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Abstract — Fingerprint-based methods are widely adopted for indoor
localization purpose because of their cost-effectiveness compared to
other infrastructure-based positioning systems. However, the popular
location fingerprint, Received Signal Strength (RSS), is observed to
differ significantly across different devices’ hardware even under the
same wireless conditions. We derive analytically a robust location fin-
gerprint definition, the Signal Strength Difference (SSD), and verify its
performance experimentally using a number of different mobile devices
with heterogeneous hardware. Our experiments have also considered
both Wi-Fi and Bluetooth devices, as well as both access-point-based
localization and mobile-node-assisted localization. We present the re-
sults of two well-known localization algorithms (K Nearest Neighbor
and Bayesian Inference) when our proposed fingerprint is used, and
demonstrate its robustness when the testing device differs from the train-
ing device. We also compare these SSD based localization algorithms’
performance against that of two other approaches in the literature that
are designed to mitigate the effects of mobile node hardware variations,
and show that SSD based algorithms have better accuracy.

Index Terms —Location fingerprint, signal strength difference (SSD),

Wi-Fi, Bluetooth, indoor localization, positioning system, heterogeneous
devices.

1 INTRODUCTION

various methods utilizing the recorded data can be applied
to estimate the target device’s location when the online RSS
values of the device are collected.

Various commercially available hand-held devices and wire-
less access points (APs) are capable of reporting RSS. In
general, the RSSs are mostly reported in dBm values. How-
ever, these devices usually come with many different hardware
solutions, even for the same wireless technology. Regardless of
whether a device’s signal strengths as perceived by the APs are
used to denote the device’s location fingerprint, or the reverse
approach in which the APs’ signal strengths as perceived by
the device (i.e., mobile node (MN)) are used, such fingerprints
may differ significantly with the device’'s hardware even un-
der the same wireless conditions [1], [3]-[5]. This is often
observed in existing popular wireless technologies, such as
Wi-Fi or Bluetooth. The presence of power control feature in
some mobile devices further complicates the issue [3]. As a
result, a positioning system that relies solely on RSS to define
location fingerprints generally does not perform well across
heterogeneous devices.

The need for a robust location fingerprint is obligatory for
any fingerprint-based localization algorithm, no matter how

A CCURATE indoor location determination is an indispensggphisticated the algorithm is. In [1], we proposed a robust
able building block of various context-aware serviceg,cation fingerprint, namehsignal Strength Difference (SSD)
and ubiquitous environments. Geometric approaches requjfich was shown to outperform the traditional RSS fingerprint
antenna arrays with large number of array elements Q0terms of robustness across heterogeneous mobile devices,
transceivers to achieve good accuracy, which incur high haigsih analytically and experimentally. In this paper, we analyze

ware cost [2]. On the other hand, fingerprint-based approac

% robustness of SSD more elaborately, using several off-the-

utilizing signal parameters provided by off-the-shelf wirelessheif \Wi-Fi and Bluetooth devices.
devices, are widely adopted for indoor localization purpose for | existing localization literature, we usually encounter two

their cost-effectiveness.

different approaches to collect the signal strength samples,

In a typical fingerprint-based system, a set of “trainingamely AP-basedwhere the RSS is measured at the AP, and
locations” are chosen in the service area. During an off-lingn_assistedwhere the RSS is actually measured at the MN

“training phase”, location-dependent signal parameters, M@gkit. In order to verify SSD’s robustness, we need to consider
commonly received signal strength (RSS) values, are measugeg, of these scenarios. However, we have only considered the
and recorded at each training location as the fingerprint fab_pased scenario in [1], both for analysis and experiments.

that particular location. During the online localization phasgy, this paper, we show that, regardless of whether the signal
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compared to our initial lecture theater testbed in [1]. We alsbistanced, from the transmitter, respectively, for a particu-

compare SSD with two other robust location fingerprints [Slar transmitter-receiver pair. From the log-normal shadowing

[6] that are argued to mitigate the effects of MN’s hardwanmmodel [10], we get,

variations. P(d) d
The rest of the paper is organized as follows. We discuss {P(d )] = —108log <d> + XgB- Q)

our idea of defining a robust location fingerprint in Section 2. 0/1dB 0

We provide a brief description of related works in Section J.he first term on the right hand side (RHS) of (1) defines the

In Section 4, we present experimental findings supporting op@th loss componenf(is the path loss exponent), while the

claims. Finally, we depict in Section 5 the conclusions drawagcond term reflects the variation of the received power at a

and our future work. certain distanceXqg ~ N(0,03g)). Eqn. (1) can be rewritten
as,

2 ROBUST LOCATION FINGERPRINT

Our research focuses on providing cost-effective location esti- £ (@)ldem = F(do)[dem — 105 log (O> + Xg. (2)

mation in the indoor environment, utilizing existing infrastruc-

ture. Due to widespread availability of Wi-Fi and Bluetoot@?\lpiﬂdmg on th(;a hardwatre usfed at bg.trl the AP and the
networks within buildings, we choose both these RF wireleSs € perceived power at a reference distance (Rédp))
technologies for our analysis and experiments. varies, as a result of hardware-specific parameters, such as

RSS is the most common RF signal parameter used anfenna gains. Therefore, the p_erceivec_i RSS at a di_stance
location fingerprints for Wi-Fi since it was first proposed il also hardware-dependent. This explains why RSS is not a

[7]. For Bluetooth, both “Received Signal Strength IndicatcfﬁbUSt. chatpn fingerprint, although it is commonly used in
(RSSI)” and “Link Quality (LQ)” have been previously usedn® existing I|teratur¢. : .

as location fingerprints; but generally, positioning systems t atT0 simplify our discussion, let us first focus_ on the_AP-
are solely based on Bluetooth have reported poor accurac!})is_ed approaqh, where the MN 'S the transmitter, while the
detailed analysis of the available Wi-Fi and Bluetooth sign@: IS the_ receiver. Rathe_r than using absolute RSS values as
parameters can be found in [8] and [9], respectively. Based ation fingerprints, the difference of the RSS values observed

their analysis, it is apparent that all these signal parametg% wo APs (i.e.,SSD can be used to define a more robust

have specific usage according to their own respective te nat_ure for a transmitting mobile device. In order to exp_lain
nologies, which may render them inappropriate as locati alytically, letP(d; ) and P(ds) denote the RSSs of a mobile

fingerprints. Among all the signal parameters available, R vice's transmitted signal as perceived at two different APs

is argued to be the most viable option as location fingerpri tPl. and AFE) which are at distanced, and d, from the
for both Wi-Fi [8] and Bluetooth [9]. In this section, Wemoblle device, respectively. We assume that, all the APs have

deduce our location fingerprint, the SSD, and analytica%e same hardware properties, since it is quite common for an

prove its superiority over RSS, in terms of the system’s over |S“t9"°” to ghpose the same brand_ and model for a!l their

robustness against heterogeneous mobile devices. APs n the building. Consequently,_usmg (2), we can write the
In existing localization literature based on location fingefo!lowing for APy and AR, respectively:

prints, the signal strength samples are either collected at t B dy

APs, or at the MN that needs to be located. The AP-basefi (41)laem = P(do)lsem — 1001 log { 7 ) + [Xilgs, ~ (3)

approach has the advantage of not requiring any modification do

of the MNs’ devices before the latter can be tracked. Orfnd P(d2)|aem = P(do)|asm — 10032 log (d) + [X2]gs- (4)

the other hand, the MN-assisted approach could better ensure . . 0

the security and privacy of the MN. In both approaches, the Subtracting (4) from (3), we obtain,

samples’ signal strength values collected over a small time- [ P(d;) d d
PVl o108 () + 108, log (2
window are generally averaged to obtain the traditional RSS P(d) | gg — 105 log do 100z 1og { -
location fingerprint. + [X1 — Xo] (5)
dB-

The RSS location fingerprint is influenced by a particular
transmitter-receiver pair's hardware-specific parameters, suchegn. (5) denotes SSD’s expression, which is free from
as antenna gains. Consequently, having a different transmittBid,). Based on the above analysis, we claim that SSD is
receiver pair compared to the training phase would likelyjiore robust against device hardware variations, compared
produce a different RSS signature at the same location [4]to traditional RSS in denoting the location fingerprint when

In this section, we show that, rather than utilizing théhe signal strength samples are collected at the APs. In
absolute signal strength (RSS) as location fingerprint, the difie following sections, we explain it in a more detailed
ferences of signal strengths perceived at the APs or at the Miy. We also inspect the case of MN-assisted localization
would actually provide a more stable location signature for amyhere the signal strength samples are actually collected at
mobile device irrespective of its hardware used. We contetfte MN. Here, we have applied the shadowing model of RF
that, in this way, the transmitter-receiver pair's hardware effegtopagation in our analysis which is a common practice in
is mitigated. existing indoor localization literature for the sake of analytical

Suppose P(d) and P(dy) denote the received signaltractability [11], [12]. The shadowing model has also been
strengths at an arbitrary distandeand a close-in referenceused to model indoor RF propagation in popular “Wireless



Communications” textbooks [10], [13]. Nevertheless, we alshe APs. Subsequently, (7) and (8) take the following forms,
provide an alternative analysis using multipath propagatioaspectively,

channel model in Appendix A, where SSD could also be Pro. G, G A2
shown to be free from the effect of variations in MN’s P(d))gsm = 10log APy AP TMN APy
hardware-dependent transmitter/receiver power gain for both 16m2d3 Ly
AP-based and MN-assisted localization. dy

Note that, although it is common for Wi-Fi communication — 1061 log <d> + [X1lee, (10)
infrastructure in most campus and industrial buildings to have 0 9
APs with the same brand and model, it is not a mandatory gnq P(ds)lggm = 10log Lapy Gar, Gin Aap,
condition for our proposed SSD fingerprint to work in practice. 16m2d3 Ly

As we will show in the following analysis, as long as each do
AP remains constant for both the training phase and the — 1002 log <d) + [XoJas. (1)
localization phase, the proposed scheme is able to eliminate 0

the hardware differences caused by device heterogeneity. In order to compute SSD in this scenario, subtract (11) from
(10), we have,

2.1 Signal Strength Samples Collected at APs (AP- P(dy) PapyGapy Ajp, L2
based Approach) P(dy) = 101
dB

. _ _ _ Pap,Gap,Ajp, L1
Consider the same scenario as above but with the assumption d d
that the reference power, i.e?(dy) of (2), can be evaluated — 1001 log < ) + 10032 log < >
using the free space propagation model as follows [13], do do

PunGunGap A

1672d3 L ’
where Py is the MN'’s transmitted powel7yy is the MN'’s
antenna gaint:ap; is thei! AP’s antenna gaini, is the system

+ [X1 — X2]as 12)

P(do)|dem = IOIOg( (6) Again, in the MN-assisted approach, the SSD is entirely

free from the influence caused by MNs’ hardware variations.
Although the SSD expression is affected by different APS’

. . o configurations such as power settings, antenna characteristics,
loss factor, and\yy is the transmitted carrier's wavelength.

and operated channels, as long as the configuration for each
Using (6). both (3) and (4) can be rewritten respectively Sfidividual AP remains consistent across both training and

Pun GMNGApl)‘MN localization phases, the SSD will achieve consistency between
P(d1)laem = 10log =r7 the offline and online fingerprints.
0t Furthermore, even if the APs were to switch to different
— 108, log <dl> + [ Xilas, (7) channels (e.g., changing from channel 1 to channel 11 for
d 802.11¢) from the training phase, the changes in tiseof
PMNGMNGAPZAI%AN> (12) will not be significant [14]. It should also be noted that,

16722 L, the samples gathered at the MN can be derived from the
beacon frames that come from the APs [4]. Since these frames
— 108, log <d2> +[Xo]gs. (8) @re generally sent using some default power setting, we can

approximate thaap, ~ Pap,.
In Order to Compute SSD' subtract (8) from (7), we have' Although the SSD iS rObUSt agail’lst deVice heterogeneity,
an important trade-off needs to be made when it is used to
[P(dl)} — 10log (GAF’lLZ) — 108, log (dl) replace the RSS as a location fingerprint - the SSD fingerprint
P(d2) | 4g APy L1 do vector is always one dimension lower than the RSS fingerprint

and P(dz)|aem = 1010g<

+108,1 @ +IX ) vector for the same number of APs. In order to understand this,
2708 do te suppose there at¥ APs within the range of a mobile device.
e each AP yields one RSS reading, the resulting RSS

The expression of SSD for the AP-based approach in erprlnt vector ha®v elements. On the other hand, although

does not contain any MN-dependent term. Therefore, the S

would be entirely free from any influence caused by the MN here are d|fferent SSD values resulting from tié RSS

hardware variations. Moreover, even if different APs ha\fge;‘gl?%s ecrmrllxlt v;cggrc::oatlZiS:s%rr? 'ndeﬁingggémsnii’ean
different antenna gains and system loss factors, as long™a gerp W —

these settings for each individual AP remain consistent acrossaller dimensionality potentially puts it at a disadvantage

both training and localization, SSD will achieve con5|stencl¥Ie 5:;?3) t(')l'h?g |rF;Sﬁe;Ir;ﬁZtrp:‘ntthZeé:;%:e(lij:\l/l|cilsv(\a/errin:§|rg)se
between the offline and online fingerprints. P

used for both training and online localization phases, then the
. use of RSS fingerprint vectors could yield better localization
2.2 Signal Strength Samples Collected at MN (MN- accuracy than SSD fingerprint vectors. Nevertheless, it was
assisted Approach) found in [11] that whenN is large (V > 5), an increase
We consider the same scenario as above, except that ithdRSS fingerprint vector’s dimensionality no longer results
signal strength is now measured at the MN rather than iatany significant improvement of the localization accuracy.



Therefore, the effect arising from the slightly smaller dimersystem with one-meter average accuracy and a short training
sionality of the SSD fingerprint vector should also becomgeriod. Note that, Ekahau is a commercial positioning system,
insignificant when\V is large. and there exists no scientific evaluation to verify their claim.
In many practical scenarios, a localization system is in- The effects of different devices’ hardware variations on
tended to track heterogeneous devices, and hence, we wdrld location fingerprint have gained little attention in the
expect the user devices to be frequently different from thecalization literature so far. As discussed before, existing
training device. As reported in [1], [3]-[5], different devicesvorks generally use the same mobile device during both
tend to report quite different RSS values at the same locatidraining and testing phases, thereby, invoking similar setups
Under such circumstances, the use of RSS as a locat{ar., transmitter-receiver pair) in both cases. However, [1], [3]-
fingerprint usually results in significant deterioration of thgs], [31], [32] have observed that the location fingerprints (i.e.,
localization accuracy. The SSD, in contrast, is able to mainta®8Ss) produced by using different mobile devices vary quite
its good localization accuracy across heterogeneous devicggnificantly from one another even under the same wireless
As we will show in our experimental results in Section 4.4conditions. Haebarleet al.[4] try to accommodate various de-
with four APs, it is observed that the localization accuracyices by having a benchmark training database taken with only
obtained from using SSD fingerprints is only slightly lowepne device. For other devices, they require a set of linear RSS
than using RSS fingerprints when the same device is usamhversion formulae, which translate the RSSs of those devices
for both training and online localization phases. Howeveinto the benchmark device’s RSSs. These linear conversion
in the more practical case in which different devices afermulae are obtained by laboriously experimenting with each
used for training and online localization respectively, the SS&@upported device to discover its RSS relationship with that
outperforms RSS significantly even though the SSD fingerpriot the benchmark device. Kjeergaard [31] follows a similar
vector has a smaller dimensionality. approach, and also discusses a method to tune the parameters
of the linear conversion formula automatically instead of
manual calibration. In their subsequent work, Kjeergaard [32]
3 RELATED WORK identifies that the hearability problem (i.e., a mismatch of the
The current research efforts for indoor positioning systenset of APs that can be heard by different NICs) might affect
can largely be divided into two main categories: i) those th#te performance of their scheme, and suggests that the NIC
require specialized hardware (e.g., RF tags, ultrasound tsed for collecting fingerprints (i.e., their benchmark device
ceivers) and extensive deployment of dedicated infrastructunethe formula) should be the one that can hear the most
solely for localization purpose [15]-[17], and ii) those thafPs. Taoet al. [3] utilize signal strength difference as a
utilize the location-dependency of easily measurable sigratation fingerprint like our approach. Their motivation was to
parameters (e.g., received signal strength). The latter approfint the locations of rogue machines with different hardware
aims to build a positioning system by leveraging on an existirapnfigurations and varying transmitting powers. They have
infrastructure (e.g., Wi-Fi networks) [7], [18]-[25] in a cost-only provided experimental results based on the idea, without
effective way. any intuition or analysis about why the differences in signal
A few works in the second category above exploit RS&rengths could work successfully in their scenarios. On the
directly for distance estimation. One example is [19], in whicbontrary, our work gives both the detailed analysis and the
distance and path loss exponent are jointly estimated in a leegperimental results as to why the SSD could be regarded
square approach. Another example is [26], which converts S&ps arobust location fingerprint, for both AP-based and MN-
nal Strength Differences (SSDs) into distance measuremeassisted localization approaches.
using signal propagation model. Then a hyperbolic positioning Around the same time when we proposed the use of SSD
algorithm [26] based on the distance differences is suggestsia robust location fingerprint in [1], another work [5] also
to locate a base transceiver station (BTS) in cellular corattempted to use a fingerprint that is related to signal strength
munications environment. However, the robustness of thedifferences. Specifically, it explored the use of normalized
schemes in the presence of hardware heterogeneity is logfarithmic signal-strength ratios, termed as Hyperbolic Lo-
addressed. In contrast, our work focuses on fingerprint-baszdion Fingerprint (HLF) [5] that is experimentally motivated.
positioning systems. Due to space limitation, we only providdowever, it does not provide any theoretical analysis as to why
an overview of some existing approaches under this categahe HLF mitigates the hardware variation effects. Although
More in-depth discussions can be found in [27], [28]. Locatiotlhe logarithm function is monotonic, the relationship between
fingerprinting techniques became popular with RADAR [7JHLF and SSD is not as subtle as it seems. To appreciate the
mainly because of the unavailability of appropriate radio signdifference, one needs to take an analytical approach. The HLF
propagation models for indoor environments. It also openagproach is equivalent to taking the logarithm of (3) and (4),
the door for many different approaches to be applied for tld then combining them. It can be easily seen that the result-
indoor localization problem. For example, Nibble [18] is onéng expression is not totally free froi(d,), unlike our SSD’s
of the first systems to use a probabilistic approach for locatiexpression in (5). Since heterogeneous devices are likely to
estimation. Local linearization technique and factor graph hakiave differentP(dy), the HLF is unable to fully mitigate
been employed in [29] to model the mapping between R3$f@rdware variations from a theoretical standpoint. As will be
and location, based on the training data. To date, Ekahadsmonstrated in our experimental results in Section 4.4.3, the
Positioning Engine [30] claims to be the most accurate locati®@ED indeed outperforms the HLF when heterogeneous training



TABLE 1
The list of Wi-Fi and Bluetooth devices used as MN and AP in our experimental testbeds

Technology | MN Devices AP Devices

- Intel PRO/Wireless 2200BG Linksys WRT54G
Testbed 1) Wi-Fi Atheros AR242x 802.11abg Cisco Aironet 1200
Ranger’s BT-2100 (Class 1)
Billionton’s USBBTO02-B (Class 2)
Acer n300 PDA (Class 2)
Motorola V3xx Phone (Class 2)

Testbed 2| Bluetooth Ranger’s BT-2100
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Fig. 1. Our Wi-Fi experimental testbed (MN-assisted localization) — all the training locations are marked as shaded
points.

and testing devices are used. over different MNs. Consequently, Ecolocation could be robust
Another method, termed Ecolocation [6], uses ordered sggainst MNs’ hardware variations as well. Hence, we also

guence of RSS measurements rather than the absolute R8#gpare SSD’s performance with that of Ecolocation in our

to constitute a unique location fingerprint.f(d;) and P(d;) experiments.

denote the RSSs at ARnd AP, which are at distanceg;

and d; from the MN, respectively, then eonstraintof the 4 EXPERIMENTAL STUDY

sequence is defined as, We first describe our experimental testbeds and data collection
4 4 , , procedure in Section 4.1 and 4.2, respectively. Then, we list
P(di) > P(dj) = di < d;. (13) in Section 4.3 some assumptions that we have made for our

First, the constraint set for each grid point is calculated usiffPeriments. Finally, in Section 4.4, we present our results and

the RHS of (13). Only the locations oéference nodeg.e., 1dings.

APs) are required in this phase — no signal strength collection

surveys are necessary. During location determination phadd, Testbed Setup

the ordered sequence of RSSs collected at the APs is trae have two experimental testbeds. Table 1 lists the devices
lated into the ordered sequence of distances using (13), arséd in our testbeds.

subsequently matched against the constraint set of each gridestbed 1 is a Wi-Fi testbed located inside a laboratory of
point calculated beforehand. The centroid of the grid pointair campus (see Fig. 1) that spans over an area8»fm?.
where the maximum number of constraints are matched lishas three separate rooms (divided by walls), where one
returned as the location estimate. We believe that, owing i a discussion room, and the other two include many small
MNs' hardware variations and varying transmission powersubicles.

both P(d;) and P(d;) should be affected in a similar way. We have mainly used Linksys WRT54G routers as our APs.
Therefore, the constraint (13) is expected to remain intathe locations of these APs are marked as stars in Fig. 1.
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Fig. 2. Our Bluetooth experimental testbed (AP-based localization) — all the training locations are marked as shaded
points.

Additionally, we have also utilized measurements from thato “monitor mode”, and continuously cycle through the non-
Cisco Aironet 1200 series routers for some of our experimertgerlapping Wi-Fi channels 1, 6 and 11, where it stays on each
that provide wireless connectivity in the building. Note thathannel for 10 ms. Concurrently, we run tcpdump to snoop
this testbed follows atMN-assistedapproach where the MN all the 802.11 packets from the air. Later on, we ran some
itself retrieves the signal strength information. scripting programs on the tcpdump’s actual output to retrieve
Testbed 2 is a Bluetooth testbed located within anothtre required RSS information from our desired APs. In the
laboratory of our campus (see Fig. 2) that spans over an aoaae of Bluetooth, we log onto the mini PCs using Secure
of 214 m?, and includes many small cubicles. In this testbe&hell (SSH) and make the APs issue Bluetooth inquiries which
we have used four Aopen MP945 Mini PCs as our APs whit¢he mobile device responds to. The Bluetooth signal strength
are placed near the ceilings. The locations of these APs arormation retrieval program is written utilizing the HCI API
marked as stars in Fig. 2. Each MP945 is equipped with Bof BlueZ [34] protocol stack. In each case (Bluetooth or Wi-
2100 Class 1 Bluetooth adapter which scans for Bluetodf), the packet information is transferred to our central server’s
packets by issuing inquiries periodically. This testbed emulatdatabase from the APs (i.e., mini PCs) or the MN. The central
the AP-basedpositioning system where the signal strengths aserver is also responsible for calculating the location during
actually measured at the AP side. the testing phase. Our signal strength collection programs are
invoked externally from the Java program when we click on
the locations to be trained on the map. Note that, our Bluetooth
o _adapters provide the absolute RSS values of the inquiry
In our two testbeds, there are 466 and 337 training Poinissponse packets, rather than the RSS! values as stipulated by
or grids, respectively. The training process involves placinfe gjuetooth Core specification. At each location, stationing
the mobile device at each training point, and collecting daigyrselves with an MN for 1 minute would give enough samples
Our front-end of the signal strength collection program has(goo to 300) in case of Wi-Fi for every AP, whereas for
Java Graphical User Interface (GUI), which allows the usgjjyetooth, we would have to stand for 2 or 3 minutes to gather
to load the map and click on the location to be traineghe same number of samples. We aim to take many samples at
conveniently. We have collected our measurements duriggarticular location because we want to prove statistically that
afternoons overl0 working days. As mentioned before, thesgp js petter in the experimental results. However, collecting
settings and surroundings of both testbeds include Conc@tﬁsamples per location was observed to provide comparable

walls, cubicles, movement of people, etc., and represent {gts to even collecting 200 to 300 samples per location in
indoor environment more practically compared to our initigdlgse of SSD.

testbed in [1].
In Testbed 1, we have utilized tcpdump [33] to capture
the signal strength at the MN. We first put the MN’s NIC

4.2 Data Collection Procedure



4.3 Assumptions NICs. Only Linksys routers’ data have been presented here for

Here, we list the assumptions that we have made for opevity, as Cisco routers’ measurements have yielded similar
experiments: trends. Fig. 3(b) shows the RSSs as perceived by a Bluetooth
i) Whenever we have used RSS as location fingerprifi2pter (i.e., AP) from packets transmitted by several Blue-
for certain experiments, we have assumed it to be normaifPth devices (i.e., MNs) while Fig. 3(d) depicts the SSDs of
distributed at any particular location in our paper. Thougieseé MN devices’ transmitted packets as perceived by two
some works defy this phenomenon, others lend support B§/€tooth APs.
it [35]. We assume each RSS value in the location fingerprintFrom our experimental results, we see that, the RSS per-
to be a normal random variable characterized by only i€§ived by a certain MN (MN-assisted) or AP (AP-based)
mean and standard deviation. Similar to [4], our experiment4iies significantly across different mobile devices at each
results also suggest that it is a reasonable approximation,@ning location. This has repercussion in their use as fin-
significant improvement cannot be achieved even if we we8€rPrints because the RSS fingerprint vectors collected during
to utilize histogram representations of RSS. However, we haff#¢ training phase will be strongly dependent on the mobile
used the histogram representation for HLF and the histograrfi@vice used. Most existing works perform both their training
bin size is selected to be 0.02 as suggested by [5]. and testing phases using the same device, thereby_, ignoring
ii) We have chosen two well-known algorithms in thdhis practical issue. On the contrary, the SSD remains quite
localization literature, namely, K Nearest Neighbor (KNN) [7fonsistent across different mobile devices in our experiments.
and Bayesian Inference [4], in order to test our ideas. Our k&}is readily complies with our analysis in Section 2.
intention is to show that our ideas are quite generic and can . .
be helpful irrespective of the choice of algorithms. For th§24'2 C_ompanson between SSD and RSS as Location
KNN algorithm, we chose the value & empirically, similar Ingerprint
to prior works [7]. While applying Bayes formula, the prioriAS pointed out in the previous section, the use of the same
probabilities are assumed to be uniformly distributed. MN for both training and testing phases may have biased
iii) In order to apply probabilistic models, one assumptithe reported results of the existing fingerprinting techniques.
that has widely been used is the independence of RSS valligdnvestigate further, we conducted experiments inside both
of different APs [18], [21]. This assumption is justifiable?ur MN-assisted Wi-Fi (Testbed 1) and AP-based Bluetooth
for a well-designed network where each AP runs on a noflestbed 2) testbeds to visualize the effects of MN’s hardware
overlapping channel. Kaemarungsi and Krishnamurthy havariations. . . 3
performed experiments in [35] to evaluate the correlation fac-In order to inspect the “same device” effect, we utilized
tor among the APs’ RSS values in the presence of interferedBel’s NIC for both training and testing phases in Testbed

and they have strengthened this claim as well. Thus, we haveAMONg the466 training grids as shown in Fig. 100
also adopted their vindication. of them are selected randomly as training points while the

remaining266 are kept for testing purpose. We then run our
. . algorithms (i.e., KNN and Bayesian) to obtain the localization
4.4 Experimental Results and Findings errors. We repeat this procedure fodl times in order to
4.4.1 Justification of SSD as a Robust Fingerprint obtain all the errors for different combinations of training and
For this experiment, we have chosen various mobile devidesting samples, and finally obtain the cumulative probability
which are listed in Table 1 to inspect their effects on both RSf8aph of Fig. 4(a). In Testbed 2, we utilized Ranger's BT-
and SSD location fingerprints. In Testbed 1, we conducted tA@00 Class 1 adapter for both training and testing phases.
signal strength survey by plugging two different Wi-Fi NICdn this particular testbed200 of the 337 training grids as
(Intel PRO/Wireless 2200BG and Atheros AR242x 802.11abghown in Fig. 2 are selected randomly as training points, while
into our laptop. Since our Testbed 1 emulates the MN-assistbé remainingl37 are kept for testing purpose. We follow a
localization scenario, we actually collected the signal strengéhmilar approach as the one described for Testbed 1 in order to
samples at the MN rather than at the APs. In Testbed 2, whtain the cumulative probability graph of errors in Fig. 4(b).
have selected four different Bluetooth devices and measufddte that, only Bayesian algorithm'’s results are presented here
their signal strengths at the APs (i.e., mini PCs). The Acéor brevity. The results obtained using KNN algorithm has
n300 PDA and the Motorola V3xx phone have integratedemonstrated similar trends.
Class 2 Bluetooth chips, whereas the USBBT02-B Class 2In order to inspect the “different device” effect, we utilized
adapter and Ranger’s BT-2100 Class 1 adapter were plugged different Wi-Fi NICs as listed in Table 1 for Testbed 1.
into a laptop during the experiments. In both testbeds, we haliee Intel NIC’s collected data a6 grids as shown in Fig. 1
picked 20 random training points and stationed the devicesamé kept as training data while the Atheros NIC’s collected
those locations, while ensuring that we have collected enoudgta at244 of the 466 grids are utilized for testing purpose. In
samples at the MN (Testbed 1) or APs (Testbed 2) for all tA@stbed 2, we have utilized four different Bluetooth devices
devices. as listed in Table 1 for collecting measurements at the 337
Fig. 3(a) shows the RSSs as perceived by two different Wecations as shown in Fig. 2. We set aside Ranger’s BT-2100
Fi NICs (i.e., MNs) from packets transmitted by a Linksy€lass 1 adapter’s data set as our training samples, while the
WRT54G router (i.e., AP) while Fig. 3(c) depicts the SSDeemaining (3 x 337) = 1011 samples from the other three
between two such routers’ signals as perceived by the tiitass 2 devices are used for testing. The resulting cumulative
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Fig. 3. Comparison between RSS and SSD for both Wi-Fi and Bluetooth considering various mobile devices.

probability graphs of localization errors are shown in Fig. 4(dpr training. In practice, it is more often for the users to carry
and 4(d) for Wi-Fi and Bluetooth, respectively. different devices from the training device. It can be easily seen

The error performance when using the same device for bdtam the Gaussian approximations of RSS and SSD that the
training and testing can be visualized in Fig. 4(a) and 4(b) forean of RSS varies depending on different MNs’ hardware
Wi-Fi and Bluetooth, respectively. In this case, the RSS bassifice it includesP(dy), while SSD’s mean still remains the
algorithms perform slightly better than its SSD counterpartsame. As we will see, the practical hardware dependency
As explained earlier in Section 2, the SSD fingerprint vectdgsue overshadows the disadvantage of the larger variance
has a smaller dimensionality compared to the RSS fingerpritftd smaller dimensionality of the SSD fingerprint, based on
vector @ versus4 for the case of4 APs). This puts SSD our experimental results shown below, using commonly found
at a slight disadvantage when the same device is used g@mmercial devices.
both training and online localization. Moreover, one may also Let us investigate the more common scenario, where the
argue that SSD has higher variance than RSS. Using (Ber devices are different from the training device. From
and (5), and assuming thaf; and X, are independent andFig. 4(c), and 4(d), it is apparent that the hardware variations of
identically distributed Gaussian with varianegs, RSS and the MN have adverse effects on the RSS-based localization’s
SSD are distributed agdv (p(do)‘dsm —1081og (%)»053) performance for both Bluetooth and Wi-Fi. We further notice

0 that, this issue is prevalent regardless of whether the RSS

and N (—10& log (%)‘*‘1%2 log (%)72035) respectively. js measured at the APs for AP-based localization, or at
For the same device, we notice that the means of both Rff® MN for MN-assisted localization. On the contrary, SSD
and SSD do not change, and the variance of RSS is actuased localization has much better accuracy than RSS based
lower than that of SSD. localization in the presence of hardware variations in both our

However, in practical scenarios, a localization system Wi-Fi and Bluetooth experiments (see Fig. 4(c), and 4(d)).
usually intended to track heterogeneous devices, and hertés also noteworthy to compare Fig. 4(a) against Fig. 4(c),
the better performance of RSS only occurs occasionally whas well as Fig. 4(b) against Fig. 4(d). As can be seen, the
the user device happens to be the same as the device usmmliracy of SSD based localization remains almost the same
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Fig. 4. Comparison of error performance using RSS vs. SSD as location fingerprint for Wi-Fi and Bluetooth when the
testing phase is conducted with either the same training device ((a) and (b)) or a different training device ((c) and (d)).

in the respective comparisons. This implies that SSD baslkeodth combinations are chosen in a way that they are spread
localization is invariant to the mobile device being usediniformly over the whole testbed.
regardless of whether it is the same as the training deviceror our Bluetooth testbed, we first keep the Class 1 device’s
or not. This agrees with our analysis in Section 2 that SSDdgita collected at 171 among the 337 locations as training
free from hardware-dependent effects. samples, whereas the three Class 2 devices’ data collected at
the remaining 166 locations are used for testing purpose. For
4.4.3 Comparison of SSD with Other Robust Location the second combination, the 166 locations’ Class 2 devices’
Fingerprints data are used as training samples whereas the 171 locations’
In order to compare SSD with other robust location fingeflass 1 device’s data are kept for testing. The results of
prints, we consider two different combinations of training andie experiments can be visualized in Fig. 6(a) and 6(b),
testing data for both Wi-Fi and Bluetooth. respectively. Some numerical values of these two figures are
Among the 466 locations of our Wi-Fi testbed, we firs@lso listed in Table 3. Similar to our Wi-Fi testbed, the training
keep the Atheros chipset's data collected at 244 locatiof8d testing locations of both combinations are chosen in a way
as training samples. The Intel chipset's data collected at tit they are spread uniformly over the whole testbed.
remaining 222 locations are used for testing purpose. For the~or the case of Wi-Fi, it is evident from Fig. 5 and Table 2
second combination, we just swap our training and testitigat, SSD based techniques are better than the other two
data. In other words, the 222 locations’ Intel data are usedhemes (HLF and Ecolocation) described in Section 3 that
as training samples whereas the 244 locations’ Atheros datauld also mitigate the MNs' hardware variation effects to
are kept for testing. The results of the experiments can beme extent. Similar conclusions could also be drawn from our
visualized in Fig. 5(a) and 5(b), respectively. Some numericBluetooth experimental results, as can be seen from Fig. 6 and
values (e.g., percentiles and average) of these two figufieble 3. Although we have utilized both KNN and Bayesian
are listed in Table 2. The training and testing locations @flgorithms for performance comparison, we only show the
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figures for the Bayesian algorithm’s results here for brevityraining data. ii) RSS measurements cannot be translated into
However, the numerical results from both Bayesian and KN#listances accurately in the real world. Therefore, uncertainties
algorithms are listed in Table 2 and 3 for Wi-Fi and Bluetootltould arise while using (13) as discussed in [6]. Moreover,

respectively. since we only have four APs in each testbed, the number of

As explained earlier in Section 3, the HLF relies on normafonstraints (i.e.(5)) at each grid point is also quite limited.
ized logarithmic signal-strength ratios for location fingerprinEor fairer comparisons with the other schemes, we modify
ing, which is shown analytically to be still vulnerable to MN'sEcolocation by making use of the offline training data, and call
hardware heterogeneity. This explains why our SSD basit§ resulting scheme “Modified Ecolocation”. The constraint
algorithms perform better than the HLF based algorithm€t for each grid point of the modified algorithm consists

Nevertheless, the HLF based algorithms are still comparatflf the ordered sequence of RSS values collected during the
more robust than the RSS based algorithms. training phase instead of the distance constraints as discussed

Ecolocation performs even worse than the RSS based L%_Sectmn 3. The ordered sequence of RSSs collected during

gorithms for both our Wi-Fi and Bluetooth experiments. This € onllpe cha}hzatlon p.hase IS NOW directly compared W!th

. : - . each grid point’s constraint set without the need for translation

can be attributed to the following reasons: i) Ecolocation IS ; . . .

. o . . INto distance constraints using (13). The experimental results
mainly targeted at localizing inexpensive sensors and is shown o C

o . show that the performance of our modified Ecolocation is

to perform better than other localization algorithms found in. " .. . )

Ségnmcantly better than the original Ecolocation scheme, and

W|rel_ess Sensor netvyorks [6]. Its _mam_advantage lies in the f‘i‘t also outperforms the RSS based algorithms. However, its
that it requires no time-consuming signal strength collection

surveys in the location space, whereas all the other algorithH}%ﬁormance is still inferior to our SSD based algorithms.

considered in our experiments require the use of offline
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TABLE 2
Percentile values and averages of errors (in meter) when various fingerprints are considered for Wi-Fi (MN-assisted)

Training Dataset: Atheros, Testing Dataset: Intel
Algorithm (Fingerprint) 25N percentile| Median | 907 Percentile Average
KNN (RSS) 3.42 5.04 7.90 5.06
KNN (HLF) 1.61 2.61 5.34 2.92
KNN (SSD) 1.60 2.58 5.15 2.86
Bayes (RSS) 3.47 4.95 7.72 5.04
Bayes (HLF) 1.64 2.63 4.86 2.80
Bayes (SSD) 1.58 2.53 4,74 2.73
Ecolocation 4.36 7.15 11.46 7.08
Modified Ecolocation 1.74 2.61 5.34 3.01
Training Dataset: Intel, Testing Dataset: Atheros
KNN (RSS) 3.28 4.83 8.33 493
KNN (HLF) 1.81 2.72 5.18 2.99
KNN (SSD) 1.78 2.71 5.00 291
Bayes (RSS) 3.39 5.20 9.87 5.54
Bayes (HLF) 1.92 2.92 5.53 3.13
Bayes (SSD) 1.78 2.80 4.87 2.88
Ecolocation 4.28 6.98 11.66 6.99
Modified Ecolocation 1.85 2.90 5.29 3.10
TABLE 3

Percentile values and averages of errors (in meter) when various fingerprints are considered for Bluetooth (AP-based)

Training Dataset: Class 1, Testing Dataset: Class 2
Algorithm (Fingerprint) 25N percentile| Median | 900 Percentile Average
KNN (RSS) 1.92 3.15 6.19 3.43
KNN (HLF) 1.87 2.97 5.40 3.09
KNN (SSD) 1.44 2.33 4.83 2.62
Bayes (RSS) 2.79 4.84 7.52 4.61
Bayes (HLF) 1.97 3.10 4.99 3.09
Bayes (SSD) 1.49 241 4.41 2.57
Ecolocation 3.78 6.05 10.03 6.07
Modified Ecolocation 1.84 2.95 5.05 2.99
Training Dataset: Class 2, Testing Dataset: Class 1
KNN (RSS) 2.04 3.16 5.94 3.43
KNN (HLF) 1.72 2.85 5.26 3.00
KNN (SSD) 1.61 2.55 4.63 2.70
Bayes (RSS) 2.40 3.84 7.96 4.37
Bayes (HLF) 191 2.93 4.89 2.97
Bayes (SSD) 1.87 2.75 4.60 2.84
Ecolocation 4.00 6.30 10.04 6.23
Modified Ecolocation 1.90 2.96 5.14 3.10
5 CONCLUSIONS AND FUTURE WORK We point out two future directions. First, although previous

works on Bluetooth-based localization have largely provided

In this paper, we define a robust location fingerprint, th(%scouraging results [36], or required the aid of additional

SSD, which prow_dgs a more.robust location S|gnature COMireless technologies [20], our experience with Bluetooth
pared to the traditional RSS in the presence of mobile no\g ows that it is a promising technology as well that re-
hardware heterogeneity. Both our theoretical analysis aB

&

. tal studies h h that dl ¢ whet ires more investigation. Second, more experiments could
experimental studies have snown that, regardless of W& ¢,nqcted in testbeds with different setup and size to

lthe s|.|gntz.al strengt? tsr?m'ﬁ)/:eNs ?\;T\Icolle.ctte(; a;t th?. AT.S (Apé%ag%lore SSD’s viability across different settings. Moreover,
ocaliza |on). or at the (MN-assisted localization), I? vestigating the impact of testbed’s grid size, and the sample
based localization algorithms outperform those based on lection procedure’s effects (e.g., fewer samples at each

traditional RSS fingerprints, as well as several other techniq d) on our SSD based algorithms could certainly provide
that are designed to mitigate the effects of MNs hardwaﬁferesting future work directions.

variations. This conclusion could not be drawn in our early
work in [1] where only AP-based analysis was carried out. IReEFERENCES
this paper, we also considered two different testbeds for Wi- , . o
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I ar? - uetooth w "C emulate ) -assisted an - as using multiple wireless technologies,” iRroc. IEEE MASS Pisa,
localization, respectively. The settings and surroundings of Italy, Oct. 2007. [Online]. Available: http:/ivww.ece.nus.edu.sg/stfpage/
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