
APPLICATION OF MULTILEVEL CONCEPTS FOR

UNCERTAINTY QUANTIFICATION IN RESERVOIR

SIMULATION

by

Doaa Mostafa Ali Elsakout

Submitted for the degree of

Doctor of Philosophy

School of Energy, Geoscience, Infrastructure and Society

Heriot-Watt University

April 2016

The copyright in this thesis is owned by the author. Any quotation from the report or

use of any of the information contained in it must acknowledge this report as the source

of the quotation or information.



Abstract

Uncertainty quantification is an important task in reservoir simulation and is an
active area of research. The main idea of uncertainty quantification is to compute
the distribution of a quantity of interest, for example oil rate. That uncertainty,
then feeds into the decision making process.

A statistically valid way of quantifying the uncertainty is a Markov Chain Monte
Carlo (MCMC) method, such as Random Walk Metropolis (RWM). MCMC is a
robust technique for estimating the distribution of the quantity of interest. RWM is
can be prohibitively expensive, due to the need to run a huge number of realizations,
45% − 70% of these may be rejected and, even for a simple reservoir model it
may take 15 minutes for each realization. Hamiltonian Monte Carlo accelerates the
convergence for RWM but may lead to a large increase computational cost because
it requires the gradient.

In this thesis, we present how to use the multilevel concept to accelerate conver-
gence for RWM. The thesis discusses how to apply Multilevel Markov Chain Monte
Carlo (MLMCMC) to uncertainty quantification. It proposes two new techniques,
one for improving the proxy based on multilevel idea called Multilevel proxy (ML-
proxy) and the second one for accelerating the convergence of Hamiltonian Monte
Carlo is called Multilevel Hamiltonian Monte Carlo (MLHMC).

The idea behind the multilevel concept is a simple telescoping sum: which rep-
resents the expensive solution (e.g., estimating the distribution for oil rate on finest
grid) in terms of a cheap solution (e.g., estimating the distribution for oil rate on
coarse grid) and ‘correction terms’, which are the difference between the high reso-
lution solution and a low resolution solution. A small fraction of realizations is then
run on the finer grids to compute correction terms. This reduces the computational
cost and simulation errors significantly.

MLMCMC is a combination between RWM and multilevel concept, it greatly re-
duces the computational cost compared to the RWM for uncertainty quantification.
It makes Monte Carlo estimation a feasible technique for uncertainty quantification
in reservoir simulation applications. In this thesis, MLMCMC has been implemented
on two reservoir models based on real fields in the central Gulf of Mexico and in
North Sea.

MLproxy is another way for decreasing the computational cost based on con-
structing an emulator and then improving it by adding the correction term between
the proxy and simulated results.

MLHMC is a combination of Multilevel Monte Carlo method with a Hamiltonian
Monte Carlo algorithm. It accelerates Hamiltonian Monte Carlo (HMC) and is faster
than HMC. In the thesis, it has been implemented on a real field called Teal South
to assess the uncertainty.
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Chapter 1

Introduction

The oil industry is a multi-trillion dollar business that has to deal with many sources

of uncertainty. The principal source of uncertainty is limited data on rock properties

(porosities and permeabilities) that govern flow through the reservoir.

The consequence of uncertainty in reservoir modelling is business risk. Decisions

about the reservoir often cost hundred of millions of dollars. The two choices a

company has in the face of business risk are either to pay to acquire additional data,

or to create a development plan that is robust to risk. Doing this effectively requires

a good understanding of uncertainty.

The main idea of modelling the reservoir is to understand the subsurface system.

Reservoir simulation solves a system of partial differential equations governing the

motion of porous media flow. These equations describe conservation mass, momen-

tum and energy. The output of the code is predictions quantities of interest such as

the oil rate. This reservoir simulation needs spatial information about the reservoir

such as porosity and permeability. Since these quantities are known precisely at

very few points, the reservoir simulator predictions are uncertain.

In order to reduce uncertainty, the model is calibrated to observed production

data in a process called history matching. History matching updates the reservoir

model until a reasonable match between the observed and simulated data is ob-

tained. Manual history matching, in which quantities are adjusted by hand, is a

time consuming trial-error approach. An effective way is assisted history matching

using optimization techniques, which removes the routine tasks from the engineer.

1



Chapter 1: Introduction

History matching is an ill-posed inverse problem, which means that there is no

unique solution. Therefore, a good history matched model is not evidence of a robust

model for forecasting, which is important for decision making (Kabir and Young,

2004; Tavassoli et al., 2005; Busby et al., 2007a; Carter and White, 2013).

Many techniques have been proposed in the literature for quantifying uncer-

tainty. Recently published algorithms include stochastic optimisers, Randomised

Maximum Likelihood and the ensemble Kalman filter. Stochastic optimisers in-

clude techniques such as particle swarm optimisation (Mohamed et al., 2010a,b),

genetic algorithms (Erbas and Christie, 2007; Carter and Ballester, 2004), evolu-

tionary search strategies (Schulze-Riegert et al., 2001), differential evolution (Storn

and Price, 1995, 1997), gradient algorithms (Mohamed et al., 2010a) and neigh-

bourhood algorithm (Sambridge, 1999a; Christie et al., 2002). For any stochastic

optimiser (genetic algorithms, particle swarm optimisation), the samples obtained

are characteristic of the algorithm, not of any probability distribution quantifying

uncertainty. In order to obtain an estimate of uncertainty, an approximation has to

be made: in the case of the Neighbourhood Algorithm Bayes sampler (Sambridge,

1999b), the approximation is based on assuming the misfit surface is flat in a Voronoi

cell around the sample.

Randomised Maximum Likelihood (Chen and Oliver, 2012) combines gradient

techniques with a stochastic resampling of measured data to obtain an algorithm

that quantifies uncertainty. The main problem with using gradient techniques is that

they can easily get trapped in local minima and fail to locate the global minimum.

However, Randomised Maximum Likelihood fixed the problem of trapping by using

stochastic sampling. The Ensemble Kalman filter (Evensen, 2007) uses an ensemble

of solutions and assimilates one measured data point at a time to get good agreement.

The Ensemble Kalman filter is exact if the problem is linear and Gaussian. For

nonlinear problems, it sometimes suffers from ensemble collapse.

The ultimate aim of quantifying uncertainty is to have a posterior distribution

for each uncertain parameter and a posterior distribution for the quantity of interest

e.g. oil rate. The posterior distribution is based on the prior knowledge about the
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reservoir and the description of the measurement errors and has all the information

about the reservoir. The accuracy of uncertainty estimation for the posterior dis-

tribution is affected by prior knowledge, the description of the measurement errors

and stochastic sampling. In oil production, we are primarily interested in the un-

certainty in produced quantities rather than the values of the parameters (porosity

and permeability).

There are two rigorous statistical methods for sampling from an arbitrary proba-

bility distribution: rejection sampling, and Markov Chain Monte Carlo (MCMC) (Robert

and Casella, 1999). In rejection sampling (Neal, 1993), an approximation to the

desired probability distribution is chosen, and points are sampled from that distri-

bution, and then accepted or rejected according to whether they are below or above

the desired probability distribution. The difficulty in applying rejection sampling

is that, for many distributions, the efficiency of the sampling is low. However, any

valid sample generated by rejection sampling is a valid sample from the desired dis-

tribution (Gilks et al., 1996). In MCMC, a Markov Chain is created which samples

from given probability distribution. A Markov Chain is constructed such that it

has the desired distribution as the equilibrium distribution (probability distribution

is invariant with respect to moving between two consecutive times) of the Markov

Chain. Any finite number of samples from the Markov Chain are then an approxi-

mation to the desired distribution, with the sampling error related to the length of

the chain.

A common MCMC algorithm is random walk Metropolis (Metropolis et al.,

1953). The principal difficulty in applying random walk Metropolis method to quan-

tify uncertainty in reservoir simulation is that the number of samples needed is often

large and with expensive flow simulations, the cost is prohibitive. One way of re-

ducing cost is generating a proxy model that gives an approximation to the flow

simulator response, yet runs orders of magnitude more quickly (Goodwin and Pow-

ell, 2012). However, the results obtained using this technique depends on the quality

of the proxy model.

Because prediction of uncertainty quantification is an important task, it is impor-
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tant to find fast, efficient methods to quantify uncertainty using MCMC algorithms.

1.1 Thesis Objectives and Statement

The main aim of the thesis is to demonstrate an application of the multilevel concept

for uncertainty quantification and to develop reliable techniques based on stochas-

tic sampling. Figure 1.1 shows how the thesis contributions fits into the field of

uncertainty quantification.

Figure 1.1: Thesis contribution to the field of uncertainty quantification.

The thesis demonstrates an application of a new technique which is called Multi-

level Markov Chain Monte Carlo (MLMCMC) for quantifying uncertainty in reser-

voir simulation. This technique avoids the approximations involved in proxy meth-

ods by always running the flow simulation. It gains speed by decomposing the

desired results into a component calculated with a coarse model, and corrections

obtained on a sequence of finer models.

Another thesis objective is to combine the multilevel concept with Hamiltonian

Monte Carlo. The thesis compares the new techniques with other methods such

as particle swarm optimisation with neighbourhood algorithm Bayes, Hamiltonian

Monte Carlo and random walk Metropolis. Multilevel Hamiltonian Monte Carlo
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(MLHMC) successfully improves the convergence rate and decreases the computa-

tional cost for uncertainty quantification without loss of efficiency.

The thesis proposes a new technique for improving a proxy by adding the error

model term between the simulated and the proxy result. It is a combination of

MLMC idea, constructing the proxy and two-stage MCMC method (Efendiev et al.,

2005).

Overall, we develop three ways that uncertainty quantify more efficiently than

random walk Metropolis or Hamiltonian Monte Carlo. We achieve a estimate of

probability distributions as efficiently as Hamiltonian Monte Carlo, but in much

less time.

The thesis employs the Bayesian framework to quantify uncertainty. A Bayesian

framework is a statistical framework used Bayes’ theorem to update the belief related

to reservoir as a distribution for each uncertain parameter. Bayes’ theorem is a way

of understanding how the probability that a theory is true is affected by a new piece

of evidence.

1.2 Thesis Outline

The thesis is structured as follows:

Chapter 2 reviews the mathematical equations which govern the flow motion

and statistics. It discusses the numerical reservoir simulation, the errors in the mod-

elling and uncertainty quantification for history matching and forecasting. Finally,

the chapter reviews the Bayes’ theorem and objective function.

Chapter 3 reviews and discusses different stochastic algorithms, e.g., neigh-

bourhood algorithm, particle swarm optimisation, neighbourhood algorithm Bayes,

rejection sampling, Markov Chain Monte Carlo and Gibbs sampler. The chapter

discusses the advantages and disadvantages of Markov Chain Monte Carlo methods.

Chapter 4 focusses on finding the solutions of the advection equation, Buckley-

Leverett equation and the pressure equation. It discusses how to find the exact

solution, when it is possible. Moreover, it studies the numerical solution using

different numerical schemes and different initial conditions, it discusses the stability
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and determine the stability conditions and analyse the behaviour of a number of

finite difference schemes for solving differential equations governing the miscible

displacement.

Chapter 5 introduces the major concepts of the Monte Carlo Integration and

the Multilevel Monte Carlo method, and compares the two techniques on 4 different

problems: the exponential growth and decay equation as a toy example equipped

with a random initial condition, the advection equation with a random initial con-

dition, the Buckley-Leverett equation with random flux function and random initial

condition and the pressure equation with a random diffusion coefficient.

Chapter 6 demonstrates an application of a new technique, Multilevel Markov

Chain Monte Carlo (MLMCMC), for quantifying uncertainty in reservoir simula-

tions. It applies MLMCMC to solve multi-phase flow and show results for two

fields. The first is Teal South in the Gulf of Mexico and the second is Scapa in the

UK North Sea. In addition, the chapter reviews random walk Metropolis, how to

analyse the output result and how to use the sensitivity analysis for the reservoir

model.

Chapter 7 proposes a new approach, based on the multilevel concept, for im-

proving the proxy to increase the confidence if we use it for inference, with less

computational cost. Moreover, it reviews some experimental design techniques and

discusses Radial Basis Function (RBF), how to build a proxy using experimental

design with RBF and how to use this proxy to construct an error model.

Chapter 8 presents a new technique for uncertainty quantification and accel-

erates the convergence of random walk Metropolis called Multilevel Hamiltonian

Monte Carlo. The technique is tested on Teal South model to assess uncertainty in

the oil rate. The chapter compares MLMCMC and Hamiltonian Monte Carlo.

Chapter 9 concludes the thesis contributions, major findings and suggests rec-

ommendations for future research.

In addition to main chapters,two appendices include the classification of the first

and second partial differential equations based on the eigenvalues and the proof of

detailed balance for Metropolis-Hastings, Hamiltonian Monte Carlo and MLMCMC.

6



Chapter 2

Background Material

This chapter provides the foundation of the thesis. The chapter reviews some basic

background material from petroleum engineering and statistics. It starts by re-

viewing the mathematical equations, which govern the flow in a porous media flow.

Following this, it discusses the numerical reservoir simulation and the errors in the

modelling. After that, it discusses uncertainty quantification for history matching

and forecasting. Finally, it reviews the Bayes’ theorem and objective function.

2.1 Mathematics of a Flow in Porous Media Flow

The generic conservation equation for a system has the following form,

∂u

∂t
+5.F (u) = 0, (2.1)

where, u(x, t) is mass, energy, momentum or saturation and the flux function is

F . Equation (2.1) is augmented with some initial and boundary conditions. The

integral form for the conservation law (2.1) is valid even for a discontinuous solution.

One of the applications of (2.2) is in petroleum engineering.

d

dt

b∫
a

u(x, t)dx = F (u(b, t))− F (u(a, t)). (2.2)
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Porous media flow has the conservation of mass and the conservation of momentum is

replaced by Darcy’s law, conservation of energy (isothermal equation) and equation

of state (Trangenstein, 1986; Carter, 2010).

2.1.1 Darcy’s Law

Darcy’s law describes the motion of a fluid through a porous medium. The law was

formulated by Henry Darcy in 1856 (Darcy, 1856) based on the results of experi-

ments on the flow of water through beds of sand under homogeneous incompressible

flow. Darcy determined experimentally the flow rate (Hubbert, 1957). Its a slow

flow approximation to conservation of momentum in Navier−Stokes. Darcy’s law is

commonly used to describe oil, water, and gas flows through petroleum reservoirs

(reservoir is a body of underground rocks that contains a mixture of hydrocarbon

fluid and water trapped in porous rocks). Figure 2.1 shows a graphical representa-

tion of Darcy’s Law.

Figure 2.1: Graphical representation of Darcy’s Law (Matt Herod, 2011).

Darcy’s law is expressed for one phase flow (Hubbert, 1957) by the formula:

Q = KA
h1 − h2

l
, (2.3)

where, Q is the flow rate and its unit is [L3/T ], A is the cross section area to flow,

h1 and h2 are the heights from the reference level of the water above and below the

sand respectively, l is the horizontal distance between h1 and h2,
h1 − h2

l
is called
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hydraulic gradient, and K is hydraulic conductivity (its unit is [L/T ]) which equals

to,

K = κρg/µ, (2.4)

where, κ is the medium permeability, ρ is the water density, g is the gravity and µ

is the viscosity of the fluid. Moreover the pressure can be written as follows,

P = ρgh. (2.5)

Substituting with (2.5) and (2.4) into (2.3), Darcy’s law can be written as follows,

v = Q/φ(x)A = − κ(x)

µφ(x)
5 P, (2.6)

where v is vector flow rate per unit area, φ is the porosity, µ is the viscosity, κ is

the permeability of the medium and P is the pressure. There is a negative sign in

the formula because the flow is from high to low pressure.

Assuming the medium is isotropic (identical in all directions) and the permeabil-

ity is uniform, then Darcy’s law (Hubbert, 1957) can be written as follows,

v = − κ(x)

µφ(x)
(5P − ρg).

2.2 Reservoir Simulation

Reservoir simulation is a powerful tool for the management and forecasting of the

reservoir. Reservoir simulation is the process of solving the conservation equations

on a grid and computing oil, water and gas rates. The equations governing the

flow are nonlinear because the fluid properties such as viscosity and density depend

on the pressure. Reservoir simulation solves discrete, nonlinear equations, and uses

Newton Raphson method to approximate the solution by linearizing the system of

equations governing the flow (Pettersen, 2006; Farmer, 2005).

The requirements for the reservoir simulation can be summarised as follows,

• Dimensions for each grid block, length, width and thickness
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• Parameters for each grid block e.g., porosity, permeability, saturation, pressure

and fluid (oil, gas and water)

• Fluid parameters for e.g., viscosities, densities, compressibilities and formation

volume factors

• Well data for e.g., location, production or injection rate and limitation

Reservoir simulation is a hard process in terms of computational performance and

it is time consuming, based on the model size and the number of time steps.

Most commercial codes for reservoir simulation use finite volume methods (see (Lev-

eque, 1992) for overview of finite volume methods). On any finite grid there are two

sources of uncertainties: lack of knowledge of reservoir properties (e.g., porosity and

permeability) and discretization error. Usually, lack of knowledge of reservoir prop-

erties is a more significant overall uncertainty, except in the case of every coarse

grids (SPE10 (Christie and Blunt, 2001)).

To quantify uncertainty involves running many simulations. To avoid the coars-

est grid error shown in (Christie and Blunt, 2001), we have to finer grids, which

increases computational cost dramatically (Farmer, 2005).

The goal of this thesis is to reduce the costs associated with the fine grids simu-

lations as mentioned in Chapter 1.

2.3 Deterministic Versus Stochastic Modelling

A deterministic model is a model with known input data initial and boundary condi-

tions and it does not involve randomness. If the initial condition or any parameter or

even the unknown variable is randomly distributed, then we call the model stochas-

tic. For example, in the Buckley-Leverett equation, when the permeabilities are

uncertain (see Section 4.4). Hence, stochastic modelling becomes an important area

of applied mathematics. For examples, financial mathematics (Asmussen and Glynn,

2007), biochemical reactions (Anderson and Higham, 2012), plasma physics (Rosin

et al., 2014) and uncertainty quantification in engineering and science (Christie et al.,

2006; Carter and White, 2013; Floris and Peersmann, 1998; Oliver et al., 2008).
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2.3.1 Fractional Flow in a Stochastic Setting

The fractional flow function depends on the relative permeability. Relative perme-

ability is measured in a laboratory using core samples. The measurements depend on

lab conditions and are uncertain because different core samples have different mea-

sured relative permeability. Therefore, there is uncertainty in relative permeability

and the fractional flow as well. This uncertainty affects the reservoir performance.

Different analytical models have been used for estimating the relative perme-

ability of a two-phase flow. For example, the modified Brooks and Corey MBC

model (Alpak and Lake, 1999), is an expression that is able to fit most experimental

data for water and oil flow:

κrw(S) = κ0
rw

( S − Swc
1− Swc − Soc

)n1 (2.7a)

κro(S) = κ0
ro

( 1− S − Soc
1− Swc − Soc

)n2 , (2.7b)

where, S water saturation, n1, n2 are constants, κ0
rw, κ

0
ro are endpoint relative per-

meabilities for water and oil respectively and Soc , Swc are critical oil saturation and

connate water saturation. The fractional flow F in the reservoir is defined by,

F =
κrw/µw

κrw/µw + κro/µo
, (2.8)

where µw is water viscosity and µo is oil viscosity. Substituting S∗ =
S − Swc

1− Swc − Soc
into (2.7) and then substituting from (2.7) into (2.8) with

µwκ
0
ro

µoκ0
rw

= B then, we

obtain the following formula for the fractional flow,

F =
(S∗)n1

(S∗)n1 +B(1− S∗)n2
.

If we are calibrating a model, we can use n1, n2 and B are unknown parameters (as

in Chapter 5).
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2.3.2 Uncertainty Sources in Reservoir Simulations

How to assess the reliability of the reservoir model? A reliable reservoir model is

able to predict the unknown future performance of the reservoir with a specified

degree of accuracy.

The sources of uncertainty arise from three types of input data: the spatially

varying rock properties; the fluid properties; and the rock-fluid interaction properties

such as relative permeability and capillary pressure. The spatially varying rock

properties are the biggest source of uncertainty, as data is taken at a small number

of wells (order 10s), covering a minute fraction of the reservoir volume. We are able

to apply loose constraints on the properties through use of outcrop data.

2.4 An Inverse Problem

There are two problems to deal with in reservoir simulation: forward and inverse

problems. The forward problem can be described mathematically as a map from

reservoir properties to production data,

Production = f(m),

where f is known function and m are the parameters. The forward problem, con-

tains all the properties (all the physics of the situation) of the reservoir and it is

straightforward to solve (Dadashpour, 2009).

An inverse problem is defined as follows: Given the production data, can we

find the input parameters corresponding to these observed data corrupted by noise.

In reality, we do not have the whole information about the reservoir, hence, the

parameters m are unknown. An inverse problem can be described mathematically

by

D = g(m) + noise, (2.9)

where D is the observed data, g is known function, m are the unknown param-

eters and noise is the error measurements. An ill-posed inverse problem does not

have a unique solution m, which satisfies (2.9) (Hadamard, 1902).
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Because the reservoir properties are generally unknown, we have to solve an

inverse problem to determine them.

Possible goals of an inverse problem as in (Richardson and Zandt, 2009) are:

• Estimating the model parameters.

• Estimating the range for each parameter.

• Studying the sensitivity of the model to the data.

• Uncertainty quantification to predict the quantity of interest.

History matching is an example of an inverse problem (Suzuki and Caers, 2006).

Forecasting oil production depends on solving the inverse and forward problems (Glimm

and Sharp, 1999).

2.4.1 History Matching

Traditionally, the goal of history matching is to find a reservoir model that repro-

duces the observed data of the field (Floris et al., 2001). The process of tuning the

model until obtaining a reasonable match between the observed data and simulated

data is referred to as history matching (Oliver et al., 2008). We minimize the dis-

crepancy between the observed data and simulated data by changing the parameter

values until we get the best match.

There are two ways of history matching: manual (traditional which uses trial

and error) and assisted history matching. Manual history matching provides a single

forecast. Assisted history matching (automatic) reduces the manual effort by the

specialist to obtain a reservoir model consistent with the observed data.

Generally, any of the reservoir properties can be adjusted in the history matching.

For example, initial saturation is not directly measurable at every location in the

reservoir. It can be measured at the sparse locations of wells and locations in between

the values can be interpolated.

There has been about 55 years of research proposing different methods for as-

sisted history matching. In assisted history matching, the algorithm searches for a
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valid parameter set, which has a good match with the observed data. In these frame-

works, stochastic optimization algorithms become one of the techniques for studying

history matching problems. Figure 2.2 shows the 55 years of history matching al-

gorithms adapted from (Hajizadeh, 2011). In Figure 2.2, Multilevel Markov Chain

Monte Carlo (MLMCMC) and Multilevel Hamiltonian Monte Carlo (MLHMC) are

the main contributions of this thesis.

Figure 2.2: 55 years of history matching.

In a history matching study, our ultimate goal is to be able to update the reservoir

model in such a way, that it is able to predict the future reasonably (Oliver et al.,

2008). Figure 2.3 shows a history matching workflow.

Figure 2.3: History matching workflow.
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We expect a simulation model, which is able to capture the past life of the

reservoir is the most likely to capture the future, meaning it can make confident

predictions. However, sometimes the worst forecasting is based on the best history

matched model (TNO, 2003; Tavassoli et al., 2005).

2.5 Uncertainty Quantification

There are several sources of uncertainty in reservoir simulation, which make it dif-

ficult to get confident predictions. Incorporating all the uncertainty sources is the

main issue with estimating the uncertainty in the prediction of any quantity of in-

terest. Uncertainty has a direct impact on the decision making process in reservoir

forecasting (Begg et al., 2001). Based on estimating the uncertainty of the pre-

diction, we can assess the decision risks. In other words, providing information to

evaluate the risks of making decisions is a key objective in uncertainty quantification.

The complexity of the model and the method for uncertainty quantification

should be determined based on the question that need to be answered. Normally,

we start with the simplest method and model it, then decide whether it is suitable

for the decision being made. However, for a particular problem, deciding what is

appropriate can be unclear and difficult (Williams et al., 2004).

To estimate the uncertainty distribution from the history matching models, there

are three different ways. One way is to use a single (best fitting) model which has the

minimum error corresponding to observed data (Oliver, 1996). The second way is

to use a subset of history matching models–for example from randomized maximum

likelihood (Oliver et al., 1996). The third way is to use all the models, the Markov

Chain Monte Carlo method (Behrenbruch et al., 1985). Markov Chain Monte Carlo

algorithms which sample from a probability distribution by constructing a Markov

chain, which is a sequence of random variables where the probability for the next

state depends only the current one that has the desired distribution as its equilibrium

distribution (Gilks et al., 1996).
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2.5.1 Why has Probability Theory been Used for Uncer-

tainty quantification?

Our aim is to find a confident forecast for the quantity of interest such as oil rate

based on finding accurate parameter values for reservoir properties. Since the prob-

lem is ill-posed, it has multiple solutions. Therefore, it is better to use probability

theory to estimate the distribution of the quantity of interest. Moreover, history

matching based on one realization is almost certain to predict oil rate incorrectly–

we just do not know by how much. Therefore, an ensemble of realizations has been

used, which leads to increase in CPU time. Decreasing the CPU time is one of the

research problems in the research area and it is a goal of this thesis.

The thesis uses a Bayesian framework. A Bayesian framework is a statistical

framework using Bayes’ theorem to update the beliefs about the unknown reservoir

parameters. The Bayesian approach calculates the posterior distribution of the

properties given the observed production data.

2.5.2 Bayesian Inference

Bayesian approach has several advantages, one being that insufficient data can be

represented easily as probability distributions (Sivia, 1996).

2.5.2.1 Bayes’ Theorem

Bayes’ theorem is given by

P(m|D) =
P(D|m)P(m)

P(D)
, (2.10)

where the posterior density is P(m|D), the likelihood is P(D|m) and P(m) is the

prior density. The denominator of (2.10) is the normalization constant and can be

defined by

P(D) =

∫
M

P(D|m)P(m)dm
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where M is the parameter space. Bayes’ theorem is a useful tool because it links

the posterior density and the likelihood, which can be calculated (Sivia, 1996).

The prior distribution describes the beliefs of reservoir knowledge that we had

before knowing the observed data. Estimating the prior distribution is much eas-

ier than guessing the best setting of the reservoir parameters. The choice of the

prior depends on geological descriptions and geological data for the reservoir. How-

ever, since there is rarely enough data to swamp the prior. An inadequate prior

distribution could be a reason for an inaccurate uncertainty estimation.

The likelihood interoperates the observed data. It is a joint probability density

of the observed data given the model. It is not a probability density function for

parameter m, but it assumes the parameters m are true and assesses the likelihood

that the observed data is consistent with the model. We often assume measurement

errors are Gaussian, independent and identically distributed at any time t, which

leads to a least square formulation.

The posterior distribution is a probability distribution for the model m, as con-

strained by the observed data D (Glimm et al., 2004), which updates our beliefs

about the set of models, given by some observed data.

The normalization constant can be used to compare between different reservoir

models. If a model has a small normalizing constant, the model does not fit well.

The normalization constant, can be extremely hard to calculate because it involves

high dimensional integration.

Figure 2.4 shows the difference between the prior density, the likelihood and

the posterior density is included. In the beginning, the prior is wide and once the

observed data is included, described by likelihood, then the belief becomes more

confident.
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Figure 2.4: Comparison between prior and posterior densities.

In the maximum likelihood estimates, the parameter m̂, in the presence of the

data given, is the maximising the likelihood.

2.6 Objective Function

As we mentioned, the goal of history matching is to obtain a model such that

the discrepancy between the observed data and simulated data is minimized. The

discrepancy is defined as the difference between the observed and simulated data.

The misfit is defined as negative Log likelihood, and if we assume independent

Gaussian errors is given by

misfit =
N∑
j=1

(qotj − q
s
tj

)2

2σ2
tj

(2.11)

where qotj and qstj refer to observed data and simulated data respectively at time

tj, N refers to the number of data points and σtj is the standard deviation of

the observed data. There are different algorithms used to minimize the misfit, for

example, particle swarm optimization, which will be discussed in Chapter 3.

2.6.0.2 How to Estimate σtj

The misfit definition has a value of σtj that must be estimated. There are several

ways to do that. One way, the engineer provides values for a maximum likelihood
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estimate for σtj , assuming σtj does not depend on time, i.e. σtj = σ. Under these

assumptions, the likelihood can be defined by,

L(µ, σ) =
1

(2π)N/2σN
exp(− 1

2σ2

N∑
j=1

(qotj − q
s
tj

)2). (2.12)

Taking logarithms of both sides, we get,

logL = −N log σ − N

2
log(2π)− 1

2σ2

N∑
j=1

(qotj − q
s
tj

)2. (2.13)

To estimate σ, we differentiate equation (2.13) with respect to σ,

∂ logL
∂σ

= −N
σ

+
1

σ3

N∑
j=1

(qotj − q
s
tj

)2.

Setting
∂ logL
∂σ

= 0, we obtain the following,

Nσ2 =
N∑
j=1

(qotj − q
s
tj

)2

σopt =

√√√√√ N∑
j=1

(qotj − q
s
tj

)2

N
.

where, qs is the maximum likelihood simulated result, σopt is a biased estimator

for σ. If we use σ2 =
1

N

N∑
i=1

(qotj − q
s
tj

)2, we get the minimum misfit of order N/2.

However, the unbiased estimator for σ is

σ2 =
1

N − 1

N∑
i=1

(qotj − q
s
tj

)2

If the simulated data are time dependent, then Equation (2.13) becomes

logL = −
N∑
j=1

log σtj −
N

2
log(2π)− 1

2

N∑
j=1

(qotj − q
s
tj

)2

σ2
tj

, (2.14)
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which we minimise for each σtj to get

σtj = (qotj − q
s
tj

).

In the next chapter, we will discuss different sampling algorithms. Some of them

are based on optimizations and others are based on Bayesian framework.
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Stochastic Algorithms–Literature

The aim of this chapter is to review different stochastic algorithms for uncer-

tainty quantification, e.g., Neighbourhood Algorithm, Particle Swarm Optimisation,

Neighbourhood Algorithm Bayes, Rejection Sampling, Markov Chain Monte Carlo

and Gibbs sampler.

There are many sampling algorithms that have been used in the petroleum liter-

ature to generate calibrated models and for uncertainty quantification. Some of the

algorithms used stochastic optimisation and others are based on Bayesian inference.

Optimisation methods include Particle Swarm Optimisation (PSO) (Mohamed et al.,

2010a,b), Genetic Algorithms (GA) (Erbas and Christie, 2007; Carter and Ballester,

2004), Evolutionary search strategies (Schulze-Riegert et al., 2001), Differential Evo-

lution (Storn and Price, 1995, 1997), gradient algorithms (Mohamed et al., 2010a)

and Neighbourhood Algorithm (NA) (Sambridge, 1999a; Christie et al., 2002).

Stochastic algorithms generate uncertainty well matched models as the number

of iterations increases. However, they do not sample fro many specific probabil-

ity distribution and additional calculations are needed to assess uncertainty. The

NAB sampler (Neighbourhood Algorithm Bayes) is an example of resampling algo-

rithm based on Gibbs sampler that computes appropriate probability (Sambridge,

1999a,b).

On the other hand, the Bayesian approach, e.g., the Markov Chain Monte Carlo

(MCMC) family approaches, such as the Metropolis Algorithm and Rejection Sam-

pling (RS) produces a natural way for estimating posterior distributions for reservoir
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properties.

3.1 Optimisation Algorithms

In this section, we review two different optimisation techniques: Neighbourhood

Algorithm and Particle Swarm Optimisation (PSO) because we will compare a new

result with PSO combined with Neighbourhood Algorithm Bayes (NAB).

3.1.1 Neighbourhood Algorithm (NA)

The Neighbourhood Algorithm was developed in (Sambridge, 1999a). The idea of

this algorithm is to find a way of obtaining multiple acceptable models rather than

finding a single solution. The key assumption in the Neighbourhood Algorithm is

that the misfit is constant in the voroni cell around any given model.

To quantify the uncertainty using the NA, we have two stages, the search stage,

in which we have the acceptable models for the inverse problem, and the appraisal

stage (Sambridge, 1999b). The NA has two parameters: ns, which is the number of

models generated at each stage, and nr, which is the number of models selected for

refinement. The ratio ns/nr control the algorithm behaviour from more explorative

nr = ns to more exploitive nr = 1.

The search stage procedure can be summarised as follows,

1. Initialize with a random set of ns models and calculate the misfit for each

model (2.11).

2. Select the nr models with the lowest misfit values and generate ns models

randomly in those nr cells.

3. Returns to Step 3 and repeat the processes until reaching the number of iter-

ations, which the user defined it.

The NA is applicable in the petroleum industry (Stephen et al., 2005; Subbey et al.,

2004) as it is efficient in terms of exploring the parameter space. We can use this

algorithm to estimate the uncertainty envelopes P10, P50 and P90.
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3.1.2 Particle Swarm Optimisation (PSO)

Particle Swarm optimisation was introduced by Kennedy and Eberhart in 1995 (Kennedy

and Eberhart, 1995). PSO was inspired by the social behaviour of a flock of

birds (Bratton and Kennedy, 2007). The main idea is to search for the global min-

imum of a function f : Rd → R, which means: find a ∈ Rd : f(a) ≤ f(b), ∀ b ∈ Rd.

PSO simulates the social behaviour of a group of individuals by sharing information

between them while they are exploring the parameter space. Initial models refer to

particles, with each particle having its own memory, which stores the best location

seen by a particle. The swarm also has its own collective memory which records the

best location by any of the particles (Chun, 2010). The initial values for the param-

eters in the parameter space are random. The dynamic process for PSO has two

operations, updating the velocity of each particle, and then updating the position

of each particle. Algorithm 1 summarises PSO.

Algorithm 1: PSO (Christie et al., 2011)

1: Initialize the original position (parameter space) and velocity for each
particle randomly.
2: For each particle, solve and calculate the misfit value M .
3: Evaluate the fitness of individual particles at each iteration.
4: For updating the best position pbest, if the current fitness value of one
particle is better than the old value, update the old one with the current one.

if (pk < pkbest) : pkbest = pk

5: The current global best fitness value and the corresponding best position
must be found and updated if is required.
6: Update the velocity of each particle.

vk+1
i = ωvki + c1r1(pkbest − xki ) + c2r2(gkbest − xki )

where, ω is the inertia of the particles, controlling the impact of the previous
velocities on the current one. r1 r2∼U(0, 1), c1, c2 are cognitive and social
components, representing the particle’s attraction towards to local best and
global best.
7: Update the position of each particle using equation

xk+1
i = xki + vk+1

i

8: Repeat steps 3 to 7 until the stopping criterion is achieved.

The choice of the parameters ω, c1 and c2 is an active research area. Some ap-
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plications of PSO have shown that ω can be decreased linearly from 0.8 to 0.4 (Mo-

hamed et al., 2010b,a). Other approaches about how to tune the parameters can be

found in (Engelbrecht, 2005). In the literature, there are different versions of the

PSO algorithm (Mu et al., 2009; Settles, 2005; Mohamed et al., 2010b; Bratton and

Kennedy, 2007).

3.1.2.1 PSO Advantages

• Easy to implement and fast compared with other stochastic algorithms (Mo-

hamed et al., 2010b).

• The derivative of the function is not required.

• It is a heuristic (the particles learn from each other) method.

• It is an effective optimisation algorithm for different applications.

• It is popular for history matching because it is easy to of parallelise.

• On average, PSO reduces the misfit in each generation more rapidly than the

NA.

3.2 Neighbourhood Algorithm Bayes (NAB)

NAB is a stochastic sampling algorithm that was developed by (Sambridge, 1999b) in

order to correct for the unknown sampling distribution from a stochastic algorithm.

The main idea of NAB is to divide the parameter space into Voronoi cells, where

the misfit is assumed to be constant in each cell. NAB is the appraisal stage of NA.

Sambridge used a Gibbs sampler to estimate the posterior distribution. The critical

observation that makes NAB works is that you only need to construct 1-D sections

through the voroni cells. Once each model has an associated posterior probability, we

can estimate P10, P50, P90. For more details about NAB see (Sambridge, 1999b).

How NAB works

1. Start with a random sample x1 as shown in Figure 3.1 and draw a horizontal

line through x1
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2. Propose a new location xnew on the horizontal line, and determine associated

misfit Mnew

3. Find minimum misfit Mmin along that line as shown in Figure 3.1

4. Generate α ∼ U(0, 1)

5. The accept criterion for the new point is

α ≤ min{1, exp(Mmin −Mnew)}.

otherwise go to 2

6. Cycle (2)− (5) through dimensions

7. Based on the result, the posterior distribution can be estimated from the fre-

quency of the resampled models, then we can run a few forecast simulations

based on the resampled models. At the end, P10, P50, P90 could be esti-

mated.

The advantage of using NAB is to avoid running the reservoir simulation for all the

models created from the optimisation algorithms and uses the complete ensemble

to infer the information about the reservoir (Sambridge, 1999b; Erbas, 2006). It

only requires a few simulations of the forecasting period to be run. We will use it

in Chapter 6.
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Figure 3.1: NAB resampling adapted from (Sambridge, 1999b).

Often in Bayesian approaches, to estimate the posterior distribution, requires

solving the integration of high-dimensional functions. This can be costly (Andrieu

et al., 2003), but we have several approaches to perform this integration, e.g., Re-

jection Sampling (RS) and Markov Chain Monte Carlo (MCMC).

3.3 Rejection Sampling (RS)

The Rejection Sampling technique is based on replacing the target density function,

f(x) by another density function, g(x) which is relatively simple to generate samples

from (Neal, 1993).

The idea of RS is as follows. Let us assume f(x) is too complicated to sample

from directly. We assume that we have a simpler density g(x), and from it, we can

generate samples. Moreover, we assume that we know the value of a constant c,

such that cg(x) > f(x); ∀x. The idea of the RS algorithm is: First generate x∗

from g(x) then calculate cg(x∗). Secondly, generate a uniformly distributed random

variable u from the interval [0, cg(x∗)]. These two random numbers can be viewed

as selecting a point on a two-dimensional plane. If u > f(x∗), then x∗ is rejected,
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otherwise it is accepted. The acceptance rate is based on the ratio between the area

under f(x) and the area under cg(x). Therefore, the acceptance rate will be higher

if c is close to 1 (MacKay, 2002; Bishop, 2006).

RS is not generally a good practical technique for generating samples from high-

dimensional distributions (Neal, 1993). It works well only if the proposal density,

cg(x), is very close to f(x). Figure 3.2 shows the functions involved in rejection

sampling–adapted from (Bishop, 2006). The following example is a toy problem to

explain how to apply RS.

Figure 3.2: The functions involved in rejection sampling.

Example 3.3.0.1 Estimate π using RS.

Solution: The area of the unit circle is π. Figure 3.3 shows that the unit circle

inside a square.

Figure 3.3: Estimate the area of quarter circle.

Then, we estimate the area of the quarter of the circle, which equals to π/4. To

achieve this, choose two random variables X and Y , such that X and Y represent the

coordinates of a point and, X, Y ∼ U(0, 1). The radius is R =
√
x2 + y2. Generate
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N samples and the acceptance-rejection condition for the samples is based on the

decision function (3.1) : set m = 0, if R < 1 then (x, y) accepted, m = m + 1, else

rejected. Therefore, π = 4× m

N
.

decision function =


accept(x, y) R ≤ 1

reject(x, y) R > 1

(3.1)

3.4 Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo samples from the posterior distribution. It uses a

Markov chain and does not require calculation of the normalization constant, which

is very difficult to compute. To estimate the target distribution perfectly, we should

have an infinite MCMC (number of iterations tends to infinity), which is impossible.

A finite MCMC creates a truncation error, which can be decreased by increasing

the sample size, but it is impossible to decrease the bias error.

MCMC is a common technique for modelling in different disciplines to explore

the probability distributions, especially, in high dimensional problems.

3.4.1 Introduction to Markov Chains

Definition 3.4.1.1 (Gilks et al., 1996) Let (Xn)n∈Z+ be a stochastic process taking

values in a countable set S. We say that the Markov property holds if

P(Xn+1 = j|Xn = i,Xn−1 = in−1, · · · , X0 = i0) = P(Xn+1 = j|Xn = i) (3.2a)

= Pij, ∀n ∈ Z+, i0, i1, · · · , i, j ∈ S. (3.2b)

where, the transition probability from i to j is Pij. The Markov process has no mem-

ory, in the sense that the next state only depends on the current state. The chain is

time homogeneous because the transition probability is independent of time (Gamer-

man, 1997). A Markov Chain has three components: state space S, the distribution

for the initial state p(0) and transition probability from one state to another P.

Let, pj(n) = P(Xn = j) and p(n) = (pj(n)). In general, we start the chain by
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specifying a starting vector, p(0). Often all the elements of p(0) are zeros except for

a single element. The probability that the chain has state value i at time (or step)

n+ 1 is given by the Chapman-Kolmogorov equation (Gamerman, 1997),

pi(n+ 1) =
∑
k

Pkipk(n). (3.3)

Equation (3.3) describes the evolution of the chain. The Chapman-Kolmogorov

equation in a matrix form can be written as follows

p(n+ 1) = p(n)P.

Since, the transition probability does not change from one state to another, p(n) =p(0)Pn.

The chain is irreducible if all states communicate.

Definition 3.4.1.2 A Markov chain is said to be irreducible, if ∃n ∈ N∗ |P n
ij >

0,∀i, j ∈ S.

If the system returns to state s after leaving it at some time in the future, the

state s is recurrent. A Markov Chain is irreducible if the corresponding graph is

strongly connected (and thus all its states are recurrent) (Gilks et al., 1996).

A state s has a period k, if k is the greatest common divisor (gcd) of all the cycle

lengths that pass via s. If all the states in a Markov Chain have a period k > 1,

then the chain is periodic. Otherwise, it is aperiodic. In other words, the chain is

aperiodic if it does not get trapped in cycles.

Definition 3.4.1.3 (Gamerman, 1997) A Markov chain is said to be aperiodic,

if ∀i, j ∈ S gcd{n : pnij > 0} = 1.

If P has no eigenvalue equal to −1, then it is aperiodic (Gilks et al., 1996).

A Markov chain may reach a stationary distribution π = π P.

• π is the left eigenvector associated with the eigenvalue λ = 1 of P. An

invariant distribution is an eigenvector of the transition probability matrix

with eigenvalue 1 and π(x) is an invariant distribution.
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• The conditions for a unique stationary distribution are that the chain is irre-

ducible and aperiodic.

• When a chain is periodic, it can cycle in a deterministic fashion between states

and hence never settles down to a stationary distribution.

A sufficient condition for a unique stationary distribution, π is that the detailed

balance equation holds ∀ k, j ∈ S, Pjkπj = Pkjπk but this is not necessary. The

reason why the detailed balance property is of interest is that it implies invariance

of the distribution π(x) under the Markov chain. This is a necessary condition of

the key property that we want from our MCMC simulation, this being that the

probability distribution of the chain should converge to π(x) (Gamerman, 1997).

A detailed balance Markov chain satisfies the detailed balance equation and is

also called a reversible Markov chain. This means that the probability of the chain

moving from state i to state j is the same as the probability of moving from state j to

state i. The chain has an equilibrium distribution when the chain is reversible (Gilks

et al., 1996).

If the Markov chain has stationary distribution, irreducibility and aperiodicity,

then the chain is called an ergodic chain. Ergodic Markov Chains are important

because they guarantee the convergence to a unique distribution, in which each state

has a strictly positive probability (Bishop, 2006). Reasons why a chain might not be

ergodic are: its matrix might be reducible, the transition probability matrix of such

a chain has more than one eigenvalue equal to 1 or the chain might have a periodic

set.

The continuous extension of the Chapman-Kolmogorov equation becomes,

pt(y) =

∫
pt−1(x)P (x, y)dx.

At equilibrium, this stationary distribution satisfies,

π(y) =

∫
π(x)P (x, y)dx.
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3.4.2 Metropolis-Hasting Algorithm (MH)

The Metropolis algorithm was proposed by physicists to compute complex integrals.

They expressed the integrals as expectations for some distribution (Metropolis and

Ulam, 1949; Metropolis et al., 1953). The Metropolis algorithm (Metropolis et al.,

1953) assumes that the proposal distribution is symmetric, i.e. q(θ1, θ2) = q(θ2, θ1).

Hastings generalized the Metropolis algorithm, i.e. the proposal distribution is

symmetric or non symmetric (Hastings, 1970). MH generates a sequence drawing

from the proposal distribution, as in Algorithm 2. It constructs a Markov chain that

converges to the posterior distribution.

MH was one of the top ten algorithms to have the greatest influences on the

practice of science in the 20th century (Beichl and Sullivan, 2000). It is one of

the most common and simplest methods for estimating the target distribution. It

requires a proposal distribution q and an accept-reject criterion.

Acceptance probability = min{1, qijπj
qjiπi

}

where π is the posterior distribution.

Definition 3.4.2.1 The acceptance rate for the chain is the ratio between the

number of accepted samples and the number of samples after the burning-in period.

Running MH with n iterations does not produce n independent samples from the

target distribution. Since the successive samples are dependent, we need to run the

algorithm for enough time to get independent samples. Metropolis-Hastings ensures

that the target distribution is invariant, but it does not ensure that the chain is

aperiodic and irreducible (MacKay, 2002).

MH is different to RS because if we reject a sample, it gives weight to the previous

sample, but in the case of RS, we discard the sample completely.

3.4.2.1 Choosing the Proposal Distribution

The choice of the proposal distribution is one of the hardest tasks. It should have

the same structure as the target distribution and have a positive probability den-
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Algorithm 2: Metropolis-Hasting (Hajian, 2007).

Data: Initialize x0.
Result: Vector containing all the acceptance states x = (x0, x1, · · · ).
for i = 1 to Nsamples do

Draw xnew ∼ q(.|xo) which is a proposal distribution;
Draw α′ ∼ U(0, 1);

if α′ < min{π(xnew)q(xnew, xo)

π(xo)q(xo, xnew)
, 1} then

x[i] = xnew
xo = xnew;

else
x[i] = xo;

end

end

sity (MacKay, 2002; Walsh, 2004). If the proposal distribution is non-zero, then the

Markov chain is ergodic (Neal, 1993).

The choice of the standard deviation of the proposed distribution should be

compatible with the target distribution shape. The acceptance rate for MH is very

low if the width of the target distribution is too small compared to the standard

deviation of the proposal distribution (Kuzmanovska, 2012).

The following is example 3 in (Walsh, 2004).

Example 3.4.2.1 How does the choice of the proposal distribution effect on the

output result? The target distribution is π(x) = cx−5/2 e−2/x. We use two proposal

distributions χ2
2 and χ2

10 and compare the results.

Recall for x ∼ χ2
n , that q(y, x) ∝ xn/2−1e−x/2. Figure 3.4 shows the results of a

single run of the sampler under two different proposal distributions (χ2
2 and χ2

10 ). χ2
2

has a smaller standard deviation than χ2
10 , and thus a higher acceptance probability.

The chain using χ2
10 mixes poorly (for long periods of time, explore small regions of

the parameter space) unlike the other chain which mixes well.
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Figure 3.4: (top): Good mixing using proposal distribution χ2
2. (bottom): Poor

mixing using proposal distribution χ2
10.

3.4.3 Gibbs Sampling

The Gibbs sampling algorithm was named after the physicist Josiah Gibbs. Gibbs

sampling was proposed in (Geman and Geman, 1984) to study a problem related

to image processing. It is a special case of MH, where the random value is always

accepted (Robert and Casella, 1999). Gibbs sampling can be viewed as a Metropolis

method in which a sequence of proposal distributions is defined in terms of the

conditional distributions of the joint distribution (Walsh, 2004).

To explain how Gibbs sampling works, we consider a bivariate random variable

(x, y), and suppose we want to compute the marginals, p(x) and p(y). The sampler

starts with the initial value x0 for x and obtains y0 by generating a random variable

from the conditional distribution p(y|x = x0). The sampler uses y0 to generate a

new value of x1 , drawing from the conditional distribution based on the value y0,

p(x|y = y0) (Walsh, 2004). The sampler proceeds as follows,

xi ∼ p(x|y = yi−1) yi ∼ p(y|x = xi).

Algorithm 3 shows the steps for Gibbs sampling for a d dimensional problem.
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The convergence of Gibbs sampling can be improved by involving fewer variables

than the full set of variables in the conditional distribution (Gelfand and Smith,

1990).

Algorithm 3: Gibbs Sampling (MacKay, 2002)

Data: Initialize t = 0, Nsamples, initial state for the chain

X0 = (x
(o)
1 , x

(o)
2 , · · · , x(o)

d ).
Result: Vector contains all the acceptance states x = (X0, X1, · · · ).
for t = 1 to Nsamples do

Draw x
(t)
1 ∼ p(xl|x(t−1)

2 , · · · , x(t−1)
d )

Draw x
(t)
2 ∼ p(x2|x(t)

1 , x
(t−1)
3 , · · · , x(t−1)

d )
...
Draw x

(t)
d ∼ p(xd|x(t)

1 , x
(t)
3 , · · · , x(t)

d−1)

Xt = (x
(t)
1 , · · · , x(t)

d )
end

3.4.4 Advantages and Disadvantage of MCMC Methods

We summarise the advantages and disadvantages of RS, Metropolis, MH and Gibbs

sampling methods (MacKay, 2002; Hajian, 2007) as follows,

• Monte Carlo methods are powerful tools that allow us to sample from any

probability distribution.

• RS requires the proposal distribution to be very close to the target distribution

and is unsuited to problems in high dimensions.

• MH is relatively easy to implement, even when the target distribution is com-

plicated.

• If the MH method suffers a from low acceptance rate, then it takes a long time

and a large numbers of steps to converge in general.

• Gibbs sampling is easy to implement, but it requires sampling from the con-

ditional distribution of each parameter. Sometimes it will be hard if we have

complex distributions, therefore it is less applicable in practice.

• Gibbs sampling suffers from the same defect as simple Metropolis algorithms–

the state space is explored by a slow random walk.
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• A common problem of MCMC techniques is the high correlation between the

samples.

• In high-dimensional problems, Metropolis algorithms have slow mixing and

low efficiency, but Gibbs sampling is an attractive method because it has no

adjustable parameters but its use is restricted to certain cases.

3.4.5 Chain Set-up

One current research topic is how to choose the initial state of the chain. Based on

the definition of the Markov chain, the chain forgets the initial state. However, the

choice of initial state significantly impacts the convergence rate of the chain. The

common choice of initial state is based on the prior knowledge of each uncertain

parameter. One suggestion of the initial state is the most central point of the

distribution, for example, the distribution’s mode.

How long do we need to run the chain? There are three possibilities:

• Making one long run, this has the best chance of obtaining the convergence to

the stationary distribution.

• Making a few medium length runs with different initial conditions.

• Making multiple short runs, each starting from different random initial posi-

tions. The advantage is that the correlations between the recorded samples are

smaller. The motivation for this is that we obtain independent samples (Gilks

et al., 1996).

Note that, with parallel processing machines, utilizing multiple chains is computa-

tionally more efficient than a single long chain. When we have long flat periods

(corresponding to values being rejected), the chain is mixing poorly (if it takes time

to cover small regions of the parameter space) and it arises because the target dis-

tribution is multimodal and the choice of initial state is close to one of the peaks.

To deal with this problem, we should start with several different chains or use the

simulated annealing on a single-chain.
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3.5 Summary

This chapter provides different sampling techniques. Some of them are based on op-

timisation, e.g. NA and PSO. Some of them are Bayesian, e.g. RS, MH, and Gibbs

sampling. Due to the slow convergence performance of MH, there are different tech-

niques to accelerate convergence, e.g. HMC, (Section 8.1) based on Hamiltonian

dynamics. In the Chapters 6 and 8, we will explain two methods, Multilevel Markov

Chain Monte Carlo and Multilevel Hamiltonian Monte Carlo, for speeding up con-

vergence and the time between independent samples. The following chapter will

review the numerical solution for conservation equations.
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Numerical Solution for

Conservation

Equations–Literature

In Chapter 2, we discussed the system of equations governing the flow in a porous

media. The types of equations were: hyperbolic and parabolic, namely mass con-

servation and the pressure equation respectively. We obtained the differential and

integral forms of the equations.

In this chapter, we focus on reviewing different finite difference schemes and

finding the solutions of the advection equation, Buckley-Leverett equation and the

pressure equation. We find the exact solution, when it is possible. Moreover, we

study the numerical solution using different numerical schemes and different initial

conditions. Also, we check the stability and determine the stability conditions and

analyse the behaviour of a number of finite difference schemes for solving differential

equations governing the miscible displacement (Rakhib, 2004; Shu, 2006).

These equations have many applications in science and engineering for example

in weather prediction, meteorology and petroleum engineering. Also, there are many

complicated issues associated with solving these systems, such as shock formation,

which are not seen elsewhere. In the following section, we review finite difference

schemes.
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4.1 Finite Difference Schemes

We have a vast number of numerical techniques for approximating the solution

of the hyperbolic system, (2.1). We are searching for a numerical scheme that

is consistent with the conservation law (2.1) that is also convergent, stable and

propagates physically valid fronts. We discuss some of these, including the stability.

Also, we study the numerical dispersion and the numerical diffusion of the schemes.

Before discussing any numerical schemes, we should first recap what convergence is

and the stability of the numerical schemes.

For a linear PDE, the Lax equivalence theorem states that for a consistent fi-

nite difference method for a well-posed linear initial value problem, the method is

convergent if and only if it is stable (Strikwerda, 1989). A numerical scheme is

convergent when the approximate solution tends to the exact solution as the time

step tends to zero and the mesh size tends to zero as well. If we do not know the

exact solution, we can increase the number of time steps, decrease the mesh size

and use the solution as a reference to approximate the error. Based on the error, we

can decide if the scheme is convergent or divergent. The numerical scheme can be

divergent if a discontinuity appears. The Courant-Friedrichs-Lewy (CFL) condition

is necessary but insufficient for the stability condition. This means that when the

numerical scheme satisfies the CFL condition, we can apply the stability test- this

is sufficient. Sometimes, the numerical scheme can generate oscillations, however,

the analytical solution does not have any (Trangenstein, 1986; Shu, 2006; Leveque,

1992).

We have several ways of approximating first and second derivatives using finite

difference methods. The popular ones are:

ḟj '
fj+1 − fj

h
→ Forward with accuracyO(h)

ḟj '
fj − fj−1

h
→ Backward with accuracyO(h)

ḟj '
fj+1 − fj−1

2h
→ Center with accuracyO(h2)

f̈j '
fj+1 − 2fj + fj−1

h2
→ Center with accuracyO(h2).
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Where ḟ denotes the derivative of f with respect to time and h = 4t. If it is with

respect to space, h = 4x (Leveque, 1992; Rakhib, 2004). In the following section,

we discuss how to find the analytical solution of the first order hyperbolic equation.

4.2 Analytical Solution of the First Order Hyper-

bolic Equation

The first order 1D hyperbolic equation (see Appendix A) is written as follows

∂s

∂t
+
∂f

∂x
(s) = 0, x ∈ R, t > 0 (4.1a)

s(x, 0) = s0(x), (4.1b)

where, s : R × R+ → R is a mass or saturation variable f : R → R is the flux

function and s0(x) is an initial condition. We can rewrite (4.1) using the chain rule

to obtain the following form

∂s

∂t
+

df

ds

∂s

∂x
= 0. (4.2)

We can use the method of characteristics to solve (4.2) analytically. The main

advantage of using this method is converting a PDE to an ODE. The characteristic

curves x(t) in the x− t plane satisfy

dx

dt
=

df

ds
=⇒ x = x0 +

df

ds
(s0)t.

By substituting this into (4.2), we obtain

∂s

∂t
+

df

ds

∂s

∂x
=
∂s

∂t
+

dx

dt

∂s

∂x
=

ds

dt
= 0.

Therefore, s is constant along the characteristic curves. In the following section, we

study the case when f(s) = vs of (4.1) where v is a constant speed.
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4.3 Advection Equation

In this section, we consider the one-dimensional linear advection (scalar transport)

equation. The linear advection equation, with speed v, can be written as shown

by (4.3) below.

∂s

∂t
+ v

∂s

∂x
= 0, x ∈ R, t > 0 (4.3a)

s(x, 0) = s0(x). (4.3b)

Equation (4.3) is a special case of (4.2) when
df

ds
= v. The advection equation

describes the motion of a conserved scalar field s, for example the gas motion is

advected by a known velocity vector field. The meaning of the advection equation

is: if we start from initial point (x0, t0) and subsequently move with a constant

speed v, then s(x, t) will never change from its initial position. The characteristics

for (4.3) are x − vt. If the characteristic curves satisfy
dx

dt
= v, then x = x0 + vt

and s is constant along the characteristic curves, i.e. s(x, t) = s(x0, 0) = s(x− vt).

Therefore, if v is positive constant speed, then the analytical solution of (4.3) is a

wave propagating to the right.

s(x, t) = s0(x− vt),

where s0 = s0(x) is an initial condition. The solution is a set of straight parallel

lines (Leveque, 1992; Trangenstein, 1986). We will discuss the stochastic version of

the advection equation using single Point Upstream Weighting and Lax-Wendroff

schemes in Section 5.4.2. We next discuss the numerical solution of the advection

equation.

4.3.1 Numerical Solution of the Advection Equation

In this section, we discuss different numerical schemes for solving the advection

equation. We discuss the solution using first and second order schemes, namely

the single point upstream and Lax-Wendroff, respectively. Moreover, we discuss the
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stability of each scheme.

4.3.1.1 Single Point Upstream Weighting (Upwind) Scheme

The general formula for solving Equation (4.3) is:

sn+1
j =


snj − v

4t
4x
(
snj − snj−1

)
; v > 0

snj − v
4t
4x
(
snj+1 − snj

)
; v < 0

j = 0, 1, 2, · · · ,M (4.4)

Figure 4.1: The schematic visualization of the upwind method when v > 0.

To obtain the differential dispersion relation (Christie, 1987), we substitute the

Fourier mode s(x, t) = ei(ωt−kx) into (4.3) as follows,

iωs− ikvs = 0, u 6= 0⇒ ω = kv, (4.5)

where k is the wave number. Since there is no imaginary component, the wave is

undamped. Also, Equation (4.5) says that all Fourier modes travel at the same

speed.

To study the stability of the scheme, we apply the concept of Von-Neumann

stability (Leveque, 1992; Trefethen, 1996; Christie, 1987). Letting snj = ei(ωn4t−kj4x)

and α = sn+1
j /snj and substituting into (4.3) we obtain

ei(ω(n+1)4t−kj4x) = ei(ωn4t−kj4x) − v4t
4x
(
ei(ωn4t−kj4x) − ei(ωn4t−k(j−1)4x)

)
,

and dividing by ei(ωn4t−kj4x), we obtain the following

eiω4t = α = 1− v4t
4x
(
1− eik4x

)
.
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Therefore,

eiω4t = α =
(
1− v4t

4x
)

+ v
4t
4x

eik4x. (4.6)

Equation (4.6) is the equation of a circle with centre 1− v4t
4x

and radius v
4t
4x

in the complex plane. The scheme is stable when |α| < 1. To get this, v
4t
4x

should

be less than 1. This means that the scheme is conditionally stable if and only if the

physical velocity v is smaller than the spreading velocity 4x/4 t. We examine this

scheme with periodic boundary condition i.e. sn−1 = snM .

In conclusion, the upwind method is a first order accurate in time and space

i.e., O(4x,4t). The scheme is stable if v > 0 and thus 0 < v
4t
4x

< 1, otherwise

−1 < v
4t
4x
≤ 0. The scheme gives a poor resolution at discontinuities.

Example 4.3.1.1 Use the single point upstream method for solving the advection

equation, (4.3), at t = 1 assuming velocity v = 1, a periodic boundary condition and

an initial condition,

s0 =


1 ; 0.4 ≤ x ≤ 0.6

0 ; otherwise

. (4.7)

Figure 4.2 shows the approximate solution is smeared out and the maximum height

is about 0.85 compared with the exact solution, using CFL = v
4t
4x

= 0.5.

Figure 4.2: Advection of pulse with the single point upstream with CFL= 0.5.
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4.3.1.2 Lax-Wendroff Scheme

The Lax-Wendroff scheme is a second order accurate in space and time i.e. O(42x,42t).

The general formula for the Lax-Wendroff scheme for solving (4.3) is

sn+1
j =

v 4 t

2 4 x

(
v
4t
4x

+1
)
snj−1+

(
1−v24t2

4x2

)
snj +

v 4 t

2 4 x

(
v
4t
4x
−1
)
snj+1, j = 0, 1, · · · ,M.

(4.8)

To use Lax-Wendroff scheme, we examine the scheme assuming periodic boundary

conditions, sn−1 = snM , s
n
M+1 = sn0 .

The sonic point produces an oscillation to the right of the shocks. Sometimes,

for initial data, we can not see the oscillation. This is probably because of the

combination of the shock and the fan, as the fan is damping the oscillation produced

by the shock.

To study the stability of the scheme, we apply the concept of Von-Neumann (Tre-

fethen, 1996; Christie, 1987). Letting snj = ei(ωn4t−kj4x) and α = sn+1
j /snj , and

substituting into (4.3), we obtain that the scheme is stable when v
4t
4x

< 1.

In general, ω is a complex

ω = Ω + iγ

where,

tan Ωt =

−v4t
4x

sin(k4 x)

1 + v2
4t2

4x2

(
cos(k4 x)− 1

)
e−2γt = v24t

4x

2

sin2(k4 x) +
(
1 + v24t2

4x2

(
cos(k4 x)− 1

))2
.

The phase error is Ω − vk and from that, we know the dispersion Ω and γ, the

diffusion.

Example 4.3.1.2 Find the solution of the advection equation at t = 1, using the

Lax-Wendroff scheme (4.8), with a periodic boundary condition and an initial con-

dition (4.7). Assuming the velocity, v = 1 and CFL = 0.9, Figure 4.3 shows the

solution has sharp resolution because the Lax-Wendroff scheme has a low numerical
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diffusion. Also, the solution overshoots and undershoots (below zero) and we observe

large oscillations in the solution (Christie, 1987; Strauss, 2007).

Figure 4.3: Advection of a pulse with the Lax-Wendroff scheme with CFL= 0.9.

We next discuss a nonlinear example of (4.1).

4.4 Buckley-Leverett Equation

The theory of oil displacement established by Buckley and Leverett, is based on the

relative permeability (Buckley and Leverett, 1942). Relative permeabilities only de-

pend on the saturation. It is a non-convex and non-linear scalar equation (Trangen-

stein, 1986; Carter, 2010; Rakhib, 2004). Buckley-Leverett is a very simplified ver-

sion of the two-phase flow equations under specific assumptions, which are the effects

of the capillary pressure gradient and gravity forces have been ignored, flow is lin-

ear and horizontal, water is injected into an oil reservoir, oil and water are both

incompressible and oil and water are immiscible (Weizhong Luo, 1986).
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4.4.1 Derivation of the Buckley-Leverett Equation

When the water displaces oil, by applying the mass balance of water around the

control volume length, 4x for a time period 4t, we can write the mass balance as

follows:

((qρ)w|x − (qρ)w|x+4x)4 t = Aφ4 x((sρ)w|t+4t − (sρ)w|t),

where q is the rate, ρw is the water density, φ is porosity, sw is the water saturation

and A is the area. By taking limits, when 4x, 4t→ 0, we get the following:

− ∂(qρ)w
∂x

= Aφ
∂(sρ)w
∂t

. (4.9)

Assuming the fluid is incompressible, ρw is a constant and qw = qtotalfw. Therefore,

the one dimensional Buckley-Leverett equation can be written as follows

∂sw(x, t)

∂t
+
qtotal

Aφ

∂f(sw)

∂x
= 0.

If sw = 0 (sw = 1) that means, we have a pure oil (water) respectively (Trangenstein,

1986). The distance along the flow path is x, t is time, and qtotal is total rate of the

flow.

Buckley and Leverett found the saturation profile for a water-flood model, but

their solution is physically unrealistic as shown in Figure 4.4. Due to this, they got

multiple-valued saturated solutions. Therefore, we should replace it by a discontinu-

ity profile. To do this, we should find the position of the discontinuity, determined

by material balance. If the flux flow function has more inflection points, the solution

may have several shocks (Rakhib, 2004).

Figure 4.4: Water saturation profile.
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Figure 4.5: (a): Flux function (b): The derivative of the flux function for Buckley-
Leverett equation.

4.4.2 Analytical Solution

The Buckley-Leverett equation in one dimension has the following form:

∂s

∂t
+ v

∂f

∂x
(s) = 0⇔ ∂s

∂t
+
∂s

∂x
v

df

ds
= 0. (4.10)

The velocity of a fixed plane with saturation s is
dx

dt
= v

df

ds
. Due to some values

of x having multiple values for the saturation. We find a weak solution by using

the entropy condition, which says
df

ds
=

[f ]

[s]
, where [f ] = fr − fl and [s] = sr − sl

means change in f and s respectively. First we find s and then substitute this

into x = x0 + v
df

ds
(s0)(t − t0). Thus, we can find x as well. The Buckley-Leverett

equation does not have a general form for the flux function, this usually comes from

experimentation and this makes the problem interesting. One popular example of

flux function (Leveque, 1992) is

f(s) =
s2

s2 + 1
4
(1− s)2

. (4.11)

Figure 4.5 shows the flux function (4.11) and its derivative.

Using the method of characteristics, assuming t0 = 0, the analytical solution is

found to be:

x = t
8s0 − 8s2

0

(5s2
0 − 2s0 + 1)

+ x0, s(x0, 0) = s0

The shock speed =
[f ]

[s]
=

fR − fL
sR − sL

. The fractional flow curve is not affected by
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gravity, but it is affected by the mobility ratio
krw
µw

/
kr0
µ0

. The lowest ratio has the

most efficient displacement resulting in the fractional flow curves having no inflection

point (Carter, 2010). We will use the analytical solution for the Buckley-Leverett

equation to test the efficiency of the stochastic technique in Chapter 5. We will

discuss the stochastic version of the Buckley-Leverett equation later in Section 5.4.3.

4.4.3 The Numerical Solution of the Buckley-Leverett Equa-

tion

The general formula for a single point upstream weighting (upwind) scheme for

solving (4.10) is:

sn+1
j = snj −

4t
2 4 x

(
fnj − fnj−1

)
, f =

s2

s2 + 0.25 (1− s)2
(4.12)

The initial condition is s(x, 0) = 1. We have a periodic boundary condition. We

find the solution at t = 1 as in the Figure 4.6. Figure 4.6 shows the difficulties due

to the nonlinear flux function–the numerical diffusion close to the shock (Blunt and

Christie, 1989). It shows that the solution with the single point upstream method

is reliable and physically consistent because of a satisfactory agreement with the

Buckley-Leverett results (Weizhong Luo, 1986). Moreover, it shows that there is

a problem near the discontinuity and the shock front is much sharper with little

numerical diffusion. (Barenblatt, 1996; Duffy, 2004; Strauss, 2007)

47



Chapter 4: Numerical Solution for Conservation Equations–Literature

Figure 4.6: Buckley-Leverett solution with the single point upstream scheme with
CFL= 0.4.

4.5 Pressure Equation

The one dimensional pressure diffusion equation can be expressed as follows,

∂P

∂t
= D

∂2P

∂x2
, 0 < x < L, t > 0, (4.13)

where D =
λt
φct

is the hydraulic diffusivity, φ is the porosity, λt is the total fluid mo-

bility and ct is the total compressibility. The initial condition is P (x, 0) = P0, 0 <

x < L and the boundary conditions are P (0, t) = Pi and P (L, t) = Pf . Equa-

tion (4.13) is a parabolic equation (see Appendix A) (Zwhalen and Patzek, 1997).

4.5.1 Analytical Solution

First of all, let us find the steady state solution Ps for (4.13) which satisfies

d2Ps
dx2

= 0
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by integrating the last equation two times and using the boundary condition, P (0, t) =

Pi and P (L, t) = Pf , we obtain

Ps = Pi +
Pf − Pi

L
x.

Let

ν(x, t) = P (x, t)− Ps = P (x, t)− Pi −
Pf − Pi

L
x. (4.14)

By using the boundary conditions for P (0, t) = Pi and P (L, t) = Pf , then the

boundary conditions for ν(x, t) are ν(0, t) = v(L, t) = 0 and by using the initial

condition for P (x, 0) = P0, 0 < x < L. The initial condition for ν is then

ν(x, 0) = (P0 − Pi)−
Pf − Pi

L
x.

Using separation of variables, we can easily obtain the following exact solution (Sor-

bie et al., 2015)

P (x, t) = Pi +
Pf − Pi

L
x︸ ︷︷ ︸

Steady state solution

+2
∞∑
n=1

1

nπ
Ce
−
n2π2

L2
Dt

sin(
nπ

L
x). (4.15)

We will use the analytical solution for the pressure equation to test the efficiency of

the stochastic techniques in Chapter 5. We will discuss the stochastic version of the

pressure equation later in Section 5.4.4.

4.5.2 Similarity Solution

We solve (4.13) by finding a similarity solution using the substitution P (x, t) =

y(z), z = x/
√
t. We obtain

D
d2y

dz2
+

1

2

dy

dz
z = 0

and by integrating the previous equation, we obtain

dy

dz
= Ae−z

2/4D
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and by integrating again, we obtain

y = B + A

z∫
0

e−z
2/4Ddz.

The initial condition is t→ 0 =⇒ z →∞, then P = P0. The boundary condition

is if x = 0 =⇒ z = 0, then P = Pi. Therefore, plugging in the initial condition

and the boundary condition, we obtain the following

y = Pi +
P0 − Pi√

πD

z∫
0

e−z
2/4Ddz

P (x, t) = Pi + (P0 − Pi)erf(x/
√

4Dt).

4.5.3 The Numerical Solution of the Pressure Equation

Before finding the numerical solution, we discuss the stability for explicit and implicit

time stepping schemes for solving (4.13).

4.5.3.1 Stability Condition for Explicit and Implicit Schemes

The explicit scheme can be expressed as follows

P n+1
j = P n

j +
4t
4x2

D(P n
j+1 − 2P n

j + P n
j−1). (4.16)

To study the stability for the scheme, we use the concept of Von-Neumann (Christie,

1987) by calculating the amplification factor, α, using (4.16). Then, we find the

condition to get |α| < 1 assuming P n
j = ei(ωn4t−kj4x). Therefore, we obtain α =

1− 4
4t
4x2

D sin2 k4 x

2
. The stability condition for the explicit scheme (4.16) is

4t
4x2

≤ 1

2D
.

The implicit scheme is

P n+1
j = P n

j +
4t
4x2

D(P n+1
j+1 − 2P n+1

j + P n+1
j−1 ). (4.17)
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Using the concept of Von-Neumann as in the explicit scheme, we have α = 1 −

4
4t
4x2

D sin2 k4 x

2
α =⇒ α =

1

1 + 4
4t
4x2

D sin2 k4 x

2

≤ 1. Therefore, the scheme

is unconditionally stable. We solve the pressure equation (4.13) numerically under

an initial condition, P0 = 0, and boundary conditions P (0, t) = 1 and P (1, t) = 0.5

with D = 1. We use the implicit scheme (4.17). Figure 4.7 shows that the absolute

error for the pressure solution in range 10−6−10−4, which means the approximation

gives an accurate solution.

Figure 4.7: Error for the pressure solution using implicit scheme (4.17).

4.6 Summary

This chapter reviews how to find the analytical and numerical solutions for hyper-

bolic and parabolic differential equations (Advection, Bucley-Leverett and Pressure).

In the next chapter, we will discuss how to solve these equations within a stochastic

frame. This means either the initial condition or the diffusion parameter or the flux

function are random. In the next chapter, we will discuss how to use Monte Carlo

Integration and Multilevel Monte Carlo and compare these.
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Chapter 5

Multilevel Monte Carlo for Porous

Media Flow

This chapter introduces the major concepts of Monte Carlo Integration and the

Multilevel Monte Carlo method and compares the two techniques on 4 different

problems: the exponential growth and decay equation as a toy example equipped

with random initial condition, the advection equation with random initial condi-

tion, the Buckley-Leverett equation with random flux function and random initial

condition and the pressure equation with a random diffusion coefficient.

Integration and optimization problems are the major numerical problems that

arise in statistical inference. Monte Carlo is a powerful method for solving these

two problems. The Monte Carlo method is used for approximating integrals, which

cannot be solved analytically (MacKay, 2002), for example, it can be used to calcu-

late the normalization constant and the maximum likelihood (Robert and Casella,

2010). Moreover, Monte Carlo integration is better than the numerical techniques

for estimating the integration in high dimensions as, the convergence rate for the

Simpson’s rule and the Trapezoidal rule are O(1/M4/d) and O(1/M2/d) respectively,

where d is the dimension and M is the number of samples (H. Gould and Tobochnik,

2010). For example, the Simpson’s rule converges slower than Monte Carlo when

d > 8. In the case of high dimensional space, the numerical approximation can

become very expensive and the result may not be efficient.

Monte Carlo methods are computationally expensive because they require a very
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large number of samples from a given distribution to be generated before then study-

ing the statistical properties of the samples. For this reason, “Monte Carlo is an

extremely bad method; it should be used only when all alternative methods are

worse” (Sokal, 1997).

5.1 Monte Carlo Method

The term “Monte Carlo” refers to the Monte Carlo Casino and was first used by

Ulam and Von Neumann in 1944 for stochastic simulation to build atomic bombs

(Manhattan Project). It is virtually impossible to find a formal definition of Monte

Carlo in the literature (Anderson, 1999; Stoian, 1965).

Monte Carlo can be defined as a family name for a variety of stochastic tech-

niques based on random numbers. Any problem that has been solved using the

repeated generators of random numbers, can be said to be solved using Monte Carlo

techniques. Monte Carlo is used to find answers to problems that may or may not

be related to probability (Stoian, 1965).

In petroleum engineering, Monte Carlo methods have been used for more than

four decades. For example, (Walstrom et al., 1967) used Monte Carlo simulation to

evaluate uncertainty in calculation of water saturation from well logs. However, the

disadvantage of using Monte Carlo is the number of simulations that need to be run

to obtain a specific accuracy of the solution is huge. In practice, for a simple reservoir

model it may be take 1/4 − 6 hours for each realization, so may be impractical to

run a huge number of simulations.

5.1.1 Monte Carlo Integration (MCI)

The generic problem is about evaluating the following integral.

I =

∫
Ω

f(x) p(x)dx, (5.1)

where Ω is the sample space, p is the density of a probability measure defined on

measurable space, f is measurable function defined on the measurable space which is
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integrable with respect to p. The integral is equal to the expectation of the function

f with respect to p,

I = Ep(f).

To estimate the expectation, we can draw a large number of random variables {xi}Mi=1

from the density p(x), assuming that x1, x2, · · · , xM are independent and identically

distributed. Then, we can compute

f̂(x) =
1

M

M∑
i=1

f(xi), xi ∼ p(x). (5.2)

When the number of samples increases, the approximated value of the expectation

converges to the exact expectation. This process is called Monte Carlo integra-

tion. Monte Carlo integration is based on the fact that using the law of large

numbers (Robert and Casella, 1999) we can get the following,

I ≈ f̂(x).

By taking the variance of (5.2),

V(f̂(x)) = V(
1

M

M∑
i=1

f(xi))

=
1

M2
V(

M∑
i=1

f(xi)).

Since x1, x2, · · · , xM are independent and identically distributed, then

V(
M∑
i=1

f(xi)) =
M∑
i=1

V(f(xi)) = MV(f(x1)).

Therefore, the variance for the estimator is equal to

V(f̂(x)) =
1

M
V(f(x1)). (5.3)
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The root mean squared error of f̂ is

RMSE(f̂) =

√
V(f̂(x)) =

√
1

M
V(f(x1)) (5.4)

To obtain the root mean squared error of order ε, it is required thatM = O(ε−2) (Gilks

et al., 1996). We give an example how to use Monte Carlo Integration to solve an

improper integral (Khouider, 2008).

Example 5.1.1.1 Calculate I =
∞∫
−∞

cos(x) exp(−x2/2)dx.

The exact solution is I =

√
2π

e
≈ 1.52035. Compared to (5.1), f(x) = cos(x)

and p(x) = 1/
√

2π exp(−x2/2). Therefore, the approximate solution using Monte

Carlo integration is:

I =
√

2π

∞∫
−∞

cos(x)
exp(−x2/2)√

2π︸ ︷︷ ︸
Normal density

dx = EN (cos(x))

≈
√

2π

M

M∑
i=1

cos(xi), xi ∼ N (0, 1)

Number of samples (M) Approximate solution Absolute error
100 1.41911 0.1012

10000 1.50843 0.0119
1000000 1.52143 0.00108

Figure 5.1: Absolute error as a function of the number of samples.
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Figure 5.1 shows that the Monte Carlo error is O(1/
√
M). Before giving another

example, we define Brownian motion.

Definition 5.1.1.1 (Oksendal, 2002) A family of random variables W = (Wt)t≥0

is called Brownian motion if the following conditions are satisfied:

• The random variables Wt1 −Wt0 ;Wt2 −Wt1 ; · · · ;Wtn −Wtn−1 are independent

for every finite sequence of 0 ≤ t0 < t1 < t2 < · · · < tn for every integer n ≥ 1

• For 0 ≤ s < t the random variable Wt −Ws ∼ N (0, t− s)

• Wt(ω) is continuous in t for every ω ∈ Ω

• W0 = 0.

Example 5.1.1.2 Estimate the expectation of the solution of the following stochas-

tic differential equation using MCI (Monte Carlo integration)

dX(t) = 0.06Xdt + 0.4XdW(t) (5.5)

where, W (t) is Brownian motion. The Euler-Maruyama scheme (Lord et al., 2014)

for (5.5) is

Xn+1 = Xn + 0.06 4 tXn + 0.4Xn
√
4t V n, V n ∼ N (0, 1). (5.6)

We use the MCI to estimate the mean of the solution, E(X(t)), t ∈ [0, 1] with

4t = 0.01, X0 = 1. Moreover, the exact expectation for the problem can be calculated

based on the one-dimensional Itô formula (Lord et al., 2014). The exact solution

can be written as follows,

X(t) = exp((0.06− 0.42/2)t+ 0.4W (t)).

The expectation is

E(X(t)) = exp(0.06 t). (5.7)

56



Chapter 5: Multilevel Monte Carlo for Porous Media Flow

Figure 5.2 shows that the absolute error between the exact expectation (5.7) and

the approximate expectation of (5.6) using MCI is of order O(10−3).

Figure 5.2: Absolute error for estimating the mean of (5.6) using MCI with 10000
samples.

The sample mean becomes more accurate when the sample variance decreases.

However, there is no rule to say this is a good estimation for the sample mean. There

are several techniques based on variance reduction to achieve a better estimation of

the sample mean e.g., Multilevel Monte Carlo (MLMC). Before we explain MLMC,

we explain Two-level Monte Carlo, then we can generalize the idea.

5.2 Two-level Monte Carlo

The idea is expressing the stochastic variable Ul1 in terms of another stochastic

variable Ul0 (functions of the solution of stochastic differential equation has random

parameters or random initial conditions) but the computational cost to calculate

Ul0 is cheaper than Ul1 as follows

Ul1 = Ul0 + (Ul1 − Ul0)
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Since the expectation is a linear operator, then

E(Ul1) = E(Ul0) + E(Ul1 − Ul0). (5.8)

To estimate E(Ul1), we use the sample average for each terms in (5.8) as follows

E(Ul1) ≈
1

Ml0

Ml0∑
i=1

U i
l0

+
1

Ml1

Ml1∑
i=1

(U i
l1
− U i

l0
) (5.9)

where, Ml0 and Ml1 are the number of samples required to estimate the first and

the second term in (5.8) respectively. For the differences between Ul1 and Ul0 ,

we generate the parameters mj, j = 1, · · · , d, where d is the number of uncertain

parameter, we calculate (Ul1(mi)−Ul0(mi)). If we assume the variance of Ul0 is Vl0 ,

the variance of Ul1 − Ul0 is Vl1 and the cost of computing per sample for Ul0 and

Ul1 − Ul0 are Cl0 and Cl1 respectively, the total computational cost can be defined

as follows,

Ctot = Cl0Ml0 + Cl1Ml1 .

Because Ul0 and Ul1 − Ul0 are independent, the variance of the estimator can be

written as,

V(E(Ul1)) =
Vl0
Ml0

+
Vl1
Ml1

.

Minimizing the variance of the estimator by using Lagrange multiplier λ under the

constraint

Ctot = constant,

within Ml0 , Ml1 ∈ R+ yields

∂

∂Mli

(
Vl0
Ml0

+
Vl1
Ml1

+ λ(Cl0Ml0 + Cl1Ml1 − constant)) = 0, i = 0, 1.

From this, we obtain the following constraints

M2
l0

=
Vl0
λCl0

, M2
l1

=
Vl1
λCl1

.

58



Chapter 5: Multilevel Monte Carlo for Porous Media Flow

Which leads to our estimate for the ratio of samples to maximise efficiency

Ml1

Ml0

=

√
Vl1�Cl1√
Vl0�Cl0

=

√
Vl1
Vl0

√
Cl0
Cl1

.

Since the computational cost per sample for Ul0 , Cl0 is less than the computing cost

per sample for Ul1 − Ul0 , Cl1 and Vl1 < Vl0 (Lord et al., 2014) then,

Ml1

Ml0

< 1,

which means by minimizing the variance of the mean estimator we obtain the number

of samples required to estimate the correction term Ml1 is less than the number of

samples required to estimate the first term in (5.8).

5.3 Multilevel Monte Carlo (MLMC)

The philosophy of MLMC is “fine grid accuracy with coarse cost” (Giles, 2015).

MLMC minimizes the computational cost by combining simulations with low and

high accuracy in the most efficient manner.

The basic ideas for MLMC are: using the linearity of the expectation; introducing

a hierarchy of computational models, which are convergent. MLMC replaces the

expensive estimate of the expectation on the fine grid, with a cheaper but less

accurate estimate of the mean on the coarse grid and estimate the mean for the

differences of output quantities from two consecutive models. This correction term

vanishes when the model resolution increases. In that sense, the variance of the

difference becomes smaller, making it cheaper as well. We replaced one estimator

on the finest grid by L+1 estimators, if we have L levels (Giles, 2008, 2015; Dodwell

et al., 2015)
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The general form for MLMC, based on equation (5.8) is:

E(UL) = E(Ul0) +
L∑

l=l0+1

E(Ul − Ul−1) (5.10a)

≈ 1

Ml0

Ml0∑
i=1

U i
l0

+
L∑

l=l0+1

(
1

Ml

Ml∑
i=1

(U i
l − U i

l−1)) (5.10b)

= µl0 +
L∑

l=l0+1

µl (5.10c)

=
L∑
l=l0

µl, (5.10d)

where, l = l0, l1, · · · , L refers to level (corresponding to different grid size), µl is the

estimator for the expectation over level l. We define Cl0 , Cl for the computational

cost of one sample of Ul0 , and for Ul−Ul−1 respectively and let Vl0 , Vl be the variance

of Ul0 , Ul − Ul−1 respectively. Because of the independence between the estimators

therefore, the total cost and the variance of multilevel estimator can be written as

follows,

Ctot =
L∑
l=l0

ClMl

V(E(UL)) =
L∑
l=l0

Vl
Ml

.

(Giles, 2015), to achieve overall variance of order ε2, the Lagrange multiplier must

be equal to

λ = ε4/(
L∑
l=l0

√
VlCl)

2

when we use the same procedures to obtain the number of samples as in the Two-

level Monte Carlo. The number of samples required for every level is

Ml =
1

ε2

√
Vl
Cl

L∑
l=l0

√
VlCl. (5.11)
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Substituting into total computational cost, we get

Ctot =
L∑
l=l0

ClMl =
1

ε2
(
L∑
l=l0

√
VlCl)

2. (5.12)

The performance of MC depends on whether the product VlCl increases or decreases

or stays ‘almost constant’ when l increases. If VlCl decreases (increases), then the

dominant term for the cost is Vl0Cl0 (VLCL) i.e. Ctot ≈ ε−2Vl0Cl0 ( ε−2VLCL). For the

Monte Carlo, the cost is approximated by ε−2Vl0CL, assuming Vl0 ≈ V (UL). In the

case of VlCl increase (decrease), MLMC reduces the computational cost compared

with the Monte Carlo (Giles, 2015).

The complexity cost for using MLMC is O(((log ε)/ε)2). The squared of the

sampling error can be written as the summation of the squared of the sampling

error from each level. This means that MLMC splits the errors into smaller errors

for each level.

5.3.1 The History of MLMC

MLMC has been used to study different SPDEs. MLMC was proposed by Heinrich

in his work (Heinrich, 2001, 2006) and involves estimating E(f(x, λ)), where λ is a

parameter and x is a finite dimensional random variable. Heinrich discussed how he

estimated E(f(x, λ)) when λ ∈ [0, 1]. He used a geometric sequence of levels in his

work.

Kebaier developed the approach of two-level for path simulation in (Kebaier,

2005). (Giles, 2008) also developed the approach of two-level for path simulation

to multilevel based on the multigrid ideas from (Brandt et al., 1994). (Müller, 2014;

Müller et al., 2013) studied single and two phase flow with a random heterogeneous

porous media. He discussed how to solve an elliptic equation with a random per-

meability using MLMC. He used MLMC to accelerate the Monte Carlo using multi

grid techniques. He focused on the error associated with MLMC when computing

finite samples.

In 2014, Müller compares streamline-based solver and grid-based solver using
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MLMC for two phase flow and transport in a random heterogeneous porous me-

dia (Müller et al., 2014). MLMC has been used to study elliptic PDEs with random

coefficients (Cliffe et al., 2011; Teckentrup et al., 2013; Barth et al., 2011; Zollinger,

2010). In (Cliffe et al., 2011) the authors study the solution of elliptic PDEs with ran-

dom coefficients. They quantify the uncertainty for groundwater flow using MLMC.

They address the problem of the large cost of solving elliptic PDEs with random

coefficients. Moreover, it is used to solve Feynman-Kac Formula for the Laplace

equation (Pauli et al., 2015). Also Giles and others estimate distribution functions

and densities using MLMC (Giles et al., 2015). (Efendiev et al., 2013) used MLMC

with the finite element method to study two phase flow and transport simulation

and (Alkhatib, 2014) used MLMC for quantifying the spatial uncertainty for the

enhanced oil recovery process.

5.3.2 MLMC Implementation

We discuss how to implement MLMC in a more general way. To estimate the

first term in (5.10a), we use MCI for generating the uncertain parameters mi, i =

1, · · · , d (d is the number of parameters) using Latin Hypercube Sampling (LHS)

or Sobol sequence sampling technique or random sampling [described in Chapter 7].

Therefore,

E(Ul0) =
1

Ml0

Ml0∑
j=1

Ul0(m
j
i ), ∀i = 1, · · · , d.

To estimate the correction terms, which is the second term in (5.10a), we use MCI

for generating the uncertain parameters mi, i = 1, · · · , d (d is the number of pa-

rameters) using LHS, Sobol sequence or random sampling [described in Chapter 7].

Therefore,

E(Ul − Ul−1) =
L∑

l=l0+1

1

Ml

Ml∑
j=1

Ul(m
j
i )− Ul−1(mj

i ), ∀i = 1, · · · , d.

Ul is the solution of stochastic ODEs or stochastic PDEs using a finite difference

scheme augmented with grids defined for level l, which is finer than the grid for level

l − 1.
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In the following, we discuss in more details how to implement MLMC for estimat-

ing the expectation of a function that depends on time, U(t) (Stochastic ODEs) and

estimating the expectation of a function that depends on time and one-dimensional

space, U(x, t) (Stochastic PDEs).

5.3.2.1 MLMC for Stochastic ODEs

In the first problem (5.4.1), we will estimate the mean of the solution at fixed time T ,

when the solution of the Stochastic ODE is a function of time. We use a numerical

scheme for finding Ul, ∀l. The set up for MLMC is using a ladder in the time steps

4tl rather than a fixed time 4t such that 4tl = T/ηl, where η is a natural number

greater than 1 and l = l0, l1. · · · , L is the level. For each level, we calculate Ul, which

is the approximation to U(T ) using 4tl time step. From our choice of 4tl, we can

see the the largest time step is 4tl0 . We choose 4tl0 to be smaller than the time

step, which is required for stability (Lord et al., 2014; Giles, 2008). To achieve the

accuracy of the estimator O(ε), we choose 4tL < ε/2, then L =
⌈ log(2T/ε)

log(η)

⌉
.

We use the telescoping sum for estimating the expectation (5.10). The telescop-

ing sum relation says that we can express the estimation of the expectation on the

finest level L with the smallest time step 4tL in terms of the estimation on the

coarsest level l0 with the largest time step 4tl0 and correction terms.

5.3.2.2 MLMC for Stochastic PDEs

In case of studying Advection, Buckley-Leverett and pressure equations (see Sec-

tion 5.4), we will estimate the mean of solution at fixed time T for all x in the space

when the solution of Stochastic PDEs is U(x, t). We use a numerical scheme for

finding Ul, ∀l. The set up for MLMC is using a ladder for the time steps as in the

case of the function of time only. However, we will also have a ladder in the x steps

based on the Courant Friedrichs Lewy (CFL) condition. We solve the problems

augmented with the coarsest grid using initial samples Mup, then estimate the mean

and variance of the solution U(x, T ). To check the solution accuracy of ε, we have to

calculate the left hand side of (5.11) and then calculate the extra samples required

using Ml −Mup. Since the variance Vl is a function of x therefore, for each point of
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x, we have a number of samples required to achieve the accuracy of the estimator

O(ε) (point wise). To illustrate, Figure 5.3 shows the number of samples required

for 5 points in the space, let m1 = 10, m2 = 100, m3 = 50, m4 = 75 and m5 = 5.

Figure 5.3: Number of samples required corresponding to each point in the space.

In practice, we have to choose how many samples we need to use for solving the

problem.

control(V(E(UL))) ≤ ε2/2. (5.13)

We can use different options for the control e.g., minimum, first quantile 1Q,

mean, median, third quantile 3Q and maximum of the number of samples with

respect to x as shown in Table 5.1

Table 5.1: Different choices for the number of sample required to use for solving the
SPDE.

Option Number of samples (M)
minimum {m1,m2,m3,m4,m5} 5

1Q {m1,m2,m3,m4,m5} 10
mean {m1,m2,m3,m4,m5} 48

median {m1,m2,m3,m4,m5} 50
3Q {m1,m2,m3,m4,m5} 75

maximum {m1,m2,m3,m4,m5} 100

Therefore, we solve the problem for the number of samples required, which can

be chosen to be the mean of the sample required, M = 48.

5.3.3 MLMC Algorithm

The following algorithm describes how MLMC works. Algorithm 4 step 1, we need

to solve the problem for initial samples (warm-up samples Mup) because the idea
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for MLMC is checking the condition (5.13) and running until the required samples

satisfy this condition.

Algorithm 4: MLMC (Cliffe et al., 2011; Müller et al., 2013)

1: Fix a sequence of grid resolutions l = l0, · · · , L, fix a number of warm-up

samples Mup, fix the variance of the error in the observed data V0 and also

the accuracy ε

2: Starting with l = l0, compute Ml0 = Mup and then check the convergence,

if it is satisfied then, go to step 3. Otherwise add more samples.

3: Warm-up phase: Compute Ml = Mup samples of Ul − Ul−1 on every level.

4: Update the mean estimator. Then, update the variance of the estimator

and the cost for each level.

5: Solve the optimization problem and update the required number of

samples Ml (5.11). In other words, evaluate extra samples at each level if

required and then check the condition (5.13). For each level we can go back

and add more samples to satisfy the condition.

6: Set l = l + 1 and go back to step 3.

The choice of warm-up samples, Mup, is somewhat delicate. It should be large

enough to determine the variance of our estimator accurately. On the other hand,

if Mup is larger than any Ml suggested by the optimization problem in step 5,

unnecessary samples are calculated and computation time is wasted.

Figure 5.4 shows the flowchart of MLMC. Check the condition, which mentioned

in the flowchart is (5.13). The initial samples for each level is Mup and then based

on the variance of the mean of the Mup samples and the condition (5.13), we know

how many samples requires to run to obtain a suitable accuracy for the mean of

solution.
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Figure 5.4: The flowchart of MLMC.

In the next section, we discuss 4 problems: the exponential growth and decay

equation, the advection equation, the Buckley-Leveret equation and the pressure

equation. We estimate the mean of the solution and the uncertainty range by using

MLMC and MCI. The next section compares the performance of MLMC and MCI

for solving the problems.

5.4 Applications

In this section, we study 4 problems, the first one as a toy problem. The second is

a linear hyperbolic equation, the third is nonlinear hyperbolic equation and the last

one is a parabolic equation (linear or semi-linear). The aim is to test the applicability

of MLMC to solve hyperbolic and parabolic equations, which are the types of the

PDE in the reservoir simulation.

For all the results presented in this section, they are averaged over five runs each
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with many samples. The choice of 5 is based on the convergence of the solution and

if we add more run does not add more information about the solution. For example,

in case of estimating the mean of exponential growth and decay problem at t = 1.

We know the exact mean at t = 1 in case of generating the initial condition from a

uniform distribution, U(0, 1) is equal to e0.5. Figure 5.5 shows that with different 5

runs the absolute error for fixed accuracy, has the same order of magnitude.

Figure 5.5: Absolute error of estimating the mean of exponential growth and decay
problem for a fixed accuracy corresponding to 5 different runs.

5.4.1 Exponential Growth and Decay Equation (Toy exam-

ple)

The decay ODE can be expressed as follows,

du

dt
= −au, u(0) = u0. (5.14)

Equation (5.14) has many applications in the real world, for example, to describe

cooling/warming law, population growth, radio-active decay, Carbon dating and

draining a tank (Siddiqi and Manchanda, 2005). The analytical solution for (5.14)

is u = u0e
−at. To solve the problem numerically, if a > 0, then we can use the

explicit Euler scheme first order as follows,

un+1 = un −4t a un = (1− a4 t)un.
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In reality, it may be difficult to specify the initial state, however, we might know the

range. Why do we have a random initial condition? The ODE will be converted to

a random ODE because we do not have a deterministic initial condition any more.

The stochastic form for the (5.14) is:

du

dt
= −au, u(0) = u0 ∼ U(0, 1). (5.15)

Figure 5.6 shows the absolute error between the exact solution and numerical

solution (5.14) with initial condition u0 = 0.35 and assuming a = 1. The figure

shows the absolute error in range 10−3 − 10−2, which means the accuracy of the

approximate solution is O(10−2).

Figure 5.6: Absolute error of (5.14) with Euler explicit scheme.

We solve (5.15) by using MCI and MLMC with η = 4 (η =
4tl−1

4tl
∀l) in Sec-

tion 5.3.2.1. Figure 5.7 shows that MLMC is cheaper than MCI based on the

computational cost (5.12, 5.16).
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Figure 5.7: Comparison of computational cost from MCI and MLMC for the expo-
nential growth and decay equation problem.

When using the root mean square error for solving the problem, using MCI with

explicit Euler, we have two kinds of errors, one from the discretization and another

one from Monte Carlo as follows,

E(f(X(t)))− µM = (E(f(X(t)))− E(f(XN)))︸ ︷︷ ︸
discretization error

+ (E(f(XN))− µM)︸ ︷︷ ︸
Monte Carlo error

= O(4t) +O(1/
√
M),

where, M is the number of samples and f should satisfy the Lipschitz condition.

If we are looking for an estimation with accuracy of ε, it requires 4t = O(ε) and

M = O(ε−2). The complexity cost is the total number of steps. Therefore, the cost

for using MCI is

C = M × T

4t
= O(ε−3). (5.16)

Figure 5.8 shows the speed up factor, the ratio of the computational cost for MCI

and the computational cost for MLMC for different accuracy, ε values with η = 4 in

Section 5.3.2.1. We obtain the performance speed up in the range of 102 − 104.
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Figure 5.8: Speed up factor for MCI and MLMC for the exponential growth and
decay equation problem.

Figure 5.9 compares between the speed up factor based on η = 2 and η = 4 in

Section 5.3.2.1. It shows in case of using η = 2 is faster than η = 4.

Figure 5.9: Comparison between the speed up factor for η = 2 and η = 4 in
Section 5.3.2.1 for the exponential growth and decay equation problem.

Figure 5.10 shows the behaviour of the estimators for the correction term corre-

sponding to each level. Also, it shows the line for log4 |E(Ul − Ul−1)| has a slope of

approximately −1, implying an O(4tl) weak convergence.
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Figure 5.10: The behaviour of the estimators for the correction terms corresponding
to every level for the exponential growth and decay equation problem.

5.4.2 Advection Equation

The advection equation (4.3) has been described in Section 4.3. In Section 4.3, we

discussed the analytical solution and in Section 4.3.1, the numerical solution was

found using different numerical schemes with different initial conditions. Now, we

estimate the mean of the solution of the advection equation with random initial

conditions using MCI and MLMC.

We take the initial condition to be:

s(x, 0) =


1 min{a, b} < x < max{a, b}, a, b ∼ U(0, 1)

0 otherwise

(5.17)

Figure 5.11 shows two random initial conditions based on (5.17). Since the exact

solution depends on the initial condition, estimating the mean of the solution is

equivalent to averaging over the initial conditions. Figure 5.11(b) shows the average

sum of two random initial conditions in Figure 5.11 (a).
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(a)

(b)

Figure 5.11: (a) Two random initial conditions based on (5.17), (b) The average
sum of two initial conditions in (a).

Figure 5.12 shows that there is not much difference in between using 1000 or 100

grid points in x, the absolute error for both is ‘close’ to each other.
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Figure 5.12: The absolute error for different approximate solutions, one with 100
grid points and the other with 1000 grid points.

In Figure 5.13, the top shows the exact solution and approximate solution

(Coarse with 4t = 0.01 and Fine with 4t = 0.005) with CFL= 0.9. The mid-

dle shows the error between the fine solution and the interpolate solution for the

coarse solution. The bottom shows the error between the projected fine solution

and the coarse solution.
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Figure 5.13: The interpolation and projection error using solution with 100 grid
points and solution with 200 grid points with CFL= 0.9.

Studying the interpolated and projected error is important because of using

MLMC, we have to estimate the correction term which is solved with two different

mesh sizes and find the errors. Therefore, we should interpolate or project. All the

result present later in this chapter are based on the projection of the solution on the

coarse grid. Since the variance and the mean are functions of x, we constrain the

number of samples required for every level by the following equation as explained in

Section 5.3.2.2

mean(V(E(UL)) ≤ ε2/2. (5.18)

We use the single point upstream scheme from subsection 4.3.1.1 to solve the

advection equation (4.3) with a periodic boundary condition and an initial condi-

tion (5.17). We assume the velocity v = 1. We find the solution at t = 1 as in the

Figure 5.14. Figure 5.14 shows the approximate mean solution is smearing close to

the boundaries, but it is almost the same for the rest of the domain compared with

the exact mean solution, using CFL = vλ = 0.9.
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Figure 5.14: Mean of the advection solution with the single point upstream.

Figure 5.15 shows that MLMC is faster than MCI for estimating the mean of the

solution for the advection equation. For example, if we need to achieve the accuracy

of estimating the mean of the solution is equal to 0.005, it requires 10 minutes using

MLMC, while it requires 100 minutes using MCI.

Figure 5.15: Comparison between MLMC and MCI for CPU time in minutes assco-
ciated with different accuracy values for the advection equation.

We use second order scheme Lax-Wendroff from the subsection 4.3.1.2, we showed
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in Chapter 4 the solution for a deterministic advection equation using Lax-Wendroff

has oscillations as shown in Figure 4.3. However, the oscillations disappear in the

case of estimating the mean of solution for Stochastic advection as shown in Fig-

ure 5.16. We see that as the number of samples is increased, the estimate becomes

smoother. In the case of using 100 samples is less smooth than using 10000 samples.

Figure 5.16: Mean of the advection solution with the Lax-Wendroff using (top) 100
samples (bottom) 10000 samples with CFL= 0.9.

Table 5.2 compares the MCI and MLMC based on, CPU time, computational
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cost (5.12, 5.16), error and number of samples. We used the Lax-Wendroff scheme

from the subsection 4.3.1.2 with accuracy, ε = 0.01 under the constraint (5.13), using

maximum as control for solving the advection equation. The table shows MLMC

is faster than MCI using Lax-Wendroff scheme and both of them have ‘almost’ the

same error.

Table 5.2: Comparison between MCI and MLMC with Lax-Wendroff scheme for
solving the advection equation.

MCI MLMC

CPU time(min) 21 3

Computational cost 36× 107 64× 106

Error 0.012 0.014

Number of samples
Coarse
Fine

0
104

6241
700

Figure 5.17 shows that the error is almost the same when using maximum, me-

dian and mean constraint in equation (5.13). However, the mean constraint is the

fastest.

Figure 5.17: Comparison between different constraints for MLMC in terms of error
and CPU time for solving advection equation.

In conclusion, MLMC decreases the computational cost compared with MCI in

different scenarios for the advection equation, discontinuous random initial condition
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and different numerical schemes. There are different ways to control the number of

samples required for minimizing the computational cost.

5.4.3 Buckley-Leverett Equation

The Buckley-Leverett equation has been described in Section 4.4. Figure 5.18 shows

ten Buckley-Leverett profiles for different flux functions. The flux function that has

been used to create this figure is

F (s) =
sp

sp + A (1− s)q
, p, q ∼ U(1.5, 4) andA ∼ U(1, 1.5). (5.19)

We use the single point upstream scheme to solve the Buckley-Leverett equation

∂s

∂t
+
∂s

∂x

dF

ds
= 0, s(x, 0) = s0 ∼ U(0, 0.1) (5.20)

with a deterministic boundary condition s(0, 1) = 1 and a random initial condition

as in equation (5.20) and a random flux function as in equation (5.19). We find the

approximate distribution for the solution at t = 1 as in Figure 5.19a.

Figure 5.19a shows the approximate distribution for the solution using MLMC

and MCI using λ =
4t
4x

= 0.3 (Wang et al., 2013). We applied different constraints

for controlling the variance of the mean estimator as in equation (5.13) like max-

imum, mean and median. We compared between all of them and MCI for fixed

accuracy, ε = 0.01.

Figure 5.19b shows the ’median’ constraint is the cheapest way to get the distri-

bution for the solution. We assume the truth solution if we use MCI with accuracy

0.01. Based on that assumption, we find the L2 error between MCI and ’Max, Mean,

Median ’ constraints as in Figure 5.19c. Also, we compared in terms of the number

of samples. For example, if we use MCI, then we have to solve on fine grid 10, 000

samples, but for ’Max’ constraint, we solve about 6000 samples on coarse grid and

5000 samples on fine grid which is cheaper than MCI with almost the same error.
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(a)

(b)

(c)

Figure 5.19: (a) Estimate of Buckley-Leverett profile distribution using MCI and
MLMC. (b) CPU time and cost for MCI with using different constraints for MLMC.
(c) Number of samples and error for MLMC with using different constraints com-
pared with MCI.

Figure 5.20 shows that MCI and MLMC under the ’Mean’ constraint (5.13) have

almost the same distribution, i.e. P10, P50 and P90 with high correlation. The

figure shows MLMC is as efficient as MCI.
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Figure 5.20: Cross plot between MLMC and MCI for solving Buckley-Leverett equa-
tion for (top) P10 (middle) P50 (bottom) P90.

In conclusion, MLMC decreases the computational cost compared with MCI.

5.4.4 Pressure Equation

The linear equation for the pressure has been described in Section 4.5. In Sec-

tion 4.5.3, the numerical solution has been found using an implicit scheme with a
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deterministic initial, boundary conditions and a deterministic diffusion coefficient.

Now, we estimate the distribution of the solution and compare it with the exact

mean solution when the diffusion coefficient is constant and uniformly random dis-

tributed, i.e. D ∼ U(0.25, 0.75). We use an implicit scheme to solve numerically

with MCI and MLMC. Due to the scheme being unconditional stable therefore, we

choose 4x = 4t. For MCI 4t = O(ε) and M = O(ε−2) and for MLMC the finest

level 4tL = O(ε). Figure 5.21 shows the distribution for the solution and shows

the exact and approximate mean are almost the same when using (a) MCI and (b)

MLMC. The figure shows how the mean changes within the time as shown in (b)

and (c).
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(a)

(b)

(c)

Figure 5.21: Estimate of the distribution of the linear pressure solution with (a)
MLMC at t = 1 (b) MCI at t = 1 (c) MCI at t = 0.5 with ε = 0.005.
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Figure 5.22 (a) shows that, MLMC with different constraints (5.13) ’max, mean,

median’ for the variance of the estimator is faster than MCI for estimating the

mean of the solution for the linear pressure equation. (b) shows that MCI has a

high computational cost compared with MLMC. For example, if we need to find a

solution with an accuracy of 0.001, we need about 69 days to have the solution, but

for MLMC we need just a few hours.

(a)

(b)

Figure 5.22: For linear pressure equation (a): CPU time for MCI and different
constraints for MLMC (b): Computational cost for MCI and MLMC with ‘max’
constraint.

The semi-linear pressure equation can be written

∂P

∂t
=

∂

∂x
(K(x)

∂P

∂x
). (5.21)

84



Chapter 5: Multilevel Monte Carlo for Porous Media Flow

The finite difference scheme for (5.21) is

P n+1
i − P n

i =
4t
4x

((K
∂P

∂x
)i+1/2 − (K

∂P

∂x
)i−1/2)

=
4t
42x

(K̄i+1/2(P n+1
i+1 − P n+1

i )− K̄i−1/2(P n+1
i − P n+1

i−1 )).

We use the harmonic average for the permeability K(x), i.e.

K̄i+1/2 =
2KiKi+1

Ki +Ki+1

.

Substituting with the harmonic average for permeability into the finite difference,

we get the following scheme.

P n+1
i+1 (

4t
42x

2KiKi+1

Ki +Ki+1

)− P n+1
i (1 +

4t
42x

2KiKi+1

Ki +Ki+1

+
4t
42x

+
2KiKi−1

Ki +Ki−1

)

+ P n+1
i−1 (

4t
42x

2KiKi−1

Ki +Ki−1

) = −P n
i .

Now, we estimate the mean of the solution of the semi-linear pressure equation with

random permeability using MCI and MLMC. We assume the distribution for the

logarithm of permeability is a normal distribution with mean and standard deviation

equal to zero and one respectively.

Figure 5.23 shows the distribution of the solution of the semi-linear pressure

equation, assuming the accuracy is equal to 0.005, (a) MLMC and (b) MCI. The

figure shows MLMC is able to solve problem does not have an exact solution.
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(a)

(b)

Figure 5.23: Estimate of the distribution of the semi-linear pressure solution with
(a) MLMC (b) MCI with ε = 0.005.

In conclusion, MLMC estimate the distribution of the solution of the linear and

semi-linear pressure equations cheaper than MCI and are almost as efficient as MCI.

MLMC is applicable for solving the parabolic equation and we can address problems

that do not have an exact solution.

5.5 Summary

The goal of this chapter is applying MLMC to a sequence of problems with increasing

the difficulty and relevance to the equations govern the flow motion. The chapter

compares the performance of MLMC and MCI for solving stochastic ODE: the
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exponential growth and decay equation and stochastic PDEs: Advection, Buckley-

Leverett and Pressure equations using different scenarios.

• For the exponential growth and decay equation, MLMC obtains a performance

speed up over MCI in the range of 102 − 104 as shown in Figure 5.8.

• For the advection equation, MLMC is faster than MCI for estimating the mean

of the solution as shown in Figure 5.15. Also, MLMC is cheaper than MCI

using Lax-Wendroff scheme. MLMC is more efficient algorithm than MCI as

shown in Table 5.2.

• The choice of the control condition for the number of samples required to min-

imize the computational cost does have an effect on the CPU time, although

they have the same absolute error for solving the advection equation as shown

in Figure 5.17.

• For the Buckley-Leverett equation, MLMC is cheaper than MCI using three

different control conditions as shown in Figure 5.19b.

• For the Buckley-Leverett equation, MLMC is successful in estimating the un-

certainty range of the solution as in Figure 5.19a and almost as efficient as

MCI, see Figure 5.20.

• For the Pressure equation, MLMC estimates the distribution of the solution

in case of linear and semi-linear pressure problem as in Figures 5.21 and 5.23.

Also, MLMC is cheaper than MCI for solving the pressure equation as observed

from Figure 5.22.

In conclusion, MLMC is applicable for solving hyperbolic and parabolic differential

equations, linear, semi-linear and nonlinear equations. MLMC is as efficient or more

efficient than MCI. MLMC is faster than MCI.

In the next chapter, we will discuss how to use MLMC for quantifying the un-

certainty in a reservoir simulation.
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Chapter 6

Multilevel Markov Chain Monte

Carlo Applied to Uncertainty

Quantification

In this chapter, we demonstrate an application of a new technique, Multilevel

Markov Chain Monte Carlo (MLMCMC), for quantifying uncertainty in reservoir

simulations. The purpose of this technique is to gain speed by decomposing the

desired results into a component calculated with a coarse model, with corrections

obtained on a sequence of finer models (Dodwell et al., 2015).

We start by reviewing Random Walk Metropolis (RWM). Then, introduce the

use of the MLMCMC method in reservoir simulation. The chapter uses MLMCMC

to solve multi-phase flow using reservoir simulations and shows results for two fields.

The first is Teal South in the Gulf of Mexico and the second is Scapa in the UK

North Sea. The chapter reviews how to use the sensitivity analysis for reservoir

model.

One of the main interests in the field of oil reservoir engineering is the accurate

prediction of subsurface flow. An example output is the Field Oil Production Rate

(FOPR), which is a discrete time series. This time series is statistical because

the forecasting variables can be described using probability distributions. Accurate

predictions are obtained by quantifying the uncertainty.

Uncertainty quantification in subsurface flows is an important task in reservoir
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simulation studies, which may be used to inform reservoir management decisions.

Based on a Bayesian framework, we sample from a posterior distribution (updating

the model based on observed data) and produce Bayesian credible intervals for

quantities of interest.

The major difficulty in applying MCMC methods is the high computational

cost (Robert and Casella, 2010). In many situations, using MCMC techniques re-

quires 105 realizations to run to obtain reasonable error (Oliver et al., 2008). For

reservoir simulation, each realization or function evaluation can take 15 minutes to

6 hours. 105 samples would be impractical even on a large cluster.

6.1 Random Walk Metropolis (RWM)

At its simplest, MCMC consists of a proposal mechanism to suggest a new set of

unknown parameters for the reservoir model, along with an accept-reject mechanism

to ensure that the stationary distribution of the Markov chain has the desired distri-

bution. Forecasts are then generated by running the reservoir model for each of the

samples in the Markov Chain (or a thinned subset of the samples) and computing

mean behaviour or appropriate p-quantiles.

A simple and often-used MCMC algorithm is the Random Walk Metropolis

(RWM) algorithm (Robert and Casella, 2010), where the new proposed location

(i.e. parameter value in parameter space) is given by a random walk from the cur-

rent location. The size of the step length is a parameter of the algorithm, and

various theoretical studies show how to choose the step length for optimal efficiency

in the MCMC algorithm (MacKay, 2002; Neal et al., 2012).

In the case of a strictly positive density function, the random walk Metropolis

kernel is irreducible and aperiodic (Tierney, 1994). The most efficient rate of RWM

is 30%− 55% (Gilks et al., 1996).

RWM is easy to implement, although it can often take a long time to explore

all the space and it may converge slowly. This means large numbers of forward

simulations may be required to obtain sensible, accurate solution (Liu and Oliver,

2003).
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The partial differential equations which govern the flow in the reservoir are solved

for each sample. The discretization of the model and the structure of the model and

how many unknown parameters often result in a prohibitive computational cost.

Thus, an important research area is to develop and construct a new method that

has the same accuracy as a long MCMC chain, but is less expensive.

MCMC was used to study history matching of noisy transient pressure in the

reservoir simulation by (Oliver et al., 1997). They concluded that the uncorrelated

MCMC samples from the posterior distribution were inadequate to quantify the un-

certainty and make decisions about the reservoir. Later, Oliver used Hybrid Monte

Carlo (described in Chapter 8) to study the history matching problem resulting in a

higher acceptance rate, but unfortunately, it is computationally expensive (Bonet-

Cunha et al., 1996).

Algorithm 5: Random Walk Metropolis (Robert and Casella, 2010).

Data: Initialize the set of parameters m0 and σ.
Result: Vector contains all the acceptance states m = (m0, m1, · · · ).
for i = 1 to Nsamples do

Draw 4i−1 ∼ N (0,σ2) ;
m′ = mi−1 + 4i−1 %proposal
Draw α ∼ U(0, 1)

if α < min{1, π(m′|D)

π(mi−1|D)
} then

mi = m′

else
mi = mi−1;

end

end

In the algorithm 5, π is the posterior distribution and σ is the standard deviation

vector which determines the step size for the random walk. The RWM approach

consists of generating a new sample depending on the previous one according to

the proposed distribution and comparing the likelihood for the new sample to the

likelihood for the previous sample. The misfit function can be defined as discussed

in Section 2.6

Misfit =
N∑
j=1

(qsim
tj
− qobs

tj
)2/2σ2

tj

Based on assuming the data measurement error is independent and Gaussian dis-
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tributed at any time t, then the likelihood can be defined as discussed in Sec-

tion 2.6.0.2

L(D|m) =
1

(2π)N/2
N∏
i=1

σti

e−Misfit

The acceptance or the rejection of the new sample can be done using this comparison.

If the new sample is accepted, it is used for inference and if it is rejected, we use

the previous sample. The major problem is calculating the likelihood function is

the cost involved in running the simulation and then potentially rejecting the result

and wasting the CPU time. In large-scale applications, using MCMC, the cost of

the likelihood calculation is expensive as we are solving non-linear PDEs in high

dimensions on a fine spatial grid.

There are alternative approaches such as the Langevin method (Dostert et al.,

2006) or Hamiltonian Monte Carlo which we will discuss in Chapter 8, but these are

more complex to programme and tune for optimal performance. One way to reduce

the computational cost is to upscale the ordinary reservoir model. However, the so-

lution obtained using a coarse grid can produce a poor estimation of the parameters.

Moreover, poor estimations feed through forecasting (O’Sullivan, 2004). Quantify-

ing the numerical errors due to upscaling was studied by (Glimm et al., 2001a). The

computational cost can also be reduced using a variance reduction technique such

as Multilevel Monte Carlo (MLMC), which was discussed in Chapter 5, but in this

chapter we combine MLMC with RWM. For more details about MCMC methods,

see Chapter 3.

6.1.0.1 Effect of Step Size on RWM

To choose the step size we should be aware of the shape of the target distribution.

For example, if the target distribution is bivariate distribution, the step size has to

small enough to explore the dimension with the smaller standard deviation.

The step size should not be too small because it leads to a high acceptance rate,

but the samples are all highly correlated. This is leads to multiple iterations to

explore small regions. If a large step size is used, the acceptance rate will be low,
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especially in the tail distribution (Bhuripanyo, 2014).

6.2 Multilevel Markov Chain Monte Carlo (MLM-

CMC)

Multilevel Markov Chain Monte Carlo (MLMCMC) was first proposed by (Ketelsen

et al., 2013) to quantify uncertainty much more rapidly than RWM. (Dodwell et al.,

2015) improved the MLMCMC method, which discussed in (Ketelsen et al., 2013)

by avoiding the bias error in the estimator. (Efendiev et al., 2014) used a generalized

multiscale finite element method with MLMCMC for quantifying the uncertainty of

quantities of interest for high contrast single-phase flow problems.

The contribution of this thesis is to use MLMCMC for solving multi-phase flows

based on hyperbolic (saturation equation) and parabolic (pressure equation), which

does not appear in literature.

The MLMCMC sampling strategy is based on comparing the quantities of in-

terest at one level (e.g., at a finer level) to that at another level (e.g., at a coarser

level). Just like the MLMC method, discussed in Chapter 5, the key is to avoid es-

timating quantities of interest directly on the fine grid, but instead to estimate the

correction with respect to the next lower level. In this manner, we obtain samples

from hierarchical posteriors corresponding to multilevel approximations which can

be used for rapid computations within a MCMC framework.

6.2.1 Two-level MCMC

We demonstrate the simplest case first, which is the case of two-level MCMC, Equa-

tion (5.8) can be written as

ffine = fcoarse + (ffine − fcoarse), (6.1)

where, f is the quantity of interest (e.g. FOPR). Two level MCMC replaces esti-

mation of the quantity of interest on the fine grid, which is extremely expensive, by
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estimation of this quantity on the coarse grid, fcoarse, plus estimation of a correction

term, (ffine − fcoarse). Independent estimators are used to estimate each term. If

estimation of the first term, fcoarse, requires M1 samples, and the correction term,

(ffine − fcoarse), requires M2 samples, the formulae for M1 and M2 can be written as

follows (Giles, 2015; Lord et al., 2014),

M1 =
2

ε2V0

√
vcoarse

Ncoarse

(√
vcoarseNcoarse +

√
vCF(Nfine +Ncoarse)

)
(6.2a)

M2 =
2

ε2V0

√
vCF

Ncoarse +Nfine

(√
vcoarseNcoarse +

√
vCF(Nfine +Ncoarse)

)
, (6.2b)

where Ncoarse is the number of coarse grid blocks, Nfine is the number of fine grid

blocks, vcoarse is the variance of fcoarse, vCF is the variance of (ffine − fcoarse), the

variance of the error in the observed data V0, which is scaling the equations and ε

is the percentage error compared with the initial variance V0 (the variance of the

estimator is of order ε2 V0). The variability of the estimator of (ffine − fcoarse) is

less than the variability of the estimator of fcoarse (Lord et al., 2014). Therefore, by

using (6.2), we can obtain

M2

M1

=

√
Ncoarse

Ncoarse +Nfine

√
vCF

vcoarse

< 1.
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Algorithm 6: Two-level MCMC (Ketelsen et al., 2013)

Input : Fix coarse and fine grids, fix a number of warm-up samples Mup, fix
the standard deviation σ, fix the variance of the error in the
observed data V0 and fix the accuracy ε.

if l = 1 then
Use RWM Algorithm 5, with Msamples = Mup

Check condition (6.3). If it is satisfied, go to the second level. Otherwise,
add more samples.

else
Initialized mcoarse

0 and mfine
0 = mcoarse

0

while (Mup > 0) do
for i = 1 to Mup do

Draw 4i−1 ∼ N (0,σ2)
m′ = mcoarse

i−1 + 4i−1

Draw α ∼ U(0, 1)

if α < min{1, πcoarse(m′|D)

πcoarse(mcoarse
i−1 |D)

} then

mcoarse
i = m′

Draw α1 ∼ U(0, 1)

if α1 < min{1, πfine(m′|D)

πfine(mfine
i−1|D)

πcoarse(mcoarse
i−1 |D)

πcoarse(m′|D)
} then

mfine
i = m′

else
mfine

i = mfine
i−1

end

else
mcoarse

i = mcoarse
i−1

mfine
i = mfine

i−1,
end

end
Check condition (6.3) and update the required number of samples, Ml

Mup = Ml −Mup

end

end

The algorithm easily generalises to l levels. For more details about MLMCMC

method, see (Efendiev et al., 2014; Dodwell et al., 2015). When the output is a time

series, such as the FOPR, then we have to enforce condition (6.3) to control the

number of samples required.

control(V(E(fL))) ≤ ε2 V0/2 (6.3)

where fL is the FOPR with finest grid. We can change the control condition (6.3)
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to the mean, median, the first quantile, Q1 or the third quantile, Q3. The choice

depends on the case study.

The MLMCMC algorithm outputs are: all the input parameters and correspond-

ing FOPR for every level and the number of samples at each level. Then, we find the

effective number of samples based on the autocorrelation for each level. Because the

samples at each level are independent, therefore, by finding all the possible sums

from all the levels to obtain the distribution of the quantity of interest (adopted

from the sum of independent variables).

The following section shows how to analyse the output results. We will use it

for this chapter and in Chapters 7 and 8.

6.3 Output Analysis

Having obtained the MCMC output, we have to ask the following questions. How

long is the burn-in period? Are the samples independent? Should we thin the chain?

What is the effective sample size? Is the chain convergent? What is the speed of

convergence?

To evaluate the sampling performance of MCMC chains, diagnostic tools are

used to thin the chain, check the autocorrelation, check that the burn-in period is

long enough, check the convergence and compute how many effective samples there

are (Box and Jenkins, 1976).

6.3.1 Autocorrelation

The correlation between the values of a time series at different times can be described

using Autocorrelation. Autocorrelation is a function of the two times t1 and t2 or

a function of the time difference.

For the case where autocorrelation is a function of the two times t1 and t2, let

θ be some repeatable process and i be some point in time. Then, θi is the value

produced by a given run of the process at time i. Suppose we know the mean µi and

the variance σ2
i for all times i. Then the definition of the autocorrelation between
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times t1 and t2 is

ρ(t1, t2) =
E[(θt1 − µt1)(θt2 − µt2)]

σt1σt2
. (6.4)

If the variance is either zero (for a constant process) or infinite, then the previous

expression is not well defined. If the function ρ is well defined, its value must lie

in the range [−1, 1] with 1 corresponding to perfect correlation and −1 indicating

perfect anti-correlation (Walsh, 2004).

In the case of the autocorrelation is a function only of the time difference, the

mean µ and the variance σ2 are independent in time, and further, the autocorrelation

depends only on the difference between t1 and t2. The correlation depends only on

the time-distance t1−t2. This implies that the autocorrelation can be expressed as a

function of the time-lag, and that it would be an even function of the lag τ = t2− t1.

This gives the more familiar form as follows (Jensen et al., 2000),

ρ(τ) =
E[(θt − µ)(θt+τ − µ)]

σ2
.

Autocorrelation describes the dependence between the samples at different times.

To determine the sign of the correlation, we can plot Xt against Xt−1. If there is

correlation, the slope of the line is the sign of the correlation (Box and Jenkins,

1976). The autocorrelation function is symmetric with respect to the sign of the

lag. Table 6.1 shows the significance of the autocorrelation values.

Table 6.1: Significance of the autocorrelation values

Autocorrelation Significance
0→ 0.19 Very weak

0.2→ 0.39 Weak
0.4→ 0.59 Moderate
0.6→ 0.79 Strong

0.8→ 1 Very strong

There are tools for assessing the autocorrelation, for example, a time series plot,

which plots time on the x-axis against MCMC output on the y-axis. A lagged scatter

plot plots, for example, Xt against Xt−1 which means plotting X2, · · · , Xt against

X1, · · · , Xt−1. The autocorrelation function plot plots the lag against the autocor-

relation. Practically, for getting a good estimate of the autocorrelation function, we
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should have at least N = 50 observations and the maximum lag should be smaller

than N/4 (Box and Jenkins, 1976).

High autocorrelation shows that there is slow mixing and slow convergence for the

chain. This means that we need a long run to obtain convergence to the stationary

distribution, but at a high computational cost (William and Eaton, 2013; Cowles

and Carlin., 1996).

Autocorrelation Length

L(τ) = 1 + 2
τmax∑
τ=1

ρ(τ)

where, the lag is τ , the autocorrelation is ρ and the maximum lag is τmax. If L = 1,

the sampler is ideal, otherwise, there is a dependence between the data.

The sampling efficiency of the chain in terms of the autocorrelation length is:

E = NL−1.

where L is the autocorrelation length and N is the number of samples.

6.3.2 Effective Samples

For the effective number of samples, E, there are different techniques to evaluate it,

e.g., autocorrelation length L.

E =
N

L(τ)
.

In this thesis, we use the R-command to find the effective sample size. In standard

software R, the effective sample size is

E = N
1− r1

1 + r1

,

where r1 is the first order autocorrelation when the lag is 1.
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6.3.3 Chain Thinning

Chain thinning can be used when the successive samples are highly correlated. If we

wish to have an independent chain, we can do this by thinning the chain (Bishop,

2006). Thinning produces independent samples uses them for inference from the

original chain, which has a strong autocorrelation (biased chain).

Thinning the chain means constructing a subset from the original chain. For

example, if you want 1000 samples, run the chain for 10000 samples and thin by

selecting every 10th samples. Thinning of chains has been considered inefficient,

when the aim is to have precise estimates of the samples (William and Eaton, 2013).

6.3.4 Burning-in Period

If the choice of the initial state or the proposal distribution is poor it may be

necessary to run a long chain to obtain convergence. The burn-in period of the

chain will slow down convergence (Roberts and Rosenthal., 2001). It is common to

discarded a number of iterations at the beginning of the simulation and not take

them into account for inference. The iterations which are cut are called the burn-in

samples. The idea of discarding the burn-in samples is to be sure that the resulting

distribution is independent of the initial state (Walsh, 2004).

The ability to accurately identify the burn-in period can decrease computational

time by avoiding over estimation of the burn-in period. Underestimating burn-in

time results in high autocorrelation, slowing down convergence. However, overesti-

mating the burn-in throws away samples that we could have used to obtain a more

accurate estimate of the distribution, thus also slowing down convergence (Sahlin,

2011).

6.3.5 Convergence Diagnostic

The Fundamental theorem of Markov Chains guarantees that an aperiodic, irre-

ducible finite chain converges to a stationary distribution, but it does not tell us

how fast convergence happens. One of the important questions is, does MCMC

converge to the target distribution?
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Firstly, can we predict how long a MCMC simulation will take to reach equilib-

rium. How many realizations are required to converge to the stationary distribution?

In the case of Random Walk Metropolis (Section 6.1), we can obtain a lower bound

for the time required for convergence. Predicting this time more precisely is a diffi-

cult problem. Secondly, can we detect convergence in a running simulation? This is

also a difficult problem. There are a few practical tools available, but none of them

are perfect, as described in (Cowles and Carlin., 1996).

How do we test the convergence of the chain? There are several tests to check

where the chain converges. We will discuss two of them which have been used to

obtain the resulting Gewek test and Raftery-Lewis test.

6.3.5.1 Gewek Test

This test compares the means of two non-overlapping time intervals, say the first

10% of the chain, and the last 50% of the chain. If the means of both of them are

close, the two samples come from the same distribution. If the values are different,

discard the first 10% and use the second 10% and keep repeating this until the values

are close. In the case of discarding all the values in the first half, the chain is failing

to converge. The output is a value Zscore, which describes the confidence that the

two sets have the same mean (Geweke, 1992).

6.3.5.2 Raftery-Lewis Test

The test is designed to estimate the number of burn-in samples and whether the

number of samples in the chain is long enough. It is a way of estimating a for

P(x ≤ a) = q. Therefore, we have to choose q at an accuracy of ε. These convergence

tests are built into R under the Coda package.

Finally, we have to ask, can we speed up the convergence time and the time

between independent samples in a MCMC method? There are several ways of doing

that one of them is the Hamiltonian Monte Carlo method described in Section 8.1.
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6.4 Teal South

The Teal South reservoir is located in the Gulf of Mexico, approximately 144 km

southwest of Morgan City, Louisiana. Data for this reservoir were made available

by the Energy Resources Clearing House (ERCH) in Houston. Fluids are produced

from a horizontal well at the crest of the reservoir (Pickup et al., 2008). Production

started in November 1996 and monthly data for oil, water and gas rates are available.

There are two measurements of reservoir pressure: initial pressure (3096 psi) and

reservoir pressure after 540 days (2458 psi) (Christie et al., 2002). Figure 6.1 shows

the structure map of Teal South with an 11× 11× 5 simulation grid (Christie et al.,

2002).

Figure 6.1: The structure map of Teal South.

The observed data for oil, water and gas rates as a function of time, are shown

in Figure 6.2 and we see that, after 80 days of production, the oil rate peaked and

then rapidly declined as the water production started (Christie et al., 2002).

The grid for the reservoir simulation model in (Christie et al., 2011) is 11×11×5,

which we used as the coarse grid. Since MLMCMC requires both coarse and fine

grids, for simplicity, we refined the model uniformly in the Z-direction by factors of

3 and 5 to give a grid resolution of 11× 11× 15 and 11× 11× 25. Then to obtain

more accurate solution, we refine all directions (x, y, z) by a factor of 5 to give a

grid resolution of 55× 55× 25 for the fine grid.

We used the first 181 days of production for history matching and kept back

the remaining data to assess the quality of the forecasts. We measure how well a
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(a)

(b)

(c)

Figure 6.2: Teal South observed data for (a) oil (b) water (c) gas rates.

specific set of reservoir model parameters fit the observed data using a least squares

misfit (Mohamed et al., 2010a). The porosity is assumed to be fixed at 0.28 through

the reservoir. The permeability field is only known at a few locations, but due to

the lack of information, it is described by using randomness. We used a total of

8 unknown parameters for history matching: rock compressibility (Roc), aquifer

strength (aqu), horizontal permeability for five layers (Kh), and vertical to horizon-

tal permeability (Kvh). The prior distribution for each parameter was a uniform
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distribution in the ranges shown in Table 6.2. The misfit was calculated using

misfit =
N∑
j=1

(qObs
tj
− qsim

tj
)2

2σ2
tj

(6.5)

with a standard deviation, σtj of 100 STB/day. The result will only focus on FOPR.

Table 6.2: Parameterisation and prior ranges for Teal South (Hajizadeh et al., 2011)

Parameters Units Minimum Maximum
Roc psi−1 5× 10−6 10−4

aqu STB 107 109.
Kh mD 10 1000
Kvh - 0.0001 0.1

The choice for the prior distributions are different from those previously used in

the literature because we switch from uniform in the logarithm of permeability to

uniform in permeability.

6.4.1 Sensitivity Analysis

Modelling the real data require having uncertain parameters, however, increasing

the number of uncertain parameters means increasing the complexity of the model.

Moreover, there is a danger of over parameterization in the model.

The idea of sensitivity analysis is to scan the whole range of each uncertain

parameter, to assess the effectiveness of the uncertain parameters on the model. Let

N be a number of parameters then we run the flow simulation 2×N times. In the

case of Teal South, we fix 7 parameters and tune the last one between max−min

in the prior range as in Table 6.2. Thus, to check the sensitivity of the model with

respect to a parameter, we need to run one model with the maximum value for that

parameter and one model with the minimum value. There are many ways to analyse

the sensitivity of the model, one way is based on checking the differences between

the quantity of interest at specific time steps (Schaaf et al., 2008), as in Figure 6.3.

The figure shows Kvh and Kh2 have more influence on the model.
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Figure 6.3: The sensitivity of Teal South Model at time step t = 92 days.

In the case of having a large number of unknown parameters, it would be good

to use sensitivity analysis to select the most important parameters. Some of the

parameters may be insensitive in the history matching period, but sensitive in the

forecasting period (Floris et al., 2001).

6.4.2 Teal South Results

Since MCMC is a stochastic procedure, we must look at average behaviour to analyse

the results. All the results in this section are the average of 3 runs.

Figure 6.4 shows the histogram for the unknown parameters using MLMCMC

under the constraint (6.3) with the following set-up, V0 = 10000 based on the

variance of the error in the observed data, ε = 0.01, grid 11× 11× 5, 11× 11× 15

and 11 × 11 × 25, we used a burn-in period of 100 samples for each level and used

the mean of the samples as the control condition.
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Figure 6.4: Histogram of the unknown parameters of Teal South model using MLM-
CMC.

Figure 6.5 shows the Bayesian credible intervals computed using both RWM and

MLMCMC. The vertical line in Figure 6.5 represents the end of the history matching

period. For RWM, we choose σ in the proposal equal to 20% of the parameter range.

We obtained an acceptance rate of 50%, with the number of samples is 10000, and
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a burn-in 500 samples. RWM used a grid is 11 × 11 × 25 which corresponding to

the finest level for MLMCMC. The figure shows that RWM requires to run longer

because some of the observed data is outside the Bayesian credible interval.

Figure 6.5: Bayesian credible intervals P10−P50−P90 of Teal South model (top)
MLMCMC (bottom) RWM.

Figure 6.6 shows the autocorrelation (6.4) of MLMCMC per parameter. The

figure shows the samples are highly correlated.
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Figure 6.6: Autocorrelation of MLMCMC for each of the 8 unknown parameters of
Teal South model.

Figure 6.7 shows the autocorrelation (6.4) of MLMCMC per parameter, based

on the effective samples. The figure shows the samples are independent.
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Figure 6.7: Autocorrelation of MLMCMC for each of the 8 unknown parameters for
the effective samples of Teal South model.

Figure 6.8 compares the CDF of MLMCMC with RWM at the end of the history

matching period, day 181 and at day 1187 in the forecast period. At day 181 the

RWM distribution for the effective samples of RWM. It is not a smooth curve,

but for long chain for RWM the distribution is a smooth curve. For day 1187 the
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distribution for MLMCMC close to the distribution for long chain RWM. MLMCMC

obtains almost the same CDF as MCMC on the finest grid within sampling error.

Figure 6.8: Cumulative distributions of Teal South model from MLMCMC, RWM
and long chain of RWM at (top) day 181 (bottom) day 1187, the vertical line is the
observed data.

Figure 6.9 shows that the CPU time is decreased significantly by using MLM-

CMC compared with RWM. The speed up obtained from MLMCMC is in the range

of 10 to 100.
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Figure 6.9: For Teal South model (top) Comparison of CPU time from RWM and
MLMCMC (bottom) speed up factor for RWM and MLMCMC.

Figure 6.10 compares different control conditions (6.3) for the number of sam-

ples required for MLMCMC and RWM. For MLMCMC, we choose ε = 0.05, grid

11 × 11 × 5 and 11 × 11 × 25, burning in period of 100 samples for each level.

We compare different constraints for the number of samples required, control ∈

{Minimum, Mean, Q1, Median, Q3, Mode}.

Figure 6.10(a) compares the methods in terms of the number of samples required

for coarse and fine grids, while Figure 6.10(b) compares in terms of the CPU time

required. As shown in the figure, RWM is the slowest technique. Figure 6.10(c-d)

show the uncertainty of the predictions made by RWM and the different constraints
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for MLMCMC. As shown in Figure 6.10(c-d), Mode and Minimum constraints are

poor choices for Teal South case study because the observed data is outside the

Bayesian credible interval. However, 1st Quantile, mean and Median constraints are

good choices in terms of CPU time and the efficiency.
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(a)

(b)

(c)

(d)

Figure 6.10: Comparison between RWM and different controls for the number of
samples required for MLMCMC for Teal South model.
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Figure 6.11(a-b) compare MLMCMC with the Particle Swarm Optimization

(PSO) with Neighbourhood Algorithm Bayes (NAB) technique, described in Chap-

ter 3. Firstly, we run MLMCMC based on the following set-up 3 times, V0 = 10000,

ε = 0.02, grid 11 × 11 × 5 and 55 × 55 × 25, burning in period of 100 samples for

each level and the constraint for the number of samples (6.3) is the first quantile.

In Figure 6.11, we use the computational cost corresponding to each run of MLM-

CMC, to run PSO with NAB using Raven software (Epistemy Ltd). Figure 6.11(a-b)

shows that, MLMCMC is more efficient than PSO with NAB may be because PSO

needs more samples to obtain a better distribution. Figure 6.11(c) shows that if we

increase the data taken as historical, the uncertainty range decreases and hence we

have more confidence.
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(a)

(b)

(c)

Figure 6.11: Bayesian credible intervals P10− P50− P90 (a) MLMCMC (b) PSO
with NAB (c) MLMCMC with increased the historical data.
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6.5 Scapa Field Description

The second field example is the Scapa field. Scapa is a field in the UK North Sea

that came onstream in 1984. The field data for Scapa has been made available to

Heriot-Watt University for use in teaching and research, and the model used here

was originally developed in an MSc student project in 2011 (Farooq, 2011). The

model contains 90× 53× 20 grid blocks with a grid size of 300 ft× 300 ft in the x

and y directions. Figure 6.12 shows the initial reservoir state.

Figure 6.12: The structure map of Scapa.

Production data for Scapa are available from the UK Department Of Energy And

Climate Change (DECC) website (DEC, 2015). The observed field oil and water rate

as a function of time is shown in Figure 6.13. The first 3137 days of the production

are used for history matching and the remaining data are used for forecasting. The

model is controlled by the total liquid rate and the misfit is calculated for the oil rate

using standard least squares (6.5), with a standard deviation of 1000×
√

2 STB/day

based on bias estimator in Chapter 2.

The number of unknown parameters for history matching is twenty three: poros-

ity φ, transmissibility trans, horizontal permeability for twenty layers Kh, and ver-

tical to horizontal permeability Kvh. The prior distribution for each parameter is

a uniform distribution in the ranges shown in Table 6.3.
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(a)

(b)

Figure 6.13: Scapa observed data for (a) oil (b) water.

Table 6.3: Parameterisation and prior ranges for Scapa (Farooq, 2011).

Parameters Units Minimum Maximum
φ 0.16 0.21
trans 0 0.2
Kh mD 10 3000
Kvh 0.001 0.3

The coarse model in the Multilevel MCMC algorithm was the original 90×53×20

model, and the fine model was 90× 53× 60, obtained by uniform refinement in the

Z-direction. More details about the Scapa field can be found in (Chen, 1988; Ellison

et al., 1992; McGann et al., 1991).

6.5.1 Scapa Results

Figure 6.14 shows MLMCMC can explore the whole range for 8 unknown parameters

as example out of 23 parameters, which means improving the RWM exploration.

The figure is based on the following set-up, V0 = 10000, ε = 0.05, σ = 1000
√

2, grid

90× 53× 20 and 90× 53× 60, burning in period of 100 samples for each level and
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the constraint for the number of samples required is (6.3) using first quantile is the

control.

Figure 6.14 shows that MLMCMC explores all the parameter space in 200 iter-

ations, which means accelerating the random walk behaviour for RWM.
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Figure 6.14: 175 realizations using MLMCMC for 8 unknown parameters of Scapa
field.

We choose 3137 days for the historical period and 2975 days for the forecast-

ing period. Figure 6.15(a), obtained by the same set-up as in Figure 6.14, shows
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Bayesian credible intervals P10−P50−P90 for Scapa with MLMCMC. Figure 6.15(b),

obtained by the same set-up as Figure 6.15(a) except σ, is dependent on time follows

the biased estimator in Chapter 2, shows Bayesian credible intervals P10−P50−P90

for Scapa with MLMCMC. As shown, when σ in (6.5) is variable, we obtain more

confident Bayesian credible intervals than when σ is constant as shown in the figure,

more of observed data points captured by the distribution in case of σ is variable

(dependent on time). Sometimes, it is hard to choose σ at every time step.
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(a)

(b)

Figure 6.15: Bayesian credible intervals P10−P50−P90 for Scapa with MLMCMC,
the dashed vertical line is the end of history period, σ in (2.11) is (a) constant (b)
variable as in Subsection 2.6.0.2.
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6.6 Summary

The aims of this chapter were to explore the feasibility of using MLMCMC to quan-

tify the uncertainty in different scenarios, compare MLMCMC and RWM, with the

same accuracy, and finally with the same computational cost compare MLMCMC

with (PSO combined with NAB). We demonstrated the performance of the MLM-

CMC algorithm on two case studies Teal South field and Scapa field.

• For Teal South field, MLMCMC success fully obtained the histogram for the

uncertain parameters as shown in Figure 6.4.

• For Teal South field, RWM with 104 realizations is not enough to obtain the

uncertainty range to capture all the observed data, unlike MLMCMC with less

computational cost as shown in Figure 6.5.

• For Teal South field, MLMCMC is faster than RWM and the speed up over

RWM is in the range 10 to 100 as shown in Figure 6.9.

• For Teal South, using PSO and NAB with the same computational cost as

MLMCMC. MLMCMC is more efficient than PSO with NAB because for the

same computational cost MLMCMC capture the most of the observed data

than PSO with NAB as shown in Figure 6.11.

• For Teal South field, RWM is the slowest technique compared with MLM-

CMCM augmented with different constraints for the number of samples re-

quired for MLMCMC as shown in Figure 6.10.

• For Teal South field, MLMCMC was able to generate forecasts significantly

faster than RWM with no significant loss in accuracy.

• For Scapa field, MLMCMC estimates the Bayesian uncertainty range for the

solution. The uncertainty distribution is more efficient when using σ as vari-

able in (6.5) than when it is constant as shown in Figure 6.15.

• For Scapa, MLMCMC performed in a similar way to Teal South, with the

difference that we could not afford to run the full RWM on Scapa to get a cost
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comparison.

Overall, MLMCMC is applicable for quantifying the uncertainty in reservoir simu-

lation. It is faster than RWM and as efficient as long chain RWM.

In the following chapter, we discuss another sampling technique for decreasing

the computational cost that is also based on the multilevel concept.
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Chapter 7

Multilevel Proxy for Quantifying

Uncertainty

This chapter proposes a new approach, based on the multilevel concept, for im-

proving and using a proxy to increase the confidence in the solution if we use it for

inference, with less computational cost.

This chapter is structured as follows; first of all we review some experimental

design techniques. Following this, we discuss Radial Basis Function (RBF), then

how to build a proxy, using experimental design, with RBF. After that, we discuss

how to use this proxy to construct an error model. Finally, we propose a new

approach for improving the proxy based on the multilevel concept.

In reservoir simulation, one of the important tasks is quantifying uncertainties as

high-cost investment decisions are based on these simulation predictions. This task

requires running the computationally expensive reservoir simulation code. There-

fore, it is desirable to find a way of decreasing this cost. One way of decreasing the

computational cost is by constructing a proxy.

The goal of the proxy is to replace the reservoir simulator by a map from the

parameter space to the quantity of interest. The aim is to reduce the number of

expensive fine scale simulations and decrease the number of rejected samples. The

cost of constructing the proxy is about 100 − 200 function evaluations. After the

proxy has been constructed, the computational cost for the proxy can be neglected.

Inference from the proxy response only is risky because it is based on a sim-
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plified physical description and neglects important physical features (Sefat et al.,

2012). Moreover, (Goodwin, 2015) shows how to combine Hamiltonian Monte Carlo

(describe in Chapter 8) with proxy to obtain a reliable probabilistic uncertainty

quantification for the forecasting.

7.1 Experimental Design

The goal of using experimental design is to find a suitable configuration (structure)

for the data sets (Yu et al., 2008). Each simulation might require about 15 min–6

hours to run on average, which is extremely expensive. One way to decrease the

computational cost is by constructing an accurate proxy (emulator) to predict the

response of every data point. We hope to build an emulator with the minimum

number of realizations, which we can then use to estimate the distribution of the

quantity of interest.

There are different techniques for experimental design, for example, Random

sampling, Latin Hypercube sampling, screening designs and Sobol sequence (Alpak

and Kats, 2009). To obtain an efficient emulator, requires designing a sampling strat-

egy to explore the parameter space and analysing the experimental results (Yeten

et al., 2005). This section compares the sampling performance of different experi-

mental designs.

7.1.1 Random Sampling

Random sampling generates randomly distributed samples based on a probability

distribution. Figure 7.1 shows that how the random samples are distributed. We

can see gaps where there are no samples. This will affect the sensitivity analysis and

quantifying the uncertainty (Burhenne et al., 2011). Covering the parameter space

is an important issue when constructing a reliable proxy that is able to interpolate

all the points in the parameter space (Yu et al., 2008).
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Figure 7.1: The sampling performance of random sampling, using 100 samples gen-
erated from U(10, 1000).

7.1.2 Stratified sampling

A stratified sampling technique is designed as follows. Divide the parameter domain

into equal subintervals, so that each subinterval contains the same number of sam-

ples. This is to try to avoid gaps and clusters. The required number of samples, M ,

for this design is

M = sd,

where, d is the number of parameters (dimension) and s, is the number of strata.

How to choose a large enough number of strata to avoid gaps and clusters is a critical

issue (Burhenne et al., 2011).

7.1.3 Latin Hypercube Sampling (LHS)

Latin Hypercube Sampling (LHS) is a special case of stratified sampling related

to the quasi Monte Carlo method (Caflisch, 1998). It was introduced by (McKay

et al., 1979) in a computer experiment. LHS was used to select parameters for

Monte Carlo simulations (McKay et al., 1979; Iman and Conovera, 1980). It has

been applied in different areas, namely soil science (Minasny and McBratney, 2002)

and geostatistics (Pebesma and Heuvelink, 1999).

LHS guarantees covering the range of each parameter. This technique is based on

dividing the initial domain into non-overlapping subsets. Then we generate samples

such that, from each subset, we have only one sample as shown in Figure 7.2.

Figure 7.2 shows how LHS with 5 samples from a uniform random variable U(0, 1)

can be distributed in one dimension.
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Figure 7.2: LHS with 5 samples from a uniform random variable U(0, 1).

Generally, in the case of having d parameters, we need N samples. If we scale

the parameter domain to [0, 1],

Ii = {[ i− 1

N − 1
,

i

N − 1
], 1 ≤ i ≤ N − 1}

where, Ii is the subinterval in the domain. LHS procedures can be summarised as

follows, divide the cumulative distribution function domain for each parameter into

N intervals. Pick one random number from each interval. Using the inverse map of

the distribution, we obtain the exact values of the parameters in each interval. Then,

for each parameter, the N values are combined after a random shuffle (Minasny and

McBratney, 2006).

Figure 7.3 shows two possibilities of configuration for LHS in two dimensions (a)

shows a correlation between the parameters and (b) shows that there are gaps in

two dimensional problems and the parameter space is badly explored. Therefore, in

high dimensional space, we have a poor exploration for the space.

Figure 7.3: Two possible configurations for LHS with 6 samples.

Figure 7.4 shows there are gaps and clusters in the case of using LHS as random

sampling. The reason for these is that the number of samples is not large enough

to generate a sample with the same density (Burhenne et al., 2011; Saltelli et al.,
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2008).

7.1.4 Sobol Sequence

Sobol sequence is a kind of quasi random sampling, designed to generate samples

distributed uniformly over a unit hypercube with d dimensions (Burhenne et al.,

2011; Saltelli et al., 2010). The generated samples are based on binary functions

related to irreducible polynomials over the field {0, 1}. This design explores the

parameter space of the quantity of interest (Sobol’ and Levitan, 1999). If the number

of samples is large enough, the parameter space will be explored easily. For more

details related to how to construct Sobol Sequence see (Bratley and Fox, 1988).

Figure 7.4 shows a comparison of the sampling performance of LHS and the Sobol

sequence. The figure shows that Sobol sequence explores the space more efficiently

than LHS. In terms of Sobol sequence decreases the gaps between the data points

compared to LHS.

Figure 7.4: Compare the sampling performance between LHS and Sobol sequence,
using 100 samples generated from U(10, 1000).

(Burhenne et al., 2011) recommended using Sobol sequence or LHS when using

Monte Carlo techniques to be sure we explore all the space. The number of samples

affects the performance of the sampling technique.

7.1.5 Radial Basis Function (RBF)

RBF was introduced by Rolland Hardy (Hardy, 1971). He presented a multiquadric

basis function, one type of RBF. RBF is a powerful method for interpolating scat-

tered data. It maps the input data onto a continuous function. It depends on the
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radial distance from a point.

The RBF interpolation formula is

F (X) =
N∑
i=1

ωi φ(‖X−Xi‖),

where X is the input data, ‖.‖ is Euclidean norm, ωi are the weights, F (X) is the

output, Xi are the centre points, φ : [0,∞) → R is the radial function and N is

the number of basis functions. A RBF approximates a multivariate function by

F : Rd → Rm. This is can be written in matrix form as

F = φw⇒ w = φ−1F,

in the case of φ being a non-singular matrix.

One feature of a RBF is that it is a monotonic function with respect to the

distance from the centre point. The centre point, the function shape and the weights

are unknown parameters (Orr, 1996). The centres are chosen randomly from the

training data. There are different types of radial basis functions, e.g. linear and thin

plate spline. The thin plate spline is two-dimensional and is one of the fundamental

solutions to the biharmonic equation 54φ = 0, with the kernel form φ(r) = r2 ln r.

We use the linear and thin plate type of RBF in 8 dimensions as we look at on 8

dimensional parameter space below. Due to the computational cost of calculating

the inverse matrix and then fitting all the data, it is inefficient.

In this thesis, we modify the RBF function, which is built into python and use

it to interpolate the time series FOPR. Figure 7.5 shows that interpolation using

the RBF is accurate. For more details about RBF, see (Buhmann, 2003; Iske, 2004;

Busby et al., 2007b).
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Figure 7.5: Interpolation of data generated by x cos(x) using RBF with a multi-
quadrics kernel type.

7.2 Proxy Model

The proxy (surrogate model) is an approach to mimic the actual behaviour of the

reservoir simulation. The main idea is to find a relationship between the input

parameters (scattered data points) and simulation output using an interpolation

technique. The interpolation can be done for the simulation output (e.g. FOPR) or

the misfit function. Based on this, we can find the quantity of interest at every input

parameter vector (Busby et al., 2007b). The advantage of using the proxy is we can

decrease the number of reservoir simulation runs. This is especially important when

the simulation is too expensive to run, taking many hours for one realization (Josset

et al., 2015).

The goal is to use a few data points to construct an accurate function to decrease

the computational cost. Constructing the proxy (emulator) requires the following

steps (Busby et al., 2007b)

• Checking the sensitivity of our models in terms of reducing the number of

unknown parameters.

• Experimental design for constructing the input data configuration.

• Scattering data points in the parameter space for input data and the corre-
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sponding output.

• Choosing the interpolated technique, e.g., RBF.

The proxy can be used with any MCMC algorithm to quantify the uncertainty.

(Mohaghegh, 2006) used the Monte Carlo method and surrogate reservoir model to

quantify the uncertainty. (Christie et al., 2006) used a neural network to build the

proxy model. They conclude that, based on the comparison between the simulated

and proxy models, if we get a bad match in some regions, then we can generate extra

samples to improve the proxy model. Also, the initialization and training stages of

the proxy model are very important for obtaining a good proxy model. (Zubarev,

2009) presented a comparative study for assisted history matching between different

proxy models and full numerical simulations. Zubarev concludes that the efficiency

of all the proxy models depends on the complexity of the problem. The hierarchical

nonlinear approximation, proposed by (Busby et al., 2007b), is in the parameter

space and fills the gaps. They modify the proxy by starting with the initial proxy

and then generate more samples to be sure to explore the domain.

Algorithm 7 step 4, we use the Random Walk Metropolis (RWM) for sampling

the testing data because the aim is to use the proxy with RWM for estimating the

uncertainty distribution. In the case of using random samples to test the quality

of proxy, these random samples are wasted and will not feed into the uncertainty

distribution.
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Algorithm 7: Proxy

1: Fix the number of initial samples, choose the experimental design (LHS or

Sobol sequence), fix the step size for RWM and the R-squared value required

(stopping criterion).

2: Generate initial datasets using the experimental design technique, then run

the flow simulation to create the training data.

3: Construct the map between input parameters and the output (quantity of

interest). Estimate the surface of the quantity of interest using RBF, for

example (we have to choose the kernel type).

4: After finding the weights, create test data using RWM. Then, test the

quality of the proxy based on the R-squared value between interpolated and

simulated data.

5: Check the criterion (R-squared close to one), if it is satisfied, use RWM

with the proxy to quantify the uncertainty, otherwise, add more samples to

the initial samples and find the new weights and check again until the test

data satisfies the criterion.

The input parameters for the proxy are unknown parameters. Therefore, further

development is required for the reservoir description (Demyanov et al., 2010). We

compare the proxy result and the simulated result for the same set of parameters

and decided how good the proxy is. This can be done by plotting the testing

simulated results profile and the interpolated result. Also, construct the cross plot

of the simulated results against the interpolated results, then check the regression

coefficient, if it is close to 1, we have a good proxy (Schaaf et al., 2008). In the

following section, we use the proxy to estimate the error between the coarse and fine

solutions.

7.3 Error Model

Decision making is based on accurate predictions. Obtaining an accurate predic-

tion is very hard because it is impossible to quantify the simulation error (Carter,

2004). In the past, the simulation error has been ignored and the coarse grid model
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preferable to reduce the CPU time.

The error model can be used to improve the prediction. It has been designed to

decrease the bias error. It is based on using the result from the coarse model with

the error data to decrease the computational cost without loosing the efficiency

obtained by the finest model (O’Sullivan and Christie, 2006a; Christie et al., 2008).

Solution error modelling is based on a limited number of realizations. We can define

the solution error as,

Error(t,m) = Fine(t,m)− Coarse(t,m),

where, Fine and Coarse refer to the solution using fine and coarse grids respectively,

t refers to time and m is the parameter vector.

The first stage in solution error modelling is to decide which models to use to

perform the set of fine and coarse simulations. The next stage is to interpolate the

errors throughout the parameter space. If a small number of parameters are being

used a simple method such as linear interpolation can be used. However, with higher

dimensions, a more sophisticated method is advisable.

(Glimm et al., 2003, 2004) introduced the solution error model. They compared

the solution of two-phase flow on a coarse and a fine grid. They concluded that

there is a linear relationship between the parameters and that the error corresponds

to this. (O’Sullivan, 2004; O’Sullivan and Christie, 2005, 2006b) improved the result

from Todd and Longstaff’s approximation for a heterogeneous medium with unstable

miscible flow. (Glimm et al., 2001b) formulated and analysed the probability model

for the numerical coarse grid solution error.

7.4 Multilevel Proxy (MLproxy)

Imagine you want to estimate the posterior distribution. You can apply RWM to

do this, but it requires a huge computational cost. (Schulze-Riegert et al., 2013;

Helbert et al., 2009; Alpak et al., 2013) combine the proxy with the RWM technique

to estimate the distribution with less computational cost compared to RWM.
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We now show a different way of decreasing the computational cost without loss

of efficiency. The technique combines the multilevel concept with the proxy:

sim = proxy + (sim− proxy.) (7.1)

Instead of using the extremely expensive RWM (sim), to estimate the distribution,

it uses the proxy with RWM (proxy) and the correction term between the simulated

results and interpolated results, (sim − proxy). A proxy is cheaper to run than

the full simulation with RWM. The correction imperfection by running RWM is

the difference (sim − proxy). Moreover, the computational cost decreases because

the distribution of the differences obtained is narrower than the distribution of the

simulation response.

Constructing the proxy can be done using Algorithm 7. Then, to estimate the

first term in (7.1), we can use RWM Algorithm 5, and to estimate the correction

term, we use Algorithm 8.

Algorithm 8 has two levels, with level l = 1 given by the proxy and level l = 2 by

the difference between sim and proxy, xpi , xsi refer to parameter vectors for the proxy

and simulated respectively. P(x) refers to the prior distribution for the parameters

and π(x|D) refers to the posterior density. Recall from Chapter 6 that we seek to

control the variance so that,

control(V(E(UL))) ≤ ε2 V0/2 (7.2)

where UL is the solution of the simulated FOPR, V0, is scaling the equations and

ε is the percentage error compared with the initial variance V0 (the variance of

the estimator is of order ε2 V0). The accept-reject criterion for the correction term

(sim−proxy) is similar to the accept-reject criterion for two–stage MCMC (Efendiev

et al., 2005; Christen and Fox, 2005).
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Algorithm 8: Two-level proxy

Fix a number of warm-up samples Mup, the variance of the error in the

observed data V0, fix the standard deviation for step size σ and the accuracy

ε.

if l = 1 then

Use RWM Algorithm 5, with Msamples = Mup

Check condition (7.2). If it is satisfied, go to the second level. Otherwise,

add more samples.

else

Initialized xp0 ∼ P(x) and xs0 = xp0

while (Mup > 0) do

for i = 1,to Mup do

4i−1 ∼ N (0,σ2)

x′ = xpi−1 + 4i−1

Draw α ∼ U(0, 1)

if α < min
{

1,
πp(x′|D)

πp(xpi−1|D)

}
then

α1 ∼ U(0, 1)

if α1 < min
{

1,
πs(x′|D)

πs(xsi−1|D)

πp(xpi−1|D)

πp(x′|D)

}
then

xsi = xs

else
xsi = xsi−1

end

xpi = x′

else

xpi = xpi−1

xsi = xsi−1

end

end

Check condition (7.2) and update the required number of samples, Ml

Mup = Ml −Mup

end

end

Figure 7.6 shows the flowchart for producing the proxy and test it. Figure 7.7 shows
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the flowchart for how to estimate the difference between the proxy and the simulated

result (correction term). In Figures 7.6 and 7.7, check the condition refers to (7.2)

with (7.4).

Figure 7.6: Flowchart for estimating the proxy.

Figure 7.7: Flowchart for estimating (sim− proxy).
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It is straightforward to generalise the algorithm to l > 2 terms. The simulated

result using a fine grid can be replaced by the proxy result constructed using a coarse

grid, added to the correction between the simulated results using coarse grid and

the proxy and added to the correction term between the simulated results using fine

and coarse grids (error model idea).

7.4.1 Optimising the Number of Samples

The total computational cost for two level proxy is the sum of the computational cost

for constructing the proxy, estimating the proxy distribution and the computational

cost for estimating the (sim − proxy) distribution. This technique is a variance

reduction technique. As the distribution of the second term is narrow, it requires

few samples. Minimising the variance of the estimator (e.g., mean) with respect to

the number of samples, Ml, required for every level gives,

∂V(E(UL))

∂Ml

= 0, l = 1, 2 (7.3)

where, l refer to a first and second terms in (7.1) and UL is the simulated oil rate.

Obtaining the formula for the number of samples required at each level (M1 and M2)

is based on solving Equation (7.3) under a constraint (that the total computational

cost is constant). This gives

M1 =
2

V0 ε2

√
Vl1
(√

Vl1 +
√
Vl2 × no of grid blocks

)
(7.4a)

M2 =
2

V0 ε2

√
Vl2

no of grid blocks

(√
Vl1 +

√
Vl2 × no of grid blocks

)
(7.4b)

where, the variance of all the realizations from the two terms are Vl1 and Vl2 , V0 is

the variance of the error in the observed data to scale the equation (7.4) and ε is

the percentage error compared to V0 (the variance of the estimator is of order ε2 V0).

Therefore, by using (7.4), we can obtain

Ml2

Ml1

=

√
1

no of grid blocks

√
Vl2
Vl1

< 1.
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For multiple levels, we apply the same techniques to obtain the number of samples

required.

7.5 Results

We use the same synthetic reservoir model studied in Chapter 6, Teal South, to

demonstrate the effectiveness of proxy, error model and MLproxy.

In Figures 7.8, 7.9 and 7.10, we use a coarse grid, which is 11× 11× 5. Different

colours in the plots corresponding to different realizations.

Figure 7.8 shows that the interpolated data and the simulated data for FOPR

using the Sobol sequence to construct the initial samples. As shown in the figure, the

area enclosed by the black ellipse is not estimated well because there is a difference

between the interpolated and simulated result. This indicates that the proxy needs

to be improved. The area enclosed by the black ellipse is important because later,

we use the first 181 days for history matching when we estimate the distribution of

the uncertainty.
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Figure 7.8: Testing data for 100 samples are constructed by (top) the proxy (bottom)
the exact simulation using Sobol sequence with the thin plate kernel for RBF.

Figure 7.9 shows the cross plot for 30 samples between simulated FOPR and in-

terpolated FOPR using random sampling, LHS and Sobol sequence for constructing

100 initial samples for the proxy and using RBF with different kernel types: linear

and thin plate. The figure shows the performance of the proxy for each type. We

can see that using the Sobol sequence with a linear kernel is the best. However, the

thin plate is a bad choice of the kernel. Also for the LHS and random sampling the

proxy needs to be improved more than the one created by Sobol sequence.
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Figure 7.9: (top) Cross plot between simulated FOPR and interpolated FOPR using
random sampling and RBF with (left) Linear kernel (right) Thin Plate kernel. (mid)
Cross plot between simulated FOPR and interpolated FOPR using LHS and RBF
with (left) Linear kernel (right) Thin Plate kernel. (bottom) Cross plot between
simulated FOPR and interpolated FOPR using Sobol sequence and RBF with (left)
Linear kernel (right) Thin Plate kernel.

In Figure 7.10, the initial samples were constructed using the Sobol sequence.

The figure shows that the interpolated data and the simulated data for FOPR are

‘similar’ to each other, which means Two-level proxy improves the quality of the

proxy in Figure 7.8.
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Figure 7.10: Testing data for 100 samples constructed by (top) the Two-level proxy
(bottom) the exact simulation using Sobol sequence with a thin plate kernel for
RBF.

Figure 7.11: Cross plot between the credible Bayesian interval, P10 − P50 − P90
for the simulated and Two-level proxy result.
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Figure 7.11 shows that the simulated result and Two-level proxy result have

almost the same distribution, i.e. P10, P50 and P90 are highly correlated. In

the Teal South example, there are 8 unknown parameters, which we have imposed

maximum and minimum limits on. If we ran simulations for all combinations of the

maximum and minimum parameter values, we would have to perform 28 sets, which

is time consuming. Instead, we chose 100 of these randomly. Then we performed the

fine and coarse simulations and calculated the errors. The coarse grid is 11× 11× 5

and the fine grid is 11 × 11 × 15. Figure 7.12 shows that the proxy for estimating

the error between the solutions using fine and coarse grids. The proxy is accurate in

terms of the error between the interpolated error and the simulated error, as shown

in Figure 7.13. Different colours in the plots correspond to different realizations.

Figure 7.12: Learning (testing) data for 30 samples to show (top) the interpolated
error between the fine and the coarse solution (bottom) the simulated error between
the fine and the coarse solution.

The idea of Two-level proxy can easily be generalized. In the case of estimating
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Figure 7.13: Error between the interpolated and the simulated result from Fig-
ure 7.12.

the distribution of FOPR using the fine grid 11× 11× 15,

simf = Proxyc + (simc − Proxyc) + (simf − simc) (7.5)

In Equation (7.5), the first two terms are the Two-level proxy and the last part

is the solution errors on coarse and fine grids. Figure 7.14 shows the extremely

computationally expensive, simulated distribution created by RWM, with 50000

realizations. The simulated solution is accurate. The figure shows that the estimated

distribution created by RWM based on the proxy for the coarse solution is cheaper.

The proxy is created using a Sobol sequence for configuring the initial 100 samples,

then checking the criterion for accepting the proxy and if it is not satisfied, adding

more samples using RWM. The approximated solution using the proxy is not more

accurate. However, by adding the correction terms, we obtain a better distribution

as shown in the figure. This means the distribution of FOPR can be improved using

MLproxy, with less computational cost. The CPU-time for the simulated result is

about 7 days but for MLproxy it is about a day.
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Figure 7.14: Bayesian credible intervals P10 − P50 − P90 (top) simulated for the
fine grid (middle) proxy for the coarse (bottom) MLproxy.

7.6 Summary

The target of this chapter is decreasing the computational cost of uncertainty quan-

tification without losing the efficiency of the solution by using the multilevel concept

for improving the quality of the proxy (emulator). This proxy is based on a few re-

alizations, which is cheaper than running the full flow simulation. We show results
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for Teal South field.

The chapter showed the following:

• Different experimental design for constructing the initial samples to build the

proxy. We showed that the Sobol sequence is the best choice compared to

random sampling and LHS for exploring the parameter space as shown in

Figure 7.4.

• RBF is a good interpolation method, as shown in Figure 7.5, because the

interpolated result is similar to the exact result.

• I constructed Python code to interpolate a time series using RBF.

• A linear kernel is better than a thin plate kernel in the RBF for interpolating

the misfit surface of Teal South model as shown in Figure 7.9 because the

simulated misfit is highly linearly correlated with the interpolated misfit.

• In most of the situations we faced the proxy should be improved as shown in

Figure 7.8 because it missed some physical elements of the problem.

• Two-level proxy improves the quality of the proxy (see Figure 7.10) because it

obtains the same uncertainty distribution as the simulated results as shown in

Figure 7.11. The computational cost decrease by 85% in case of using RWM

with 50000 samples.

• We can interpolate the error model efficiently, as shown in Figure 7.12, because

the error between the simulated and interpolated error model is very small (as

in Figure 7.13).

• MLproxy decreases the computational cost compared with running the full

simulation and modifies the distribution based on combining the proxy with

RWM as shown in Figure 7.14.

In conclusion, the chapter proposed a new technique for modifying the proxy

(emulator) distribution, using the multilevel concept. The new technique is faster

and ‘efficient’ as running the full flow simulation.
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In the next chapter, we propose a sampling technique for accelerating RWM

based on Hamiltonian dynamics and Multilevel Monte Carlo method.
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Multilevel Hamiltonian Monte

Carlo for Quantifying Uncertainty

in Reservoir Simulation

In this chapter, we present a new way to accelerate the convergence of MCMC called

Multilevel Hamiltonian Monte Carlo (MLHMC). MLHMC is a combination of the

Multilevel Monte Carlo method discussed in Chapter 5 and the Hamiltonian Monte

Carlo technique (HMC). The principal difference between Multilevel Markov Chain

Monte Carlo (MLMCMC) and MLHMC is the proposal step. The proposal step in

HMC avoids the random walk behaviour in MLMCMC and significantly reduces the

computational cost by increasing the effective sample size.

This chapter compares the performance of Random Walk Metropolis (RWM)

(see Chapter 6) and HMC. It also compares Multilevel Markov Chain Monte Carlo

(see Chapter 6) and HMC. MLHMC has been implemented on a real field called

Teal South to assess the uncertainty in the Field Oil Production Rate (FOPR). The

following example explains the difficulty of using the RWM.

Example 8.0.0.1 The target distribution is a multivariate Gaussian distribution

(blue ellipse) with different standard deviations in each direction, σ0 and σ1. The

proposal distribution is an isotropic Gaussian distribution (green circle) with Stan-

dard deviation ε as shown in Figure 8.1. The task is to sample from the target
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distribution using the proposal distribution, minimizing the rejection rate. We must

keep ε = O(σ0) and to explore the target distribution requires (σ1/σ0)2 steps (Bishop,

2006)

Figure 8.1: Example showing the difficulty of using RWM.

The movement through the parameter space using RWM is proportional to the

square root of the number of steps (Gilks et al., 1996). For complex probability dis-

tributions, requires increasing numbers of steps, often to 106 or more samples (Oliver

et al., 2008). In the next section, we explain one solution to the problem based on

Hamiltonian dynamics, called Hamiltonian Monte Carlo (HMC). HMC uses gra-

dient information to reduce the CPU time required to obtain convergence to the

stationary distribution.

8.1 Hamiltonian Monte Carlo (HMC) Algorithm

Hybrid Monte Carlo (HMC), was developed by Duane in 1987 (Duane et al., 1987).

Later, the name was changed to Hamiltonian Monte Carlo because it is based on

Hamiltonian mechanics. HMC adds auxiliary momentum variables, which allow the

use of Hamiltonian dynamics to propose a new location a long way from the current

location.

HMC combines the benefits from Hamiltonian mechanics and the Metropolis-

Hasting algorithm to be able to sample from complex distributions by generating

a sequence of random samples from the posterior distribution to approximate the

distribution.

HMC accelerates convergence and reduces the correlation between successive

states compared with RWM (MacKay, 2002; Neal, 2011). There are several applica-
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tions for this method in different disciplines, such as neural network models (Choo,

2000) and history matching for reservoir models (Mohamed et al., 2010a).

8.1.1 Hamiltonian Dynamics

HMC movement looks like rolling a ball along a surface. The main idea is to define

the potential energy, physically “potential energy is the stored energy of position

possessed by an object” U(x), x ∈ Rd and the kinetic energy K(u), u ∈ Rd as follows

U(x) = − lnπ(x|D) (8.1a)

K(u) =
1

2
uT M−1u, (8.1b)

where x are the spatial coordinates referring to the unknown parameters in the

reservoir simulations, u is the momentum vector, π(x|D) is the posterior distribution

and M is a mass matrix, which is symmetric and positive definite. In most cases,

M is a multiple of the identity matrix or a diagonal matrix.

The sum of the kinetic energy and the potential energy is the Hamiltonian (total

energy) H(x, u),

H(x, u) = U(x) +K(u), H(x, u) ∈ R2d. (8.2)

Instead of sampling from π(x|D) directly, we sample from the joint distribution

p(x, u),

p(x, u) ∝ exp(−H(x, u))

= exp(−U(x)) exp(−K(u))

= π(x|D) exp(−uTu/2)

∝ π(x|D)N (0,M).

Since the distribution is separable, samples from p are samples from π. We take
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M = I in this thesis, therefore,

p(x, u) ∝ π(x|D)N (0, I).

Each step in HMC consists of drawing a new pair of samples, (x, u), according to

the joint distribution, p(x, u). It starts from the current state x and randomizes the

momenta u, from a Gaussian distribution, then simulates the dynamics based on

the randomized momenta. The time evolution of this system is then governed by

Hamilton’s equations of motion,

ẋi =
∂H

∂u
= ui, u̇i = −∂H

∂xi
, i = 1, 2, · · · , d. (8.3)

Equation (8.3) is Newton’s second law of motion because F = u̇ and as the force

is conservative, F = −OU(x). If the dynamics are done accurately, the total energy

is conserved (MacKay, 2002).

8.1.2 Leapfrog Method

Hamiltonian dynamics preserves the volume and the total energy and it is time

reversible. If the dynamics are simulated exactly, the joint distribution p(x, u) is

invariant (Bishop, 2006). That is, if we start from (x0, u0) ∼ p, then after the

system evolves in time t, the new configuration at time t, (xt, ut) also follows the

distribution p.

In reality nothing can be done perfectly – as we discretise Hamilton’s equations

with step-size δ, we observe that H is not conserved. Therefore, in practice the

Hamiltonian dynamics are simulated by the leapfrog algorithm with a small step

size δ to conserve the volume, conserves energy to 4(δ2) (Neal, 1993) and preserve

time reversibility. The leapfrog technique for discretizing Hamilton’s equations (8.3)
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with step size δ can be written as follows

u(t+
δ

2
) = u(t) +

δ

2
u̇ = u(t)− δ

2
∇U(x(t))

x(t+ δ) = x(t) + δ ẋ = x(t) + δ u(t+
δ

2
)

u(t+ δ) = u(t+
δ

2
) +

δ

2
u̇ = u(t+

δ

2
)− δ

2
∇U(x(t+ δ)).

Figure 8.2 shows the leapfrog movement updates momentum every half step, then

one step for position and a half step for the momentum.

Figure 8.2: Leapfrog movement scheme.

The Euler method for discretizing Hamilton’s equations (8.3) with time step δ

can be written as follows

u(t+ δ) = u(t) + δu̇ = u(t)− δ∇U(x(t))

x(t+ δ) = x(t) + δ ẋ = x(t) + δ u(t)

Figure 8.3 shows the difference between using the Euler method and the Leapfrog

method for updating the position and the momentum and why we use the leapfrog

method. The figure shows the Euler method produces a solution, which diverges

to infinity, however the true solution is a circle. The leapfrog solution is very close

to the true solution, which means leapfrog preserves volume exactly [recalculated

from (Neal, 2011)].

Two parameters affect the performance of the HMC techniques: step size δ and

the number of leap frog steps, τ . The choice of these parameters is related to the

acceptance rate and the efficiency of the chain (Beskos et al., 2010, 2013). The choice

of τ should be large enough to end up far from the initial state. If τ is too large, we

increase the computational cost, while if it is too small, we have a high correlation
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Figure 8.3: Hamiltonian dynamics when H(x, u) = (x2 + u2)/2 with initial state
(0, 1) and step-size δ = 0.3 for 20 steps are shown for (top) the Euler method
(bottom) the Leapfrog method along with the true path (blue curve).

between the states, which is undesirable. Balancing these effects by the choice of

τ is a current topic of research problems. In the case of high dimensions, (Beskos

et al., 2010, 2013) suggest the choice of the leapfrog step size to be δ = O(d−0.25)

where d is the dimension. Thus, the leapfrog length would be O(d0.25) to obtain an

acceptance probability close to 0.651 (Beskos et al., 2013).

There are two kinds of errors obtained by applying the leapfrog technique–the

local error obtained after one step δ, is of O(δ)3 and the other, obtained after

τ leapfrog steps, the global error, is of O(δ)2 (Neal, 2011). The effect of using

the leapfrog on the global error can be eliminated by using the Metropolis-Hasting
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accept-reject step. The Euler method has local error of O(δ)2 and global error of

O(δ). If the local error for (x, u) is no more than O(δ2), then the error for H(x, u)

will also be no more than O(δ2) (Leimkuhler and Reich, 2005).

The acceptance and rejection rule is based on the Metropolis-Hastings criterion

for acceptance and rejection:

α = min{1, exp(H(xold, uold)−H(xnew, unew)}, (8.4)

HMC is asymptotically convergent to an invariant distribution if the HMC chain is

ergodic. This depends on the choice of step-size and the number of leapfrog steps.

For example, if we have complex, non-linear problems, we obtain periodicity in most

cases. To eliminate this periodicity, we can use different step-sizes (Choo, 2000).

Overall, the importance of using the leapfrog method is to preserve the vol-

ume and maintain time reversibility, which is important for satisfying the detailed

balance. To prove that HMC satisfies the detailed balance, see Appendix B.

Algorithm 9 describes HMC, we use a Gibbs sampler to generate the momentum

randomly and then, update the position using leapfrog. This updating is based on

the gradient information for the potential. The acceptance and rejection rule is

based on the Metropolis-Hastings criterion for acceptance and rejection.

Algorithm 9: HMC Hajian (2007)

Initialize x0, δ, τ and Msamples

for i = 1,to Msamples do
u0 ∼ N (0, 1)
x0 = xi−1;
for j = 1, to τ do

uj−1/2 = uj−1 − δ/2∇U(xj−1)
xj = xj−1 + δ uj−1/2

uj = uj−1/2 − δ/2∇U(xj)

end
x∗ = xτ , u

∗ = uτ
α ∼ U(0, 1);

if (α < min{1, e−(H(x∗,u∗)−H(x0,u0))}) then
xi = x∗

else
xi = xi−1

end

end
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8.1.3 Relation between the Potential Energy and the Misfit

Function

The misfit function represents the mismatch between the observed data and simu-

lated data.

Misfit =
N∑
i=1

(qsim
ti
− qobs

ti
)2/2σ2

i

Under the assumption the data measurement error is independent and Gaussian

distributed at any time t. Therefore, the likelihood L(D|x) can be defined by

L(D|x) =
1

(2π)N/2
N∏
i=1

σi

e
−

N∑
i=1

(qsimti
−qobsti

)2/2σ2
i

=
1

(2π)N/2
N∏
i=1

σi

eMisfit

Using Bayes’ theorem, which links posterior distribution π(x|D) with the prior den-

sity and the likelihood.

π(x|D) =
L(D|x) prior

Normalization

Equation (8.1a) can be written as follows

U(x) = log(Normalization constant)− log(L(D|x))− log(prior) (8.5)

= log(Normalization constant) +Misfit+
N

2
log(2π) +

N∑
i=1

log(σi)− log(prior)

(8.6)

The gradient for the potential energy

∇U(x) = ∇(Misfit)−∇(log(prior)). (8.7)

8.1.4 Advantages and Disadvantages of HMC over MCMC

The advantages and disadvantages of HMC (Duane et al., 1987; Beskos et al., 2013,

2010; Hajian, 2007; Choo, 2000) can be summarised as follows
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• HMC resolves some inefficiencies of the traditional MCMC methods by avoid-

ing the random walk. It proposes moving across the sample space in larger

steps, therefore the samples are less correlated.

• HMC is applicable for continuous distributions and requires calculation of the

gradient for the logarithm of the probability.

• HMC is well suited for sampling from non-Gaussian and curved distributions.

• HMC accelerates convergence and increases the acceptance rate.

• In a high dimensional problem, HMC is a good method to use.

• The method is very simple to code, as we can see in Algorithm 9. However,

it requires tuning the parameters, τ, δ and calculating the gradient 5U , Mτ

times, where M is the number of samples, which increases the computational

cost.

Example 8.1.4.1 Consider a 6-dimensional Gaussian distribution [the example is

recomputed from (Hajian, 2007)]

H(x) =
1

2
xTx

Estimate the distribution H(x) using RWM and HMC.

The RWM algorithm uses a Gaussian proposal distribution with a step-size 4 ≈

2.4/
√

6. However, HMC requires the gradient which equals to x.

In Figure 8.4, we compare RWM and HMC Algorithms 5 and 9. Figure 8.4

shows that, the chain created by using HMC method is convergent, but for the RWM

algorithm, it requires more samples to reach convergence. Also, the acceptance rate

for the RWM algorithm is 21% and for the HMC is 85%.

Example 8.1.4.2 Estimating the target distribution (8.8) using RWM and HMC

algorithms [the example is recomputed from (Kaipio and Somersalo, 2005)].

π(x, y) ∝ e−10(x2−y2)2−(y−0.25)4 (8.8)
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Figure 8.4: 8000 samples drawn from an isotropic six-dimensional Gaussian distri-
bution using (top) the HMC method with τ = 100 and δ = 0.01 (bottom) the RWM.

Figure 8.5 shows that the HMC is better than the RWM for exploring the whole

distribution. The acceptance probability for RWM is 16% and for HMC is 85%.

In order to use the HMC to quantify the uncertainty of history matching and

forecasting, we must calculate the gradient of the potential function. This means

calculating the gradient of the misfit function. If the gradient of the solution with

respect to the uncertain parameters is not available, one way of calculating the

gradient is to use a proxy model to estimate the misfit surface and then find the

gradient. However, this way is less accurate. In other words, in most practical

cases, we cannot derive the gradient in a closed form because we do not have access

to internal code to find the gradients via adjoint computations (in particular when

using a black-box to compute the forward problem). Therefore, we have to esti-

mate the misfit surface using experimental design within an emulator (Mohamed

et al., 2010a). In the following section, we discuss how to build the proxy using

interpolation techniques.
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Figure 8.5: 1000 samples drawn from (8.8) using (top) the HMC method with τ = 40
and δ = 0.01 (bottom) the RWM along with the true contour (π(x, y) = constant,
blue curve).

8.2 Nadaraya-Watson Kernel Regression

The Nadaraya-Watson kernel was proposed by (Nadaraya, 1964; Watson, 1964).

These kernels are usually probability density functions. We can define a map from

the input parameters to the quantity of interest (output) as follows

M = f(m) + ε, (8.9)

where m is the input parameters, f is a smooth function, ε is the noise and M is

the output. The aim is to construct the function that describes the surface of the
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output M . One way is using Nadaraya-Watson kernel regression as follows,

M̂(m) =

n∑
i=1

Mi
K(m,mi)
n∑
i=1

K(m,mi)
=
R

S
, (8.10)

where Mi is the weights and M̂ is the estimator. There are different types of kernel,

e.g. Gaussian and polynomial.

8.2.1 Gaussian Kernel

The Gaussian kernel is a special case of Radial Basis Function (RBF) (discussed in

Section 7.1.5) and can be defined as follows

K(m,mi) = e−(m−mi)2/2σ2

, (8.11)

where σ is the bandwidth, which describes the kernel width. The choice of σ is

difficult as, it controls the smoothness of the estimator. If σ is very small, the kernel

estimator is very noisy as we have the sum of delta functions around each data

point. Also, if σ is very big, then we lose the useful structure for the kernel as we

have the sum of constant functions. There are different ways to obtain σ, e.g. cross

validation. Procedures for obtaining σ are as follows,

• Divide the data into three parts: training 60%; cross validation 20% and

testing 20%.

• Train with different bandwidths σj and for every σj calculate M̂CVj (8.10),

evaluate the choice by calculating the cross validation error

CVerror = min
∀j

{√√√√ 1

n

n∑
i=1

(M̂CVj −Mi)2
}
. (8.12)

• Choose σopt based on the minimum cross validation error (8.12).

The drawback of these kernel methods is that they suffer from the curse of dimen-

sionality (Demyanov et al., 2010).
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8.2.1.1 Calculate Gradient of Misfit

To find the gradient of (8.10), we do the following

5(M̂(m)) =
S 5R−R5 S

S2

By differentiating the numerator and denominator of (8.10),

5R =
n∑
i=1

Mi
mi −m
σ2

e−(m−mi)2/2σ2

5S =
n∑
i=1

mi −m
σ2

e−(m−mi)2/2σ2

.

By using the calculation for the gradient of R and S we obtain

5(M̂(m)) =
M̂(m)

σ2

n∑
i=1

(mi −m)e−(m−mi)2/2σ2

(
Mi

R
− 1

S
).

8.2.2 Polynomial Kernel

The polynomial kernel can defined as follows

K(m,mi) = (mmi + 1)d (8.13)

where d is the polynomial degree. To find the gradient, we apply the same steps as

in the Gaussian case, to obtain

5(M̂(m)) = M̂(m)
n∑
i=1

mi(mim+ 1)d−1(
Mi

R
− 1

S
).

We use Latin Hypercube Sampling (LHS) or a Sobol sequence (described in Chap-

ter 7) to generate the initial samples for estimating the misfit surface in our studies.

Figure 8.6 shows that the emulator is good enough to use for estimating the

misfit using RBF with different kernel types. The figure shows that the Gaussian

kernel is better than a polynomial kernel of degree 3.
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Figure 8.6: Simulated misfit versus interpolated misfit for 50 samples using, (top)
Gaussian Kernel (bottom) Polynomial kernel.

Figure 8.7 shows the solution of the Teal South example, described in Chapter 6,

using HMC combined with the Gaussian and the polynomial kernels of degree 3 for

estimating the misfit surface. It shows how the choice of kernels affects the efficiency

of the solution. The choice of kernels may change from one problem to another. This

figure shows that the Gaussian kernel is better than the polynomial kernel in the

Teal South case study. In Figure 8.7, the Bayesian credible interval obtained using

Gaussian kernel includes more of the data than the polynomial kernel.
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Figure 8.7: Bayesian credible intervals P10−P50−P90 using HMC with (top) the
Gaussian kernel (bottom) the Polynomial kernel with degree 3, the initial number
of samples to construct the kernel is 100, τ = 25, the number of samples is 1250 and
we use the first 181 days for the history period.

8.3 Comparison between MLMCMC and HMC

In this section, we compare Bayesian credible intervals P10−P50−P90 and the CDF

between the HMC and MLMCMC method for a fixed computational cost created

by running MLMCMC and HMC 3 times and finding the average result for each of

them.

Figure 8.8 shows that most of the observed data for HMC are outside the un-

certainty range; however, for MLMCMC, the observed data are inside the range as

shown in Chapter 6, Figure 6.5. This means that the HMC requires more samples

to achieve a distribution as good as that produced by the MLMCMC method.

Figure 8.9 shows that the CDF for the MLMCMC is better than for the HMC
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Figure 8.8: Bayesian credible intervals P10 − P50 − P90 using the HMC with the
same setup as Chapter 6, Figure 6.5. The vertical line is the end of the history
period.

for 1187 days. At day 181, the distributions are close to each others based on

Kolmogorov–Smirnov test (Jensen et al., 2000).

Figure 8.9: Cumulative distributions from the HMC and the MLMCMC methods
with Sobol sequence at (top) day 181, (bottom) day 1187. The vertical line is the
observed data. Using the number of the initial samples is 30 for LHS, τ = 15 and
867 as the number of samples.
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8.4 Multilevel Hamiltonian Monte Carlo (MLHMC)

We proposed an efficient solution to accelerate convergence for MCMC based on a

combination of Hamiltonian Monte Carlo and Multilevel Monte Carlo, called Multi-

level Hamiltonian Monte Carlo. MLHMC has the advantage of HMC for accelerating

the convergence rate by using Hamiltonian dynamics and the advantage of Multi-

level Monte Carlo (MLMC) for avoiding the estimation of the quantities of interest

directly on a fine grid, but instead estimates the correction with respect to the next

lower level. Thus, we obtain samples from hierarchical posteriors corresponding to

multilevel approximations.

To show the MLHMC chain satisfies time reversibility, we should prove the de-

tailed balance condition (8.14). From this, we can deduce that the target distribu-

tion pl(x, u) (x is the position, u is the momentum and l is level) is the stationary

distribution. Based on the definitions of the acceptance rate and the transition

probability, Pl(x→ y), the detailed balance condition is

Pl(x→ y)pl(x, u) = Pl(y → x)pl(y, u′) (8.14)

We will prove that the detailed balance condition (8.14) satisfies the MLHMC chain.

For the initial level l0, it is as in HMC (Bishop, 2006). We focus to prove the case

of l > l0.

Lemma 8.4.0.1 Assuming the acceptance probability from state x with momentum

u to state y with momentum u′ for level l is αl(y|x) = min{1, e(Hl(x,u)−Hl(y,u′))

e(Hl−1(x,u)−Hl−1(y,u′))
}

and the target distribution is pl(x, u) ∝ e−H
l(x,u) and the transition probability is

Pl(x→ y) = αl(y|x) pl−1(y, u′), (H l(x, u) is the total energy w. r. t level l). Prove

the detailed balance condition (8.14).

Proof 8.4.0.2 To prove the detailed balance condition, it is equivalent to prove

Pl(x→ y)pl(x, u)

Pl(y → x)pl(y, u′)
= 1.
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LHS :
Pl(x→ y)pl(x, u)

Pl(y → x)pl(y, u′)

=
min{1, e(Hl(x,u)−Hl(y,u′))

e(Hl−1(x,u)−Hl−1(y,u′))
}e−Hl−1(y,u′)−Hl(x,u)

min{1, e(Hl(y,u′)−Hl(x,u))

e(Hl−1(y,u′)−Hl−1(x,u))
}e−Hl−1(x,u)−Hl(y,u′))

=
min{1, e(−Hl−1(x,u)−Hl(y,u′))}
min{1, e(−Hl−1(y,u′)−Hl(x,u)}

= 1.

�

The condition for controlling the number of samples required is based on minimizing

the variance of the estimator:

control(V(E(UL(x)))) ≤ ε2 V0/2, (8.15)

where the quantity of interest is U , V0 is a constant used to nondimensionalize the

equation (the variance of the observed data), x = (x1, x2, · · · , xd) are the unknown

parameters and ε is the relative accuracy. Algorithm 10 describes a Two-level HMC.

In Algorithm 10, P(x) refers to prior density and the superscripts f and c refer to

fine and coarse grids.
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Algorithm 10: Two-level HMC

Fix a sequence of grid resolutions l = l0, L, N0 initial samples for estimating
the misfit surface, a number of warm-up samples Mup, fix the variance of the
observed data V0, the accuracy ε, the time step for leapfrog δ and the leapfrog
length τ .
Generate N0 samples based on LHS or Sobol sequence or any other
experimental design.
Use the Nadaraya-Watson kernel to estimate the surface of the misfit.
if l = l0 then

Use HMC Algorithm 9, with Msamples = Mup

Check condition (8.15). If it is satisfied, go to the second level. Otherwise,
add more samples.

else

Initialized xc0 ∼ P(x) and xf0 = xc0
while (Mup > 0) do

for i = 1,to Mup do
u0 ∼ N (0, 1)
x0 = xci−1

for j = 1, to τ do
uj−1/2 = uj−1 − δ/2∇U(xj−1)
xj = xj−1 + δ uj−1/2

uj = uj−1/2 − δ/2∇U(xj)

end
xf = xc = xτ , u

∗ = uτ
α ∼ U(0, 1)
if (α < min{1, e−(Hc(xτ ,u∗)−Hc(x0,u0))}) then

α1 ∼ U(0, 1)

if (α1 < min
{

1,
e−(Hf (xτ ,u∗)−Hf (x0,u0))

e−(Hc(xτ ,u∗)−Hc(x0,u0))

}
then

xfi = xf

else

xfi = xfi−1

end
xci = xc

else
xci = xci−1

end

end
Check condition (8.15) and update the required number of samples, Ml

Mup = Ml −Mup

end

end

The algorithm is straightforward to generalise to l levels as shown by the flowchart,

see Figure 8.10. However, this requires estimating the misfit surface for l− 1 levels.

In Figure 8.10, check the condition refers to (8.12). In the Teal South reservoir field,

we use two levels as a proof of concept.
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Figure 8.10: Flowchart for MLHMC Algorithm.

Figure 8.11: Teal South history match parameters using MLHMC with V0 = 10000,
ε = 0.01, grid 11 × 11 × 5, and 11 × 11 × 25, burning in period of 100 samples for
each level, τ ∼ U(10, 25).
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Figure 8.11 shows the chain for each parameter using MLHMC. The step size δ

is related to the standard deviation of the parameters and we use Sobol sequence

and the initial number of samples used to construct the kernel is N0 = 30. The

figure shows that the chains are convergent.

Figure 8.12 shows the autocorrelation (6.4) of MLHMC per parameter, based on

the effective samples, meaning the independent samples.

Figure 8.12: Autocorrelation of MLHMC for each of the 8 unknown parameters.

Figure 8.13 shows that the histogram for the unknown parameters using MLHMC

is close to the histogram created by using MLMCMC Figure 6.4.
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Figure 8.13: Histogram for the unknown parameters using MLHMC.

Figure 8.14 shows that all the observed data lies inside the Bayesian credible

intervals P10−P50−P90 using MLHMC, however for MLMCMC Figure 6.5, some

of the observed data outside the range.

Figure 8.14: Bayesian credible intervals P10−P50−P90 using MLHMC with Sobol
sequence, the vertical line represents the end of the history matching period.

Figures 8.15 and 8.16 compare 4 techniques: RWM, HMC, MLHMC with Sobol
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sequence and MLHMC with LHS. The figures show that MLHMC with Sobol se-

quence is the fastest algorithm.

Figure 8.15: Comparison between RWM, HMC, MLHMC with Sobol sequence and
LHS w.r.t number of samples with accuracy, ε = 0.01 for all techniques and 100 is
the initial samples for LHS and Sobol sequence.

Figure 8.16: Comparison between RWM, HMC, MLHMC with Sobol sequence and
LHS w.r.t normalized CPU time with accuracy, ε = 0.01 for all techniques and 100
is the initial sample for LHS and Sobol sequence.

Figure 8.17 compares the CDF of HMC and MLHMC with Sobol sequence and

LHS at the end of the history matching period, day 181, and at day 1187 in the

forecast period. The result is the average of 3 runs. It is clear that Sobol sequence are

better than LHS in history matching and forecasting periods. MLHMC with Sobol

sequence obtains the same CDF as HMC on the finest grid within the sampling error.

However, with LHS, more samples are probably required to explore the parameter

space and we do not have the same agreement as with Sobol sequence.
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Figure 8.17: Cumulative distributions from HMC and MLHMC with Sobol sequence
and LHS at (top) day 181, (bottom) day 1187. The vertical line is the observed data.
Using V0 = 10000, ε = 0.02, grid 11× 11× 5, and 11× 11× 25, burning in period of
100 samples for each level, τ ∼ U(10, 25), the step size δ is related to the standard
deviation of the parameters and we use Sobol sequence with the initial number of
samples to construct the kernel is N0 = 30. For HMC, τ ∼ U(10, 25), and the initial
number of samples to construct the kernel is N0 = 30 for Sobol sequence and the
number of samples is 1350.

Figure 8.18 shows that if we increase the amount of historical data, then the

relative uncertainty decreases.
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Figure 8.18: Relative uncertainty using MLHMC with 6 and 20 data points for
historical data.

Figure 8.19 shows that MLHMC combined with Sobol sequence is faster than

RWM for different accuracies.

Figure 8.19: Comparison of CPU time of RWM and MLHMC with Sobol sequence.

8.5 Summary

The goals of this chapter were to propose a new sampling algorithm MLHMC for

reservoir simulation history matching and uncertainty quantification, based on the

combination of MLMC and HMC to accelerate the convergence of RWM. The chap-
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ter demonstrated the performance of MLHMC on Teal South field.

The chapter showed the following:

• HMC can be better than RWM because the chain created using HMC method

is convergent unlike the RWM one and required more samples to reach con-

vergence as shown in Figure 8.4.

• The quality of interpolated misfit affected using different kernel types, Gaus-

sian kernel is better than a polynomial kernel of degree 3 as shown in Figure 8.6.

• the choice of kernels effects on the efficiency of the Bayesian credible interval

obtained, using Gaussian kernel is more confident than the polynomial kernel

because the uncertainty distribution having all the observed data as shown in

Figure 8.7.

• For the same computational cost, MLMCMC is better than HMC because

MLMCMC is able to estimate the distribution of FOPR, but HMC requires

more samples to achieve the same result as MLMCMC shown in Figure 8.8.

• The detailed balance condition is satisfied for MLHMC.

• MLHMC resolved some of the inefficiencies of the traditional MCMC methods

by avoiding the random walk, which improves the acceptance rate. Therefore,

shorter chains will be needed for a reliable parameter estimation, compared

with a traditional MCMC chain, to yield the same performance.

• The histogram for the uncertain parameters using MLHMC as shown in Fig-

ure 8.13 is close to the histogram created by using MLMCMC Figure 6.4.

• For the same accuracy, Bayesian credible interval for estimating the uncer-

tainty distribution using MLHMC has all the observed data inside as shown

in Figure 8.14, however, for MLMCMC Figure 6.5, some of the observed data

outside the range.

• MLHMC with Sobol sequence is the fastest algorithm as shown in Figure 8.16.
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• For different accuracies, MLHMC combined with Sobol sequence is faster than

RWM as shown in Figure 8.19.

• MLHMC with Sobol sequence obtained the same CDF as HMC on the finest

grid within the sampling error as shown in Figure 8.17.

In conclusion, MLHMC obtains a good performance for studying Teal South field

compared with RWM, HMC and MLMCMC. It accelerates the convergence of RWM,

HMC and MLMCMC. However, the number of the parameters which require tuning

increases because we have to tune both HMC parameters and MLMC parameters.

Improved methods of tuning are an open area of research.
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Conclusion and Future Work

This chapter summarises the key results, main contributions and suggests recom-

mendations for future research.

The main aim of the thesis is to improve the speed of uncertainty quantification

using multilevel techniques. We want to have a confident prediction about the

quantity of interest, such as oil rate, within a limited simulation time. To obtain

a prediction with high confidence requires an estimate of the distribution of the

quantity of interest. Estimating the distribution using a high resolution model,

means a large computational time. There is a trade off between the solution accuracy

and the speed.

One a widespread approach for estimating the posterior distribution is based on

Markov Chain Monte Carlo (MCMC) method within a Bayesian framework. The

most common MCMC technique is the Random Walk Metropolis (RWM). RWM

has a high computational cost because it requires a huge number of simulations to

run and about 45%− 70% of the samples will be rejected because of the acceptance

rate for generating samples using RWM is between 30%− 55% (Gilks et al., 1996).

Since the rejected samples do not contribute into the inference, the time for running

the rejected samples is wasted.

In the thesis, I developed and investigated sampling techniques such as Multilevel

Markov Chain Monte Carlo, Multilevel Hamiltonian Monte Carlo and Multilevel

proxy to improve the prediction: to make them more reliable and faster to obtain.
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9.1 Key Findings

The thesis succeeded in showing the Multilevel Monte Carlo (MLMC) can be ap-

plied for solving hyperbolic and parabolic, linear and nonlinear stochastic differen-

tial equations in porous media. The thesis explored the feasibility of the Multilevel

Markov Chain Monte Carlo (MLMCMC) technique in reservoir simulation for un-

certainty quantification.

The thesis proposes two new sampling techniques for estimating the uncertainty

distribution based on the multilevel concept: Multilevel Hamiltonian Monte Carlo

(MLHMC, Chapter 8) and Multilevel proxy (MLproxy, Chapter 7). MLHMC is

a variance reduction technique based on the combination of the MLMC and the

Hamiltonian Monte Carlo (HMC). It has the advantage of the HMC for accelerating

the convergence rate using Hamiltonian dynamics and the advantage of the MLMC

for avoiding the estimation of the quantities of interest directly on a fine grid, but

instead estimates the correction with respect to the next lower level. Thus, we obtain

samples from hierarchical posteriors corresponding to multilevel approximations.

The MLHMC resolved some inefficiencies of the traditional MCMC methods by

avoiding the random walk, which improved the acceptance rate. Therefore, shorter

chains are needed for reliable parameter estimation, compared with a traditional

MCMC chain, to yield the same computational cost. MLproxy is coupling the

multilevel concept and proxy ideas. It is improving the quality of the proxy by

adding the correction terms to the original proxy, it is a variance reduction technique

as well.

Most of the results have been presented are based on a simple synthetic field,

Teal South reservoir model, which is located in the Gulf of Mexico. Because of the

model simplicity and measurement errors it has been used to assess the techniques

and make robust conclusions. The Scapa field, which is located in the North Sea,

has been used in Chapter 6 to show the MLMCMC technique is applicable to study

more complicated reservoir model in terms of having more wells and more observed

data compared with Teal South Model.

Codes used are written in Eclipse-100, R and Python. The approaches detailed
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in the thesis are running on a single PC. Most of the results have been presented

in the thesis are averages of several runs because the techniques used are stochastic

techniques.

The key findings can be summarised as follows,

• Chapter 5, MLMC was able to solve stochastic ODE: the exponential growth

and decay equation and PDEs with stochastic terms : Advection, Buckley-

Leverett and (linear or semi-linear) pressure equations. For the exponential

growth and decay equation, MLMC obtained performance speed up Monte

Carlo Integration in the range of 102 − 104. For the advection equation,

MLMC was faster and cheaper (less computational cost) than Monte Carlo

Integration without the loss of efficiency for estimating the mean of the solu-

tion. A number of numerical methods were applied. Also, the choice of the

control condition (5.3) for the number of samples required to minimize the

computational cost has an effect on the CPU time. MLMC was cheaper than

Monte Carlo Integration for the pressure equation and for Buckley-Leverett

equation. Also, Buckley-Leverett equation was almost as efficient as Monte

Carlo Integration using three different control conditions for MLMC.

• Chapter 6, MLMCMC is applicable for uncertainty quantification in reservoir

simulation. It is faster than Random Walk Metropolis (RWM) and as efficient

as long chain RWM in terms of estimating the posterior distribution for oil

rate. For Teal South field, MLMCMC was able to generate forecasts signif-

icantly faster than RWM and speed up RWM in the range 10 to 100 with

no significant loss in accuracy. Moreover, MLMCMC succeeded in obtaining

the histogram for the uncertain parameters and in addition, the uncertainty

range captured most of the observed data with less computational cost com-

pared with RMW. Furthermore, for fixed computational cost MLMCMC was

more efficient than particle swarm optimization with neighbourhood algorithm

Bayes because MLMCMC captured the most of the observed data.

• For Scapa field, MLMCMC estimated the Bayesian uncertainty range for the

solution. The uncertainty distribution was more efficient using the standard
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deviation σ, which control the mismatch between the observed data and sim-

ulated data, as the variable in (6.5) than when it was constant. MLMCMC

performed in a similar way as on Teal South, with the difference that we could

not afford to run the full RWM on Scapa to get a cost comparison because it

required 15 minutes to run one simulation, which means 1000 samples would

require 10 days to run.

• We saw in Chapter 7 that linear kernel was better than thin plate kernel for

interpolating the oil rate surface of Teal South model because the simulated

misfit was highly linearly correlated with the interpolated misfit. The quality

of interpolated misfit was examined using different kernel types. A Gaussian

kernel was better than a polynomial kernel of degree 3 for interpolating the

misfit surface. The choice of kernels affects the efficiency of the Bayesian

credible interval.

• Two-level proxy improved the quality of the proxy because it obtained the

same uncertainty distribution as the simulated results. Furthermore, the com-

putational cost decreased by 90% in case of using RWM with 104 samples.

• MLproxy decreased the computational cost compared to running the full sim-

ulation and modify the distribution created by the proxy with RWM.

• Chapter 8, for the same computational cost, MLMCMC was better than HMC

because MLMCMC was able to estimate the distribution of oil rate, but HMC

required more samples to achieve the same result.

• The detailed balance condition is proved for MLHMC. For the same accuracy,

Bayesian credible interval for estimating the uncertainty distribution using

MLHMC has all the observed data inside, however, for MLMCMC some of

the observed data lie outside the range. MLHMC with Sobol sequence was

the fastest algorithm compared with HMC, MLHMC with Latin hypercubic

sampling and RWM. MLHMC with Sobol sequence obtained the same distri-

bution as HMC on the finest grid within the sampling error, which means that

MLHMC provided more robust inference than HMC.
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9.2 Future Plan

In this section, I summarise my future research plans as follows

• Apply MLMC for solving polymer flood model, which has 3 components (wa-

ter, oil and polymer) and two-phases (oil and water) [Chapter 5 discussed how

to estimate the mean of the solution of one equation not a system of equations].

• Use MLMC for studying Buckley-Leverett equation augmented with a contin-

uous initial condition as a function of x [Chapter 5 used B-L with constant

initial condition].

• Parallelize the codes for MLMCMC, MLproxy and MLHMC to work faster for

more complicated reservoir based on (Calderhead, 2014).

• Implement a new idea for MLMCMC (Dodwell et al., 2015) and compare

between MLMCMC in the thesis and the new version using Teal South field

as an example.

• Discuss the impact of assuming σ in the misfit definition (6.5) are unknown

parameters corresponding to each time step. This means increasing the di-

mensionality of the problem.

• The misfit definition is based on assuming the errors are Gaussian distributed.

To apply this assumption we have to check if the errors, (qs−qo) are Gaussian

distributed using Kolmogorov-Smirnov test (KS test). In case where the errors

do not follow a Gaussian distribution, we have to find a suitable distribution to

the errors. For example, Log-normal distribution, t-distribution or exponential

distribution. I plane to study different distributions for the misfit.

• Apply MLMCMC on single phase model (Liu and Oliver, 2003) and compare

between the performance of the solution and RWM solution.

• Use different experimental designs e.g., Box-Behnken and Central Composite.

Then compare between them and the Sobol sequence.
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• Use B-splines for constructing the emulator for the quantity of interest or the

gradient of the misfit.

• After generating the initial samples using experimental design to build the

proxy, we need to test the quality of the proxy. Based on the result of the

test we decide whether to run more simulations or use the proxy. In case that

more samples are needed based on the highest error between the simulated

and interpolated result, we can select the region has that points and generate

more samples from the bad region (Sefat et al., 2012). After that this proxy

can be used to improve MLproxy.

• Study the error model of viscous fingering phenomena, in which instability

occurs in the petroleum reservoir when oil is replaced by gas (O’Sullivan,

2004), using MLproxy.

• Discuss the optimal choice for MLHMC parameters by tuning the parameters.

This includes HMC parameters and MLMC parameters as well.

• The parallel tempering method is used for optimisation and estimating the

posterior distribution. It is able to explore a complex multimodal posterior

distribution efficiently and those based on adding a parameter for controlling

the behaviour of the sampler. When the parameter value is high, it makes the

target distribution flatter, as a consequence it will be easier to sample from the

target distribution. Parallel tempering can be combined with other simulation

techniques, such as RWM (Earl and Deem, 2005; Carter and White, 2013) and

HMC (Okur et al., 2007). For more details see (Malcolm, 2014; Machta and

Ellis, 2011; Swendsen and Wang, 1986; Geyer, 1991; Atchad et al., 2011; Earl

and Deem, 2005). One of my future research projects is to combine MLMC

with parallel tempering to quantify the uncertainty.

• Improve MLMCMC code to quantify uncertainty when reservoir has irregular

discretization as in (Ahmadi, 2012).

• There are different techniques for accelerating HMC, e.g., Riemannian mani-
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fold HMC method. Riemannian Manifold HMC method accelerates the HMC

based on the geometry of the parameter space (Girolami, 2011). One of my fu-

ture research projects is comparing MLHMC and Riemannian Manifold HMC

method.

• Reversible Jump Markov Chain Monte Carlo can select the model and estimate

the distribution of the parameters. For more details see (Green, 1995). One of

my research goals is to apply the Revisable Jump Markov Chain Monte Carlo

for model selection in reservoir simulation.
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We explain how to classify the first and the second order differential equations as

hyperbolic, parabolic or elliptic.

Classification of PDE

In this section, we discuss how to classify a first and a second order PDE into elliptic,

parabolic or hyperbolic types based on finding the eigenvalues and eigenvectors for

the PDE (Strauss, 2007; Levandosky, 2002).

First Order PDE

The general formula for the first order PDE is,

aut + bux + c = 0,

where u(x, t), is the unknown function and (a, b, and c) are constants or functions

of x and t. To calculate the eigenvalues for the PDE, we should solve |aλ − b| = 0

and find the eigenvalues λ. In more general, the general formula for the system of

the first order PDEs is,

ut + A.ux + d = 0,

where A, is a (n × n) matrix and d is a vector. To find the eigenvalues for the

PDEs, we solve det(A−λI) = 0. Then, finding the eigenvalues λ, and corresponding

eigenvectors. Based on both of them, we can decide the type of the PDE as follows,

(i) If we have no real eigenvalues, then the system is called elliptic.
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(ii) If the eigenvalues are real and distinct, or if the eigenvalues are real and the

system is not defective, then the system is called hyperbolic.

(iii) If the eigenvalues are real, but the system is defective, then system is called

parabolic.

Second order PDE

The classification of 2nd order linear PDEs of two independent variables can be

classified into elliptic, parabolic or hyperbolic PDEs. The general formula for the

second order PDE is:

a uxx + b uxy + c uyy + d ux + euy + f u+ g = 0,

where a, b,, · · · are functions of x and y. To classify, we calculate the discriminant

b2 − 4ac.

• If b2 − 4ac < 0, then the equation is elliptic.

• If b2 − 4ac = 0, then the equation is parabolic.

• If b2 − 4ac > 0, then the equation is hyperbolic.

Generally, its in case of having n independent variables, the second order PDE can

be written as follows,

n∑
i=1

n∑
j=1

aij
∂2u

∂xi∂xj
+

n∑
i=1

bi
∂u

∂xi
+ cu = d.

Once we have a matrix A = (aij), we solve the eigenvalue problem det(A−λI) = 0,

and then we count two different counts based on the solution values. We count Z1,

the number of zero eigenvalue and P1, the number of positive eigenvalues. Now, we

can assign a category to the PDE.

• If Z1 > 0, then the matrix A is singular i.e. det(A) = 0, and the PDE is

parabolic.
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• If Z1 = 0 and (P1 = 0 ∨ P1 = n), then the PDE is elliptic.

• If Z1 = 0 and (P1 = 1 ∨ P1 = n− 1), then the PDE is hyperbolic.

• If Z1 = 0 and (1 < P1 < n− 1), then the PDE is an ultra-hyperbolic.
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We prove Metropolis- Hastings, Hamiltonian Monte Carlo and Multilevel Markov

chain Monte Carlo satisfied detailed balance.

Proof Metropolis- Hastings Satisfies Detailed Bal-

ance

To show Metropolis-Hastings chain is satisfying time reversibility, we should proof

the detailed balance condition (B.1). Which can deduce that the target distribution

π is the stationary distribution (Robert and Casella, 2010).

P(x→ y)π(x) = P(y → x)π(y) (B.1)

Prove that the detailed balance condition satisfy for Metropolis-Hastings chain?

Proof B.0.0.3 We assume the acceptance probability from state x to state y is

α(y|x) = min{1, π(y)q(x|y)

π(x)q(y|x
} (Robert and Casella, 2010), the proposal distribution

for Metropolis-Hastings is q(y|x), the transition probability from state x to state y
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is P(x→ y) = α(y|x)q(y|x) and the target distribution is π.

LHS : P(x→ y)π(x) = α(y|x) q(y|x)π(x)

= min{1, π(y)q(x|y)

π(x)q(y|x)
} q(y|x)π(x)

= min{π(x)q(y|x), π(y)q(x|y)}

= π(y)q(x|y) min{1, π(x)q(y|x)

π(y)q(x|y)
}

= π(y)P(y → x).

Proof Hamiltonian Monte Carlo Satisfies Detailed

Balance

To show Hamiltonian Monte Carlo chain is satisfying time reversibility, we should

proof the detailed balance condition (B.2). Which can deduce that the target dis-

tribution P (q, p)(q is the position and p is the momentum) is the stationary distri-

bution (Bishop, 2006).

P(x→ y)P (x, u) = P(y → x)P (y, u′) (B.2)

Prove that the detailed balance condition satisfy for Hamiltonian Monte Carlo chain?

Proof B.0.0.4 We assume the acceptance probability from state x with momentum

u to state y with momentum u′ is α(y|x) = min{1, e(−H(y,u′)+H(x,u))},(H(x, u) is the

total energy), the transition probability from state x to state y is P(x→ y) = α(y|x)

and the target distribution is P (x, u) ∝ e−H(x,u). We prove the following

P(x→ y)P (x, u)

P(y → x)P (y, u′)
= 1
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LHS :
P(x→ y)P (x, u)

P(y → x)P (y, u′)
=
α(y|x)P (x, u)

α(x|y)P (y, u′)

=
min{1, eH(x,u)−H(y,u′)}e−H(x,u)

min{1, eH(y,u′)−H(x,u)}e−H(y,u′)

=
min{e−H(x,u), e−H(y,u′)}
min{e−H(y,u′), e−H(x,u)}

= 1

Proof Multilevel Markov chain Monte Carlo Satis-

fies Detailed Balance

To show MLMCMC chain is satisfying time reversibility, we should proof the detailed

balance condition (B.3). Based on the definitions for the acceptance rate and Pl(x→

y) = αl(y|x)πl−1(y), l is the level and αl(y|x) = min{1, π
l(y)πl−1(x)

πl(x)πl−1(y)
} (Dodwell

et al., 2015; Efendiev et al., 2014).

Pl(x→ y)πl(x) = Pl(y → x)πl(y) (B.3)

Prove that the detailed balance condition satisfy for MLMCMC chain?

Proof B.0.0.5 For the initial level l0 it is as Metropolis-Hastings. We focus to

prove in the case l > l0. We prove the following

Pl(x→ y)πl(x)

Pl(y → x)πl(y)
= 1

LHS :
Pl(x→ y)πl(x)

Pl(y → x)πl(y)
=

min{1, π
l(y)πl−1(x)

πl(x)πl−1(y)
}πl−1(y)πl(x)

min{1, π
l(x)πl−1(y)

πl(y)πl−1(x)
}πl−1(x)πl(y)

=
min{πl−1(y)πl(x), πl(y)πl−1(x)}
min{πl(y)πl−1(x), πl−1(y)πl(x)}

= 1
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