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Abstract Recently, the long-term conflict avoidance approaches based on large-scale flights scheduling have

attracted much attention due to their ability to provide solutions from a global point of view. However, current

approaches which focus only on a single objective with the aim of minimizing the total delay and the num-

ber of conflicts, cannot provide controllers with variety of optional solu-tions, representing different trade-offs.

Furthermore, the flight track error is often overlooked in the current research. Therefore, in order to make the

model more realistic, in this paper, we formulate the long-term conflict avoidance problem as a multi-objective

optimization problem, which minimizes the total delay and reduces the number of conflicts simultaneously. As

a complex air route network needs to accommodate thousands of flights, the problem is a large-scale combinato-

rial optimization problem with tightly coupled variables, which make the problem difficult to deal with. Hence,

in order to further improve the search capability of the solution algorithm, a cooperative co-evolution (CC)

algorithm is also introduced to divide the complex problem into several low dimensional sub-problems which are

easier to solve. Moreover, a dynamic grouping strategy based on the conflict detection is proposed to improve

the optimization efficiency and to avoid premature convergence. The well-known multi-objective evolution-ary

algorithm based on decomposition (MOEA/D) is then employed to tackle each sub-problem. Computational

results using real traffic data from the Chinese air route network demonstrate that the proposed approach ob-

tained better non-dominated solutions in a more effective manner than the existing approaches, including the

multi-objective genetic algorithm (MOGA), NSGAII, and MOEA/D. The results also show that our approach

provided satisfactory solutions for controllers from a practical point of view.

Keywords Air traffic management; Conflict avoidance; Combinatorial optimization; Multi-objective; Coop-

erative co-evolution

Citation Guan X M, Lv R L, Zhang X J, Chen J, Weiszer M. . Title for citation. Sci China Inf Sci, for review

1 Introduction

In the recent years, the sharp increase in air traffic flow has reached the limits of airspace capacity which

caused the air traffic congestion to become a more serious issue [1, 2]. As a result, the key airports

and trunk routes of many countries and areas are facing a highly complicated traffic situation. In the

* Corresponding author (email: zhxj@buaa.edu.cn)
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local high-density operation, the safe sep-aration among aircraft is often difficult to keep, which leads to

conflict situations and near-misses frequently. Fur-thermore, the air route network is very complicated

with thousands of waypoints, air route segments and flights op-erations. On each air route segment, there

are many flight levels in altitude height with about 300 meters separation required for flights of different

directions to avoid head-to-head conflict. With the rapid increase of air travel demand, the current

airspace is becoming increasingly crowded and thus the conflict probability between aircraft especially

at cross waypoints could dramatically rise. Along with the above mentioned problems, as the air traffic

sys-tem is a tightly coupled and large-scale system with traffic flows intersecting each other, conflicts

tend to spread within it, which not only impairs the safety, but also restricts sus-tained development of

air transportation [3].

Conflict resolution approaches play a very important role in keeping a safe airspace. However, as

the current sector-based air traffic system still cannot provide accurate traffic surveillance information

covering a huge airspace, it is difficult to fully predict long-term conflicts and thus make decisions in

advance to avoid them. As a result, cur-rent approaches are mainly focused on short-term conflict

avoidance, which can efficiently solve conflicts in a rela-tively small short time window [4]. During the

last decades, many approaches have been proposed, which can be mainly categorized into: rule-based

methods [5], game the-ory methods [6,7], field methods [8], geometric methods [9], numerical optimization

methods [10–12], and multi-agent methods [13–15].

However, as the increase in air traffic flow continues, the above conflict resolution approaches cannot

provide good solutions in terms of both effectiveness and timeliness due to the new features of the

optimization problem, such as large scale, high complexity and tightly coupled variables. Moreover,

without full consideration of the overall situation, providing short-term ad hoc solutions for flights could

lead to a knock on effect due to the tight coupling between flights, which would jeopardize airspace

safety [3].

In the recent years, the FAA and Eurocontrol proposed the concept of 4D-Trajectory (4DT) as the

operation foundation of future air traffic management, which defines a flight trajectory using three spatial

dimensions plus one time dimension. As the development of the advanced technology continues, flights can

be accurately described in both space and time, which can significantly reduce the uncertainty of the flight

trajectory. According to the initial operational experiment of the Eurocontrol, the uncertainty to all the

waypoints of a flight path can be controlled within about 10 seconds. Most uncertainty will be eliminated

through the adjustment of a flight, such as instant velocity change. As a result, the air traffic control

can be realized with the current traffic situation and its evolutionary trend in a huge airspace. This also

provides an operational and technical support for long-term management. Subsequently, the long-term

conflict avoidance (LCA) method supporting 4DT operation has drawn much attention of researchers

and practitioners from air traffic management domain, and it is envisioned as a key technology which can

address the challenges caused by increased air traffic flow in the future [16,17].

Considering thousands of flights in a complex air route network, the LCA problem is a large-scale

combinatorial optimization problem with tightly coupled decision varia-bles, as well as complicated con-

straints which make it dif-ficult to solve by classical approaches. Therefore, an evolu-tionary algorithm

(EA) is adopted [16]. A sliding forecast time window is introduced to reduce the dimension of the prob-

lem in order to obtain feasible solutions. However, it may overstock the large amount of flights in later

time windows, causing a high difficulty for the EA-based ap-proach to solve. Recently, a cooperative

co-evolution (CC) strategy has been successfully used to handle the problem [18]. It uses a divide-and-

conquer strategy to decompose the large-scale problem into several sub-problems which are easier to

be solved. In the CC-framework, the grouping strategy is a critical step especially for this large-scale

com-plex problem. In order to improve the optimization effi-ciency, some other problem decomposition

methods have been proposed, such as the splitting-in-half grouping [19], the correlation-based adaptive

variable partitioning [20], the delta grouping [21], and the dependency identification technique [22]. Al-

though these decomposition methods are effective in generic optimisation problems, they cannot take full

advantage of the prior knowledge in order to minimise the interdependencies of the variables for the LCA

problem.
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Recently, with the aim to minimize the risk of premature convergence, a memetic algorithm (MA) is

adopted [3]. It utilizes a specially designed local search operator and an adaptive local search frequency

strategy to improve search capability of the algorithm. However, these previous works neglected the track

error of flights, which makes them im-practical. Furthermore, they considered the minimization of the

aggregated flight delay and conflicts as a single objec-tive [17]. While, in the real operation, controllers

often try to seek a good trade-off between the flight delay and the number of conflicts.

In light of the above issues, in this paper, the conflict sit-uation in the waypoint network is evaluated

with consider-ation of track error of flights to make the model more prac-tical and realistic. In order to

incorporate more objectives, we formulate the long-term conflict avoidance problem as a multi-objective

optimization problem, which can mini-mize the total delay and reduce the number of conflicts simultane-

ously. To further improve the search capability of the algorithm, a cooperative co-evolution algorithm is

in-troduced to divide the complex problem into several low dimensional sub-problems [23]. Furthermore,

a dynamic grouping strategy based on the conflict between flights is designed to improve search efficiency

and to avoid prem-ature convergence. The well-known multi-objective evolu-tionary algorithm based

on decomposition (MOEA/D) is then employed to tackle each sub-problem separately [24]. Computa-

tional results using real traffic data from the Chi-nese air route network demonstrate that the proposed

ap-proach achieved better non-dominated solutions in a more efficiently manner than the existing ap-

proaches, such as the multi-objective genetic algorithm (MOGA) [25], NSGAII [26], or MOEA/D. The

results also show that our approach can provide satisfactory solutions for controllers in a more practical

sense.

The rest of this paper is organized as follows. Firstly, the problem is formulated in Section 2. Section

3 presents the details of our solution approach. The results of computa-tional experiments are presented

and analyzed in Section 4. Finally, some conclusions and future research directions are drawn in Section

5.

2 Problem formulation

The problem described in this paper can be formulated as follows. Let W denote the set of waypoints in the

consid-ered airspace, then the waypoint sequence of the trajectory of flight i is
{
Wj

i
}
j=0,...,nwi,

Wj
i ∈ R2

where j is the index of the waypoint in the sequence, nwi is the number of waypoints in the path of flight

i. There are n flights (F1, F2 . . . Fn) in total with specific flight plans. The velocity of flight i in each

segment is
{
Vj

i
}
j=0,...,nwi,

Vj
i ∈ R+

2 . Without consideration of the track error, the estimated arrival

time at each waypoint of fight i can be obtained by [27]:

Tj
i =

∥∥Wj
i −Wj−1

i
∥∥

vji
+ Tj−1

i, j = 1, ..., nwi (1)

where T0
i = 0 and W0

i is the first waypoint of the path of flight i. The flight dis-tance s of flight i at

time t is:

si(t) = vj
i(t− Tj−1i) + si(Tj−1

i), t ∈ (Tj−1
i, Tj

i] (2)

The current position p of flight i at time t is:

pi(t) = pi(Tj−1
i) + vj

i(t− Tj−1i)
(Wj

i − pi(Tj−1i))∥∥Wj
i − p(Tj−1i)

∥∥ (3)

where si(T0
i) = 0 , and pi(T0

i) = W0
i .

Under the operation of the sector-based air traffic man-agement, the track error of flights in general

obeys a Gaussian distribution where the mean is zero, and the hori-zontal standard deviation δ2s is defined

by:

δ2s(t) ∼ r2st2 (4)
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and the lateral standard deviation is described by:

δ2c (t) ∼ min{r2cs2(t), δ̄2c} (5)

where δ̄2c is the maximum of the lateral standard deviation. We can see that the horizontal standard

deviation and the lateral standard deviation will increase as the time grows, and generally δs(t) is larger

than δc(t) . In addition, the vertical standard deviation is a constant.

However, under the operation of 4D trajectory, the ac-curacy of the flight path could be greatly

improved. More-over, with the help of the flight management system, flights can arrive at each waypoint

with higher precision. There-fore, in this paper, both the horizontal standard deviation and the lateral

standard deviation are considered to be constant and are defined by δs and δc respectively. In addition,

the estimated arrival time at each waypoint is assumed to obey a Gaussian distribution with zero mean

and δtw as the standard deviation.

Suppose that the angle between the current velocity of flight i and x axis is θj in the plane coordinate

system, and in the body coordinate system it can be denoted by

R(θj) =

(
cos θj − sin θj

sin θj cos θj

)
(6)

Hence, the predicted position of flight i at time t can be obtained by

Xi(t) = pi(Tj−1
i) + vj

i(t− Tj−1i + δ2tw)
(Wj

i − pi(Tj−1i))∥∥Wj
i − p(Tj−1i)

∥∥ +D (7)

where D is a covariance matrix, and D = R(θ)D̄R(θ)T , with D̄ =

(
δ2s

δ2c

)
if

CD = vj
i (Wj

i − pi(Tj−1i))∥∥Wj
i − p(Tj−1i)

∥∥δ2tw +D (8)

Then, Xi(t) can be defined by

Xi(t) ∼ N(P i(t), CD) (9)

Considering the flight set F in a time window, the dis-tance function between any two flights i and j is

denoted by

distij(t) = ‖Xi(t)−Xj(t)‖ (10)

It is assumed that the positions of flights are not relevant, so distij(t) obeys a Gaussian distribution

as follows:

distij(t) ∼ N(P i(t)− P j(t), 2CD) (11)

Then, the conflict probability PCij(t) of two flights i and j at time t can be computed by

PCij(t) =

∫
distij<εij

pdt
ij (y)dy (12)

where pdt
ij (y) is the probability density function of distij(t) . The Conflict Situation (CS) of all flights in

the considered airspace can be defined by

CS =

n∑
i=1

n∑
j>i

MPCij (13)

where MPCij is the maximum conflict probability of two flights, and it can be described by

MPCij = MAX
t∈[T 1

ij ,T
2
ij ]

(PCij(t)) (14)
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Hence, the first objective is formulated to minimize the total maximum conflict probability, and it can

be defined by

Min f1 = CS (15)

In this work, the ground delay method is used to avoid conflict at waypoints, which is an effective way

by delaying flights while they are still on the ground before departure. However, in order to reduce the

cost for airlines, the sum of flight delays is formulated as the second objective which is defined by

Min f2 =
1

n

∑n

i
δi (16)

where δi presents the departure delay of flight i, and δi ∈ [0 δmax/ts] , where δmax is the maximum

allowable delay. It means that the delay of any flight is limited by a maximum value in order to prevent

some flights being postponed for too long. ts is the time step for time sampling.

It can be demonstrated that the LCA problem is a large-scale combination optimization problem

with two objectives. Furthermore, the variables and constraints are tightly coupled because of conflict

avoidance.

3 Optimization Framework

In order to solve the abovementioned optimization problem in an efficient manner and to avoid premature

convergence, an efficient multi-objective optimization framework is proposed in this section. Firstly, a

cooperative co-evolution (CC) algorithm is introduced to divide the complex problem into several low

dimensional sub-problems. Towards this aim, a dynamic grouping strat-egy based on the conflict between

flights is designed as a heuristic strategy. Then, the well-known multi-objective evolutionary algorithm

based on decomposition (MOEA/D) is employed to solve each sub-problem. The framework is described

in Figure 1.

Figure 1 The framework of the proposed method

In the following subsections, some important mecha-nisms, such as the dynamic grouping strategy,

subcompo-nent optimization, adaptive crossover, and mutation oper-ators are elaborated in more details.

3.1 The Dynamic Grouping Strategy

The cooperative co-evolution algorithm has two critical steps. In this section, we mainly describe the

dynamic grouping strategy which is used to divide flights into groups based on conflicts.
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In order to describe if two flights conflict with each other, a matrix C [28] is adopted in this work as

defined below.

C =


C11 · · ·C1n

...
...

...

Cn1 · · ·Cnn

 (17)

where

Cij =

{
1, if Fi andFj conflict, i 6= j

0. otherwise
, i, j = 1, . . . , n (18)

Firstly, if there is no conflict among any two flights, the random grouping strategy will be employed,

which ran-domly divides the flights into ns groups with the same size.

Secondly, if there are at least two flights which conflict with each other, i.e.,

∃i 6= j, st Cij = 1 (19)

then, the flights are divided into sn groups based on the dynamic grouping strategy which can be defined

by

groupk =
(
Fk

(1), Fk
(2), . . . , Fk

(mk)
)
, 1 6 k 6 sn, 1 6 mk < n,

sn∑
k=1

mk = n. (20)

where Fk
(j) denotes the jth flight in groupk and mk indicates the number of flights in groupk.

The flights in each group satisfy

∀a ∈ groupk,∀b ∈ groupl, st, Cab = 0 (21)

and flights from different groups satisfy

∀a ∈ groupk,∀b ∈ groupl, st, Cab = 0 (22)

3.2 Subcomponent Optimization

In this work, the fast GA is proposed as the global search method [28].

Another critical point is the optimization of each group. In this paper, a fast GA is incorporated into

the MOEA/D framework.

The sub-population of each group includes ps individuals indicating the possible solutions of flights in

this group. Hence the sub-population is a matrix defined by

subpopk =
{
fk

(1), fk
(2), . . . , fk

(ps)
}
, 1 6 k 6 sn, (23)

wherefk
(i)(1 6 i 6 ps)s a vector which can be defined by

fk
(i) = (δk

(i1), δk
(i2), . . . , δk

(imk)), 1 6 mk < n,

sn∑
k=1

mk = n (24)

where δk
(ij) denotes the delay time slot of flight Fk

(j) of chromosome j in groupk.

The general framework of MOEA/D [24] is shown in Fig-ure 2.

3.2.1 Adaptive crossover and mutation operators

The adaptive crossover and mutation operators are spe-cially designed for the LCA problem based on

the fitness of each gene in the individual. The fitness takes the ground delay and conflict probability of

flights into account. The fitness of each flight in groupk is defined by

fitjk =
1− δjk/δmax

1 + cskj
, (1 6 j 6 mk) (25)
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where cskj is the total conflict probability of flight j with other flights.

The mechanism of the adaptive crossover is shown in Fig-ure 3. In this example, A and B are parents in

sub-population k. If fitA1

k > fitB1

k , the two children will inherit from A1 accordingly, and if fitB1

k > fitA1

k

, they in-herit from B1. Otherwise, the genes of children are obtained in a way as follows

CA1 = floor(αA1 + (1− α)B1),

CB1 = floor(αB1 + (1− α)A1).
(26)

where α is the parameter of the linear combination.

For adaptive mutation operator, as can be seen from Figure 4, if gf jk < ε , the gene j mutates with a

probability of pk.

4 Experimental studies

4.1 Database and Experimental Setup

The national route network of China consists of 1706 air route segments, 940 waypoints and 150 airports

as shown in Figure 2. The air traffic data was obtained from Civil Aviation Administration of China

(CAAC) for a whole day of 7 October, 2009. It is worth mentioning that the takeoff and landing phases of

flights are truncated within a given radius (usually 10 NM) around airports. The traffic around airports

is managed following specific procedures imposed by the Terminal Control Area (TCA) control services

in these zones.

(a) (b)

Figure 2 (a) The airway point network in China. (b) Flights operation in China.

The minimum safe time interval is equal to = 60s. δmax is set to be 90min, the value interval of δ is

0.25min, and ε = 0.3.

In order to compare with the proposed MOCC, MOEA/D, MOGA (Delahaye et al. 2005), NSGA2 (Deb

et al. 2002) are selected, and all these algorithms were implemented in C++ in this work. Computational

experiments were carried out on a computer with an E5620 2.4GHz CPU with 12GB RAM. For each

algorithm, the results were collected and analyzed based on 15 independent runs.

The parameters used in all experiments are listed in Table 1, and they are often adopted in other

algorithms [18].

4.2 The depiction of conflict situation

Next, the relationship between the number of flights and the conflict situation in the considered airspace

is depicted in Figure 6. We can see that there are about 1000 flights during every two hours in Figure 6(a).
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Figure 3 Algorithmic flow of MOEA/D with GA.

Figure 4 Adaptive crossover operator.

Table 1 Parameters of the experiments.

Parameters Description Value

ps Population size 100

maxgen Max generation 500

pc Crossover probability 0.8

pm Mutate probability 0.1
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Figure 5 Adaptive mutate operator.

The number of flights from 7 AM to 9 AM is the largest. The total maximum conflict probability of all

flights in each time period is about 300. In addition, in Figure 6(b), it can be seen that as the number

of flights grows, the total maximum conflict probability increases quickly.

(a) (b)

Figure 6 The relationship between the number of flights and the conflict situation in the considered airspace.

4.3 Comparison with the existing methods

In order to compare the performance of the abovemen-tioned algorithms, two scenarios including 960

flights (rep-resent the busiest one hour) and 1664 flights (represent the busiest three hours) are considered.

In addition, three typi-cal metrics are adopted to evaluate the performance of the solutions obtained by

each of the algorithms. The conver-gence metric (γ) [26], the spread metric (∆) [29], and the Hypervolume

metric IH is used [30,31].

Table 2 and Table 3 summarize the average values of IH , ID and ∆ over 15 independent runs. The

best results are highlighted in boldface in each row of the table. We can see from both tables that the

proposed algorithm outperforms the other three algorithms in all metrics. Moreover, when the number

of flights increases, it performs even better. There-fore, it is concluded that MOCC has superiority in

solving large-scale problems such as the one in this paper.

Table 2 Comparison of different algorithms for 960 flights (IH , γ, ∆).

Algorithms IH γ ∆

MOGA 3994 98.99 1.313

NSGA2 5468 68.93 1.213

MOEA/D 6378 55.23 1.263

MOCC 6731 43.63 1.010

Additionally, the non-dominated solutions with the least delay time cost (DTC) and with the least

conflict situation (CS) obtained by the all algorithms over 15 runs are listed in Tables 4 and 5 under
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Table 3 Comparison of different algorithms for 1664 flights (IH , γ, ∆).

Algorithms IH γ ∆

MOGA 4119 86.30 1.1751

NSGA2 5249 56.73 1.2426

MOEA/D 5951 63.30 1.3448

MOCC 6467 57.45 0.8181

the two scenarios separately. It can be observed that both of the non-dominated solutions with the least

DTC and the least CS obtained by MOCC are not dominated by the corresponding solutions of the other

three algorithms when the number of flights is 960. In indeed, in most comparisons under this scenario,

MOCC provides better solutions in both objectives. The same conclusion applies to the scenario when

the number of flights is 1664.

Figure 7 shows the non-dominated solutions obtained by respective algorithms. Specifically, the non-

dominated solu-tions of each algorithm were obtained over 15 runs. FromFigure 7, it can be concluded

that MOCC performs the best because its solutions dominate those obtained by other algorithms. Among

all algorithms, MOGA has the worst performance in terms of convergence. MOEA/D performs better

than NSGA2 in terms of convergence and diversity.

From the experimental results, we conclude that MOCC performs better than the other three methods

for both sce-narios. MOCC adopts an effective multi-objective optimi-zation framework based on the CC

(i.e. dynamic grouping) and MOEA/D, greatly improving its the search capability. The CC divides the

complex problem into several low-dimension sub-problems, which makes the problem easier to solve. The

sub-problems work cooperatively to obtain better solutions. Furthermore, the CC takes full ad-vantage of

the characteristics of the long-term conflict avoidance problem and is based on the conflict among flights,

leading to improved search efficiency. The im-proved search performance is also due to the employment

of the well-known multi-objective evolutionary algorithm based on decomposition (MOEA/D) to solve

each sub-problem.

4.4 Comparison between dynamic grouping strategy and other popular strategies

The experiment in this section is designed to further in-vestigate the contribution of the proposed dynamic

group-ing strategy. The grouping strategy is a key issue in the CC-based framework. There are several

popular grouping strategies, e.g. one-dimensional grouping strategy, split-ting-in-half grouping strategy,

and random grouping strate-gy [19]. In the following, two of these grouping strategies are compared

with the proposed one. All grouping strategies are implemented within the same CC based framework

and share exactly the same settings. The two grouping strategies for comparison are briefly described as

follows:

• Splitting-in-half based strategy (SIH): Each sub-group contains half of the total aircraft.

• Random grouping strategy (RG): All the aircraft are randomly divided into several sub-groups.

Table 4 Non-dominated solutions with the least CS and the least DTC for 960 flights.

Algorithms Solutions with least CS Solutions with least DTC

CS DTC CS DTC

MOGA 62.02 18.76 140.6 9.552

NSGA2 22.52 20.00 138.9 6.183

MOEA/D 15.17 13.40 109.4 3.256

MOCC 0.3841 15.42 108.5 2.692

Table 6 and Table 7 show the average value of IH , ID and ∆ over 15 independent runs of the algorithms

for respective scenarios. The best value is highlighted in boldface in each row of the table. It can be

concluded from both tables that the proposed algorithm outperforms the other three algo-rithms in terms

of IH , ID and ∆. Hence, the dynamic group-ing strategy has superiority in solving large-scale problems

such as the one in this paper.
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Table 5 Non-dominated solutions with the least CS and the least DTC for 1664 flights.

Algorithms Solutions with least CS Solutions with least DTC

CS DTC CS DTC

MOGA 52.67 21.12 178.2 8.873

NSGA2 17.91 22.46 101.3 6.854

MOEA/D 31.21 14.03 137.3 3.202

MOCC 0.4173 15.44 116.2 2.734

Figure 7 Adaptive mutate operator.

Table 6 Comparison of different algorithms for 960 flights (IH , γ, ∆).

Algorithms IH γ ∆

MOCC-SIH 5534 61.23 1.161

MOCC-RG 6028 54.38 1.072

MOCC 6731 43.63 1.010

Table 7 Comparison of different algorithms for 1664 flights (IH , γ, ∆).

Algorithms IH γ ∆

MOCC-SIH 5370 62.68 1.1754

MOCC-RG 5875 60.45 1.0864

MOCC 6467 57.45 0.8181
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The non-dominated solutions with the least delay time cost (DTC) and the least conflict situation

(CS) obtained by all algorithms over 15 runs are listed in Tables 9 and 10. We can see that under both

scenarios, the dynamic grouping strategy performs the best in both objectives.

The splitting-in-half grouping strategy cannot cope with this large-scale problem with more than half

flights in each group still vulnerable to potential conflicts. Although the random grouping strategy can

reduce such potential con-flicts in the case of the two interacting flights in the same group, its performance

will drop dramatically when there are more than two interacting flights In general, the split-ting-in-half

and random grouping strategies represent a blind search mechanism and are more easily to be trapped in

a local optimum. On the contrary, the proposed dynamic grouping strategy exploits the pattern reflected

in potential conflicts among flights leading to an improved global search capability.

4.5 Application to real operations

In this section, we further investigate the applicability of the proposed approach in real operations, i.e.

its ability to provide feasible solutions for the air traffic controllers to keep safe separation of flights.

It is worth mentioning that the proposed method in this paper is a pre-tactical approach which can

be used to solve conflicts that happen in a time scale from several hours to a few days in advance.

Therefore, we do not consider dis-turbances. More specifically, the computational time needed to get

feasible solutions of MOCC is about 5 and 17 minutes for scenario with 960 and 1664 flights respectively.

This is sufficient for a real pre-tactical application. About 30 non-dominated solutions in scenario 1 and

20 non-dominated solutions in scenario 2 are obtained. Prac-tically, controllers may only need a few

feasible solutions. Therefore, the computation time can be much shorter The computation time can be

further reduced using more ad-vanced parallel computation technology.

We also noticed that even for the scenario with 1664 flights, the average number of conflicts using

MOCC is al-most 0 and the average delay can be controlled within 15 minutes. Furthermore, as can be

seen from Figure 7, when the average delay is within 10 minutes, the maximum number of flights will be

under 20 which can be comforta-bly handled by air traffic controllers.

In conclusion, the proposed MOCC can largely improve the optimization capability and avoid local

optima. It rep-resents the best search and grouping strategy among all solution approaches dealing with

the long-term conflict avoidance problem. Although the current version of MOCC cannot be applied to

a real time application, it is sufficient for a pre-tactical management application.

Table 8 Non-dominated solutions with the least CS and the least DTC for 960 flights.

Algorithms Solutions with least CS Solutions with least DTC

CS DTC CS DTC

MOCC-SIH 58.67 17.47 154.4 8.754

MOCC-RG 10.54 16.98 113.5 4.785

MOCC 0.3841 15.42 108.5 2.692

Table 9 Non-dominated solutions with the least CS and the least DTC for 1664 flights.

Algorithms Solutions with least CS Solutions with least DTC

CS DTC CS DTC

MOCC-SIH 64.35 24.98 189.2 9.358

MOCC-RG 12.57 23.47 164.2 7.426

MOCC 0.4173 15.44 116.2 2.734

5 Conclusions and future work

In this paper, a novel long-term conflict avoidance ap-proach supporting the 4D-Trajectory (4DT) oper-

ation is proposed to provide better strategic flight flow manage-ment solutions. Taking the flights track

Page 12 of 14SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Ac
ce

pt
ed

Downloaded to IP: 114.255.246.144 On: 2017-02-14 13:34:44 http://engine.scichina.com/doi/10.1007/s11432-016-9024-y



For Review
 O

nly

Xiangmin Guan, et al., et al. Sci China Inf Sci 13

error into considera-tion, the long-term conflict avoidance (LCA) problem is firstly formulated as a multi-

objective problem minimizing the total delay and the number of conflicts simultaneously. Considering that

the LCA problem is a large-scale combi-natorial optimization problem with tightly coupled varia-bles, in

this work, a cooperative co-evolution (CC) algo-rithm is introduced to divide the complex problem into

sev-eral low-dimensional sub-problems to further improve the searching capability. A dynamic grouping

strategy based on the conflict between flights is proposed to improve the op-timization efficiency and avoid

premature convergence. To fully utilize the proposed grouping strategy, the well-known multi-objective

evolutionary algorithm based on decompo-sition (MOEA/D) is employed in search of better solutions for

each sub-problems. The proposed approach has been validated using real traffic data from Chinese air

route network, and the results demonstrate that the proposed approach obtained better non-dominated

solutions than the existing approaches including the MOGA, NSGA2, and MOEA/D. The results also

show that our approach can provide satisfactory solutions for controllers under real op-erational scenarios.
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