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12 

Summary 13 
 14 

In birds and primates the frequency of behavioural innovation has been shown to covary with absolute and 15 

relative brain size, leading to the suggestion that large brains allow animals to innovate, and/or that selection 16 

for innovativeness, together with social learning, may have driven brain enlargement. We examined the 17 

relationship between primate brain size and both technical (i.e. tool using) and non-technical innovation, 18 

deploying a combination of phylogenetically informed regression and exploratory causal graph analyses. 19 

Regression analyses revealed that absolute and relative brain size correlated positively with technical 20 

innovation, and exhibited consistently weaker, but still positive, relationships with non-technical innovation. 21 

These findings mirror similar results in birds. Our exploratory causal graph analyses suggested that technical 22 

innovation shares strong direct relationships with brain size, body size, social learning rate and social group 23 

size, while non-technical innovation did not exhibit a direct relationship with brain size. Nonetheless, non-24 

technical innovation was linked to brain size indirectly via diet and life-history variables. Our findings 25 

support ‘technical intelligence' hypotheses in linking technical innovation to encephalization, in the restricted 26 

set of primate lineages where technical innovation has been reported. Our findings also provide support for a 27 

broad co-evolving complex of brain, behaviour, life history, social and dietary variables, providing secondary 28 

support for social and ecological intelligence hypotheses. The ability to gain access to difficult-to-extract, but 29 

potentially nutrient-rich, resources through tool use may have conferred on some primates adaptive 30 

advantages, leading to selection for brain circuitry that underlies technical proficiency.  31 

 32 

1. Introduction 33 
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The extraordinary ecological and demographic success of humanity is commonly linked to our capacity for 34 

innovation. We humans would appear to possess an unprecedented capability to devise novel solutions to 35 

life’s challenges, to express these solutions in our behaviour, tools and technology, and to propagate 36 

innovation through social learning. Our engineering and technology have allowed us to inhabit even the most 37 

hostile environments. Genetic studies suggest that this capability is longstanding, with hundreds, possibly 38 

thousands, of human genes subject to positive selection over the last 100kyr, with a primary hypothesis for 39 

why many of these alleles spread being adaptive responses to human learning and cultural activities [1-3]. For 40 

instance, the domestication of plants and animals and associated consumption of novel foods seemingly 41 

selected for alleles expressed in human digestion, as well as in resistance to animal-borne diseases [1-3].  42 

 While humans may be exceptional innovators, we are far from the only species that devises novel 43 

behaviour patterns. Recent research reveals that many animals will invent new behaviours or modify existing 44 

behaviours (e.g. devise more efficient foraging techniques), that such innovation is taxonomically widespread, 45 

and that there is considerable inter- and intra-specific variation in innovation rates [4]. Innovation has been 46 

hypothesized to be an important influence on the success and evolution of many nonhuman animals, 47 

particularly in populations faced with novel challenges such as anthropogenic change [4-6]. Evidence from 48 

comparative and experimental studies supports this contention. For example, comparative studies of birds 49 

have linked rates of behavioural innovation with range expansion [7-9], with rates of evolutionary 50 

diversification [10, 11], and with dietary and habitat generalism [12, 13]. Experimental studies have associated 51 

novel problem solving with fitness components such as mating success and offspring survival [14-16].  52 

 These observations raise a number of questions: How did the ability to innovate evolve? How are the 53 

aforementioned relationships between innovation and variables such as invasion success, fitness, and 54 

speciosity causally related? What neurocognitive processes underpin innovation? And to what extent can 55 

innovation be treated as a unitary phenomenon [4]? Might it, for instance, make better sense to subdivide 56 

innovation into different categories, perhaps controlled by different neurocognitive processes, or to recognize 57 

that different aspects of innovation may have quite distinctive evolutionary histories and taxonomic 58 

distributions? 59 

 To date, both theoretical arguments and empirical evidence have supported the idea that innovation 60 

will be largely the product of domain-general cognitive abilities [4, 17, 18]. For example, comparative analysis 61 

of observational reports of innovation across primate species reveal that innovation rate covaries together 62 

with other observational measures thought to indicate general cognitive ability, such as rates of social 63 

learning, tool use, and tactical deception [18, 19], as well as with experimental tests of learning and problem-64 

solving [20-22]. Similarly, experimentally induced and other novel behaviour in corvids (e.g. [23, 24]) supports 65 

the idea that innovations appear when existing, domain-general abilities are applied to a novel problem. 66 

However, there is some evidence that innovation may carry specific costs, such as exposure to 67 

environmentally-transmitted parasites [19]. Behaviour patterns described as innovations encompass a huge 68 

range of behaviour, likely involving multiple psychological processes [25; 26]. A potentially useful approach is 69 

to subdivide innovation into different categories and to examine to what extent the same processes predict 70 

these different categories of innovation.  71 
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 Here, we present comparative analyses based on an observational database of primate innovation 72 

used in several previous studies (e.g. [18-21, 27, 28]). Innovation rates for different primate species are 73 

estimated by surveying published literature for reports of innovation, an approach pioneered in studies of 74 

foraging innovation in birds [22, 28-31]. The major advantage of this approach is that it provides quantitative 75 

data on a large number of species, circumventing the longstanding challenge of designing experimental tests 76 

that are fair to all species [18, 25, 32]. Multiple potentially confounding variables have been examined, with 77 

little support for the method being subject to persistent or sizable biases over-and-above those that are readily 78 

controlled for (e.g. research effort) [22]. The fact that similar patterns have been uncovered in both birds and 79 

primates [22], and between this quantitative measure of innovativeness and performance in experimental tests 80 

[18], enhances the validity of the approach. The method, interpreted appropriately, thus provides a useful 81 

broad-scale complement to the in-depth data that can be obtained by experimental or observational study of 82 

one or a few species [18, 20, 25, 33]. 83 

 A long-held assumption is that innovation is a marker of intelligence, and more extensive or complex 84 

innovation is thought to be facilitated by brain enlargement, particularly expansion of forebrain regions such 85 

as the primate prefrontal cortex that are linked to creativity and problem solving [34]. Innovation has long 86 

been proposed as a driver of brain evolution [5, 20, 35]. Examination of the links between innovation and brain 87 

evolution provide a first step into understanding the neural underpinnings of innovation, and whether neural 88 

changes accompany enhanced innovative propensities. Above we raised the question as to whether it would 89 

be informative to divide innovation into different subcategories, potentially controlled by different 90 

neurocognitive processes and driven by different selection pressures. One observation that prompts this 91 

question is a recent analysis of avian foraging innovation [36], which divided foraging innovations into 92 

‘technical’ innovations and ‘food-type’ innovations. Overington et al. [36] characterised ‘technical’ innovations 93 

as those involving novel foraging techniques, such as innovative predatory techniques, commensal foraging, 94 

tool use, and extractive foraging, and hence might be regarded as exerting some additional demands on the 95 

cognitive capabilities of the animal associated with the extraction and exploitation of the novel resource. 96 

Conversely, in birds, non-technical innovations are those where a novel food source is exploited without the 97 

use of any novel technique (‘food type’ innovations), typically deploying established feeding methods that 98 

seemingly exert few additional cognitive demands on the innovator over-and-above the recognition of the 99 

novel resource as food. While both technical and food-type innovations covaried with brain size, Overington 100 

et al. found that technical innovations exhibited a far stronger relationship with brain size, and explained a 101 

greater proportion of variance in residual brain size than food-type innovations. These authors suggested that 102 

the ability to extract valuable resources through novel technical foraging skills may require more advanced 103 

cognition than merely introducing novel food items into their diet, and argued that technical innovation may 104 

have driven brain evolution through selection for the neural underpinnings of technical proficiency. Thus 105 

Overington et al.’s results were interpreted as supporting a technical intelligence hypothesis, suggesting that 106 

increased brain size allows individuals to use innovation to modify their technical skills. 107 

 Here we explore the generality and robustness of Overington et al.‘s [36] conclusions by investigating 108 

whether similar relationships between innovation and brain evolution are observed in nonhuman primates. 109 
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We take a broadly similar approach by subdividing our primate innovation dataset into technical innovations 110 

and non-technical innovations. We focus particularly on innovations that require tool use as this is a core 111 

element of technical intelligence hypotheses [37], one of several hypotheses put forward to explain the 112 

evolution of enhanced cognition and brain enlargement [20, 38-41]. In a second set of analyses, we examine a 113 

broader definition of technical innovation, including both innovative tool use and innovative extractive 114 

foraging, reflecting arguments that extractive foraging played a role in primate cognitive evolution [42, 43].  115 

 Our analyses examine the relationship between technical innovation, non-technical innovation, and 116 

both absolute and relative brain size, as well as several factors that have been shown to covary with brain size 117 

and/or innovation rate, including body size, life history variables, social group size, diet breadth and rates of 118 

social learning. While there is potential utility in examining individual brain components and their relation to 119 

behavioural innovation, currently insufficient data are available when innovation is sub-divided. Moreover, 120 

recent work on the co-evolution of different brain areas suggests that many components change in volume 121 

together as a network [44, 45]. This suggests that a focus on large brain areas or the entire brain may be 122 

appropriate, particularly for broad categories of behaviour such as innovation that are plausibly reliant on 123 

domain-general capabilities, and involve many cognitive and other processes and many parts of the brain.  124 

 Our objectives are twofold: (i) to determine the extent to which different classes of innovation covary 125 

with brain size in primates, and (ii) to examine how technical and non-technical innovation co-evolve with 126 

other behavioural and socioecological traits. We address these objectives deploying a powerful combination of 127 

comparative phylogenetic analyses [46], phylogenetically-informed causal graphs [47] and non-linear 128 

statistical approaches, to examine potential evolutionary drivers and infer causal relations. We conduct 129 

analyses on datasets including all primate innovations recorded and also, to facilitate more precise 130 

comparison with Overington et al. [36], who examined foraging innovation, on datasets limited to foraging 131 

behaviour. The analyses shed new light on how and why innovative propensities evolved.  132 

 133 

2. Methods 134 

 135 
2.1. Brain data 136 

Species means for brain size and body mass were obtained from Isler et al. [48]. Isler et al. compiled 137 

endocranial volumes for 3813 museum specimens, at least 88% wild-caught, for 167 primate species. 138 

Endocranial volume (ECV) provides a good estimate of brain volume which is easily convertible into brain 139 

mass [49]. We complemented the dataset with body mass and brain mass for four additional species: Callicebus 140 

moloch, Cercopithecus talapoin (from [50]), Saguinus imperator and Callithrix geoffroyi (from [51]). Brain mass in 141 

these species was converted into ECV [49] before being added to the dataset. Endocranial volume (ECV) and 142 

body mass were natural log-transformed prior to analysis to normalise distributions. Below we refer to ECV 143 

as ‘brain size’ and to body mass as ‘body size’.  144 

 145 

2.2. Behavioural data 146 

Behavioural data were drawn from Reader et al. [18]. Reader et al. surveyed over 4000 published articles for 147 

examples of innovation, social learning, tool use, and extractive foraging in living non-human primates, using 148 
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keywords (e.g. ‘novel’ or ‘traditional’) to classify behaviour patterns (e.g. as ‘innovation’ or ‘social learning’). 149 

Full details of the database and discussion of its merits, disadvantages, reliability and validity are given in 150 

Reader et al. [18] and the papers cited therein. The observation frequencies for each of the four behavioural 151 

measures were calculated as the total number of reported examples of each class. Initially, we examined each 152 

innovation report and categorized it as a ‘technical’ innovation (involving tool use) or a ‘non-technical’ 153 

innovation (not involving tool use; data will be archived online in the Dryad depository). We go on to conduct 154 

further analyses in which ‘technical innovation’ is broadened to include both innovative tool use and 155 

innovative extractive foraging. We also restricted a subset of analyses to foraging innovations only (strictly, 156 

innovations that occur in a foraging context), deploying the classification in Reader & Laland [27]. We used 157 

the number of published articles on each species in the Zoological Record (taken from [18]) as a measure of 158 

research effort. We corrected the behavioural measures for differences in research effort by including research 159 

effort as an independent variable in statistical analyses [52].  160 

 161 

2.3. Diet breadth, life history and social group size 162 

Data on diet breadth (the number of food types typically eaten, out of a maximum of 13 different categories) 163 

were obtained from Reader et al. [18]. Social group size and six life-history variables (gestation length, 164 

interbirth interval, weaning age, age of sexual maturity, age at first birth and maximum longevity) were 165 

extracted from the PanTheria dataset for the 167 species with brain data, with these measures available and 166 

complete for 71 species [53]. In pairwise PGLS analyses, the six life-history variables were found to be 167 

significantly positively correlated (p<0.05). In order to extract a single dimension of life-history to use later as 168 

a predictor in an exploratory analysis of causality, these six variables were natural log-transformed and used 169 

to create a composite ‘life-history’ variable using phylogenetically controlled principal components analysis 170 

(PPCA; [54]). The PPCA extracted a single component, which explained 78% of the variance in the data, and 171 

all variables loaded positivity on this component, with loadings from 0.58 to 0.90 (λ= 0.84). This composite 172 

life-history variable was used in subsequent analyses. Social group size was natural log-transformed for 173 

normalization. Diet breadth did not require transformation.  174 

 175 

2.4. Phylogeny 176 

For the phylogenetic analyses, we used the 10k Trees project dated consensus tree (version 3) [55], and 177 

matched primate species from the brain dataset and the behavioural dataset with species in the tree, taking 178 

into consideration changes in nomenclature (ESM).  179 

 180 

2.5. Data analyses 181 

A total of 167 primate species were represented in the phylogenetic tree and had published brain and 182 

innovation data (strepsirrhines: 39 species, tarsids: 3 species, platyrrhines: 49 species, catarrhines: 76 species). 183 

Data on life history, social group size and diet breadth were only available for 71 species in the innovation and 184 

brain dataset (19 strepsirrhines, 1 tarsid, 21 platyrrhines and 30 catarrhines), and thus analyses involving these 185 

variables were restricted to these 71 species. A substantial number of the 167 species had no recorded 186 
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innovations. The fact that a species has zero recorded innovations when this is unexpected for a given research 187 

effort may be informative, but it is also possible that species with no innovation reports have been studied 188 

differently to those with innovation reports [25]. Thus, we also conducted analyses excluding those species 189 

with zero innovation reports in our database. This “innovators” sample covered 48 species with available 190 

brain data.  191 

 To account for non-independence of species-level data, we used phylogenetic generalized least square 192 

regressions (PGLS), with phylogenetic signal (Pagel’s λ) estimated by maximum likelihood (henceforth 193 

λ=ML). Analyses were run in R version 3.0.2 [56] using the “caper” [57] and “phytools” packages [58]. Models 194 

explored the relationship between brain size and innovation, treating innovation rates as response variables, 195 

and including research effort as a covariate. Analyses that examined the relationship between relative brain 196 

size and innovation included body mass. We also ran analyses examining absolute brain size, without body 197 

mass as a covariate, to allow comparison of absolute versus relative brain measures of brain size as predictors 198 

of cognitive differences, an open question in the field [21].  199 

We ran additional analyses (ESM) to take into account the fact that a large number of species in our 200 

database had zero recorded innovations. We ran a binomial regression predicting the probability that an 201 

innovation is observed in each paper based on research effort (conducted using the method “glm” in R [56]). 202 

We also present the results of using a zero-inflated Poisson (ZIP) model, which provides an alternative 203 

method for controlling for the large number of species with zero recorded innovations [59]. However, the ZIP 204 

model may not be suitable when there are a small number of observations for some entries (over 58% of the 205 

species had under 20 papers recorded in the Zoological Record survey), meaning that the results of these models 206 

should be interpreted with caution. Both the binomial model and the zero-inflated Poisson models also help 207 

control for the observed heteroscedasticity in the data (if the number of observations for a species is large, we 208 

should expect greater absolute variance in the number of reported innovations). However, binomial and ZIP 209 

models that incorporate phylogenetic information are not well-established methodologies. Thus we used non-210 

phylogenetic methods for these analyses. 211 

 Exploratory causal graphs were used to further examine interrelationships between variables. Causal 212 

graphs were generated by examining the phylogenetic partial correlation between variables, taking into 213 

account the remaining variables (using PGLS). For a set of variables A = {A1,…,An}, this method assesses the 214 

relationship between Ai and Aj, by examining the correlation between the residuals of a phylogenetic linear 215 

model of Ai predicted by the remaining variables (i.e. Ak for all k except for Ai and Aj) and Aj predicted by the 216 

remaining variables. In order to guard against the premature rejection of causal relations between variables 217 

we take the conservative stance of treating the correlation as potentially significant if p<0.1, in which case an 218 

edge between Ai and Aj is added to the causal graph. This method allows us to visualize the significant 219 

relationships between variables when taking into account the presence of other variables, similar to other path 220 

analysis methods [47, 60]. Edges were not oriented (i.e. directed) as we reasoned that biological evolution in 221 

this domain frequently encompasses feedback processes between traits [18, 61].  222 

Although this method uses the full set of covariates (all Ak) to assess independence, which may 223 

reduce statistical power, we find that the results of this procedure are the same as a more complex algorithm 224 
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(Whalen et al., in preparation) which uses only connected variables. Our new method can be seen as an 225 

exploratory automation of von Hardenberg and González-Voyer [62], building on Pearl’s PC algorithm [63]. 226 

For PGLS models within a given causal graph, λ is estimated by maximum likelihood, in order to account for 227 

differing levels of phylogenetic signal across each linear model. . However, given that previous approaches 228 

have assumed a fixed common value for λ for all paths [62], we also analyse graphs with λ fixed at 0 or 1, 229 

which represent the extreme values of λ, and thereby provide a strong check as to whether our conclusions are 230 

robust to different values of phylogenetic signal. The values on the edge of each graph represent the p-value, 231 

i.e. the significance of the relationship between variables when taking into account the influence of only 232 

connected variables.  233 

 234 

3. Results 235 

 236 
Where technical innovation was restricted to tool use, of the 584 reports of innovation, 45% were classified as 237 

technical innovations and 55% as non-technical innovations (Figure 1). In the broader categorization of 238 

technical innovation that included novel extractive-foraging behaviour patterns, 60% were classified as 239 

technical innovations and 40% as non-technical innovations. 240 

 241 

3.1. Comparative phylogenetic analyses for all species 242 

Total innovation rate (i.e., technical and non-technical combined) was found to be positively correlated with 243 

absolute but not relative brain size in primates (Table 1). That is, there was a significant positive correlation 244 

between innovation rate and brain volume, but this relationship was no longer significant when body mass 245 

was taken into account.  246 

Technical (i.e. involving tool use) and non-technical innovation rates correlated positively with each 247 

other (PGLS: λ=0, r=0.61, β=0.49±0.09, p<0.0001). A similar correlation was observed using a broader 248 

classification of technical innovation, including innovative extractive foraging (PGLS: λ=0.06, r=0.53, 249 

β=0.44±0.10, p<0.0001). However, despite this positive correlation, different relationships were observed 250 

between brain size and technical versus non-technical innovation rates. Technical innovation rate was 251 

significantly correlated with absolute but not relative brain size, and we observed a stronger relationship with 252 

brain size than that observed for total innovation rate. Similar results were found for technical innovation 253 

including extractive foraging (Table 1). In contrast, non-technical innovation rate was not significantly 254 

correlated with either absolute brain size or relative brain size (Table 1). The model including brain size as a 255 

predictor of technical innovation, with research effort as a covariate, showed a higher correlation coefficient 256 

(r=0.13) than the model predicting non-technical innovation (r=0.07), with a similar pattern observed using the 257 

broader classification of technical innovation including extractive foraging (r=0.14 vs r=0.08).  258 

 259 

3.2. Controlling for zero-inflation  260 

To address the concern that our PGLS results were biased by the large number of primate species with no 261 

innovations (zero inflation), we conducted ZIP and binomial analyses. ZIP models on our 167-species sample 262 

confirmed that zero scores on all measures of innovation were more likely in those species where research 263 
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effort was low (Table S1). We found that the number of innovations observed correlated significantly with 264 

research effort, body mass, and relative brain size using all innovation classifications. In contrast, absolute 265 

brain size correlated with only two innovation measures, total innovation rate and technical innovation 266 

including extractive foraging. Technical innovation was more strongly related to brain size than was non-267 

technical innovation, using both absolute and relative brain size measures and for all classifications of 268 

technical innovation (see Block A in Table S1). Comparison of AIC values between models with and without 269 

body size found better support for models that included body size (i.e., relative brain size models). 270 

 We also ran a set of analyses using a binomial model, which predicted the likelihood that a given 271 

paper in the data set contained an innovation. Binomial models for all species showed that all innovation rates 272 

(including total innovations, technical innovations and non-technical innovations) exhibited strong positive 273 

correlations with both absolute and relative brain size (p<0.0001, Table S2). Technical innovation was more 274 

strongly related to both absolute and relative brain size than was non-technical innovation. These results are 275 

consistent with the results of the ZIP model, and again, comparison of AIC values between models with and 276 

without body size found better support for models that included body size.  277 

 278 

3.3 Innovators only analyses  279 

Confirmation of zero inflation in the full species dataset provides further justification for repeating the 280 

analysis using the reduced dataset of innovators (see Table 1). Amongst our sample of innovators (48 species), 281 

we found strong correlations between total innovation rate and both absolute and relative brain size. 282 

Technical innovation also exhibited strong correlations with both absolute and relative brain size, and these 283 

relationships were stronger than those for total innovations. Non-technical innovation correlated significantly 284 

with absolute brain size only, and this correlation was weaker than the one observed between technical 285 

innovations and absolute brain size. Brain size was a better predictor of technical innovation than a predictor 286 

of non-technical innovation (technical innovation: r=0.14; non-technical innovation: r=0.10; technical 287 

innovation with extractive foraging: r=0.26, non-technical innovation without extractive foraging: r=0.05). 288 

Using the binomial models, we again observed strong and significant correlations between all innovation rates 289 

and absolute and relative brain size (see Table S2), and stronger relationships were observed between 290 

technical innovation rates and brain size measures than between non-technical innovation rates and brain size.  291 

 292 

3.4 Comparisons with Overington et al.: Foraging innovations 293 

To facilitate a closer comparison with Overington et al. [36], extractive foraging innovations were included in 294 

technical innovation, and PGLS analyses were restricted to foraging innovations only. This reduced the 295 

available pool of innovations considerably, and because of the aforementioned problems with zero-innovation 296 

scores, the 167-species analysis was not appropriate. In the innovators only sample, technical innovation 297 

correlated significantly with both absolute and relative brain size, but non-technical innovation did not 298 

correlate with either (Table 1). In the ZIP and binomial models, technical innovation was again more strongly 299 

correlated with brain size measures than was non-technical innovation (Tables S1, S2).  300 

 301 

3.5 Causal graphs 302 
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We constructed three phylogenetically informed causal graphs, using total innovations, technical innovations 303 

and non-technical innovations. In all sets of causal graphs, the findings for total innovations resemble those 304 

for non-technical innovations, and can be contrasted with those for technical innovation. Also, in all of our 305 

analyses, brain size, body size, the life-history composite measure and social group size shared multiple direct 306 

connections (“edges”) with each other, suggesting that these variables have evolved together (Figure 2). 307 

 Technical innovation rate shared direct edges with brain size in the best-supported graphs (λ=ML: 308 

p=0.043, Fig. 2a; λ=0: p=0.014, λ=1: p=0.009, see Fig. S1), which indicates that these two variables are directly 309 

correlated even when the other variables are taken into account. Technical innovation rate also was directly 310 

related to social learning rate (p<0.0001), body size (p=0.039) and social group size (p<0.0001). PGLS analyses 311 

showed that these associations were all positive (brain size: λ=0.84, r=0.27, p=0.014; body size: λ=0.85, r=0.20, 312 

p=0.050; social learning: λ=0, r=0.77, p<0.0001; Table S3). However, the relationship between technical 313 

innovation and social group size was not statistically significant in the PGLS model (λ=0.91, r=0.02, p=0.88). 314 

These edges are also strong when λ was set to 0 or 1 (λ=0: social learning rate: p<0.0001, body size: p=0.041, 315 

social group size: p<0.0001; λ=1: social learning rate: p<0.0001, body size: p=0.007, social group size: p<0.0001, 316 

see Figure S1a). 317 

 Non-technical innovation shared a direct edge with social learning rate alone (λ=ML: p<0.0001, Fig. 318 

2b; λ=0: p<0.0001, λ=1: p<0.0001, Fig. S1b). PGLS analysis showed that the correlation between these two 319 

variables was positive (λ=0, r=0.66, p<0.0001). Any relationships between non-technical innovation rates with 320 

other variables in the graph, including brain size, were mediated by social learning and diet breadth.  321 

 Technical innovation rate including extractive foraging shared direct edges with social learning rate 322 

(p<0.0001), and social group size (p=0.020) in the graphs with λ=ML (Fig. 2c), as well as in the graphs with λ=0 323 

and λ=1 (Fig. S1c), but the direct relationship with brain size was lost (p>0.1). PGLS analyses showed that the 324 

correlation of this measure of technical innovation with social learning was positive (λ=0, r=0.76, p<0.0001), 325 

but the relationship with social group size was not significant (λ=0.728, r=0.11, p=0.17).  326 

 327 

4. Discussion 328 

The innovativeness of a species, defined as the frequency with which novel behaviour patterns are generated 329 

(controlling for research effort) covaries with diverse measures of absolute and relative brain size in both birds 330 

and primates [18, 22]. In birds, brain size covaries more strongly with technical than with non-technical 331 

innovation [36], suggesting a potentially important distinction between these types of novel behaviour. Our 332 

findings in nonhuman primates were broadly consistent with those of Overington et al. [36]. Phylogenetic 333 

analyses comprising all primate innovations found that absolute (but not relative) brain size correlated 334 

positively and strongly with both technical innovation and total innovations but showed a non-significant 335 

relationship with non-technical innovation. However, PGLS analyses do not account for the zero-inflated 336 

distribution of innovation counts across species. When this is controlled for, either by deploying zero-inflated 337 

Poisson or binomial models, or by reducing the sample to ‘innovator’ species, we find that total innovation 338 

measures covary significantly with absolute and relative brain size, and that technical innovation always 339 

exhibits a stronger relationship with brain size than non-technical innovation.  340 
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 Exploratory causal graph analyses painted a similar picture, where technical innovation shared a 341 

direct edge with brain size (Fig. 2a), whilst the number of non-technical innovations did not. Rather, non-342 

technical innovation was linked to brain size via social learning, diet and life-history variables (Fig. 2b). 343 

Technical innovation also shared very strong direct edges with social learning, body size and social group 344 

size. However, when we add extractive foraging to technical innovation the direct relationship with brain size 345 

was lost (Fig. 2c). This implies that tool use, more so than extractive foraging, may be the relevant factor 346 

underlying the direct relationship between technical innovation and brain size. 347 

 This direct connection between technical innovation and brain size provides support for ‘technical 348 

intelligence’ hypotheses (e.g. [37]) in suggesting that in some primate lineages the ability to invent novel 349 

technical behaviours, specifically those involving tools, may have favoured encephalization, more than the 350 

ability to generate novel behaviours per se. Overington et al. [36] restrict their analyses to foraging innovations 351 

alone, and used a somewhat broader definition of technical innovations, with technical innovations referring 352 

to novel foraging techniques, not just tool use. Our analyses tell a similar story to those of Overington et al. As 353 

in birds, the ability to gain access to difficult-to-extract, but potentially nutrient-rich, resources through tool 354 

use and technical skill may have conferred adaptive advantages, leading to selection for brain regions and 355 

circuitry that underlie technical flexibility and proficiency in some primate lineages. This pattern holds when 356 

our PGLS analyses were restricted to foraging innovations. 357 

 We also observed strong connections in causal graph analyses between primate technical innovation 358 

and both social learning and social group size (although the group size-technical innovation link was not 359 

significant in a PGLS analysis), suggesting co-evolution of elements of social, technical and ecological 360 

intelligence, as has been previously argued (e.g. [64]). Those primates that score highly for innovation and tool 361 

use (e.g. the great apes, capuchins, macaques) are also renowned for their social learning [18, 64], and there is 362 

now extensive experimental evidence demonstrating that primates can acquire many tool using methods 363 

through social learning [61]. Indeed, a robust finding of both our causal graph analyses and our previous 364 

work [18, 19] is that innovation and social learning evolve together, a conclusion that holds here for both 365 

technical and non-technical innovation.  366 

The direct connections between technical innovation and social group size, as well as between social 367 

learning and social group size, conflict with previous analyses that found no relation between social group 368 

size and total innovation rate or social learning rate [18, 65]. This could reflect the effect of examining technical 369 

innovations alone, additional power in the current analyses or sample, or the effect of the additional variables 370 

incorporated in the present analyses. Theoretical work, however, suggests that the observed relationships of 371 

group size with reported technical innovation rates may be no artefact. A wide variety of theoretical studies 372 

now link the size of cultural repertoires with social group size, as larger populations provide a more stable 373 

repository for the retention of innovations than do smaller groups, as well as more potential innovators [66-374 

69]. These links between technical innovation and both social learning incidence and social group size are, of 375 

course, consistent with several social intelligence hypotheses [20, 38-41], which supports the suggestion that 376 

these explanations are not mutually exclusive [18, 66]. The consistently observed edge in our path analyses 377 
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linking social group size and brain size supports the established finding that social intelligence is an important 378 

driver of brain evolution [20, 38-41]. 379 

 Our causal graph analyses linked non-technical innovation to measures of diet breadth via social 380 

learning, a finding that evokes ecological intelligence explanations, in which primate intelligence is favoured 381 

by the challenge of locating and extracting diverse and constantly changing foods (e.g. [42, 43, 71, 72]). 382 

However, as Overington et al. [36] reported for birds, while larger-brained, innovative primate species may be 383 

more likely to incorporate novel foods into their diets, and while this ability may be ecologically important, 384 

our findings imply that the relationship between innovativeness and brain size in primates is more likely to be 385 

primarily driven by technical innovations.  386 

 Although the absence of an edge between non-technical innovation and brain size in the best-387 

supported causal graph ostensibly rules out a direct coevolutionary relationship between these variables, it 388 

does not preclude a more diffuse coevolutionary interaction. What the causal graph analysis implies is that if 389 

there is a causal influence of non-technical innovation on brain evolution it occurs through changes in social 390 

learning, diet and life-history. One plausible interpretation of these findings is that through social 391 

transmission many primates learn to exploit novel foods, and the resources so gleaned both aid survival and 392 

fuel brain growth. Cultural drive explanations [5, 20, 35, 41, 73] are relevant here, as they propose that 393 

selection for innovativeness and/or efficient social learning drove the evolution of encephalization in 394 

primates. However, given that most primate species in our sample exhibited zero innovations, we emphasize 395 

that any causal role for innovation, be it technical or non-technical, in driving encephalization is likely to be, 396 

only part of the story, and restricted to a subset of primate lineages. 397 

 We emphasize that our causal graph analyses merely establish significant direct versus diffuse 398 

coevolutionary relationships between variables, and we explicitly avoid attempting to infer the directionality 399 

of edges. We adopt this conservative stance as we anticipate that feedback between coevolving traits is highly 400 

likely, indeed at least as likely as the unidirectional evolution of one trait in response to changes in the other. 401 

Hence, while our analyses are consistent with the interpretations that in some primate lineages (i) technical 402 

innovation drove brain enlargement, or (ii) that large brains (which evolved for reasons unconnected to 403 

innovation) are facultatively expressed in innovative behaviour, we suggest (iii) that technical innovation and 404 

brain size coevolved in certain taxa, with each driving enhancements in the other. In addition, while it is likely 405 

that technical innovation is more cognitively complex than non-technical innovation, a suggestion that our 406 

findings may appear to support, there are reasons to be cautious in drawing this conclusion as technical 407 

innovations may differ from other innovations in ways other than tool use.  408 

 Given the fact that both brains and innovations can perform many functions, a complete analysis 409 

would require numerous interacting variables to be investigated. Moreover, it remains an open question as to 410 

whether innovation is a driving causal factor in our evolutionary analyses, or whether the innovations 411 

observed in our survey are simply the by-products of broader psychological processes. Reports of technical 412 

innovation are relatively sparsely distributed across the primates, and close relatives often differ considerably 413 

in innovation rates. This could reflect the difficulty in gathering a comprehensive sample of primate 414 

innovation, but also points to technical innovation being just a part of a larger story. Even focused on the 415 
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restricted set of variables considered in our analyses, the emergent picture is one in which there are multiple 416 

drivers of the evolution of the primate brain and intelligence that feed back on each other in complex, 417 

nonlinear ways. It would seem that innovativeness in primates, like intelligence and cognition more generally, 418 

is not to be explained by a single prime mover, but rather by a complex of factors that encompass technical, 419 

social and ecological intelligence. 420 

 421 
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Figure and table captions 
Table 1. PGLS analyses of the relationship between innovation rates as the outcome variable and brain size as 
a factor, controlling for an estimate of research effort on each species (number of publications in a survey of 
the Zoological Record). For each innovation rate measure we ran a model assessing the effect of relative brain 
size, by including body mass as a cofactor (top of each pair of rows), and absolute brain size, by not including 
body mass as a cofactor (lower of each pair of rows; body mass results are thus marked not applicable [NA] 
for these rows). All models were strongly significant (p<0.001). Significant relationships between innovation 
rate and body mass or brain size are in bold.  
 
Figure 1. Number of reports of innovation, tool use and extractive foraging in our survey of non-human 
primates. Of the 584 reports of innovation (shaded), 264 or 45% were classified as ‘technical innovation’ (i.e. 
innovative tool use) and 320 or 55% were classified as ‘non-technical innovation’. In a second set of analyses, 
we used a broader definition of technical innovation that included novel tool use and novel extractive 
foraging behaviour patterns. With this broader definition, 351 or 60% were classified as ‘technical innovation’ 
and 223 or 40% were classified as ‘non-technical innovation’.  
 
Figure 2. Best-supported graphs using phylogenetic exploratory path analyses including either (a) technical 
innovation rate, (b) non-technical innovation rate, or (c) technical innovation rate including extractive foraging 
[EF], together with social learning rate, brain size, body size, a life history composite measure, social group 
size and diet breadth. Edges, i.e. lines, between pairs of variables indicate significant correlations between 
these variables while taking their correlation with the other variables into account. P-values are indicated for 
those edges. Analyses of total innovation rate (i.e. technical and non-technical innovations combined) gives 
very a similar picture to Fig 2b. Dotted boxes indicate tightly covarying suites of variables
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Tables 
 
 
 

 

 

Brain 

 

Model Research Effort  Body mass Brain size 

  

measure  λ r 

 

β p 

 

β p 

 

β p 

  

  

           All 
Innovation 

Relative  0.58 0.55 

 

0.33 <0.0001 

 

-0.10 0.61 

 

0.37 0.19 

 (167 species) Absolute  0.58 0.56 0.33 <0.0001 NA NA 0.23 0.016 

  
Technical innovation 

Relative  0.81 0.37 

 

0.12 0.0002 

 

-0.09 0.60 

 

0.36 0.12 

  Absolute  0.81 0.38 0.12 0.0002 NA NA 0.25 0.005 

  
Non-technical innovation 

Relative  0 0.58 0.30 <0.0001 -0.01 0.91 0.07 0.64 

  Absolute  0 0.58 

 

0.30 <0.0001 

 

NA NA 

 

0.06 0.16 

  Technical innovation  

with extractive foraging 

Relative  0.71 0.52 

 

0.24 <0.0001 

 

0.00 1.00 

 

0.28 0.27 

  Absolute  0.71 0.52 0.24 <0.0001 NA NA 0.28 0.003 

  Non-technical innovation  

without extractive foraging 

Relative  0 0.50 

 

0.22 <0.0001 

 

-0.04 0.74 

 

0.11 0.46 

  Absolute  0 0.51 

 

0.22 <0.0001 

 

NA NA 

 

0.06 0.11 

 
  

Innovators  
Innovation 

Relative  0 0.79 

 

0.58 <0.0001 

 

-0.48 0.11 

 

0.98 0.015 

(48 species) Absolute  0 0.78 0.56 <0.0001 NA NA 0.37 0.0002 

  
Technical innovation 

Relative  0.31 0.73 0.54 <0.0001 -0.82 0.027 1.52 0.027 

  Absolute  0.33 0.70 

 

0.49 <0.0001 

 

NA NA 

 

0.49 0.001 

  
Non-technical innovation 

Relative  0 0.64 0.41 0.0001 -0.17 0.59 0.45 0.26 

  Absolute  0 0.65 

 

0.40 0.0001 

 

NA NA 

 

0.24 0.012 

  Technical innovation  

with extractive foraging 

Relative  0.32 0.77 

 

0.59 <0.0001 

 

-0.60 0.08 

 

1.28 0.006 

  Absolute  0.26 0.76 0.56 <0.0001 NA NA 0.51 0.0002 

  Non-technical innovation  

without extractive foraging 

Relative  0 0.53 

 

0.34 0.004 

 

-0.35 0.32 

 

0.69 0.14 

  Absolute  0 0.53 0.33 0.005 NA NA 0.24 0.027 

  
Foraging innovation 

Relative  0 0.72 0.29 <0.0001 -0.48 0.14 0.88 0.040 

  Absolute  0 0.69 

 

0.29 <0.0001 

 

NA NA 

 

0.28 0.006 

  Technical foraging innovation  

with extractive foraging 

Relative  0.15 0.73 0.52 <0.0001 -0.68 0.041 1.23 0.006 

  Absolute  0 0.71 

 

0.48 <0.0001 

 

NA NA 

 

0.31 0.003 

  Non-technical foraging innovation 

 without extractive foraging 

Relative  0 0.45 

 

0.27 0.004 

 

-0.13 0.63 

 

0.27 0.46 

  Absolute  0 0.46 0.27 0.004 NA NA 0.10 0.23 
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Figures 

Figures are provided in two PDF files (NavarreteFigure1.pdf, NavarreteFigure2.pdf). 
 
 

Supplementary material 

The dataset to be uploaded to Dryad is included here for reference (NavarreteESM.xls). The electronic 
supplementary material (PDF file) details additional analyses (NavarreteESM2.pdf).  
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233 87

129

135

144

65

Extractive 

foraging
Innovation

Tool use246
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<0.0001

0.016

<0.0001

Brain size

<0.0001

Technical 

innovation

Social learning

Diet 

breadth

Social group 

size

Life 

history

Body size
0.006

0.043

a

<0.0001

0.012

0.010

<0.0001

Brain size

<0.0001

Non-technical 

innovation

Social learning

Diet 

breadth

Social group 

size

Life 

history

Body size

b

c

<0.0001

0.016

<0.0001

Brain size

<0.0001

Technical 

innovation (+EF)

Social learning

Diet 

breadth

Social group 

size

Life 

history

Body size

0.024
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