II,the solution is eGci1 because allm odesin thisregion areinside the horizon

allthe tim e. W e notice that eGci0 m ergeswith
eGci1 atthe boundary ofRegionsIand II,where �i > �eq. In Region

III,the solution along the k direction isin the sam e form asthe standard CDM transferfunction. Thisis because

m odes with largerk crossthe horizon earlier,so thattheir perturbationsare suppressed after the horizon crossing

forlongeruntil�eq.In addition,the solution along the �i direction in Region IIIisin the sam e form as eGci0.Thisis

becausem odesin thisregion areinitially on super-horizon scales,and a given m odewith di�erentinitialtim e �i will

experiencethesam eam ountofsuppression resultingfrom theperiod between thehorizon crossingand �eq.Therefore,

RegionsI,IIand IIIillustratethe intrinsicproperty ofthe solution (3.48).

E.T he e�ect ofbaryons

There is one im portant issue which we have not discussed| the e�ect ofbaryons. Prior to the photon-baryon

decouplingat�d,theCDM and baryonsaredynam ically independent.In thisera,thephoton-baryon uid propagates

asacoustic waveswith a sound speed given by equation (2.11),preventing baryonsfrom collapsing on sm allscales.

Thereforethereexistsa sound horizon atthedecoupling epoch ds(d) (hereaftersim ply thesound horizon)which isthe

distancesuch wavescan travelpriorto �d,and which isthelargestscaleatwhich thebaryonscan a�ecttheevolution

ofdensity perturbations.Ithasbeen shown thatinsidethesound horizon ds(d),notonly aretheCDM perturbations

seeded before�d suppressed dueto thepresenceofbaryons(e.g.[24,19,21]),butalso thebaryonsthem selveshavean

exponentially decaying powerdue to the Silk dam ping [22](see also eq.[2.53]),with acoustic oscillationsdue to the

velocity overshoot[26,27]. After the decoupling,baryonsevolve in the sam e way as the CDM does,so the m atter

perturbationstoday can beobtained by linearly com bining theCDM and baryonicuctuationsat�d (seesection IIF

and eq.[2.65]),and then evolving them to today.

Itfollowsthatthe baryonic e�ectstend to suppressthe m atterperturbationsseeded before the decoupling epoch

(�< �d,seethehorizontaldashed linein Figure8)and on scalesinsidethesound horizon (i.e.fork > ks(d) � 1=ds(d),

seethe verticaldashed linein Figure8).Theperturbationsseeded after�d oron scalesk < ks(d) willnotbea�ected

by the baryons. W ith thisargum ent,we can im pose a suppression factoron ourcurrentsolution (3.48)to account
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forthe e�ectofbaryons,i.e.the solution with the inclusion ofbaryonscan be written as

eG
c(B )

i (k;�;�i;h;
m 0;
B 0)= eGci(k;�;�i)B (k;�i;h;
m 0;
B 0); (3.51)

whereB (k;�i;h;
m 0;
B 0)accountsforthe baryonicsuppression:

B (k;�i;h;
m 0;
B 0)=

(
T (k;h;
 m 0;
 B 0)

T (k;h;1;0)
; for�i� �d ;

1; for�i>� �d ork < ks(d) � 1=ds(d);
(3.52)

whereT(k;h;
m 0;
B 0)istheusualstandard CDM transferfunction with thebaryonicdependence.O neaccurate�t

ofT(k;h;
m 0;
B 0)isprovided in Ref.[19].W enotethattheratio T(k;h;
m 0;
B 0)=T(k;h;1;0)isunity outsidethe

sound horizon (k < ks(d) � 1=ds(d)),and islessthan unity inside the sound horizon.Referring to Figure8,equation

(3.52)m eansthatthevalueofB (k;�i;h;
m 0;
B 0)islessthan unity in theregion to therightand abovethedashed

lines,and isunity otherwise. W e also note thatin the low-
m 0 m odels,the sound horizon can be sm allerthan the

radiation-m atterequality horizon,i.e.,itispossible thatks(d) � 1=ds(d) > keq [19].In addition,there isa transition

era (�i <� �d)which is notincluded in equation (3.52). This is because in this era the baryonic e�ects do notfully

operate asin the regim e �i � �d so thata good �tis nottrivialto obtain. W e have num erically veri�ed equation

(3.52),although an accurate�tto the m issing era �i<� �d hasyetto be found.

F.Solutions in K 6= 0 or � 6= 0 m odels

The solutionswehaveobtained so farhaveassum ed K = � = 0.ForK 6= 0 or�6= 0,the growing behaviorofthe

CDM perturbationsdepartsfrom thatofa at� = 0 m odelonly atvery latetim esin them atterera (seelaterfora

m oredetailed argum ent).Thisallowsusto apply a universalsuppression factoron eGc(B ) to accountforthee�ectsof

curvatureor�:

eG
c(B )

i (k;�0;�̂;h;
 m 0;
B 0;
� 0)= 
m 0h
2
g(
m 0;
� 0)eG

c(B )

i (k;�0;�̂;1;1;
 B 0;0); (3.53)

wherek isin unitsof
m 0h
2 M pc

� 1
,and g(
m 0;
� 0)isgiven by [28]

g(
m 0;
� 0)=
5
m 0

2

h



4=7

m 0 � 
� 0 + (1+ 
m 0=2)(1+ 
� 0=70)

i : (3.54)

In equation (3.53),theleading factor
m 0h
2 resultsfrom thefactthattheratio ofscalefactorsa0=aeq isproportional

to 
m 0h
2 and that the G reen function eG

c(B )

i = eT
c(B )

i a0=aeq is proportionalto this ratio. The factor g(
m 0;
� 0)

accounts for the suppression ofthe linear growth ofdensity perturbations in a K 6= 0 or �-universe relative to an


m 0 = 1 and 
� 0 = 0 universe [28](also veri�ed in Ref.[29]). The reason fork to have the unit 
 m 0h
2 M pc

� 1
in

equation (3.53)isthatthe horizon size atradiation-m atterequality �eq isproportionalto (
m 0h
2)� 1 (see eq.[A11]

in Appendix A).

For K 6= 0 or � 6= 0,the extrapolation schem e (3.53) willbe inaccurate when �̂ is close to � 0,i.e.,when the

background dynam ics at �̂ signi�cantly departs from that ofa at � = 0 m odel. Nevertheless,this extrapolation

schem eisstillappropriateform ostm odelswith activesourcefortwo reasons.First,in thecontextofcosm icdefects,

thepowerofm atterperturbationson thescalesofourinterest(k � 0:01{1hM pc
� 1
)ism ainly seeded around �eq (see

Figure 10 and the discussion aftereq.[3.40]).Atthistim e,the curvatureor� e�ectsarenegligible.Second,atlate

tim eswhen thecurvatureor�e�ectsbecom eim portant,thesescalesofourinterestarealready wellinsidethehorizon

so thatany curvature term sin the perturbation equationscan be neglected. Therefore,the only required change in

theperturbation equationsto accountforthee�ectsofcurvatureor� issim ply to incorporatethecorrectbackground

dynam ics,and thisinvolvesonly m odi�cationsin a(�),
 c(�)and 
 r(�),whosesolutionsaregiven in Appendix A.As

can beseen in Figure10,thepresenceofcurvatureoracosm ologicalconstanta�ectsthebackground dynam icsonly at

latetim es.M oreprecisely,weverify thatfor(
m 0;
� 0)= (0:2;0);(0:2;0:8);(1;0)and (2:0;0),thelargestobservable

scale for m atter perturbations k � 0:01hM pc
� 1

corresponds to the horizon sizes at � � 5;5;27;54�eq respectively,

whereasin these m odelsthe curvature orcosm ological-constantdom ination occursonly ata m uch laterepoch when

�> �0.Atthesem om ents(�� 5;5;27;54�eq),thescalefactorin theK 6= 0 or� 6= 0 m odelsdepartsfrom thatin the

at� = 0 m odelonly by lessthan one percent. Indeed,we have num erically veri�ed thatthe extrapolation schem e

(3.53)isaccuratewithin a 5% errorfor�i� 60�eq and 
� � 0:85 in �-m odels,for�i� 20�eq and 
m 0 � 0:2 in open

� = 0 m odels,and for�i � 200�eq and 
m 0 � 2 in closed � = 0 m odels. These rangesofcosm ologicalparam eters

haveapparently covered the valuesofourinterest.
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IV .IM P O R TA N T P R O P ER T IES

W ith the G reen-function solutions we have found,we can now analytically investigate som e im portant aspects

aboutthe growth ofcosm ologicalm atterperturbations.

A .T he standard C D M m odel

First we investigate the relationship between our G reen functions and the standard CDM transfer function,and

thereby to justify the use ofthe standard CDM transfer function in the analytic solution (3.48). In the standard

CDM m odel,thereareno subsequentperturbations,so wehavee�N = e�IN + e�SN = e�IN .Asdiscussed in equations(2.36)

and (2.37),we also know that the CDM perturbations have a growing m ode e�c(k;�) / �2 on super-horizon scales

(k�� 1)for�� �eq or�� �eq.Forthe super-horizon m odesin the radiation era and allm odesin the m atterera,

thisallowsusto write

e�c(k;�)= A j(k)�
2
; j= R;M ; (4.1)

whereA j isthecoe�cientofthegrowing m odein theradiation era (j= R:�� � eq and k�� 1)orin them atterera

(j= M :�� �eq).Thususing ourG reen-function solutions(3.41)and (3.48)with theinitialconditionss= _s= 0 and
_e�N (k;�i)= 2e�N (k;�i)=�i asrequired by the adiabatic inationary m odel,we can derive the standard CDM transfer

function as

A M

A R

=
e�Ic(k;�)�

2
i

e�c(k;�i)�
2
=
A 2�2iaeq

4�2eqa

�

eGc3 +
2

�i

eGc4

�

=
1

4�2eq

h

A
2
�
2
i
eT
c
30(i)+ 2A 2

�ieT
c
40(i)

i

T(k)=
2

5
T(k); (4.2)

wherewehaveused �i� �eq � �and equations(A13),(3.28),(3.46)and (3.47),and thelastexpression wasobtained

based on the form alism (3.48).First,we note thatthe two term sinvolving eT c
30(i)

and eT c
40(i)

are equal,m eaning that

the two sets ofinitialperturbations [e�c(�i)+ e�r(�i)]and [
_e�c(�i)+

_e�r(�i)]contribute equally to the present m atter

perturbations. Second,the T(k) here is nothing but the standard CDM transfer function which we have de�ned

earlier.Third,thecoe�cient2=5in the�nalresultofequation (4.2)iswellknown (e.g.[17,24]),and hereweobtained

itusing ourG reen-function solutions.Thiscoe�cientcan bealso obtained by �rstknowing from equation (2.45)that

�00 isa constanton super-horizon scales(k � 1=�),and then using itsde�nition (2.38)and equation (4.1)to com pare

itsexpressionsforj= R,M .O newill�nd �00 = A R =�G = 5A M =2�G ,which im pliesA M =A R = 2=5fork � 1=�.Thus

the above derivation and result not only illustrate the relation between our G reen functions and the the standard

CDM transferfunction T(k),butalso justify the use ofT(k)in ourform alism (3.48).

B .Independence ofthe initialconditions

O ne im portant problem for structure form ation with causalseeds is to investigate how the source energy was

com pensated into the radiation and m atter background when the seeds were form ed at �i. From the result (2.48)

we know thatthe powerspectrum ofthe pseudo energy e�00 should decay ask4 on super-horizon m odes. Asargued

in equation (2.49),we can thustake e�00 = 0 aspartofthe initialconditionsprovided thatthe scalesofinterestare

welloutside the horizon initially.Forsim ilarreasonswe can take es= _es= 0,where s= 3�r=4� �c.In addition,from

equation (2.38)withoutbaryons,wehave

�00 = � 00 +
3

8�G

�
_a

a

� 2 X

N = c;r


N �N +
1

4�G

_a

a
_�c: (4.3)

Since �00 = 0 isrequired at�i,itfollowsthatfora given � 00(x;�i),one can have di�erentwaysofcom pensating it

into between �N and _�N . Itisthusvitalto check the dependence ofthe resulting �
I
c(�)on the way we com pensate

� 00(x;�i)into thebackground initially.Considerthefollowing two extrem ecases,both satisfying e�00 = es= _es= 0 on

super-horizon scalesat�i:
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1.e�c = 3e�r=4 = 0,
_e�c = 3

_e�r=4 = [� 4�G (a=_a)e� 00]i:Using equation (3.41),the norm alized resulting initialpertur-

bationscan be calculated as

� 1(�;�i)=
e�c
I

(k;�)

[� 4�G (a=_a)e� 00]i
= eGc4 =

eGcs: (4.4)

2.e�c = 3e�r=4= [� 8�G (a=_a)2e� 00=(4� 
c)]i,
_e�c = 3

_e�r=4= 0:Sim ilarly wehave

� 2(�;�i)=
e�c
I

(k;�)

[� 4�G (a=_a)e� 00]i
= eGc3

2w(w 2 � 1)

A(3w 2 + 1)
: (4.5)

To seethe di�erence in e�c
I

(k;�0)today resulting from these two cases,onecan calculate

D 12(�0;�i)=
� 2

� 1

� 1=
2w(w 2 � 1)

A(3w 2 + 1)

eT c
30

eT cs
0

= 0; (4.6)

where we have used equations (3.30),(3.45) and (3.48). This im plies that no m atter how the source � 00(x;�i) is

com pensated into thebackground when itwasform ed (i.e.with any portionsbetween �N and _�N initially),itresults

in the sam e e�c
I

(k;�0)today on scaleswhich were outside the horizon at�i. W e note thatthis independence ofthe

initialconditionswas�rstnum erically observed in Ref.[17],and herewehaveprovided an analyticproof.

C .C om pensation and totalm atter perturbations

W ith a com plete set ofG reen functions for both initialand subsequent perturbations,we can now investigate

the resulting totalCDM perturbations and therefore the com pensation m echanism in m odels with active source.

Having seen the independence ofthe resulting e�c
I

(k;�0)on the way the source energy isinitially com pensated into

variousbackground com ponents,we can invokeequation (4.4)fore�Ic,and equation (3.9)fore�Sc to obtain e�c(k;�0)=

e�Ic(k;�0)+
e�Sc(k;�0).Fora given m ode atwhich k�i� 1 initially,we have:

e�c(k;�0)= e�Ic(k;�0)+
e�Sc(k;�0)

= 4�G

�

�
a(�i)

_a(�i)
eGcs(k;�0;�i)e� 00(k;�i)+

Z �0

�i

eGcs(k;�0;�̂)e� + (k;�̂)d�̂

�

(4.7)

=
8�G a0

5A 2aeq

�

� T(k)e� 00(k;�i)+

Z �0

�i

T
0(k;�̂)

_a(̂�)

a(̂�)
e� + (k;�̂)d�̂

�

(4.8)

=
8�G a0

5A 2aeq

n

� T(k)e� 00(k;�0)+

Z �0

�i

�

T
0(k;�̂)

_a(̂�)

a(̂�)
e� + (k;�̂)+ T(k)

_e� 00(k;�̂)

�

d�̂

�

; (4.9)

where

T
0(k;�̂)=

eGc4(k;�0;�̂)

eGc40(k;�0;�̂)
; (4.10)

and eGc4(k;�0;�̂)is given by (3.48). The function T 0(k;�̂)is plotted in Figure 9. Here we notice thatthe quantities

insidetheouterm ostbracketsin equations(4.8)and (4.9)areequivalentto nothing butthecoe�cientofthegrowing

m odein CDM perturbations.Usingequation (4.8),onecan obtain theresultingperturbationse�c(k;�0)byknowingthe

initiale� 00(k;�i)and integrating the evolution history ofe� + (k;�̂).Hencethisexpression isconvenientfornum erical

purposes.In addition,weseethatthe�rstterm in equation (4.8)com essim ply from theinitialsourceenergy,serving

with an oppositesign to accountforenergy conservation.Thisistheso-called com pensation.O n theotherhand,the
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FIG .9. The function T
0
(k;�)(solid lines)and the standard CD M transferfunction T(k)(the dashed line). Each solid line

hasdi�erent�,whosehighestand lowestvaluesarelabeled in unitsof�eq.Successivelineshaveeven logarithm ictim eintervals.

second term resultsfrom thesubsequentevolution ofe� + (k;�̂),which actively createstheCDM density perturbations

on sub-horizon scales(seelater).Thisterm also providesa way fordefectsto createnon-G aussianity.

Alternatively,equation (4.9)providesa both physically and m athem atically transparentway ofinterpreting how

the perturbationsare seeded by the source.Firstconsiderthe integralterm fora given m ode k. W hen the m ode is

welloutsidethehorizon,i.e.�̂� 1=k,T 0(k;�)equalsT(k)by de�nition.Hencethetwoterm sinsidetheinnerbrackets

reduceto e� 0i;i(k;�̂)T(k)dueto sourcestress-energy conservation (2.21).Sincethepowerspectrum ofe� 0i;i(k;�̂)falls

o� ask4 outsidethehorizon (seeeq.[2.47]),weexpectthequantity insidethebracketsto benegligibleuntilthegiven

m odeapproacheshorizon crossing.Nearhorizon crossing,e� 0i;i(k;�̂)isno longersm all,and T
0(k;�)startsdeparting

from T(k)(i.e.T 0(k;�)� constant> T(k)/ k� 2,see Figure 9),so the two term sinside the innerbracketsbegin to

contribute to the integral. Thisalso explainswhy the correction function I(k;�i)in equation (3.48)isim portantin

a�ecting the com pensation scale. Afterhorizon crossing,the signi�cance ofthe two term sinside the innerbrackets

then dependson the subhorizon behavioursoftheirpowerspectra.

Asforthe�rstterm in equation (4.9),weseethatfora superhorizon m odetoday,theintegralin (4.9)isnegligible

asargued aboveso thatonly the �rstterm contributes.Itservesto givethe oppositesign to the sourceenergy so as

to accountforenergy conservation on superhorizon scalestoday,and thusforthecom pensation atthepresentepoch

�0.O n theotherhand,ifa given m odeiswellinsidethehorizon today,then the�rstterm willbenegligibleprovided

thatthe sourceenergy e� 00(k;�0)hasa power-law fall-o� inside the horizon,asitdoesforcosm ic strings.Therefore

in calculating CDM perturbationson scalesofourinterest,which arewellinside the horizon today,the �rstterm in

equation (4.9)isnegligible,so thatitwillnota�ectourcom pensation argum entobserved from the integral.

Thisargum entcan be furtherstrengthened by deriving the pseudo-energy today. From the de�nition of�00 (4.3)

and the �nalresultofequation (4.9),oneobtains

e�00(k;�0)= (1� T(k))e� 00(k;�0)+
Z �0

�i

�

T
0(k;�̂)

_a(̂�)

a(̂�)
e� + (k;�̂)+ T(k)

_e� 00(k;�̂)

�

d�̂: (4.11)

From thisresult,onecan clearly seethatforsuper-horizon m odes,T(k)isunity by de�nition so thatonly theintegral

survives. W e have also seen from an earlier argum entthat on super-horizon scales,the quantity inside the square

bracketsisnothing butthe e� 0i;i(k;�̂),which hasa k
4 fall-o� powerspectrum (seeeq.[2.47]).Itfollowsim m ediately

from equation (4.11)thatthepseudo-energy today,�00(�0),hasa k
4-decay powerspectrum outsidethehorizon.This

resultcon�rm sthesuper-horizon behaviorof�00 presented in equation (2.48).O n theotherhand,although (1� T(k))
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isapproxim ately unity forsub-horizon m odes,the usualsub-horizon power-law decay in e� 00(k;�0)(asin the caseof

cosm icstrings)willstillm akethe �rstterm in equation (4.11)negligibleinside the horizon.

Thuswecan see explicitly in a neatm athem aticalform how com pensation actson a given length-scale.From this

analysiswe can also see thatthe com pensation scale isdeterm ined notonly by the functionsT 0(k;�)and T(k),but

also by thepropertiesofthesourcenearthehorizon scale.O ncethedetailed behaviorofthesourcenearthehorizon

scale is known,we can accurately locate the com pensation scale using equation (4.9) or (4.11). W e note that this

result is di�erent from the claim in Ref.[30],where m ulti-uid com pensation back-reaction e�ects were studied to

show thatthecom pensation scalearisesnaturallyand uniquely from an algebraicidentity in theperturbation analysis.

Ref.[31]also investigated the com pensation scale,and found constraintson the generation ofsuper-causal-horizon

energy perturbationsfrom asm ooth initialstate,underasim plephysicalschem e.Thecom pensation wavenum berwas

found to beconstrained with kc >� 2�� 1 dueto causality,depending on thebehaviorofthecausalevents.Thisresult

isnotinconsistentwith our�nding above,where we furtherprovide a quantitative way to locate the com pensation

scaleforany given speci�c m odel.

V .SU M M A R Y A N D C O N C LU SIO N

In thispaperwepresenta form alism which can beused to study theevolution ofcosm ologicalperturbationsin the

presenceofcausalseeds.In thisform alism weinvoked theuid approxim ation in thesynchronousgaugeto m odelthe

contentsoftheuniverse,and assum ed photon-baryon tightcoupling untilthelast-scattering epoch to accountforthe

baryonic e�ects. The approxim ation ofinstantaneousdecoupling ofphotonsand baryonswasthen em ployed atthe

last-scattering epoch. In particular,we dem onstrated the accuracy ofourform alism in the contextofthe standard

CDM m odel,by com paring ourresultsofdensity perturbationswith thosecalculated from CM BFAST.

W e then derived the analytic solutions ofm atter density perturbations in a at � = 0 cosm ology. The errors

in Ref.[16]were corrected to yield a com plete setofG reen-function solutionsforthe super-horizon and sub-horizon

m odes(eqs.[3.3],[3.8],[3.9],[3.18]{[3.40]).Thedegeneracyam ongtheseG reen functionswasthen found bycom paring

theirinitialconditionsand em ploying the zero-entropy initialcondition (eqs.[3.14],[3.41]). Thise�ectively reduces

thenum beroftheG reen functionsneeded in theperturbation solutions(eqs.[3.3],[3.9],[3.41]{[3.47]).W ith thisgreat

sim pli�cation,the solutionson interm ediate scaleswere then easily found by the use ofthe standard CDM transfer

function (eq.[3.48]).Thiscom plete setofsolutionswere num erically veri�ed to high accuracy.The baryonic e�ects

were also considered (eq.[3.51]). W e then extrapolated these G reen-function solutions to K 6= 0 or � 6= 0 m odels

(eq.[3.53]),with num ericaljusti�cationsto high accuracy.

Using theseG reen-function solutions,weinvestigated severalim portantaspectsofstructureform ation with causal

source. W e �rst dem onstrated the relation between our G reen functions and the standard CDM transfer function

(eq.[4.2]).Second weproved thattheresulting m atterperturbationstoday isindependentoftheway thesourcewas

initially com pensated into thebackground contentsoftheuniverse(eq.[4.6]).W ith ourG reen-function solutionsand

the use ofthe pseudo-stress-energy tensor,we �nally addressed the com pensation m echanism in a m athem atically

and physically explicitway (eqs.[4.8],[4.9],[4.11]).In particular,thecom pensation scalewasshown to bedependent

notonly on thedynam icsoftheuniverse,butalso on thepropertiesofthesourcenearthehorizon scale.O ncegiven

thedetailed behaviorofthesourcenearthehorizon scale,thecom pensation scalecan beaccurately located using our

G reen functions(eq.[4.11]).

Although in theliterature,therehavebeen detailed treatm entsoftheorieswith causalseeds,theform alism and its

analytic solutionspresented here willprovide notonly a physically transparentway forunderstanding the evolution

ofm atter perturbations,but also a com putationally econom icalschem e which is particularly pertinent when one

needs to investigate the phase inform ation ofthe resulting cosm ologicalperturbations. Following the sam e line of

developm ent,wehavebeen alsoworkingon theanalyticsolutionsforradiation perturbations[25],which willbeuseful

in com puting the full-sky CM B anisotropiesseeded by topologicaldefects. Finally,we note that although we have

been concentratingon investigatingtheperturbationswith causalsource,ourG reen-function solutionsarecom pletely

generaland thereforecan be also applied to the study ofm odelswith acausalsource.
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A P P EN D IX A :C O SM O LO G IC A L B A C K G R O U N D D Y N A M IC S

W ith the discovery ofthe CM BR in 1964 [32],the universe isbelieved to be m ainly com posed ofnotonly m atter

but also radiation. After the discovery,severalauthors worked out the solutions in som e FRW m odels with both

radiation and m atter[33{36].In thisappendix,weaim to derivethegeneralsolution ofFRW m odels,in thepresence

ofboth curvatureand a cosm ologicalconstant.

W eassum ethattheuniverseishom ogeneousand isotropic,and is�lled with two uids,radiation and dark m atter,

whose stress-energy tensorsare also hom ogeneousand isotropicon average.W e shallignorethe overallcontribution

ofthe stress energy from causalseeds like defect �elds,because in generalthey are m uch sm aller than the total

energy density ofradiation and m atter. Thusin a FRW universe with only radiation and m atter com ponentsthat

evolveindependently and adiabatically,the scalefactora(�)isdeterm ined by the unperturbed Einstein equation,or

equivalently the Friedm ann equation:

_a2 + K a
2 =

8�G �m 0a
3
0

3
(1+ a)+

�

3
a
4
; (A1)

wherea dotrepresentsa derivativewith respectto theconform altim e�,K isthecurvature,�m isthem atterenergy

density,� isthe cosm ologicalconstant,and wehavenorm alized aeq = 1.Ifwede�ne
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m =
8�G �m

3H 2
; (A2)


r =
8�G �r

3H 2
=
8�G �m

3aH 2
; (A3)


� =
�

3H 2
; (A4)


K = �
K

a2H 2
; (A5)

whereH = _a=a2 isthe Hubble param eter,then wehavefrom (A1)that
m + 
r+ 
� + 
K = 1 and


� 0


m 0

=
�

8�G �m 0

;

K 0


m 0

=
� 3K

8�G �m 0a
2
0

: (A6)

W e also notice that
r0=
m 0 = a
� 1
0 � 1.W e de�ne

A =
2(
p
2� 1)

�eq
; B =


K 0


m 0a0
; C =


� 0


m 0a
3
0

; (A7)

where we note thatB ;C � 1 due to a0 � 1 and 
m 0 � 
K 0 � 
� 0 according to the currentobservationalresults.

Thuswe can rewriteequation (A1)as

�
da

d�

� 2

= �A 2(1+ a+ B a
2 + C a

4); (A8)

where

�A =
1

�eq

Z 1

0

da

(1+ a+ B a2 + C a4)1=2
� A : (A9)

Equation (A8)can then benum erically evaluated with certain choicesof
m 0,
� 0 and 
K 0.Assum ing threespecies

ofneutrinosand using�0 = 2:0747� 10� 51G eV 4 [37]and thefactthatat�eq both thecurvatureand thecosm ological

constantterm sarenegligiblein (A1),weobtain

a0 = 23219 
m 0h
2
; (A10)

�eq = 16:310 (
m 0h
2)� 1M pc; (A11)

teq = 3:4058� 1010(
m 0h
2)� 2sec; (A12)

where�eq isin the unitsm easured today.In certain cases,(A8)can be exactly solved:

1.K = �= 0 (i.e.
 m 0 = 1;
� 0 = 0):

a(�)= A
2
�
2
=4+ A�; (A13)

t(�)= A
2
�
3
=12+ A�

2
=2; (A14)

which give�eq = 3teq=
p
2.

2.K < 0;�= 0 (i.e.
 m 0 < 1;
� 0 = 0):

a(�)=
1

2B

h

cosh(�A
p
B �)+ 2

p
B sinh(�A

p
B �)� 1

i

; (A15)

t(�)=
1

�AB

�

cosh(�A
p
B �)+

1

2
p
B
sinh(�A

p
B �)�

�A�

2
� 1

�

: (A16)

3.K > 0;�= 0 (i.e.
 m 0 > 1;
� 0 = 0):

a(�)=
1

2B

h

cos(�A
p
� B �)� 2

p
� B sin(�A

p
� B �)� 1

i

; (A17)

t(�)=
1

�AB

�

cos(�A
p
� B �)+

1

2
p
� B

sin(�A
p
� B �)�

�A�

2
� 1

�

: (A18)
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FIG .10. The evolution ofbackground dynam icsin variouscosm ologies.Plotted are exactsolutionsofthe scale factora(�).

The square,triangle,circle and diam ond m ark the universe today fordi�erentm odels,each with H 0 = 70 km s
� 1
M pc

� 1
.

W e notice that atearly tim es equations (A15{A16)and (A17{A18)reduce to equations (A13{A14). At late tim es

equations(A13{A14),(A15{A16)and (A17{A18)givethe asym ptoticform s

a(�)/

8
<

:

�2; K = �= 0;

exp(�A
p
B �); K < 0;� = 0;

1� cos(�A
p
� B �); K > 0;� = 0;

(A19)

or

a(t)/

8
<

:

t2=3; K = �= 0;

t; K < 0;� = 0;

1� cos[2�A(� B )3=2t]; K > 0;� = 0:

(A20)

Figure 10 showssom e exam plesofthese solutions. Aswe can see,the destiniesofuniversesin di�erentcosm ologies

diverge,although allhave identicalfeatures around or before the radiation-m atter equality teq. This converging

behavioratearly tim eshelpssim plify thecalculation ofcosm ologicalperturbationswith causalsource,sinceweknow

thatthiskind ofperturbationsarem ainly contributed from the radiation-m attertransition era.
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