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Abstract

This thesis reports a series of theoretical studies regarding the dynamics of few-

body controllable quantum systems. Generally speaking, the main focus is on the

behavior of correlations in open quantum systems and how these could be used both

for applications to quantum technologies and investigations of more fundamental

phenomena. The general physical setting for most of the results presented is trapped-

ion systems. These have been proven to be an almost prefect practical platform for

realizing a quantum computer. Furthermore, thanks to their exceptional degree of

controllability, trapped ions have been lately employed to also simulate basic physics,

ranging from condensed-matter to high-energy physics. Although the findings in

this manuscript are theoretical, real experimental parameters have been taken into

account in order to provide a more realistic modeling. To this aim, a mixed of

analytical and numerical methods have been extensively utilized. Concluding, we

do believe that the theory developed in this thesis could be experimentally tested

to give a more insightful view on open quantum system dynamics, both from a

foundational and applicative point of view.
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Chapter 1

Introduction

This thesis collects the work that I carried out from 2011 to 2014 as a doctoral

student at Heriot-Watt University. My research has been focused on the open dy-

namics of few-body systems, encompassing the study of quantum correlations as

well as applications to quantum technologies and quantum simulators. Three main

topics of the are discussed in three different chapters, where each of them refers to

a particular publication and the contents of all the papers have been extended and

reformatted in a fashion that is more suitable for a thesis. This includes, whenever

necessary, a pedagogical introduction to the crucial concepts as well as a brief liter-

ature overview emphasizing the connection with previous works.

In the Chapter 2 we will introduce a novel quantum information scheme for im-

plementing a three-qubit C-NOT gate, commonly known as Toffoli gate, in trapped

ions. Over the last twenty years ion traps have been gathering increasing atten-

tion as a practical tool for realizing a quantum computer. Although the idea of a

computing device operating on quantum mechanical laws had been around for a few

decades already [1], it was only in 1995, when Ignacio Cirac and Peter Zoller demon-

strated the feasibility of cold trapped ions for computational purposes [2], that this

field of research was given a concrete motivational boost. In this seminal paper

the authors showed how to implement a two-ion quantum gate using a sequence of

properly tuned laser pulses. These pulses couple two specific electronic levels of each

ion (which form the quantum bit or qubit) to its centre of mass kinetic degree of

freedom. Shortly afterwards, two experimental groups succeeded to confirm the the-

oretical predictions by Cirac and Zoller in the laboratory [3,4]. From that point on, a

myriad of theoretical proposals and experimental achievements have been reported.

Many among these achievements proved trapped-ions to be an ideal platform for

quantum computation. Relevant examples are the the possibility of efficient state

initialization [5] and state read-out [6–8], extremely long coherence times [9] and

the existence of decoherence-free subspaces [10], creation of multiple-ion entangled

1



states that are crucial for quantum computing [11–13]. Moreover, several quantum

protocols have been demonstrated in trapped-ion systems, such as the Deutsch-

Josza algorithm [14, 15], the realization of a universal set of quantum gates [16],

quantum teleportation [17, 18], quantum error connection [19], and a three-ion C-

NOT gate [20]. More recently, ion traps have been utilized to simulate relativistic

physics [21], spin chains [22], and open quantum dynamics [23]. The strength of

trapped ions lies in the almost perfect controllability that they offer, further sup-

ported by the flexibility of the laser-assisted manipulation, their robustness against

environmental noise and an unprecedented 99.9% read-out efficiency achievable with

fluorescence resonance techniques [24]. At present, the only major drawback affect-

ing the realization of a trapped-ion-based quantum computer is the difficulty related

to scaling up the number of ions while being still able to manipulate them efficiently.

Most of the work done so far in trapped-ion-based quantum information, relies on

single-ion laser-addressing and circuital decomposition of any protocol into single

and two-ion operations [25]. This approach has been proven successful as long as

the number of basic steps is not too big or, equivalently, the time required to im-

plement a particular gate or protocol does not exceed the typical coherence times.

Starting from this observation we show in Chapter 2 how a multi-qubit approach

might be the path to take instead [26]. The case study is a three-qubit C-NOT gate,

better known as the Toffoli gate [27]. As mentioned above, this was experimentally

demonstrated in Innsbruck by using a standard circuital approach [20]. The total

number of steps required, excluding state preparation and final read-out, amounted

to 15 and the average probability of success obtained, known as gate fidelity, was

about 71%. In the implementation we develop, which is a hybrid approach based on

single-qubit operations, simultaneous multiple-ion laser addressing and the use of

an enlarged computational space, we show that with the same experimental setup a

drastic drop in the number of basic steps required can be achieved along with higher

average fidelities [26].

Chapter 3 is devoted to characterizing critical behavior in trapped ions by using

tools of open quantum system theory. Ion traps are an interesting platform not only

for quantum computing but also for investigating fundamental physics [28]. In this

respect, Coulomb crystals are among the most exciting physical systems that can

be created in such devices [29]. These are self-organized structures where different

geometries can be explored by tuning the trap parameters appropriately [30–32].

Interestingly, any change in the crystal geometry is accompanied by a structural

phase transition [33,34]. Loosely speaking, one can think of these phase transitions

as resulting from an imbalance between the Coulomb repulsion, that tends to push

the ions far apart, and the trapping potential aiming to confine them. Every time
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the confinement reaches a certain critical value the crystal will abruptly enter a new

phase with the atoms localized around some new equilibrium positions [35]. These

equilibrium positions are the result of a restored balance between the two oppo-

site forces. Structural phase transitions in Coulomb crystals have been subject of

intense investigations, with particular attention to the linear to zig-zag phase tran-

sition [36,37]. Here, the ions switch from a non-homogenous one-dimensional linear

configuration to a planar zig-zag one. The main methods utilized to characterize

this phase transition include numerical brute-force simulations [38], classical Lan-

dau theory [39], mapping to quantum critical systems [40, 41] and density matrix

renormalization group [42].

In Chapter 3 we shall study the properties of a Coulomb crystal undergoing the

linear-to-zig-zag phase transition from an open quantum system perspective [43].The

theory of open quantum systems [44,45] has recently gained a lot of attention thanks

to some pioneering works devoted to assessing non-Markovianity in a more rigorous

and general fashion [46–49,51,129]. The underlying idea here is to cleverly design a

protocol that simulates open system dynamics and to investigate how such a dynam-

ics is affected by the critical behavior of the crystal. Alternatively, this engineered

open system dynamics can be used to monitor and witness critical changes in the

crystal structure. This latter interpretation goes along the idea of probing the prop-

erties of a many-body system by coupling it with a fully controllable single quantum

system. This quantum-probe approach to investigating condensed matter physics

has been explored lately in several different physical scenarios [52–56].

In Chapter 4 we shall investigate the connection between quantum and classical cor-

relations and the relativistic concept of microcausality in an open system scenario.

The motivation for this study originates from a well-known and long-standing open

problem in quantum physics, the two-atom Fermi problem [57]. This is a gedanken

experiment where two atoms, say A and B, that are far apart from each other are

prepared in an excited and ground state, respectively. They both interact indepen-

dently with a surrounding electromagnetic field in which no photons are initially

present. Because of the interaction with the field the atom A will decay and emit a

photon that can be absorbed by B. Is the dynamics of the atom B completely inde-

pendent on the dynamics of A as long as the two atoms are causally disconnected?

In quantum mechanical language: if we label r the atom-atom distance, can the

excitation probability of B increase before t = r/c where c is the speed light? Fermi

tackled this problem first and found no violation of the causality principle. The ex-

citation probability of B cannot increase before t = r/c [57]. However, his original

solution was flawed as based on some wrong approximations [58]. Since then, several

authors have confronted this question regarding the very foundations of quantum
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theory [59–62]. As a general remark, causality has been proven in several papers

using different methods, models and approximations. However, no experimental

verification has ever been carried out and the plethora of available findings is still

purely theoretical. In this respect, particularly relevant is the analytical proof re-

ported in [63] where causality is demonstrated exactly. Here the authors show that

the excitation probability of B can be calculated starting from a projector operator

that is the sum of three contributions arising from the field, the first atom A and

the atom B itself. Although the field contribution starts increasing immediately at

t = 0, the A contribution cannot increase until t = r/c. Hence, in order for the

first atom to have any effect on the dynamics of the second, the two must become

causally connected. In other words, the atom B has to wait for the A-emitted pho-

ton to arrive in order to see the atom A.

Motivated by such results we wonder about the behavior of atom-atom correlations.

We do know that the excitation probability of B is completely independent of the

atom A for t > r/c. Yet, the instantaneous field contribution can effectively corre-

late the two atoms starting from t = 0. In Chapter 4 we report a systematic analysis

of the dynamics of quantum and classical atom-atom correlations in the two-atom

Fermi problem [64]. More in detail, we study the time-evolution of entanglement [65],

geometric quantum discord [66] and spin-spin correlation function [67]. Entangle-

ment is probably one of the most striking and puzzling consequences of quantum

mechanics. It arises in composite systems in the form of correlations that are clas-

sically unpredictable and impossible to generate. Quantum discord, a more recent

concept, is as well a property of many-particle states. In the two-particle case it

can be pictured as the minimum disturbance we induce on one of the two particles

whenever we perform a measurement on the other [68, 69]. Generally speaking, we

can anticipate that all of these correlations will be found to start increasing before

the two atoms become causally connected [64]. However, different mechanisms are

responsible for this effect depending on the correlation at hand. We underline that

these findings do not violate the principle of causality: correlations do not repre-

sent any physical information unless they are concretely shared [63]. The action of

sharing requires communication through transmission and this, as discussed above,

is constrained by microcausality .

Chapter 5 will be devoted to drawing some conclusions.
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Chapter 2

Trapped Ions

The first part of this Chapter is devoted to reviewing the basic principles of ion-

trapping theory and introducing the essential ingredients for trapped-ion-based

quantum computation [25]. This is meant to provide the reader with key concepts

that are crucial to understand the content of paper [26], which is the topic of the

second part of this Chapter.

2.1 Basics of ion trapping

2.1.1 Confining an ion: the linear Paul trap

Ions are charged particles and, as such, they can be confined in space by a suit-

able arrangement of electromagnetic fields. A three dimensional quadrupole field

potential φ can be used for this purpose [28]

φ(x, y, z; t) =
U

2

(
αxx

2 + αyy
2 + αzz

2
)

+
U ′ cos Ωt

2

(
α′xx

2 + α′yy
2 + α′zz

2
)
, (2.1)

where U,U ′ are the strengths of the potentials, the α, α′s parameters are the oscilla-

tory frequency and Ω is the modulation frequency. Thus, that such a potential is the

sum of a static and a time-dependent part. Because of the Laplace theorem the only

confinement we can achieve is dynamical and never globally static. Nevertheless, a

fit choice of the drive frequencies as well as voltages can lead to an approximately

harmonic confinement in three dimensions. A common choice of the αs and the α′s

is [70]

αx + αy = −αz < 0,

α′x = −α′y, α′z = 0,
(2.2)

Given the potential (2.1) with the constraints (2.1) we are now able to write the

equations of motion for an ion of mass m and charge e. Considering, for instance,
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the x axes we obtain, straight from Newton’s second law, the following equation

d2x

dt2
= − e

m
(Uαx + U ′α′x cos Ωt)x. (2.3)

This can be recast in a more compact form where the relevant parameters are further

highlighted. If we define ax = 4eUαx/mΩ2, qx = 2eU ′α′x/mΩ2 and Ωt = 2ζ, the

rescaled equation reads as

d2x

dζ2
+ (ax − 2qx cos 2ζ)x = 0. (2.4)

This is a canonical Mathieu equation whose solutions are known [71, 72]. It is

important to remark that the values of the ax, qx parameters are crucial in order

to guarantee the stability of a particular solution and, in turn, the possibility of

confining the ion’s motion in the x direction. In other words, in the (ax, qx) plane

both stability and instability regions exist [28]. By repeating the same steps for

the y and z directions and bearing in mind the constraints dictated by (2.1), one

obtains equations that are formally equivalent to (2.4) where qy = −qx and qz =

0. Obviously, each of them will present stable or unstable solutions depending

on the values of the relevant Mathieu’s parameters ai, qi. Hence, the ability of

finding regions of global stability will result in the ability of confining the ion in

three dimensions. The existence of bound trajectories is then what prevents the ion

from escaping the electrode structure. This is what we mean by a trapped ion. It

is instructive to spend a few words about the stable solutions of Eq.(2.4), whose

analytical form follows from Floquet’s theorem [71,72]. These will read as

x(ζ) = Aeiβxζ
∑
n∈Z

C2ne
2inζ +Be−iβxζ

∑
n∈Z

C2ne
−2inζ , (2.5)

where both the βx and the C2n depend uniquely upon the values of ax and qx,

whereas A and B are fixed by initial conditions. Recursion relations for the Fourier

coefficients and βx exist that link these quantities to the fundamental parameters

ax, qx. As shown in [28], the boundaries of the stability zones for each of the three

pairs (ai, qi) are set by the conditions βi = 0, 1. At the lowest order of expansion for

Eq.(2.5), which corresponds to looking for stable solutions fulfilling the condition

(|ax|, q2
x) � 1 (small voltages), we can greatly simplify the analytical form of the

ion’s trajectory and identify the main frequencies associated to its motion

x(t) ∝ 2 cos

(
βx

Ωt

2

)(
1− qx

2
cos Ωt

)
, (2.6)
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where βx ≈
√
ax + q2

x/2. The motion described by Eq.(2.6) is a superposition

of two motions at very different frequencies: a slow secular motion at frequency

ω = βxΩ/2 � Ω, and a much faster micromotion at frequency Ω. If the amplitude

of the micromotion, which is proportional to qx, can be neglected, then we can

approximate the ion’s motion as fully harmonic.

Several practical realizations of Eq.(2.1) are nowadays routinely achievable [24, 28].

Obviously, different arrangements of electrode structures lead to different confining

potentials. In the following discussions, we will be concerned with the so-called

linear Paul trap [73], which is schematically depicted in Fig. 2.1. The blue rods are

subjected to an alternate potential oscillating at frequency Ω, whereas the others are

held at the ground level. This guarantees localization in the y−z plane (transverse),

thanks to the quadrupole structure of the generated electric field. Along the x−axis

(longitudinal) a positive potential is applied to the white segments, resulting in a

potential well that confines the ions longitudinally also. Whenever the transverse

potential is larger than the axial one this configuration allows for several ions to line

up and be individually manipulated. Typical experimental values for the relevant

trapping parameters are U
′

= 100 − 500 V, U = ±50 V and Ω/2π = 100 kHz −
100 MHz [70]. Moreover, in typical quantum information experiments, the harmonic

frequency4βxΩ/2 can be tuned to span from few kHz to few MHz.

The classical theory summarized above is the start point for a quantum treatment

of the motional degrees of freedom of the trapped ion. The harmonic approximation

is the most commonly accepted in almost all of the theoretical literature regarding

the field of quantum information processing with cold trapped ions. In what follows

we will stick to this approximation and use it throughly.

2.1.2 Quantization of the ion’s motion

In the previous section we have reviewed the classical model of ion trapping and

derived the equations of motion. We presented a solution to these equations and

showed that, at the lowest order of expansion compatible with stability, the ion’s

trajectories are essentially harmonic. Obviously, a full quantum treatment requires

solving a Schroedinger’s equation where the ion’s position and momentum are pro-

moted to operators. This further step requires some clarification. By turning the

potential (2.1) into an operator we obtain the following Hamiltonian governing the

evolution of the ion’s wave function

Ĥ(t) =
P̂ 2

2m
+
m

8

[
Wx(t)X̂

2 +Wy(t)Ŷ
2 +Wz(t)Ẑ

2
]
, (2.7)

where Wj(t) = Ω2 (aj + 2qj cos Ωt). The above Hamiltonian describes a three di-

mensional quantum harmonic oscillator with time-dependent oscillation frequencies
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Figure 2.1: Scheme of a Paul trap.

Wj(t). At this stage, one might wonder to what extent the classical approximation

presented at the end of the previous section applies in the quantum case. The prob-

lem can be reformulated as follows: given the classical results, can we develop an

exact quantum model where the harmonic approximation still holds? The answer

is positive. It is of primary importance to underline that the the regions of clas-

sical and quantum stability coincide. This result was first obtained in [74], using

an effective potential approach [28], and subsequently confirmed by Glauber in [75]

exactly. The details of this calculations are exhaustively reported in Ref. [70], on

which most of the discussion presented here is also based. We summarize the main

points focusing on a one dimensional system only, since the Hamiltonian is the sum

of three commuting harmonic Hamiltonians. Starting from Eq.(2.7) and writing the

Heisenberg equations of motions for X̂ and P̂ we obtain

d2X̂

dt2
+Wx(t)X̂ = 0, (2.8)

which is formally identical to Eq.(2.4). We choose A = 1, B = 0 in Eq.(2.5) and

solve the classical equation (2.4)

x(t) = e
iβxΩt

2

∑
n∈Z

C2ne
inΩt. (2.9)

At this point the following operator Ĉ(t) is introduced

Ĉ(t) ≡
√

m

2~ν

[
x(t)

˙̂
X(t)− ẋ(t)X̂(t)

]
, (2.10)
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where ν = Ω
∑

n∈ZC2n(βx/2 + n), that satisfies the following equalities

Ĉ(t) = Ĉ(0) =
1√

2m~ν

[
mνX̂(0) + iP̂ (0)

]
≡ â, (2.11)

where we have introduced the static bosonic ladder operator â. Needless to say, its

adjoint operator â† can be defined so to satisfy the standard bosonic commutation

relation [
â, â†

]
= Î. (2.12)

It must be noted that the frequency ν is associated to the static bosonic mode de-

scribed by â. Hence, the time dependence of the ion’s position and momentum oper-

ators X̂, P̂ in Heisenberg picture can be entirely encoded in the classical trajectory

functions x(t), x∗(t). The operatorial part is decomposed in terms of annihilation

and creation operators

X̂(t) =

√
~

2mν

[
x∗(t)â+ x(t)â†

]
,

P̂ (t) =

√
~m
2ν

[
ẋ∗(t)â+ ẋ(t)â†

]
.

(2.13)

It is instructive to compare this time-dependent quantum harmonic oscillator with

its static counterpart. For a one dimensional quantum harmonic oscillator of mass

m at frequency ω0 the Hamiltonian reads as follows

Ĥ =
P̂ 2

2m
+
mω2

0

2
X̂2. (2.14)

In terms of annihilation and creation operators â0, â
†
0 the time evolution of X̂ and

P̂ in Heisenberg picture is

X̂(t) =

√
~

2mω0

[
e−iω0tâ+ eiω0tâ†

]
,

P̂ (t) = i

√
~m
2ω0

[
eiω0tâ† − e−iω0tâ

]
.

(2.15)

If we compare Eq.(2.13) with Eq.(2.15) it is clear that the former is a generalization

of the latter. The the ion’s classical trajectories x(t) in the case of the quadrupole

potential, modeled as a harmonic oscillator with time-varying frequency, replaces the

oscillating exponential eiω0t, which is the classical trajectory for a time-independent

harmonic oscillator. At the end of the previous section we showed the influence of

the micromotion on the ion’s trajectory in the limit of small voltages: this resulted in

rapid oscillations at frequency Ω superposed to a slower secular motion at frequency

βxΩ/2. The same argument can be applied in the quantum case. However, unlike
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classical physics, here we are interested in the time-evolution of the ion’s wavefunc-

tion. As shown in Ref. [70] the time-evolution of the ground state wavefunction |0〉
as dictated by Hamiltonian (2.7) and again in the limit (|ax|, q2

x)� 1, reads as

ψ0(x, t) =
(mν
π~

)1/4

√
1 + qx/2

1 + (qx/2) cos Ωt

× exp

{[
i

mΩ sin Ωt

2~ (2/qx + cos Ωt)
− mν

2~

]
x2

}
,

(2.16)

which, for t = 0 or Ω = 0 reduces to the ground state of the static harmonic mode

â. As time goes by, the micromotion will cause the wavefinction ψ0(x, t) to breathe

at frequency Ω. This breathing is the quantum analogue of the classical micro-

oscillation exhibited by x(t). Starting from this ground state one can construct the

whole set of excited states by repeated actions of the Ĉ operator, in a fashion similar

to the static case. It is important to underline that these states are quasi-stationary:

they are the closest approximation of the eigenstates of the static harmonic Hamil-

tonian. In what follows we will ignore the breathing as it takes place on a much

shorter time-scale than the one we are interested in. In all oncoming discussions,

the ion will be considered as a static quantum harmonic oscillator at frequency ν

whose possible quantum states |φM〉 read as

|φM〉 =
+∞∑
n=0

φnM |n〉, (2.17)

where {|n〉}n∈N are standard Fock states, such that, â|n〉 =
√
n|n − 1〉, â†|n〉 =√

n+ 1|n+ 1〉.

2.1.3 Multiple trapped ions

So far, we have sketched some basic trapping theory for a single ion. Needless to

say, in order to both implement information protocols [25] and simulate complex

systems [76], several ions are necessary. Nowadays, thanks to significant technical

advancements, strings of ions can be easily and routinely trapped and manipulated.

Most of the conclusions presented above are still applicable in the many-ion case.

However, there is one fundamental difference with respect to the single-ion case,

that is, the ions interact via Coulomb repulsion.

Let us assume that the static approximation is valid for the harmonic potential (2.7)

generated inside a Paul trap and that the ions are so strongly bounded along the y, z

direction that we can neglect this transverse motion. The motion along the trap axis

x is instead harmonic. This condition can be easily achieved by setting νy,z � νx

10



where νj, j = x, y, z is the effective frequency along the j direction. Thus, with these

assumptions, the Hamiltonian for a string of N ions of mass m and charge q is the

sum of kinetic energy, harmonic potential and Coulomb repulsion

Ĥ =
N∑
j=1

P̂ 2
j

2m
+
mν2

2
X̂2
j +

N∑
i,j=1;i 6=j

q2

8πε0

1

|X̂j − X̂i|
, (2.18)

where ε0 is the vacuum permittivity.

If we assume the whole chain to be at very low temperature we can expect to observe

a stable configuration where each ion oscillates around its equilibrium position.

Particularly relevant for tasks of quantum information and computation is the linear

configuration. Here, all the ions are distributed along the trap axis in a linear

one-dimensional array. Their equilibrium positions can be computed analytically

(for N = 2, 3) or numerically (for N > 3) [35]. We must underline that, as a

general feature, such positions are not equally spaced, except if we take a central

segment when N � 1. This point will be further discussed in the next Chapter.

As long as the amplitude of the oscillations is small compared to the equilibrium

ion-ion separation we can expand each ion’s position operator around its equilibrium

position X
(0)
j

X̂j ≈ X
(0)
j + δX̂j, (2.19)

where δX̂j is a small displacement operator. By carrying out the full expansion of

Eq.(2.18) it is possible to derive an effective Hamiltonian describing a network of

interacting harmonic oscillators. In Chapter 3, more details regarding the analysis of

the chain stability will be presented. A chain of interacting harmonic oscillators can

be mapped onto a system of non-interacting bosons by using the so-called normal-

mode decomposition [77]. Loosely speaking, we can say that these normal modes

represent all the possible ways the chain can oscillate and they are usually referred to

as phonons. Analogously to the single-ion case, any operator δX̂j can be expanded

in terms of the annihilation and creation operators âk, â
†
k of such normal modes

δX̂j = i

√
~

2νmN

∑
k

s
(j)
k

(
âk − â†k

)
, (2.20)

where the s
(j)
k coefficients realize the normal mode transformation. It is important

to remark that normal modes are delocalized in physical space but highly localized

in momentum space. Exciting one normal mode, corresponds to a collective oscilla-

tion of the whole chain with a well defined wave-vector. The range of the allowed

momenta k depends on the geometric pattern arising from the equilibrium positions.

Concluding, we have reviewed some basics of ion-trapping theory. Starting from a
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classical treatment we have derived the equation of motions for a single trapped

ion and discussed the conditions under which its motion can be considered approx-

imately harmonic. We later on quantized such theory and found that the quantum

equations of motion are formally identical to the classical. The quantum version of

the micromotion is a breathing effect of the ion’s quantum wave-function at the same

frequency of its classical countepart. We also briefly sketched how to generalize the

treatment in the case of multiple ions. The next section will focus on introducing

the key ingredients for implementing quantum information in trapped ions.

2.2 Trapped-ion systems for quantum informa-

tion processing and quantum computation

2.2.1 Quantum information science in a nutshell

The first idea of a quantum computer dates back to 1980’s [1] and still nowadays

quantum information science is among the most fervent fields of research in the

quantum community. The key idea is rather simple: is it possible to enhance the

performances of a computing device by forcing it to operate according to the laws

of quantum mechanics? After all, it is sensible to expect that if we keep moving

towards smaller and smaller chips and electric components we will sooner or later

cross the quantum border. Hence, the necessity of understanding both the possible

advantages and disadvantages.

The theory of quantum information has been developing fast in the last 20 years

and several approaches to the subject exist. Also, numerous experimental candidates

have been proven to be better or worse depending on the task at hand. Examples

of such candidates are nuclear magnetic resonance systems [78], quantum optical

systems [79], superconducting circuit [80] and, obviously, trapped ion systems [25].

Quantum computers are believed to beat their classical counterparts when it comes

to solving problems that are classically hard or impossible to tackle. Among these,

the most prominent example is surely prime number factorization. Furthermore,

the time required by some quantum algorithms is expected to be polynomial in the

number of resources needed, in contrast to the exponential time typical of their

classical counterparts [81]. This effect goes under the name of quantum speed-up.

Quantum information has direct applications also to cryptography, communication

and simulations of complex systems. This is a massive field of research, nearly

impossible to summarize concisely. For an exhaustive introduction to quantum

information theory, see [81]. In what follows we shall give a very basic introduction

of quantum information theory.

In classical information theory the basic unit of information is a binary system whose
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states are labelled 0 and 1. This is what we call a bit. Needless to say, a bit can be

in either 0 or 1. In quantum information theory we replace such a classical object

with its quantum counterpart, the qubit. The Hilbert space associated to a qubit

is two-dimensional and we label the basis spanning it |0〉, |1〉. We call this basis the

computational basis. Unlike in the classical case a qubit can be in an infinite number

of basis-state linear combination. Generally speaking, a qubit in a pure state can

be written as

|ψ〉 = cos
θ

2
|1〉+ eiφ sin

θ

2
|0〉, (2.21)

where θ ∈ [0, π] and φ ∈ [0, 2π] are the polar and azimuthal angle respectively

in the Bloch sphere representation [81]. For mixed states we have the following

representation instead

ρ̂ =
1

2

(
Î + ~a · ~σ

)
, (2.22)

where Î is the identity operator, ~a = (sin θ cosφ, sin θ sinφ, cos θ) is the so-called

Bloch vector and ~σ = (σ̂x, σ̂y, σ̂z) is the vector of the spin 1/2 Pauli operators. We

remark that aj = Tr[ρ̂σ̂j]. We call a collection of N qubits a quantum register.

In standard quantum information theory qubits are manipulated with single-qubit

and multi-qubit unitary operations. Local operations act on the single-qubit Hilbert

space and, as such, they can be represented by a 2× 2 unitary matrix. An example

of such a gate is the Hadamard gate

H =
1√
2

(
1 1

1 −1

)
, (2.23)

On the contrary, multi-qubit operations act on the tensor product space of single-

qubit Hilbert space. Among these non-local multi-qubit gates can create non-

classical correlations between different qubits, such as entanglement. These entan-

gling gates are particularly relevant for better performances of quantum computers

over classical. Any quantum logic protocol can be decomposed in a series of con-

catenated single and two-qubit operations in what is called the circuital approach

to quantum computing. Particularly relevant among the multi-qubit gate is the

C-NOT gate, which, in the 2-qubit case reads as

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , (2.24)

The 3-qubit version, namely the Toffoli gate, is very important in several quantum

protocols, such as phase-estimation and error correction. The celebrated quantum
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factorization algorithm itself relies on this gate.

As we just mentioned, any gate or protocol can be implemented as a series of sub-

sequent universal and much simpler gates. We can think of these gates as the

fundamental bricks for any computation we want to carry out. Obviously, whenever

a quantum gate or protocol is implemented in some experimental setup, technical

and fundamental limitations, which depend on the particular physical system used

for the implementation, will affect the quality of the outcome. Typically such a

standard implementation goes as illustrated in Fig.2.2. A certain quantum system

is initialized to a well-defined input state ρ̂I that undergoes a set of quantum oper-

ations Ĝ leading to an output state ρ̂F . We call Ĝ a quantum map or, equivalently,

a quantum channel. In a real experimental realization, assuming that no error is

present in the initialization procedure to ρ̂I, imperfections originating from the setup

at hand will result in an approximate Ĝ ′ as well as an approximate ρ̂
′
F . In order to

quantify how good a particular experimental implementation is, a state-dependent

characterization is required to estimate how close Ĝ ′ is to the ideal Ĝ. A powerful

tool for this task is quantum process tomography [81], which we will briefly illus-

trate. For a system of N qubit, any completely positive map Ĝ is specified by a set

of 4N orthogonal operators {K̂m}

Ĝρ̂I=
∑
m,n

χmnK̂mρ̂IK̂†n. (2.25)

This is the so-called Kraus decomposition of the map Ĝ and χ is the process matrix.

Let us assume that we know both the real process matrix χ and the approximate

process matrix χ
′

associated to Ĝ ′ . In order to quantify how well Ĝ ′ approximates

Ĝ we define the average gate fidelity

F(Ĝ ′)=Tr(χ χ
′
). (2.26)

This quantity is connected to the average state fidelity [82,83]

F s(Ĝ
′
)=

2NF(Ĝ ′)+1

2N+1
. (2.27)

which is obtained by first computing the fidelity between the ideal and the actual

output state and the by averaging over all the possible initial pure states. Intuitively,

this quantity measures the average probability of success in rearching a target state.
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Figure 2.2: Typical scheme for the implementation of a quantum protocol.

2.3 Ion-trapped based quantum computers

In trapped-ion systems two choices for realizing a qubit exist. In the first scenario,

the qubit is encoded in two sublevels of the hyperfine structure that are resolved

using a static magnetic field and manipulated using two-photon Raman scatter-

ing [3] or direct microwave excitation [84]. The other approach relies on using the

ion’s ground state and an optically excited metastable state as qubit states. This

requires the use of resonant laser pulse to perform all of the operations. For an ex-

tensive discussion, see Ref. [25]. Regardless of the practical implementation, these

approaches can be described in a unique theoretical framework where one basic

Hamiltonian can model them both [24].

As a general feature, the first qubit encoding has the advantage of exhibiting longer

coherence times, up to few minutes. Nevertheless, also for the case of optical qubits

the coherence times, usually amounting to seconds, are still longer than standard

protocol-execution timescales, which typically correspond to microseconds [85]. A

quantum register is composed by a linear string of ions and, at the present state of

art, efficient manipulation up to 14 ions has been experimentally demonstrated [86].

Obviously, for any quantum protocol to be implemented the state of the quantum

register has to be properly initialized. In trapped ions this is accomplished via opti-

cal pumping where preparation fidelities up to 0.99% are routinely achievable [87].

The preparation fidelity is defined as the overlap between the ideal target input

state ρ̂I and the real initial state prepared in the lab ρ̂
′
I and reads as F = Tr(ρ̂Iρ̂

′
I),
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similarly to the case of the average gate fidelity in Eq.(2.26).

The laser-assisted interactions utilized to manipulate the qubits allow for the im-

plementation of the full spectrum of universal quantum gates, at least in principle.

While single-qubit operations are realized by driving Rabi oscillations between the

two internal states, two-qubit operations require an ancillary degree of freedom.

This is encoded in the center of mass (COM) mode of the whole string. By cou-

pling the internal levels of the single ion to the COM mode using properly tuned

laser fields, an effective interaction between different qubits can be realized. Since,

as mentioned above, coherence times for the ion’s electronic structure are usually

very long, the only obstacles to the implementation of any quantum protocol lie in

heating and dephasing of the COM motional state. This effects will be discussed

later in this chapter.

As mentioned at the beginning of this chapter, many theoretical and experimental

hits in trapped-ion-based quantum computing have been reported in literature. The

Cirac-Zoller gate (CZG) was the very first proposal for quantum information pro-

cessing in a cold trapped-ion system [2]. In this seminal paper the laser-assisted and

COM-mediated approach to the realization of a C-NOT gate for two qubits was for

the first time investigated. A primary requirement for the protocol to work was the

possibility of single-ion laser-addressing. The target gate was then decomposed in

a chain of subsequent single-ion laser pulses. This CZG was experimentally imple-

mented at NIST [3] and in Innsbruck [4]. In particular, in the Innsbruck experiment

the complete gate for two 40Ca+ qubits was efficiently performed leading to a 73%

fidelity in the first run, later on raised to 91% after some technical improvements.

Another milestone in trapped-ion quantum computing is the Molmer-Sorensen gate

(MSG) [88]. This is a two-qubit gate that relies on the possibility of creating vir-

tual excitations of vibrational states. This feature leads to the important advantage

that, unlike CZG, no cooling of the COM state is necessary and it also results in a

major robustness of the whole gate to environment-induced heating. Furthermore,

this MSG can be shown to be universal. This gate was experimentally implemented

to achieve entanglement [11] and in quantum search algorithms [89].

Finally, we would like to mention the geometric phase gate (GPG) [90] which shares

some technical similarities with MSG. The basic idea here is to give the ion’s state

an extra phase factor conditional to its internal state. This is carried out via a

non-trivial force whose action depends on the non-linearity of the ion’s electronic

spectrum. We remark that no single-ion laser-addressing is required for this gate.

In the remarkable experiment reported in Ref. [91] a fidelity of 97% in the imple-

mentation of the GPG was observed.

The next few sections are devoted to translating the basic concepts of quantum

information to the trapped-ion language.
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2.3.1 A trapped ion as a qubit

In the preceding sections we focused our attention on the motional degree of free-

dom of a single trapped ion. This turned out to be mappable onto a quantum

harmonic oscillator that can be described in terms of standard bosonic annihilation

and creation operators. In this section we are instead interested in the electronic

structure of the ion which will be the other relevant degree of freedom for quantum

information processing. The ion’s spectrum consists of an infinite ladder of energy

eigenstates, similar to the case of the hydrogen atom. However, for all the following

discussions, we assume that only two of them will be relevant, which we name |e〉
and |g〉. This is the well-known two-level approximation, which has been utilized

in many different physical contexts. In trapped ions, as discussed in the previous

section, such two relevant states can be either selected in the Zeeman ion’s sublevel

structure or encoded using the ground state and an optically excited state [25]. In

the following sections more details about the actual manipulation of electronic states

will be presented.

Any two-level quantum system can be mapped onto a spin 1/2 system. Hence, the

Pauli operatorial algebra can be used to model the dynamics of the ion’s internal

degree of freedom. The relevant operators read as follow

σ̂z = |e〉〈e| − |g〉〈g|,
σ̂+ = |e〉〈g|,
σ̂− = |g〉〈e|,

(2.28)

where σ̂z measures the state-population difference and σ̂+(−) creates(annihilates) an

excitation in the two-level system. These operators obey the following commutation

relations [
σ̂z, σ̂±

]
= ±2σ̂+,[

σ̂+, σ̂−
]

= σ̂z.
(2.29)

The free Hamiltonian Ĥ of the two-level system is then

Ĥ =
ε0
2
σ̂z, (2.30)

where ε0 = Ee−Eg is the transition energy between the two states, when we set the

zero reference point half-way. We can now write the total Hamiltonian operator Ĥ0

governing the free evolution of the trapped ion

Ĥ0 =
ε0
2
σ̂z +

P̂ 2

2m
+
mν2

2
X̂2 =

ε0
2
σ̂z + ~νâ†â, (2.31)
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where we have rewritten the harmonic hamiltonian (2.14) in terms of the â-mode

number operator â†â ≡ n̂. Since Ĥ0 is the direct sum of two local Hamiltonians, its

eigenstates S are given by the tensor product of the local eigenstates

S = {|g, n〉, |e, n〉}n∈N, (2.32)

and the corresponding eigenvalues E read as

E =
{
− ε0

2
+ ~νn,

ε0
2

+ ~νn
}
n∈N

. (2.33)

A schematic picture of the energy levels is displayed in Fig.2.3. A general pure state

of the ion reads as

|ψ〉 =
+∞∑
n=0

cg,n|g, n〉+ ce,n|e, n〉. (2.34)

Summarizing, a trapped ion can be viewed as a single quantum object where we

can combine two quantum subsystems of very different nature. On the one hand,

we have the bosonic field associated to the quantized harmonic motion, with an

infinite dimensional Hilbert space. On the other hand we have a fictitious two-level

system whose Hilbert space is two-dimensional and that, thanks to the spin 1/2

mapping, can be represented as a fermionic system described by the Pauli operatorial

algebra. The generalization to N ions follows straightforwardly. In the next section

we will show how it is possible to couple these two ionic degrees of freedom by

utilizing properly tuned lasers. We underline that this represents the start point for

developing the theory of quantum information processing in trapped ions.

2.3.2 Coupling different degrees of freedom: the basic Hamil-

tonian

In this section we present a detailed analysis of the interaction Hamiltonian that

allows to couple the internal levels of the ion to its vibrational degree of freedom.

We anticipate that, in order to achieve such a coupling, a laser-assisted interaction

is required. Generally speaking, the interaction between an atom classically located

at a point ~x in space and a classical electromagnetic field ~E(~x, t), in the dipole

approximation, reads as

V̂ = − ~̂d · ~E(~x, t) = −
~̂d · ~E

2

[
ei(

~kF ~x−ωF t) + e−i(
~kF ~x−ωF t)

]
, (2.35)
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Figure 2.3: Energy levels of a single trapped ion, including internal and motional
degrees of freedom.

where ~̂d is the atomic dipole operator which, in the two level approximation reads

as
~̂d = ~deg

(
σ̂+ + σ̂−

)
, (2.36)

where ~deg = 〈e| ~̂d|g〉 = 〈g| ~̂d|e〉 is taken real for the sake of simplicity. The Hamilto-

nian (2.35) can be recast in the following form

V̂ =
~ΩR

2

(
σ̂+ + σ̂−

) [
ei(

~kF ~x−ωF t) + e−i(
~kF ~x−ωF t)

]
. (2.37)

It is important to underline that the above Hamiltonian is semiclassical: the internal

structure of the atom is quantized whereas its position as well as the propagating

field are treated as classical entities. Physically, this corresponds to assuming that

the atom is effectively localized on a spatial scale much smaller then λF = 2π/|~kf |.
In other words, the propagating field sees the atom as a point-like-particle. The

situation is, however, completely different for a trapped ion. Although the form of

the interaction (2.37) remains the same, the ion’s position needs to be treated as

a quantum operator. Let us assume that the trapped ion is confined so strongly

along the y and z directions that these two variables can be essentially treated as

classical, whereas along the x direction the confinement leads to harmonic motion.

This configuration can be easily achieved by a proper adjustment of the αj and α′j

parameters in Eq.(2.1). Thus, we can use a one-dimensional model for the interaction

(2.37) where the electromagnetic field, typically a laser, propagates along the x
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direction. By using, in the usual limit of low voltages, the normal mode expansion

(2.13) for the X̂ operator, the V̂I(t) operator in interaction picture reads as follows

V̂I(t) =
~ΩR

2

(
σ̂+ei

ε0t
~ + h.c.

){
exp

[
iη
(
âe−iνt + â†eiνt

)
− iωF t

]
+ h.c.

}
, (2.38)

where the Lamb-Dicke parameter η ≡ kL
√

~/2mν quantifies the ratio between the

spatial dimension of the laser mode, as quantified by kL, and the spatial delocaliza-

tion of the motional ground state of the ion. Intuitively, this parameter measures

the extent to which the electromagnetic field sees the ion as a delocalized quantum

object rather than a point-like-particle. It is worth noticing that V̂I(t) can be recast

in the following more compact form

V̂I(t) =
~ΩR

2

(
σ̂+eiω0t + h.c.

) [
D̂(iηeiνt)e−iωF t + h.c.

]
, (2.39)

where ω0 = ε0/~ and D̂(iηeiνt) is a displacement operator with time-dependent

displacement parameter. For the sake of completeness, we quickly recall the general

definition of displacement operator D̂(α), α ∈ C for a bosonic mode â

D̂(α) = exp
(
αâ† − α∗â

)
. (2.40)

Interaction (2.39) displaces the state of the harmonic oscillator conditionally to the

internal state of the ion and as such, it generates non-trivial correlations between

the vibrational and the electronic degrees of freedom of the ion. The complexity of

(2.39) can be easily understood in terms of the action of the displacement operator

on the motional ground state |n = 0〉

D̂(α)|n = 0〉 = |α〉 = e−|α|
2/2

+∞∑
n=0

αn√
n!
|n〉, (2.41)

where |α〉 is a so-called coherent state, first introduced by Glauber in [92]. Coherent

states are the closest approximation to a classical state of a harmonic oscillator.

We will return on them in Chapter 3. The important point here is that the action

of a displacement operator generates an infinite number of excitations, even when

it acts on the ground state of the harmonic oscillator. Therefore, unless some ap-

proximations are performed, calculating the dynamics governed by (2.39) may be

an extremely hard task. The first approximation we perform is the rotating-wave

approximation: if we expand the product in (2.38) we obtain four operators that

oscillate at frequencies

∆ = ω0 − ωL,
Σ = ω0 + ωL.

(2.42)
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The frequency Σ is obviously much larger than ∆, especially if the the ion and

the laser are close to resonance. Since these fast oscillating terms average to zero

on the time-scale set by ∆ they will be further neglected. The next important

approximation is the so-called Lamb-Dicke limit, that is

η � 1. (2.43)

Recalling the physical meaning of the Lamb-Dicke parameter, the above equation

tells us that the zero-point spread of the motional wavefunction is much smaller than

the laser field wavelength. This limit is achievable, for instance, by increasing the

confining frequency ν. Hence, the exponential operator in (2.38) can be expanded

in powers of η and up to the first order the interaction operator is the sum of three

terms

V̂I(t) ≈
~ΩR

2

(
σ̂+ei∆t + σ̂−e−i∆t

)
+

iη~ΩR

2

[
σ̂+âei(∆−ν)t − σ̂−â†e−i(∆−ν)t

]
+

iη~ΩR

2

[
σ̂+â†ei(∆+ν)t − σ̂−âe−i(∆+ν)t

]
.

(2.44)

By adjusting the laser frequency it is possible to make any of these three contri-

butions resonant, discarding the other two as they are time-independent. If we set

∆ = 0 the resonant term is

V̂C =
~ΩR

2

(
σ̂+ + σ̂−

)
=

~ΩR

2
σ̂x, (2.45)

which flips the population. By taking ∆ = ν the resonant term is instead

V̂R =
iη~ΩR

2

(
σ̂+â− σ̂−â†

)
. (2.46)

This interaction couples the harmonic oscillator to the internal levels and preserves

the total number of excitations in the composite system. It is called first red sideband

excitation and generates the same dynamics of the famous QED Jaynes-Cummings

model. For instance, Rabi oscillations at a frequencies Ωn,n−1 =
√
nηΩR can be

observed. Finally, by setting ∆ = −ν we obtain

V̂B =
iη~ΩR

2

(
σ̂+â† − σ̂−â

)
, (2.47)

which is called the first blue sideband interaction. This Hamiltonian simultaneously

creates or destroys excitation both in the internal structure and the motional de-

gree of freedom of the ion. It should mentioned that we derived all the previous
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results starting from the standard dipolar interaction Hamiltonian (2.35). However,

the same type of interactions (2.45)-(2.47) can be engineered by using other cou-

pling scheme such as quadrupole transitions or stimulated Raman transitions [24].

Furthermore, all these interactions provide an optimal platform not only for state

engineering tasks, such as laser cooling or state read-out, but also for actual quantum

computing. If we assume N laser-fields, each of them single-addressing a specific

ion in the chain, the generalization of Hamiltonian (2.38) reads as

V̂I(t) =
~ΩR

2
σ̂+
j exp

[
i
N∑
j=1

ηjk

(
âke
−iνkt + â†ke

iνkt
)
− (i∆t− φj)

]
+ h.c., (2.48)

where the generalized Lamb-Dicke parameters are ηjk ≡ kLs
(j)
k , νk is the frequency

of the normal mode k and φj is the relative phase of the laser j.

As stressed above, any quantum algorithm can be decomposed using a circuit repre-

sentation when a set of universal gates is well-identified and such gates are utilized

as fundamental building blocks [81]. Single-qubit operations in trapped ions are

implemented by employing the carrier Hamiltonian (2.45) where only the internal

state of a single ion-qubit is changed. In the Bloch vector picture the most general

form of a single-qubit unitary operation can be depicted as a rotation of the Bloch

sphere. Equivalently, this can be also thought of as a rotation of the fictitious 1/2

spin. Two angles (θ, φ) uniquely identify such a rotation in the Bloch picture

R̂(θ, φ) = exp

[
i
θ

2

(
eiφσ̂+ + e−iφσ̂−

)]
, (2.49)

where φ represents the axis of rotation in the equatorial plane and θ is the rotation

angle, which physically corresponds to the duration of the laser pulse. For two-

qubit gates, which should physically couple two ions together, collective vibrational

modes are used to mediate an ion-ion effective interaction. Once a specific mode

is selected, usually the center of mass mode (COM), it acts as a sort of quantum

bus that connects the ions and distributes information. Here, sideband interactions

(2.46)-(2.47) are used. In the case of one ion the resulting operations read as

R̂(−)(θ, φ) = exp

[
i
θ

2

(
eiφσ̂+â+ e−iφσ̂−â

†)] ,
R̂(+)(θ, φ) = exp

[
i
θ

2

(
eiφσ̂+â

† + e−iφσ̂−â
)]
.

(2.50)

Obviously, when the COM mode is excited and subsequent R̂(±) pulses are applied

to different ions, the net result is an effective many-ion logic gate. We conclude this

section remarking that all the previous results were presented under the assumption
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that no external influence on the ion’s dynamics would be present at any time.

Unfortunately, this is a rather unrealistic assumption, especially when it comes to

experimental realizations. In a real laboratory one has to deal with several sources

of imperfection that might jeopardize the dynamics dictated by (2.38). Some of

these imperfections can, to some extent, be modeled in the general framework of

decoherence theory, which is the topic of the next section.

2.4 Decoherence processes for a single trapped

ion

Decoherence is the main obstacle to preserving the quantum properties of a quan-

tum system [94]. Quantum mechanics in its standard formulation applies to isolated

systems where no disturbance from the outside world is present. No matter how com-

plicated a Hamiltonian can be, as long as we are dealing with closed systems, the

dynamics will always be unitary, implying conservation of energy, quantum prob-

abilities and coherences. However, in the real world, a quantum system S always

couples with its surrounding environment E. In this case, we talk of an open quan-

tum system. The effect of this coupling will lead to correlations between the system

and the environment and loss of the system’s quantum properties. More about this

topic will be discussed in the next Chapter. In trapped-ion systems decoherence

mostly affects the vibrational degrees of freedom and it originates from fluctuations

of the trap parameters. These generate unwanted couplings between the ion’s po-

sition and the thermal electric fields of the surrounding environment. Such fields

can be depicted as electronic thermal noise in the resistance of the trap electrodes.

Two lossy mechanisms arise, heating and dephasing of the COM. These two effects

are described in terms of a master equation for the density matrix of the COM. In

Chapter 3 we will spend a few more words about how to derive such an equation as

well as the limit of validity for such a description. For the moment, we assume the

equation to be applicable and analyze its solution. Heating can be modeled by using

the amplitude damping model where a single harmonic oscillator â (COM) is cou-

pled to a set of environment harmonic oscillators b̂j at temperature T (the thermal

electric fields) via an excitation-hopping interaction. The total Hamiltonian reads

as follows [70]

Ĥ = ~νâ†â+
+∞∑
j=0

~ωj b̂†j b̂j +
+∞∑
j=0

~
(
gj âb̂

†
j + g∗j â

†b̂j

)
, (2.51)

where ν is the frequency of the harmonic oscillator â, ωj the frequency of the envi-

ronment harmonic oscillator b̂j and gj the coupling strength between the two. By
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using a standard procedure, which will be clarified in Chapter 3, it is possible to

derive an effective equation describing the time evolution of the reduced density

operator of the COM boson ρ̂a in interaction picture [44, 70]

dρ̂a
dt

= −γ
2

(N + 1)
(
â†âρ̂a + ρ̂aâ

†â− 2âρ̂aâ
†)

− γN

2

(
ââ†ρ̂a + ρ̂aââ

† − 2â†ρ̂aâ
)
,

(2.52)

where N =
(
e~νβ − 1

)−1
is the average number of thermal excitations at frequency

ν and the decay rate is γ = R2(ν)g2(ν) with R(ω) being the density of states of

the environment. The above equation describes how a bosonic thermal environment

can de-excite (first term on the r.h.s.) or excite (second term on the r.h.s.) the

harmonic oscillator â. This can be explicitly seen by calculating the time-evolution

of the average excitation number N̂a = â†â

〈N̂a(t)〉 = 〈N̂a(0)〉e−γt +N
(
1− e−γt

)
. (2.53)

If the bath is initially at zero temperature (N = 0) the average energy of the system

will decay and be lost in the environment. On the contrary, it the T 6= 0 the

system will thermalize with its environment. A similar equation governs the COM

dynamics in presence of dephasing. This destroys quantum coherences in the state

of the system but leaves populations unaffected. In other words, this coupling turns

an initial pure quantum state of the system into a classical statistical mixture and,

as such, it can be considered as an archetypal model to explain quantum-to-classical

transition. In this case the total Hamiltonian of system and environment reads as

follows [70]

Ĥ = ~νâ†â+
+∞∑
j=0

~ωj b̂†j b̂j +
+∞∑
j=0

~â†â
(
gj b̂
†
j + g∗j b̂j

)
. (2.54)

Note that this time there is no energy exchange and the Hamiltonian commutes with

the quantum number operators â†â and b̂†j b̂j. Following the same approach as in the

previous case it is possible to derive a new master equation for this model [44,70]

dρ̂a
dt

= −Γ
[
â†â,

[
â†â, ρ̂a

]]
, (2.55)

where the dephasing rate Γ sets the time-scale at which the off-diagonal terms of ρ̂a

vanish. It is straightforward to show that

〈n|dρ̂
dt
|n〉 = ρ̇nn = 0,

〈n|dρ̂
dt
|m〉 = ρ̇nm = −Γ (n−m)2 ρnm → ρnm(t) = ρnm(0)e−Γ(n−m)2t.

(2.56)
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Hence, as anticipated above, in a dephasing process coherences decay exponentially

whereas populations are untouched. As explained in the following the timescales

associated to energy dissipation and dephasing are different. Nevertheless, for any

quantum information protocol to be well-performed in trapped ions, they both have

to be taken into account.

2.5 Implementing a Toffoli gate

In a recent experiment a C-NOT gate for a three-qubit system was experimentally

implemented for the first time ever using a circuital decomposition [20]. By using

single-ion laser-addressing a total of 15 steps was required to compose the whole

gate along with state preparation and read-out. The mean gate fidelity achieved

was around 71% and the execution time was about 1.5 ms. Here, we take a different

approach and show how simultaneous laser-addressing of multiple ions can be used

to implement a three-ion C-NOT gate with a good fidelity and a significant reduction

of the number of operations required. We account for all the fundamental sources

of imperfection introduced in section 2.4 as well as some of the technical ones. We

demonstrate that as long as the relevant parameters are within the range as in [20],

our gate is quite robust against most of the noise.

2.5.1 The setup

Let us consider three ions placed in a linear Paul trap located at their equilibrium

positions [35]. We select three internal levels that we label {|lj〉, |gj〉, |ej〉}. In order

to couple these levels in pairs we utilize their COM mode â and exploit the flexibility

of the following Hamiltonian

ĤI(t)=
Ω

2
σ̂

(αβ)
− exp

[
iη
(
âe−iνt + â†eiνt

)
− i (ωαβ − ωL) t

]
+ h.c., (2.57)

where, Ω is the Rabi frequency of the transition |α〉↔|β〉, with α, β=e, g, l, σ̂
(αβ)
− =

|α〉〈β| is a jump operator, ωαβ the corresponding transition frequency, ν the fre-

quency of the mode â and η is the Lamb-Dicke parameter. The above interaction

is a special case of Eq.(2.48) where we have pin-pointed only one among all vibra-

tional modes. In an experimental setup a ionic species candidate could be 40Ca+ with

|g〉 = S1/2(m = −1/2), |l〉 = S1/2(m = 1/2) and |e〉 = D5/2(m = −1/2). Interaction

(2.57) allows for both |e〉↔ |g〉 and |e〉↔ |l〉 couplings, although through different

schemes. The first transition can be guided via quadrupole coupling whereas the

second can be driven by a far off-resonance Raman coupling (see Appendix A). In

the first case the laser frequency ωL is the frequency of the laser used, while in the
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case of a Raman transition it would be the difference between the frequencies of the

two laser-fields that off-resonantly couple |lj〉 and |gj〉 to a third suitable level, for

instance the P3/2 energy state. As discussed earlier in this chapter, the interaction

Hamiltonian (2.57) can be expanded in powers of η and, up to the first order, three

different resonant interactions can be engineered depending on the laser-ion tuning

∆αβ = ωαβ − ωL

∆αβ=0→ ĤC = Ωσ̂(αβ)
x ,

∆αβ=ν → ĤR = i
ηΩ

2
[âσ̂+

(αβ) + â†σ̂
(αβ)
− ],

∆αβ=− ν → ĤB = i
ηΩ

2
[â†σ̂

(αβ)
+ + âσ̂

(αβ)
− ].

(2.58)

In the following we will describe in details how to construct a Toffoli gate using the

unitary evolution governed by the so-called Tavis-Cummings Hamiltonian [93]

ĤTC =
3∑
j=1

gj
(
â|ej〉〈gj|+ â†|ej〉〈gj|

)
, (2.59)

where gj = ηΩj/2 with Ωj being the |ej〉 ↔ |gj〉 Rabi frequency of the ion j, together

with single-qubit operations to be performed before and after the dynamics induced

by ĤTC.

2.5.2 The protocol

For any quantum protocol to be implemented, we first need to identify appropriate

qubit states. In this case the encoding goes as follows

|11〉 = |e1〉, |01〉 = |g1〉,
|12〉 = |l2〉, |02〉 = |g2〉,
|13〉 = |l3〉, |03〉 = |g3〉,

(2.60)

This allows us to immediately define the eight-state basis for the three-qubit system

B = {|000〉, |100〉, |010〉, |110〉, |001〉, |101〉,−i|011〉,−i|111〉}, where we have rede-

fined the last two states to include an overall phase factor that will simplify further

calculations. The COM mode will be utilized as an ancilla system. At this point,

two important assumptions are necessary. First, we assume to work in the single-

excitation subspace of the total Hilbert space, which includes the internal levels as

well as the phononic mode. This implies that at any time during the protocol no

more than one overall excitation will be present, at least in the ideal unitary case.

Second, since we want to implement a three-qubit quantum gate, any correlation

between the internal and motional degrees of freedom of the string both prior to and
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after the protocol must be avoided. Hence, we enforce the phononic mode, initially

prepared in the ground state |0a〉, to return to this state once the gate is completed.

Now, in order for interaction (2.59) to take place, we need to have at least one

excitation overall. The protocol begins with the following single-ion operations

R̂+
A = exp

(
iĤ

(eg)
B ζτ

)
,

R̂−B = exp
(
iĤ

(le)
R ζτ

)
,

R̂−C = exp
(
iĤ

(lg)
R ζτ

)
,

(2.61)

where ζ=ηΩ/2 and the interaction time τ is chosen such that ζτ = π/2. The

concatenation of these three single-qubit operations performed in the following order

R̂ = R̂−CR̂
−
BR̂

+
A, (2.62)

creates an excitation in the phononic ancilla |0a〉 conditional to the state of the

qubit 1, which, from now on, we will refer to as target qubit. Since we want to

couple the target ion with the COM mode at each step, the frequencies of the laser

fields must be tuned accordingly, that is ωAL−ωge=−ν, ωBL−ωle=ν, ωCL−ωgl=ν. In the

single-excitation subspace the action of R̂ reads as

R̂|g1, 0a〉 = |g1, 1a〉,
R̂|e1, 0a〉 = |e1, 0a〉.

(2.63)

After this dual-rail encoding we implement the Tavis-Cummings Hamiltonian ĤTC.

When solving the Schroedinger equation for each basis state we first observe that the

set of all the states that are involved in the total dynamics can be split in four sub-

spaces Sj that are invariant with respect the time-evolution operator exp
(
−iĤTCt

)
S1 = {|g1, g2, g3, 1〉, |e1, g2, g3, 0〉, |g1, e2, g3, 0〉, |g1, g2, e3, 0〉},
S2 = {|g1, g2, l3, 1〉, |e1, g2, l3, 0〉, |g1, e2, l3, 0〉},
S3 = {|g1, l2, g3, 1〉, |e1, l2, g3, 0〉, |g1, l2, e3, 0〉},
S4 = {|g1, l2, l3, 1〉, |e1, l2, l3, 0〉}.

(2.64)

Hence, the dynamics can be separately solved in each of these four subspaces. Since

we are interested in the time-evolution of those states that form the computational

basis, that is the first two states in each Sj, we look at the population time evolu-

tion P (t) of these eight states only. However, before proceeding, some remarks are

needed. First, we briefly recall the matrix representation of the Toffoli gate T in the
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computational basis B

T =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


. (2.65)

The action of T on the computational basis states leaves the first six states unaffected

while swapping the last two. The idea is then to find a unique time tT for the unitary

operator

ÛT = tra

[(
R̂† ⊗ Î23

)
exp

[
−(iĤTCtT

] (
R̂ ⊗ Î23

)]
, (2.66)

to be as close as possible to Eq.(2.65). The partial trace over the motional degree of

freedom will reduce to a simple projection onto the ground state |0a〉 in the unitary

case. When solving the Schroedinger equation for each of the eight states in the

basis we need to fix the initial conditions |φ0〉 accordingly

|φ0〉 = |g1, g2, g3, 1〉 → Pg1,g2,g3,1(t) = cos2 (Θ123t) ,

|φ0〉 = |e1, g2, g3, 0〉 → Pe1,g2,g3,0(t) =

{
1 +

g2
1c

Θ2
123

[cos (Θ123t)− 1]

}2

,

|φ0〉 = |g1, g2, l3, 1〉 → Pg1,g2,l3,1(t) = cos2 (Θ12t) ,

|φ0〉 = |e1, g2, l3, 0〉 → Pe1,g2,l3,0(t) =

{
1 +

g2
1c

Θ2
12

[cos (Θ12t)− 1]

}2

,

|φ0〉 = |g1, l2, g3, 1〉 → Pg1,l2,g3,1(t) = cos2 (Θ13t) ,

|φ0〉 = |e1, l2, g3, 0〉 → Pe1,l2,g3,0(t) =

{
1 +

g2
1c

Θ2
13

[cos (Θ13t)− 1]

}2

,

|φ0〉 = −i|g1, l2, l3, 1〉 → Pe1,l2,l3,0(t) = sin2 (Θ1t) ,

|φ0〉 = −i|e1, l2, l3, 0〉 → Pg1,l2,l3,1(t) = sin2 (Θ1t) ,

(2.67)

where the dressed frequencies are Θ123=~η(
∑3

j=1 Ω2
j)

1/2,Θ1j=~η(Ω2
1+Ω2

j)
1/2 (j=2, 3)

and Θ1=~ηΩ1. Note that in the last two lines we want the states to swap. As

anticipated earlier now we look for a single time tT such that the ÛT (t) realizes

the three-qubit-Toffoli T . This implies looking for a time tT that maximizes all

the previous probabilities Pα1,α2,α3,na(tT ). Since we are dealing with trigonometric
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functions we know exactly where their maximizing points on the time axis are

t1 =
πn1

Θ123

, t2 =
πn2

Θ12

, t3 =
πn3

Θ13

, t4 =
π(2n4 + 1)

2Θ1

, (2.68)

with ni’s integer. By inspecting Eq.(2.67) and Eq.(2.68) it is obvious that an exact

simultaneous maximization of all the probabilities can never be performed since the

swapping operation causes the last two to be odd functions while the first six are

even. However, an approximate simultaneous maximization is accessible by properly

adjusting the Rabi frequencies Ωj For instance, by setting

Ω1:Ω2:Ω3=1:
√

143:16, (2.69)

at the optimal instant of time given by tT=π/ηΩ1, we obtain

ÛT=T̂ − 10−3|110〉〈110| − 2×10−3|001〉〈001|, (2.70)

where T̂ is the Toffoli operator. In matrix form this reads as

UT =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0.999 0 0 0

0 0 0 0 0 0.998 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


, (2.71)

Needless to say, other choices can be found for the set of Rabi frequencies that

achieve a gate close to T̂ . Clearly, the only important parameter in this model is

the ratio of the Rabi frequencies rather than their actual value. The time needed in

order to implement the whole gate is

tG =
π

η

( ∑
k=A,B,C

2

Ωk

+
1

Ω1

)
, (2.72)

where Ωk is the Rabi frequency of the pulse k=A,B,C in Eq.(2.61). It has to

be remarked that the R̂ and R̂† operations are fundamental in order to get rid of

the photon label at the end of the whole gate, which is a very important step to

perform in the whole scheme. In fact, the use of excited vibrational states opens the

protocol to the effects of phononic heating and losses. The necessity of removing

such excitations motivates the use of the encoding-decoding steps given by R̂. Also,
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Figure 2.4: Reconstructed process matrix for ÛT . The matrix is expressed in the
three-qubit operator basis formed by {I≡Î, X≡σ̂x, Y≡−iσ̂y, Z≡σ̂z}. We show the
moduli of the matrix entries. The differences with respect to the elements of an
ideal gate are O(10−4).

we emphasize that this protocol requires roughly 44% of the number of operations

needed in [20]. The substantial difference between the two approaches lies in the

usage of multiple-ion operations instead of the canonical single and 2-qubit circuital

decomposition.

In Fig.2.4 we show the representation of the reconstructed process matrix in the

tensorial operator-basis constructed with the single-qubit operators {Î, σ̂x,−iσ̂y, σ̂z}.
The entries of χ(tG) differ from the ideal ones by O(10−4), showing the excellent

quality of our gate, which has average infidelity 1−F s(tG) as small as 10−5.

2.5.3 Sources of imperfections

All the discussions presented so far refer to the ideal case in which the evolution is

unitary and not affected by any external influence. In order to draw more realistic

conclusions about the goodness of the protocol our model has to be extended to in-

clude noise. The experimental setup we have in mind is the one utilized in [20] and

we shall consider the most severe sources of imperfections of this particular ion-trap

architecture. We concentrate on quality-limiting effects of non-technical nature for

which a well-defined analytical description in terms of dissipation and decoherence

of the COM mode exists. As pointed out earlier in this chapter, both these effects

are connected to heating caused by noisy electric potentials at the surface of the
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trap electrodes, resulting in an effective bath at non-zero temperature. Now, the

presented protocol consists of three steps: a dual-rail encoding that involves the

target ion and the COM mode, the multiple-ion interaction as ascribed by Hamilto-

nian (2.59) and the final dual rail decoding aimed to remove unwanted correlations

between the internal levels and the COM mode. In [20, 70] it was shown that by

taking fast and intense optical pulses, the duration of sideband-resolved light-ion

interactions that are required to implement R̂ can be made much shorter than the

radiative lifetime of the ionic excited states, the heating rate of the COM mode and

the trap period. Thus, we neglect any decoherence effect occurring during the real-

ization of single-ion gates and assume the dynamics at this stage to be still purely

unitary. This was experimentally achieved in [20], where it was also shown that

single-ion-addressing errors in R̂ are rather small and do not fundamentally limit

the accuracy of one-qubit operations. Obviously, the same conclusions apply to R̂†.
Hence, we focus our attention on the intermediate step that effectively realizes the

Toffoli gate. As anticipated earlier, both decoherence and heating of the COM can

be investigated in an open quantum system framework where a master equation for

the dynamics of the COM mode can be set

dρ̂

dt
=−i

[
ĤTC, ρ̂

]
−κ (n̄+1)

2

(
â†âρ̂+ρ̂â†â−2âρ̂â†

)
− κn̄

2

(
ââ†ρ̂+ ρ̂ââ† − 2â†ρ̂â

)
−γ
[
â†â,

[
â†â, ρ̂

]]
,

(2.73)

where ρ̂ is the density matrix of the ionic string and the vibrational mode, κ is

the heating rate, n̄ is the mean number of phononic quanta of the bath at a given

temperature and γ is the dephasing rate. Analogously to the unitary case, the

dynamical map EH arising from Eq. (2.73) is to be preceded and followed by the R̂
gate. That is, any initial state ρ̂(0) of the three-ion system density matrix evolves

until time tG according to

ρ̂(tG)=R̂†
[
EH
(
R̂ρ̂(0)R̂†

)]
R̂. (2.74)

The resulting open-system dynamics implies, in principle, leakage from the computa-

tional space that could spoil the desired gate. In particular, the thermal background

could lead to populating Hilbert subspaces with more than one excitation. The lossy

dynamics dictated by Eq.(2.73) is to be solved numerically. Furthermore, by apply-

ing QPT it is possible to obtain a more realistic estimation of the gate quality in

presence of noise. The rates are set to the values 1/κ = 140ms and 1/γ = 85ms

which are fully consistent with the COM mode and in line with the most recent

experiments [20]. First we investigate thermal effects in the worst case scenario by

setting n̄ = 5 [20]. Once the process matrix χ̃(tG) is computed, its resemblance

31



0.0005

0.0015

0.0025

0 2.5 7.5 10.0

0.2

0.4

0.6

0.8

1.0

5.0 12.5

1.0% 5.0%4.0%3.0%2.0%

Figure 2.5: Main panel.- We take the largest entry per row in the discrepancy matrix
|χ̃(tG)−χT | for n̄=5, γ/Ω=10−3. We have highlighted the bars corresponding to
some of the operator-basis elements. Inset.- Lower horizontal axis and circle-shaped
points: Average state fidelity for the ÛT gate against the dephasing γ/Ω. At γ=0 it
is F s=0.999988, while for the larger dephasing rate that we have considered we have
F s>0.93. Upper horizontal axis and square-shaped points: Average gate fidelity for
ÛT against the variance ∆ of the uniform distribution determining the amplitudes
of laser fluctuations in our model. The solid lines are only guides to the eye.

to χT is analyzed by calculating the discrepancy |χ̃(tG)−χT |. The main panel of

Fig. 2.5 shows the maximum value per row of such a discrepancy matrix. The largest

deviation we observe out of the 64 values gathered in this way is ' 2.5×10−3. More-

over, the average gate fidelity turns out to be F s=0.994855, which is 99.5% the

value achieved for the best case scenario n̄=1. It is worth noticing that the protocol

appears to be well robust against the influence of a thermal background. Thus, we

can conclude that the dynamics realized by EH can be approximated as follows

ρ(tG) ≈ ρq(tG)⊗ |0〉〈0|, (2.75)

where ρq(tG) is the density matrix of the three-ion system. This result is consistent

with the Markovian approximation.

The next step is the evaluation of the dephasing effect. In this case we set n̄ = 1

and solve Eq. (2.73) for increasing values of γ and plot the corresponding average

state fidelity of the effective gate, which is shown in the inset of Fig. 2.5, red circles.

Remarkably, the protocol is almost insensitive to an increase of γ by at least one

order of magnitude from the value estimated in Ref. [20].
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By inspecting Eq.(2.69) it should be clear that a key point in the implementation

of the protocol is the maintenance of precise ratios among the Rabi frequencies.

Intensity fluctuations may jeopardize the required stability and so they have to be

investigated throughly. We solve Eq.(2.73) treating the Ωj’s as stochastic variables

that randomly oscillate around their ideal values. In practice, we define

Ω
′

j=Ωj+δΩj, (2.76)

where δΩj/Ωj is a uniformly distributed zero-mean variable with variance ∆∈[1, 5]%.

Using a sample of 500 randomly drawn values of δΩj and evaluating the correspond-

ing dynamical evolution, we calculate the sample-averaged F s. In the worst case

scenario given by ∆=5%, which grossly underestimate the current experimental ca-

pabilities, an average fidelity of '71% is achievable. This behavior is displayed again

in the inset of Fig. 2.5, blue squares.

The final point we address regards the initialization of the COM mode to its ground

state. If this is not perfectly achieved we might expect the performance of the

protocol to worsen and we would like to estimate to extent to which this happens.

This effect translates to preparing the ancillary phonon mode in a low-temperature

thermal state with a mean number of initial thermal excitations up to n̄TH = 10−1.

ρ̂a =
+∞∑
n=0

e−βνn

Za
. (2.77)

We have proven this effect to influence the efficiency of the protocol fairly little,

with a gate fidelity that in the unitary case is never smaller than 0.901. In the

open-system case we find a fidelity equal to 0.8962 for n̄ = 5 and γ=85msec, while

F s=0.6396 for the case of fluctuating Rabi frequencies with ∆=5%.

2.6 Conclusions

In this chapter, after introducing the basic theory of quantum computing in trapped

ions, we have discussed an alternative scheme for implementing the TOFFOLI gate

in such systems. The protocol presented relies on both single and multi-qubit op-

erations and, at least in principle, it requires only 44% of the operations needed in

the experiment reported in [20]. Furthermore, a quite good robustness against the

most common sources of imperfections and noise has been demonstrated.
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Chapter 3

Non-Markovian dynamics and

criticality in Coulomb Crystals

3.1 A quantum probe

The traditional approach to investigating the physics of a many-body system relies

on measuring its response to a weak and controllable classical perturbation. For

instance, if we are interested in determining the features of a crystal, such as its pe-

riodicity or density-density correlation function, all we need to do is to shine some

light on the sample and study the resulting diffraction pattern [95, 96]. More com-

plicated techniques can be engineered depending on the type of information that we

want to extract from the system under scrutiny, all pretty much based on the same

idea.

Now, let us imagine a different kind of scenario. Let us assume that we are given

a many-body system whose Hamiltonian is known from first principles but rather

complicated to study. This time though, along with the many-body system comes

a single, fully controllable quantum system and a suitable interaction between the

two can be efficiently engineered. Furthermore, the dynamics of the single quantum

system, as resulting from the interaction with the many-body system, can be moni-

tored. We call this scheme quantum probe. We ask ourselves the following questions:

what kind of information regarding the complex many-body system can we gain by

looking at the dynamics of the quantum probe only? Is there any improvement with

respect to a more standard probing scheme? Needless to say, a general answer to

any of these questions is not available yet, since a general theory of quantum probes

is missing. However, this approach is surely interesting from a foundational point

of view.

The dynamics of a single quantum system interacting with a large many-body sys-

tem can be theoretically modeled within the framework of open quantum system
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theory [44,45]. In this approach the many-body system serves as an environment E

and its features determine what kind of dynamics the single quantum system S will

undergo. In the spirit of open quantum system theory, this is the only dynamics we

are interested in as we trace out the environmental degrees of freedom. Such a re-

duced dynamics can be either Markovian or non-Markovian. Even though a proper

definition will be given in what follows, for now we can anticipate that a Marko-

vian dynamics lacks in memory. Markovian processes can always be modeled by a

suitable master equation [97, 98]. Textbook examples of such a process are sponta-

neous emission of an atom placed in vacuum and thermalization of an optical cavity

field [99,100]. A universal definition of non-Markovian dynamics is far more elusive.

Several possible solutions have been presented [46–49,51,129] that capture different

aspects of what non-Markovianity could be. Now let us imagine that not only is the

environment a complex many-body system, but it also shows some critical behavior

whenever one of its Hamiltonian parameters is tuned to a certain critical value. If

we have a single quantum system embedded in and interacting with it can we, by

any chance, observe a drastic change in the system’s dynamics when we drive the

environment across criticality? Furthermore, if this turns out to be the case, could

this provide a new way to interpret critical behavior?

This novel approach has been utilized in a series of recent papers [52–56]. The gen-

eral finding in all of these investigations is that if we look at a critical many-body

system as an environment for some kind of single quantum system, then a link be-

tween the Markovian/non-Markovian character of the latter and its critical behavior

does exist.

In the following we will apply this idea to Coulomb crystals [29]. Coulomb crystals

are many-body systems that are routinely achievable in many trapped-ion labs and

exhibit structural critical behavior. In the following we will show and explain in

detail how this critical behavior can be witnessed by using an open quantum system

approach.

3.2 Open quantum systems: a brief introduction

The field of open systems is among the vastest in quantum theory. It is the aim

of this section to provide the reader with some general concepts, highlighting some

later developments.

A general open quantum system can be depicted as follows. Let us assume a single

and well-identified quantum object, namely the systems S, interacting with a much

larger quantum system, namely the environment E. Here, by much larger we mean

that the relevant degrees of freedom of the environment are way too many to be

controlled or even monitored. We assume the free evolution of both S and E to be
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governed by local Hamiltonians that we label ĤS and ĤE. If no system-environment

interaction was present S and E would evolve separately and never influence each

other.

However, as soon as we switch on the interaction- V̂ - this is no longer true. The

total time-evolution is then dictated by the following unitary operator

Û(t) = exp

[
−it
~

(
ĤS + ĤE + V̂

)]
, (3.1)

and the time-evolution of a general initial state of system and environment ρ̂SE(0)

reads as follows

ρ̂SE(t) = Û(t)ρ̂SE(0)Û(t)†. (3.2)

Now, since we have assumed that we can only keep track of the system’s dynamics

we need to discard the environment’s degrees of freedom. This operation is carried

out by tracing out the environment’s degrees of freedom from the above equation.

The reduced dynamics of the system only reads as

ρ̂S(t) = TrE

[
Û(t)ρ̂SE(0)Û(t)†

]
. (3.3)

Physically speaking, this corresponds to ignoring the presence of the environment

and focusing on the system’s dynamics only. Furthermore, this is the only operation

that allows to recover the correct statistics when we perform measurements on the

sole system. The effect of the environment on the system survives, to some extent,

in the new density matrix elements that we obtain after performing the partial trace.

A crucial assumption that one usually makes is that system and environment are

initially totally uncorrelated ρ̂SE(0) = ρ̂S(0) ⊗ ρ̂E(0). With this simplification, it

is always possible to define a completely positive and trace-preserving (CPT) map

Φ(t, 0) describing the time evolution of the system [44]

ρ̂S(t) = Φ(t, 0)ρ̂S(0) ≡ TrE

[
Û(t)ρ̂SE(0)Û(t)†

]
. (3.4)

The reduced dynamics of the system can also be written in the following differential

form
d

dt
ρ̂S = − i

~
TrE

{[
ĤS + ĤS + V̂ , ρ̂SE

]}
. (3.5)

All the above equations are exact but, unfortunately, untreatable in most of the cases

unless a series of approximations are employed. A few approximations make Eq.(3.5)

solvable. The first, named the Born approximation, assumes weak coupling between

system and environment so that a perturbative expansion of the commutator in

(3.5) is possible and the state of the environment does not significantly change

during the evolution. The second, the Markov approximation, is essentially an
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assumption about the different time-scales involved in the total dynamics, that is,

the decay time of environment correlations is much shorter than any relevant time

scale of the system. Two silghtly more technical approximations are still required.

The interaction between S and E must be of the type V̂ =
∑

j Â
(S)
j ⊗ B̂(E)

j where

Â
(S)
j , B̂

(E)
j are a set of system and enviroment operators respectively. Furthermore,

the well-known secular approximation is employed for the enviroment operators [44].

When these approximations are carried out in Eq.(3.5) we obtain the following

general Markovian master equation in Lindblad form [97,98]

d

dt
ρ̂S = − i

~

[
ĤS, ρ̂S

]
+
∑
n

γn

(
Ânρ̂SÂ

†
n −

1

2
{Â†nÂn, ρ̂S}

)
, (3.6)

where γn are positive constant decay rates and Ân, Â
†
n are called jump operators.

These are system’s operators that carry the information regarding what kind of

processes the environment induces on the system. The above equation can be derived

in more than one fashion. As long as the dynamics of an open quantum system can

be modeled using Eq.(3.6) with positive rates γn, we call the open quantum system

Markovian. In Markovian dynamics the future state of the system solely depends

upon the present one and memory effects are absent. This typically results in a

complete loss of all the quantum properties initially stored in the system. This

point will be further clarified in the next section.

3.3 A possible characterization of non-Markovian

dynamics: information backflow

It should be clear at this point that a solid definition of Markovian systems exists,

based on the ability to describe the dynamics of an open quantum system in terms

of a Markovian master equation or, equivalently, of a CPT dynamical map that is a

semigroup [44].

Defining what is non-Markovian is, however, a bit more subtle business. This topic

has recently gained a considerable attention in the quantum physics community and

a significant number of possible points of view have been presented [46–49,51,129].

Of course different definitions pertain to different aspects or properties of open sys-

tems with memory.

In what follows we will focus our attention on one specific definition of non-Markovian

dynamics, based on the idea of information flow [47]. The reason for this choice lies

in the interpretation of non-Markovianity that this definition offers. This point will

be further clarified at the end of this section and when we get to the physical model

studied in this chapter.
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We start by introducing the key mathematical quantity for the definition of infor-

mation flow. Let us imagine we are given two general quantum states ρ̂1 and ρ̂2 and

we want to quantify how distinguishable from each other they are. To this aim, we

introduce the trace distance

D(ρ̂1, ρ̂2) ≡ 1

2
‖ρ̂1 − ρ̂2‖1, (3.7)

where ‖Ô‖1 = Tr
√
ÔÔ†. This quantity measures the distinguishability between two

arbitrary quantum states.

Now, let us consider a physical process that we know to always be representable in

terms of a semigroup of t−parametrized CPT maps Φ(t, 0). It can easily be proven

that, such a map is always contractive with respect to D. This translates to the

following inequality [47]

D(Φ(t, 0)ρ̂1(0),Φ(t, 0)ρ̂2(0)) ≤ D(ρ̂1(0), ρ̂2(0)) ∀ρ̂1, ρ̂2∀t ≥ 0. (3.8)

Hence, all quantum dynamical semigroups are contractive. The trace distance be-

tween any pair of initial states never increases in time. Since the solution of a

Markovian master equation (3.6) is always a dynamical semigroup of CPT maps,

we conclude that two states undergoing Markovian dynamics become less and less

distinguishable: the information about the quantum system of interest will be in-

evitably lost. The idea is then to define non-Markovian dynamics as deviations

from Eq.(3.8). If for some time we are able to gain back some knowledge about the

system, that is, the distinguishability of two initial states temporarily increases, we

say that this information is flowing back into the system. Hence, the positivity of

the following quantity

σ(t, ρ̂1,2(0)) =
d

dt
D(ρ̂1(t), ρ̂2(t)), (3.9)

for some pair of states and some time intervals is an indicator of non-Markovianity.

To further quantify the degree of non-Markovianity authors in [47] define the fol-

lowing measure

N (Φ(t, 0)) = max
ρ1,2(0)

∫
σ>0

dtσ(t, ρ1,2(0)). (3.10)

The maximization is to be performed over all the possible pairs of initial states in

the state space of the open system and the integration to be extended over time

intervals where the trace distance increases. This formula is absolutely general and

neither it requires any approximation nor it assumes the knowledge of the master

equation. We again stress that it is a property of the dynamical map Φ(t, 0) only.
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3.4 Coulomb Crystals: some general facts

A Coulomb crystal is a self-organized spatial arrangement of ions achievable in a

linear or ring ionic trap. For a detailed review regarding trapping, cooling and for-

mation of Coulomb crystals, see Ref. [29]. These systems show clear critical features

and have been the subject of the intense studies. They can be considered as a toy-

model for solid state physics since various spatial equilibrium configurations can be

easily explored in a controllable way. The geometry of a particular pattern is a direct

consequence of the balance between the repulsive Coulomb force acting between the

ions and the three-dimensional confining potential induced in the trap. By appro-

priately tuning the trap parameters it is possible to explore different geometries and,

switching from a particular configuration to another, results in a structural phase

transition where critical behavior arises.

Investigations concerning the decoherence of a single two-level system embedded in

a Coulomb crystal near criticality have been previously reported in [101]. In this

theoretical paper, the authors make use of Ramsey interferometry to monitor col-

lective properties of the crystal, such as correlation functions, in the neighborhood

of a critical point. Two electronic levels of one of the ions in the crystal are coupled

to the collective vibrations of the whole chain via suitable lasers. The interaction

is dependent upon the state of the two-level system and initial superposition states

lead to interfering dynamical paths. The authors study the behavior of the inter-

ference fringe visibility when the chain is driven across a critical point and exhibits

a linear-to-zig-zag structural phase transition. This quantity is connected to the

ground state probability of the two-level system and the general finding is that the

closer the crystal is to criticality, the more the damped the fringe visibility is. In

the following, we take a step further and, by using the same interferometric scheme,

we provide a time-independent way to characterize such decoherence. Needless to

say, our approach relies on looking at this scenario from an open quantum system

perspective and studying the non-Markovian character of the resulting dynamics

and its connection to the criticality of the chain.

In what follows we will review some general facts about Coulomb crystals. This is

intended to provide the reader with a minimum set of notions that are crucial to

understand further results. The classical Hamiltonian governing the dynamics of a

N -ion Coulomb crystal reads as

H =
N∑
j=1

p2
j

2m
+

1

2
m
[
ν2x2

j + ν2
t

(
y2
j + z2

j

)]
+

1

2

N∑
j 6=i=1

Q2

|~rj − ~ri|
, (3.11)

where ~pj is the momentum of the j−th ion, ~rj = (xj, yj, zj) its position, ν and

νt the axial and transverse trap frequencies, respectively. In writing Eq.(3.11) we
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have assumed the static harmonic approximation for the quadrupole potential (2.1)

discussed in Chapter 2. The relevant and controllable parameters here are the trap

frequencies, as compared to the strength of the Coulomb interaction, and the num-

ber of ions N . The above Hamiltonian can be straightforwardly turned into an

operator by standard quantization procedure.

From now on we will focus on the first transition we can observe, namely, the linear-

to-zig-zag. As the name suggests, here the crystal switches from a one-dimensional

linear equilibrium configuration, with equally spaced ions, to a planar one where the

new equilibrium positions of the ions form a zig-zag segment. This transition takes

place for a critical value ν
(c)
t of the transverse trapping frequency νt, see Fig.3.1.

It has been the subject of theoretical investigations [36, 38, 39] and experimentally

observed [33, 34]. In particular, in [39] the authors demonstrated this transition to

be of the second order, in agreement with earlier numerical investigations [38] and

in a later paper it was argued to be a quantum phase transition [40, 41]. In what

follows some features of both the linear and the zig-zag phase are discussed.

Assuming a stable linear configuration with strong transverse confinement νt > ν

and small oscillations around the equilibrium positions ~r
(0)
j = (ja, 0, 0) , j = 1, . . . , N

with a the equilibrium inter-particle distance, the Hamiltonian (3.11) can be ex-

panded up the second order in the displacement variables ~rj = ~r
(0)
j − δ~rj. The

resulting effective Hamiltonian describes a set of interacting harmonic oscillators

with effective couplings Γij

Γij =
2Q2

|x(0)
i − x(0)

j |3
. (3.12)

We observe a uniformly spaced chain as long as νt > ν
(c)
t [36, 39],

ν
(c)
t = ω0

√
7ζ(3)

2
, (3.13)

where ω0 =
√
Q2/ma3 is a natural frequency that only depends on the ion’s species

and number and ζ is the standard Riemann function. This linear regime is the

simplest structural pattern arising from ion’s localization, where all the vibrational

degrees of freedom are uncoupled from each other. As extensively discussed in

Chapter 2, this is also the regime implemented for quantum information and com-

putation tasks. The excitation spectrum of the chain can be easily calculated leading
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to [39,103]

ω‖(k) = ω0

√√√√8

N/2∑
j=1

1

j3
sin2

(
jka

2

)
,

ω⊥(k) =

√√√√ν2
t − 4ω2

0

N/2∑
j=1

1

j3
sin2

(
jka

2

)
,

(3.14)

where the sbscripts ‖,⊥ refer to longitudinal (along the x−axis) and perpendicular

(y − z plane), respectively, and the normal mode’s wave vectors are k = 2πn/Na

with n = 0,±1,±2, . . . , N/2, for N even. When the transition to the zig-zag phase

takes place the transverse component of the spectrum vanishes at k = π/a. This

vibrational mode is called the soft-mode of the chain and corresponds to the shortest

wavelength and with the lowest energy in the ω⊥ dispersion relation.

In Ref. [39] it was shown that the soft mode drives the chain across the mechanical in-

stability that is responsible for the transition. More precisely, this mode is associated

to a deformation of the chain that leads to a planar zig-zag structure with periodicity

2a. The order parameter is the transverse equilibrium distance b from the longitudi-

nal axis and it is a function of a and νt respectively. When the chain enters the zig-

zag regime the new equilibrium positions are ~r
(0)
j = [ja, (−1)jb/2, 0] , j = 1, . . . , N .

In this case the x and y vibrational degrees of freedom of the chain are all coupled and

the first Brillouin zone is now [0, π/2a], with k = 2πn/Na and k = 0, 1, . . . , N/4,

that is reduced by a factor of 2. The excitation spectra, which displays multiple

branches depending also on the parity of each mode, are far more structured than

the linear case. For a detailed derivation and description of the system see Ref. [39].

We conclude this section by mentioning that all of the vibrational modes, both in the

linear and in the zig-zag regime, can be easily quantized through standard quantiza-

tion procedure. Moreover, by means of Taylor expansion up to the second order in

terms of the ion’s displacement from the equilibrium positions, the full Hamiltonian

(3.11) can be mapped onto an effective harmonic oscillator. Thus the eigenmodes,

within the validity of this approximation, follow a bosonic statistics. This, in turn,

implies that each ion’s displacement operator can be linearly expanded in terms

of annihilation and creation operators of the eigenmodes, by following the same

procedure discussed in Chapter 2 that led to Eq.(2.20).

3.5 Ramsey interferometry in the zero-temperature

limit

In this section we show in detail the protocol we use to probe a N−ion Coulomb

crystal near criticality. First, in order to use an open quantum system approach we
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Figure 3.1: Linear and zig-zag equilibrium configurations in a Coulomb crystal.

need to identify the system S and its environment E. We pinpoint the first ion in

the chain and we select two internal states that we label {|e〉, |g〉}. This will be our

open system S. The rest of the ionic chain is taken to be the surrounding environ-

ment E. The relevant degrees of freedom of E are the vibrational ones and so we

can use the normal-mode decomposition and picture E as a bosonic environment

with a non-trivial discretized excitation spectrum, both in the linear and the zig-zag

regime.

Each ion’s displacement operator δ~̂r in the chain can be expanded in terms of an-

nihilation and creation operators of the normal modes. For instance, for the target

ion in the linear phase this reads as [101]

δx̂1 =
∑
k

√
~

Nmωx(k)

{
cos ka

[
b̂x(k,+) + h.c.

]
+ sin ka

[
b̂x(k,−) + h.c.

]}
,

δŷ1 = ŷ1 =
∑
k

√
~

Nmωy(k)

{
cos ka

[
b̂y(k,+) + h.c.

]
+ sin ka

[
b̂y(k,−) + h.c.

]}
,

δẑ1 = ẑ1 =
∑
k

√
~

Nmωz(k)

{
cos ka

[
b̂z(k,+) + h.c.

]
+ sin ka

[
b̂z(k,−) + h.c.

]}
,

(3.15)

where ± indicates the mode parity under k → −k reflection and the ωx/y/z(k) are

given by Eq.(3.14). The b̂, b̂† operators satisfy the usual commutation relations for

bosons. The coupling between the two-level system and the rest of the chain is

engineered via the following resonant laser pulse in the transverse direction y

ĤINT = ~Ω
[
σ̂+e−i(ωLt−kLŷ1) + h.c.

]
, (3.16)
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Figure 3.2: Ramsey interferometry of a single spin (light blue) in a Coulomb crystal
(dark blue).

where σ̂+ = |e〉〈g|, σ̂− = |g〉〈e|, Ω is the Rabi frequency of the laser, ωL, kL are

the laser frequency and wave-vector respectively. The target ion receives a state-

dependent mechanical ’kick’ in the y direction due to recoil caused by laser-photon

absorption. It immediately starts oscillating and excites all the transverse vibra-

tional normal modes of the chain. The operator e−ikLŷ1 is nothing but a common

displacement operator for the y normal modes of the chain:

e−ikLŷ1 =
⊗
k,σ

D̂(αk,σ) =
⊗
k,σ

exp
[
αk,σ b̂

†
y(k, σ)− α∗k,σ b̂y(k, σ)

]
, (3.17)

where σ labels the mode parity and the coherent amplitudes are [101]

αk,+ = i

√
~

Nmωz(k)
cos ka, αk,− = i

√
~

Nmωz(k)
sin ka. (3.18)

Analogous, but slightly more complicated expressions, are found for the zig-zag

phase.

We are now in the position of describing the complete Ramsey interferometric pro-

tocol used to probe the Coulomb crystal. We label with TL the laser pulse duration

and with ωM the largest frequency of the composite system S + E and assume

ωMTL � 1. This corresponds to having a strong and practically instantaneous laser

pulse. We set ΩTL = π/4 in Eq.(3.16), therefore applying a π/2 pulse, after which

we let S and E evolve freely for a time t. The time-dependent dynamics is then

governed by the following Hamiltonian

Ĥ0 =
~σ̂z
2

+
∑
k,σ

~ωy(k)b̂†y(k, σ)b̂y(k, σ). (3.19)

43



Finally, we apply a −π/2 pulse. The total evolution operator reads as follows

Û(t) = ÛINT (−π/2)Û0(t)ÛINT (π/2). (3.20)

It is important to remark that t is the time elapsed between the two pluses. Using

the Bloch-sphere representation (θ, φ) for S, we choose a generic pure initial state

of the form

|ψi〉 =

[
cos

(
θ

2

)
|e〉+ eiφ sin

(
θ

2

)
|g〉
]⊗

|0〉, (3.21)

where |0〉 is the total phononic vacuum state, which is defined as |0〉 =
⊗

k,σ |0k,σ〉.
After applying (3.20) to |ψi〉 we obtain the following final system-environment state

Û(t)|ψi〉 = |ψf〉 =
1

2
[|g, χg(t)〉+ |e, χe(t)〉] , (3.22)

where
|χg〉 = cg|0〉+ ice| − α〉+ cgD̂(−α)|α(t)〉 − ice| − α(t)〉,
|χe〉 = ce|0〉+ icg|α〉+ ceD̂(α)| − α(t)〉 − icg|α(t)〉,

(3.23)

and we have introduced the short-hand notation ce = cos (θ/2) , cg = eiφ sin (θ/2),

|α〉 ≡⊗k,σ |αk,σ〉, αk,σ(t) = αk,σe
−iωy(k)t and D̂(α) ≡⊗k,σ D̂(αk,σ). At this stage we

make use of the open quantum system approach. We are interested in the reduced

dynamics of the two-level system. Hence, we trace out the environment degrees of

freedom to get the state of the probe qubit

ρ̂S(r) = [1− ρgg(t)] |e〉〈e|+ ρgg(t)|g〉〈g|+ ρeg(t)|e〉〈g|+ h.c.. (3.24)

The density matrix elements of the two-level system after partial trace read

ρgg(t) =
1

4

{
2− ξ sin θ sinφ[1− e−2A(t)] + 2 cos θ cos[B(t)]e−A(t)

}
, (3.25)

ρeg(t) =
1

4

{
sin θ

2

[
e−iφ

(
1 + 2e−A(t) cos[B(t)] + e−4A(t)

)
−

2eiφξ4
(
eA(t) cos[B(t)]− 1

) ]
+ iξ

[
e−2A(t) − 1

]
×[

sin2

(
θ

2

)
e2iB(t) − cos2

(
θ

2

)
e−2iB(t)

]}
,

(3.26)
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where the A,B and ξ functions are

A(t) = 2
∑
k,σ

|αk,σ|2 sin2

[
ωy(k)t

2

]
,

B(t) =
∑
k,σ

|αk,σ|2 sinωy(k)t,

ξ = e−
∑
k,σ |αk,σ |2/2.

(3.27)

At this point we need to make a remark. As discussed in section 3.2 a standard

open system interacts with its environment via a fixed interaction that does not

usually change in time. Since here the overall evolution is made up of three different

building blocks, two laser pulses and a free evolution, one may argue that this case

study is a bit atypical. However, the operation of tracing out the environment’s

degrees of freedom in the Ramsey scheme is perfectly legitimate and a dynamical

map for the two-level system is well defined as long as we start from a factorized

state. In this respect, it is interesting to notice that the overall process admits two

complementary viewpoints: If we set the initial time t0 = 0, then the system time-

evolution is dictated by a complex quantum map, analogous to a black box, to which

we cannot assign a unique global Hamiltonian describing its action. Nevertheless,

the reduced evolution is described by a CPT map. If, instead, we set t0 = +TL we

are looking at the free evolution of an initially correlated system-environment state.

Obviously, in the second case, a CPT map is not guaranteed to exist. However,

either way, we are effectively engineering and simulating an open system dynamics

where both dissipation and decoherence processes can take place. In the following we

will quantify the degree of non-Markovinaity associated to this dynamical process.

3.6 Non-Markovian Coulomb crystal

In this section we will study the Markovian/non-Markovian character of Ramsey

interferometry of a single 1/2 spin embedded in a Coulomb crystal that undergoes

a linear-to-zig-zag phase transition. First, we define the reduced tuning parameter

∆ = νt/νc − 1. When ∆ = 0 the chain is at criticality. Once again, we recall the

dynamical map for the reduced density matrix

ρ̂S(t) = Λtρ̂S(0) = trE

[
Û(t)ρ̂S+EÛ

†(t)
]
, (3.28)

where Û(t) is given in (3.20). Since we are dealing with a single two-level system only

initial pairs formed by orthogonal pure states are to be considered when it comes to

the state space maximization in Eq.(3.10) [102]. However, given the complexity of

(3.28), see Eq.(3.25)-(3.26), it is impossible to perform such a maximization exactly
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even for a few ions in the chain. Numerical evidences, based on the rate of change

of D(t) for several initial pairs of orthogonal pure states spanning the whole Bloch

sphere, seem to suggest that the maximizing pair is formed by the eigenstates of σx,

which we label |+〉, |−〉. The corresponding trace distance reads as

Dopt(t) =
∣∣ρ(+)
eg (t)− ρ(−)

eg (t)
∣∣, (3.29)

Interestingly, the dynamics of the |+〉, |−〉 pair is purely dephasing, i.e., neither

|+〉 nor |−〉 exchanges energy with the bosonic chain. The time-evolution of D is

strongly sensitive to changes in the tuning parameter ∆. In Ref. [101] an exact

expression of the visibility of the Ramsey protocol was derived for the case of the

two-level system initially in the ground state

V(t) = exp [−A(t)], (3.30)

By further simplifying Eq.(3.29) it can be shown analytically that the optimal trace

distance is a function of the visibility V(t)

Dopt(t) =
1

4

∣∣∣∣1 + 2 cos [B(t)]

(
V(t)− ξ4

V(t)

)
+ V4(t) + 2ξ4

∣∣∣∣ , (3.31)

This result is of great importance for two reasons. First, it establishes an exact

analytical link between the fringe visibility V(t), which is experimentally measurable,

and the non-Markovian character of the process as measured by N . Second, and

more important, in order to obtain Dopt(t) in a real experiment we only need to

initialize the spin in the ground state. No pair initialization is required, nor the

creation of superposition states.

It is worth mentioning that the term V(t) − ξ4/V(t) in (3.31) accounts for the

overlap between time-dependent coherent states of opposite sign and the initially

laser-generated coherent states. This feature is a consequence of the optimal pair of

states and shows notable similarity to the critical model of Ref. [52].

Let us remark that the above formula is completely general and specific of the

dynamical steps (3.20) only. The nature of the chain, that is either linear or zig-zag,

is fully encoded in ξ, A(t) and B(t) only. In the following subsections we will analyze

in detail the behavior of both Dopt(t) and N in two complementary time regimes.

3.6.1 Short time scale

In this section we analyze the short time behavior of the backflow of information.

First, let us clarify how we define this regime. Since we are dealing with a finite

system recurrences in any kind of interferometric signal are expected. The exci-
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tation created by the initial laser pulse propagates across the crystal and results

in oscillations of the chain that will be asynchronous up to a certain time tR. At

this instant a quasi-synchronous collective behavior will occur, leading to a strong

revival in the fringe visibility. This revival time can also be seen as the time that it

takes for the initial excitation to travel through the crystal and back to the target

ion. It can be estimated with the following formula

tR =
Na

vmax

, (3.32)

where vmax = ∂ωy/∂k|max is the maximum group velocity allowed in the first Bril-

louin zone. Thus, we set an upper bound tM < tR to the elapsed time and this will

also be the upper integration limit in Eq.(3.10). In the experimental set up in [33],

this tM would roughly correspond to 250µs.

We first investigate the time-evolution of the optimal trace distance on the linear

side of the phase transition for two different values of the tuning parameter, see

Fig.3.3 with τ = ω0t. The black curve shows the behavior at ∆ = 10−1, hence

not very close to the critical point. After a significant initial drop we observe some

lightly damped oscillations up to a revival time τR ≈ 150. When the chain is instead

pushed very close to criticality, red curve at ∆ = 10−5, we observe a completely dif-

ferent behavior for Dopt. The trace distance is abruptly damped up to a shorter

revival time τR ≈ 120. Some tiny oscillations are still present and the revival peak

is more pronounced that in the black curve. Based on this plot we expect the non-

Markovianity measure N to show a local minimum at ∆ = 0, at least as long as the

elapsed time is smaller than τR. In this way, all the memory effects we observe are

due only to the exchange of information between the two-level system and the rest

of the chain and no finite-size effects are involved.

The behavior of N as a function of ∆ is shown in Fig.3.4 for N = 100, 1000. The

point ∆ = 0 represents the critical point and in the harmonic approximation em-

ployed here we can go as close to it as 10−6 on both sides. A clear and rather

sudden change in the behavior of N very near the critical point is observed. This

minimum coincides with the occurring of the structural phase transition and is in

perfect agreement with the time-evolution of the optimal trace distance for smaller

and smaller values of ∆.

Even though the non-Markovianity measure is not symmetric around the critical

point, N∆→0− and N∆→0+ converge to the same value, which appears to be a non-

zero absolute minimum, at least in the ∆ range here considered. As the environment

approaches the critical point the dynamics of the probe becomes less non-Markovian.

We would like to stress that the behavior shown in Fig.3.4 is characteristic of a sec-

ond order phase transition. Even if N is a continuous function when ∆ → 0±, its
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Figure 3.3: Short-time-scale dynamics: Time-evolution of the trace distance for the
maximizing pair {|+〉, |−〉} for N = 100, far from the critical point (black line,
∆ = 10−1) and very close to it (red line, ∆ = 10−5).

Figure 3.4: Short-time-scale dynamics: Non-Markovianity measure N for short
time-scale truncation as a function of ∆ for N = 100 (blue solid line) and N = 1000
(green dashed line).

derivative is not. A similar feature is found when one studies derivatives of thermo-

dynamical and statistical quantities in presence of a classical and quantum phase

transition. Obviously, this observation does not necessarily imply thatN is a critical

quantity in general.
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3.6.2 Long time-scale in the thermodynamic limit

We now move to investigating the long-time scale behavior, corresponding to roughly

tM ≈ 5 ms if we consider the set up in [33]. Here, the elapsed time t is long enough to

allow for the direct observation of the soft-mode dynamics, as detected by the two-

level system. The following discussion, however, is to be considered as a qualitative

description of what happens in the thermodynamic limit only. In Coulomb crystals,

such limit corresponds to taking the following limits N → ∞, L → ∞ and keeping

a constant. In slow and coarse-grained regime, when the environment is pushed

to criticality, anharmonic terms, arising from a Ginzburg-Landau expansion of the

chain Hamiltonian (3.11) can become relevant [39] and lead to a breakdown of the

harmonic approximation. Unfortunately, an exact and full ab-initio calculation of

the collective dynamics of a Coulomb chain is still missing and all the existing models

are based upon a perturbative approach in the neighborhood of the critical point.

The following argument aims to suggest why, even in this long time-scale, a second

order expansion could still be reasonable as long as we are approximately in the

thermodynamic limit. Within the framework of Landau theory, it was shown in [39]

that the 4th-order contribution to a Taylor expansion of Hamiltonian (3.11), namely

V (4) scales at criticality as ω2
0/Na

2, whereas ω ≈ ω0∆ + δk for all the relevant

modes near the soft mode (δk = 0). As the thermodynamic limit is defined via the

condition that, for N →∞, a remains constant, it is easy to check that ω/V (4) � 1

for N � 1. For instance, if we take N = 300 and ∆ = +10−6 we obtain that

ω/V (4) ≈ 104 for 0 ≤ δk ≤ 10−5. We again stress that this is an estimate based on

an effective perturbative expansion of the crystal Hamiltonian. For a more detailed

description, see [39].

The time-evolution of the optimal trace distance in this case is displayed in Fig. 3.5

again in the linear regime, for ∆ = 0.1, 10−6 and N = 300. The colors are chosen

as in Fig.3.3. Contrary to what happens in the short-time-scale regime, when the

crystal is pushed closer and closer to criticality, the optimal trace distance displays

wider and wider oscillations in time. Hence, the non-Markovianity measure should

increase as the chain approaches the critical point. Fig.3.6 indeed confirms this idea:

N displays a cusp-like maximum when ∆→ 0±.

As we mentioned earlier the soft-mode at k = π/a drives the linear chain across

the transition causing the periodic zig-zag deformation. The wide oscillations in red

in Fig.3.5 are at the soft-mode frequency: the coupling between this mode and the

single spin appears to dominate over all the modes, whose presence still manifest in a

slowly damped dynamics of the optimal trance distance. The phononic background,

which forces the system to dephase strongly at short-time-scales near criticality, is

here overruled by an effective one-to-one coupling between the target ion and the
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Figure 3.5: Long-time-scale dynamics: Time-evolution of the trace distance for the
maximizing pair {|+〉, |−〉} for N = 300, far from the critical point (black line,
∆ = 0.1) and very close to it (red line, ∆ = 10−6).

Figure 3.6: Long-time-scale dynamics: Non-Markovianity measure N for long time-
scale truncation as a function of ∆ for N = 300.

soft mode. In this sense, all the modes at k 6= π/a act as a weak source of noise

for the hybrid system composed by the 1/2 spin and the soft mode. These two

opposite behaviors are not at all incompatible. Although the two-level system and

the soft mode always couples very strongly at criticality, for short times the first is

able to resolve only the high-energy part of the environment spectrum corresponding

to lower momenta. Instead, when we wait long enough, revivals in the Dopt(t) will

show up resulting in a the peak in non-Markovianity.
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3.6.3 Finite size effects

In this last subsection we study how a finite number of ions affects the above re-

sults. This is important for two reasons. First, in the standard theory of open

quantum systems usually one assumes that the environment consists of an infinite

and continuous number of degrees of freedom. Thus, to see what happens when this

condition is not fulfilled is interesting from a foundational point of view. Second,

since in the short-time regime we know the harmonic approximation to be valid to

an excellent level of accuracy, we can calculate the non-Markovianity measure near

criticality for an increasing number of ions in the chain and find out how quickly

we approach the thermodynamic limit. The results are displayed in Fig. 3.7. The

critical non-Markovianity Ncr saturates to a small non-zero value very soon and

no significant deviation from this value is observed up to at least N = 2000 (not

shown). Finite-size effects that translate to faster recurrences and would lead to a

larger value of the non-Markovianity measure, are relevant only for relatively small

N and no appreciable variation of Ncr is detectable as soon as N > 100. The ther-

modynamic limit is very quickly reached and the interesting fact is that the flow of

information from the two-level system to the rest of the chain is never complete. At

short-time sclaes only the high-energy part of the spectrum (small k) is resolved by

the probe. This portion of the environment excitation spectrum is essentially flat

(∂ω(k)/∂k|k=0 = 0) meaning that all these modes dephase and rephase almost in

sync. The system leaks information on average only since the dephasing and rephas-

ing cycles repeat many times within the short time interval we consider. Some of

this information does not flow out. This effect is further enhanced by short-time

recurrences, which are simple mechanical excitations going back to the system.

3.7 Temperature

All the previous results were presented assuming the Coulomb crystal to be at

zero-temperature. This means that no thermal excitations would be present at any

point during the Ramsey protocol. All the excitations created in the chain would

arise from pure laser-assisted interaction with the single two-level system and they

would coherently evolve at all times. If we initialized the environment to a thermal

state, we might expect some of the previous results to no longer hold true. This

is precisely what this section is all about. We will repeat the same investigation,

however focusing on a short-time regime only, assuming the following initial joint

state of system and environment

ρI = |φ0〉〈φ0| ⊗ ρT , (3.33)
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Figure 3.7: Short-time-scale: non-Markovianity measure Ncr at criticality as a func-
tion of the number of ions N .

where the initial system pure state is again generic linear superposition and the

environment state is a multi-mode factorized thermal state

|φ0〉 = cos

(
θ

2

)
|e〉+ eiφ sin

(
θ

2

)
|g〉,

ρT =
⊗
k,σ

 ∞∑
nk,σ=0

e−β~ω(k)nk,σ

Zk,σ
|nk,σ〉〈nk,σ|

 ,

(3.34)

where β = 1/kBT, ω(k) ≡ ω⊥(k), Zk,σ =
∑∞

nk,σ=0 e
−β~ω(k)nk,σ and σ indicates the

mode parity. Once again, the reduced density matrix for the system dynamics can

be easily obtained from the global dynamics by partially tracing out the vibrational

degrees of the chain. If the initial temperature of the chain is not too high, as

compared to its largest transverse frequency, we can look at this thermal character

as a weak perturbation to S + E state initialization. Hence, the A,B, ξ quantities

in Eq.(3.27) as well as the visibility V change as follows [101]

A(t, β) = 2
∑
k,σ

|αk,σ|2 coth

(
~ωkβ

2

)
sin2 (ωkt/2) ,

B(t, β) =
∑
k,σ

|αk,σ|2 coth

(
~ωkβ

2

)
sin(ωkt),

ξ(β) = exp

[
−
∑
k,σ

|αk,σ|2/2 coth

(
~ωkβ

2

)]
,

V(t, β) = exp [−A(t, β)] .

(3.35)
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It is straightforward to check that in the T → 0 limit Eqs.(3.35) reduce to Eq.(3.27).

In this low-temperature limit we assume the maximizing pair to be the same as in

the T = 0 case, that is the eigenstates of σ̂x. The optimal trace distance reads as

Dopt(t, β) ≈ 1

4

∣∣∣∣1 + 2 cos [B(t, β)]

(
V(t, β)− ξ4(β)

V(t, β)

)
+ V4(t, β) + 2ξ4(β)

∣∣∣∣ , (3.36)

The time-evolution of the optimal trace distance for increasing values of the chain’s

temperature, far from criticality at ∆ = 0.1 and for N = 100 is displayed in Fig.3.8.

When we increase the initial temperature with respect to the largest frequency ωmax

the overall value of Dopt decreases. However, the amplitude of its oscillations in time

increases. The flow of information is greatly amplified when the initial temperature

of the chain is higher.

However, a simple argument can be used to understand this effect. Loosely speak-

ing, as the environment is initialized in a thermal state, several modes are already

well populated to begin with. Since the two-level system couples with the same

strength to all the modes of the environment (see Eq.(3.16)) the more modes are

initially excited, the more the interaction will be distributed among them. Another

interesting feature of this regime is that the oscillations of Dopt are roughly in phase

regardless of the initial temperature of the chain.

When, instead, the environment is pushed close to criticality a different behavior

arises, see Fig.3.9. Now, an increasing initial temperature causes the optimal trace

distance to decay much more rapidly. On the contrary, the amplitude of the very

few oscillations we can observe does not appear to be significantly affected. Fur-

thermore, all these curves saturate to the same value for later times. This behavior

is exactly the opposite of what we observe far from criticality.

Similarly to the T = 0 scenario we again want to have a quantitative and time-

independent picture of the connection between critical behavior and backflow of

information. Hence, we study the non-Markovianity N as a function of ∆. The

truncation time, that is the upper integration limit, is chosen to be ω0tT ≈ 120.

Once, again, we notice a clear dip in N in the proximity of the critical point, lo-

cated at ∆ = 0. An interesting feature of Fig.3.10 is that when the temperature of

the environment increases the steepness of the dip decreases. This effect is especially

obvious when looking at the green curve, corresponding to the highest temperature,

on the zig-zag side of the transition. It is also interesting to notice that far from

criticality the higher the temperature the more non-Markovian the environment:

this is in agreement with the dynamics of the trace distance displayed in Fig.3.8.
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Figure 3.8: Time-evolution of Dopt(t, β) at ∆ = 0.1 for N = 100 and four different
values of temperature: β~ωmax = 0.3 purple, β~ωmax = 0.7 dark pink, β~ωmax = 1.2
dark yellow and β~ωmax = 4.3 green.

3.8 Conclusions

In this chapter we have used an open quantum system approach to investigate the

critical dynamics of a Coulomb crystal. Equipped with a single and controllable

quantum object, a 1/2 fictitious spin, and a probing protocol, Ramsey interferome-

try, we have proven the decoherence induced on the spin by the rest of the chain to

be extremely sensitive to critical behavior.

To obtain quantitative results, we have investigated and quantified the non-Markovian

character of the probing process, as measured by N . Sudden changes in N as a

function of the tuning parameter ∆ are observed whenever the chain undergoes the

linear-to-zig-zag phase transition. These result in extrema that not only unam-

biguously pinpoint criticality but whose nature also reflects the physics at different

time-scales.

Furthermore, an analytical link between the backflow of information, as measured

by D(t), and the visibility of the Ramsey fringes has been established, allowing for

a direct experimental observation of N near criticality and within the validity of the

approximations used.

We have performed the analysis both in the case of zero and finite, but small, tem-

perature. The findings are very similar and totally compatible with each other. In

particular, accounting for an initial thermal character of the Coulomb crystal caused

by a non-perfect state-initialization, provides a more realistic model.

Our results seem indicate that this type of approach allows one to successfully detect

abrupt changes in the dynamics of a many-body systems, such as phase transitions,

by means of a local quantum probe.
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Figure 3.9: Time-evolution of Dopt(t, β) at ∆ = 10−5 for N = 100 and four different
values of temperature: β~ωmax = 0.3 purple, β~ωmax = 0.7 dark pink, β~ωmax = 1.2
dark yellow and β~ωmax = 4.3 green.
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Figure 3.10: Non-Markovianity measure N as a function of the relative distance ∆
for four different values of temperature: β~ωmax = 0.3 purple, β~ωmax = 0.7 dark
pink, β~ωmax = 1.2 dark yellow and β~ωmax = 4.3 green. The truncation time in N
is about ω0tT ≈ 120.
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Chapter 4

Quantum correlations in the

two-atom Fermi problem

4.1 A brief introduction to the Fermi two-atom

model

The Fermi model, in its original conception, can be seen as a gedanken experiment

enquiring about the causal behavior of quantum probabilities. Suppose two identi-

cal atoms are located at two points in space and time, say rA = (xA, 0, 0, tA) and

rB = (xB, 0, 0, tB) separated by a spatial distance R = rB − rA. They both inde-

pendently interact with a multimode, quantized electromagnetic field Ê(r). Let us

assume that at t = 0 the atom A is in an excited state |e〉, the atom B is in its

ground state |g〉 and no photons are present. Because of the interaction, at some

time t > 0 the atom A will decay to its ground state and emit a traveling photon

that will be most likely absorbed by B at some later time.

As long as the two atoms are causally disconnected, that is their light cones do not

intersect, is the excitation probability of B completely independent on the presence

of A? Stated in a more general fashion: do transition probabilities in quantum me-

chanics respect the principle of causality?

This question was first addressed by Fermi back in 1932 [57] who gave it a positive

answer: the probability amplitude of the state |gA, eB, 0〉, where the atoms have

swapped the photonic excitation, starts increasing only after the they have become

causally connected. Despite its simplicity, this result generated a long academic

debate for the years to come. Most of the criticism to Fermi’s solution was due to

subtle technical flaws in his original calculation, such as use of the rotating-wave-

approximation (RWA) and inclusion of negative frequencies of the field [58]. This

problem was then further analyzed using different models and approximations. Gen-

erally speaking, all of the following results were obtained within the framework of
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perturbation theory [59,61,62].

Through the years, it became clear how this question concerning the very founda-

tions of quantum field theory, could be addressed from very different perspectives.

In a series of papers a violation of Einstein’s principle of causality was found and

investigated in connection with the problem of state localization in quantum me-

chanics, the difficulties connected to using a bare-state representation for the atoms

and the field and the attempt of defining in a rigorous operative way the act of

measuring the excitation probabilities of the second atom [60,104].

In a very recent paper, a strict proof of causality in the Fermi two-atom problem

was given where, by causality, the authors mean a complete independence of the

excitation probability of B upon A for t < r/c [105]. On the other hand, it was also

shown how two-point correlation functions can be non-zero outside the light cone.

This result obviously does not violate causality: turning correlations into useful in-

formation implies transmission and that is proven to be causal.

In this chapter we address the problem of how more general types of quantum cor-

relations behave in relation to causality. In particular we will focus our attention

on entanglement [65], quantum discord [68, 69] and correlation functions [67]. Fur-

thermore, we will also study non-locality, as quantified by the violation of Bell-type

inequality [106, 107]. All the following results will be derived within the framework

of second-order time dependent perturbation theory. The content of this chapter is

mostly based on the findings reported in Ref. [64].

4.2 The Fermi model: perturbative time-evolution

of the two-atom state

The Hamiltonian describing the two-atom Fermi problem in the two-level dipolar

approximation can be expressed as follows [108]

Ĥ =
1

2
~(ΩAσ̂

z
A + ΩBσ̂

z
B) +

∫ ∞
−∞

dk ~ωkâ†kâk +
∑
j=A,B

V̂ (xj), (4.1)

with the single-atom interaction potential given by

V̂ (xj) = dj

∫
dk
√
Nωk

[
eikxj âk + e−ikxj â†k

]
σ̂xj , (4.2)

where σ̂αj is the α Pauli operator for the j-th atom, we assume a linear dispersion

relation ωk = υ|k| where υ = c in vacuum, ak, a
†
k are the usual annihilation and

creation operator satisfying boson commutation relations [ak, a
†
k′ ] = δk,k′ , Ωj =

ωj,e − ωj,g is the energy separations between the atomic internal levels and dj is the
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dipole operator amplitude 〈ej|σ̂xj |gj〉 (j = A,B). N is a normalization constant. As

usual in QED, the size of the atoms are assumed to be much smaller that the relevant

wavelengths λj = υ/(Ωj/(2π)), that is, the atoms are localized and their positions

can be considered as classical known variables [99]. The dynamics generated by the

Hamiltonian (4.1) cannot be calculated exactly unless the counter rotating terms

are neglected [99]. If we expand

σ̂x = σ̂+ + σ̂−, (4.3)

where σ̂± are the atom annihilation/creation operators, then the counter-rotating

part ĤCR of the Hamiltonian reads as

ĤCR =
∑
j=A,B

dj

∫
dk
√
Nωk

[
σ̂+
j â
†e−ikxj + σ̂−j âe

ikxj
]
, (4.4)

The above Hamiltonian creates or annihilates atom and field excitations simultane-

ously. This, in turn, translates to an infinite set of differential equations which is

obviously an impossible task to address. Thus, a perturbative approach that relies

on expanding the Heisenberg equations or, equivalently, the time evolution operator

in interaction picture is necessary [108]. Furthermore, as demonstrated in [59], it

is precisely the presence of non-rotating terms that accounts for the causal behav-

ior of the equations of motions, already at the lowest order of perturbation. This

constraints both the time-scale and the coupling regimes that we can access in our

analysis.

The initial state of the composite system is

|φ(0)〉 = |eA, gB, 0〉 . (4.5)

As anticipated above both the atoms and the field are initialized in some precise

bare states of the respective non-interacting Hamiltonians. We switch on the atom-

field interactions V̂ (xj) and study the dynamics of the three-body system up to a

certain time tmax compatible with our perturbative theory. In interaction picture

with respect to the free Hamiltonian

Ĥ0 =
1

2
~(ΩAσ̂

z
A + ΩAσ̂

z
A) +

∫ ∞
−∞

dk ~ωkâ†kâk, (4.6)

the state of the system at time t reads as

|φ(t)〉 = T [e−i
∫ t
0 dt
′V̂I(t′)/~]|φ(0)〉, (4.7)
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where

V̂I(t) = e−
iĤ0t
~

[ ∑
j=A,B

V̂ (xj)

]
e
iĤ0t
~ , (4.8)

and T is the time ordering operator. If we expand the time-evolution operator up

to second order in the coupling amplitude d we obtain the following time-evolved

state [64, 108]

|φ(t)〉 = [(1 + A) |eg〉+X |ge〉]⊗ |0〉+ (UA |gg〉+ VB |ee〉)⊗ |1〉
+ (F |eg〉+G |ge〉)⊗ |2〉+O(d3).

To compute the coefficients for the vacuum, single-photon, and two-photon states,

we define the atom-action operator (j = A,B)

S+
α =− i

~

∫ t

0

eiΩjt
′ 〈
ej|dσxj |gj

〉
V (xj, t

′)dt′ = −(S−j )†, (4.9)

and calculate its matrix elements among collective Fock states of the field |n〉 , n =

0, 1, 2 . . ., being

|n〉 〈n| = 1

n!

∫
dk1....

∫
dkn |k1...kn〉 〈k1...kn| , (4.10)

and |k〉 = a†k |0〉. Each of the coefficients in the perturbative expansion (4.9) is

associated to a well-defined physical process. The first order terms UA and VB

account for single-photon emission and absorption by a single atom. It is worth

noticing that in these two terms no effective connection between the two atoms is

present and hence we cannot expect them to manifest any causal behavior. The

very contribution representing a photon exchange between A and B is

X = 〈0|T (S+
BS−A )|0〉. (4.11)

This includes real photon exchange only inside the light cone, vt > r. However,

vacuum fluctuations, associated to virtual photon clouds surrounding the atoms,

are present for all values of t and r. The remaining terms are

A =
1

2
〈0|T (S+

AS−A + S−BS+
B ) |0〉 , (4.12)

F =
1

2
〈2|T (S+

AS−A + S−BS+
B ) |0〉 ,, G = 〈2|T (S+

BS−A ) |0〉 .

The A term describes intra-qubit radiative corrections, while F and G correspond

to single-photon emission events by more qubits resulting in a larger number of real

photons. The coefficients in Eq. (4.9) can be computed analytically as a function of
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two dimensionless parameters, ξ and K. The first one, ξ = υt/r, is a dimensionless

time variable; ξ = 1 corresponds to the light-cone that separates two different space-

time regions. ξ < 1 corresponds to the two atoms being causally disconnected

with only virtual photons being exchangeable whereas for ξ > 1 the atoms are

causally connected and real photons can be exchanged. The second parameter is a

renormalized, dimensionless coupling strength

K =
4d2N

~2υ
= 2

( g
Ω

)2

. (4.13)

Since we are interested in classical and quantum correlations generated between the

two atoms we need to discard the field. Thus we perform a partial trace over the

field’s degrees of freedom leading to the following atom-atom density matrix

ρX =
1

c


ρ11 0 0 ρ14

0 ρ22 ρ23 0

0 ρ∗23 ρ33 0

ρ∗14 0 0 ρ44

 , (4.14)

in the basis formed by |ee〉 , |eg〉 , |ge〉 , and |gg〉 . The coefficients with the leading

order of neglected contributions are [64,108]

ρ11 = |V |2B +O(d4), ρ22 = 1 + 2Re(A) +O(d4),

ρ33 = |X|2 + |G|2 +O(d6), ρ44 = |U |2A +O(d4),

ρ14 = U∗AVB +O(d4) = 〈0|S+
AS+

B |0〉+O(d4), (4.15)

ρ23 = X∗ +O(d4),

and the state is normalized, c =
∑

i ρii.

4.3 Quantum correlations and quantumness of cor-

relations

In this section we shall introduce entanglement and geometric quantum discord.

Loosely speaking, one can look at entanglement as the result of superposition prin-

ciple acting in systems with more than one particle. Quantum discord can instead

be seen as a direct consequence of the measurement-and-collapse postulate of quan-

tum mechanics. Although they pertain to different aspects of quantum theory they

both miss a classical counterpart.
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4.3.1 Entanglement

Entanglement is a genuinely quantum property that arises in multipartite systems

and manifests itself as correlations that can not be explained or predicted classically

[65]. It is a consequence of the superposition principle along with the Hilbert space

tensor product assumption for composite systems. Quantum entanglement has been

proven to be a powerful resource as it allows for the implementation of quantum

information protocols that are otherwise impossible, such as quantum teleportation

[109], and for a significant speed-up in quantum computation [110]. Moreover, direct

applications to cryptography have been demonstrated [111]. Entanglement has been

the subject of intense studies in many different areas of quantum physics, ranging

from quantum optics to many-body theory, and major efforts have been made to

formulate a theory for entanglement both in discrete [65] and continuous variable

systems [112]. Several ways of detecting and measuring entanglement have been

theoretically proposed and, in most cases, experimentally tested [113]. Needless to

say, the literature regarding this topic is extremely vast and a complete review goes

well beyond the purpose of this thesis. Here, we focus our attention on bipartite

systems, which are relevant for our following discussions.

Let us assume two quantum systems, whose Hilbert space we name HA and HB

with dimensions dA and dB respectively. Given a composite state |ψ〉 of A and B

we call it separable if two local states |ψA〉 ∈ HA and |ψB〉 ∈ HB exist such that

|ψ〉 = |ψA〉 ⊗ |ψB〉 . (4.16)

On the contrary, if no such a representation exists, we call |ψ〉 entangled. This

definition can be extended to mixed states. We say the composite mixed state ρ̂ is

separable if it can be written as a convex combination of local product states

ρ̂ =
∑
i

piρ̂
A
i ⊗ ρ̂Bi , (4.17)

where pi ≥ 0, ρAi , ρ
B
i belong to HA,HB respectively for every i and

∑
i pi = 1.

Analogously to the pure state case we say ρ̂ is entangled if no expansion (4.17) exists.

A separable state can always be prepared by means of local unitary operations

in HA and HB respectively, coordinated by classical communication between the

two subsystems A and B (LOCC). Any kind of correlation, if present, is of purely

classical origin.

For general bipartite systems a sufficient entanglement-detection criterion exists

based on partial transposition of the total density matrix, known as PPT criterion

[114, 115]. Furthermore, when applied to two-level system not only is the PPT

criterion sufficient but also necessary. In the following we outline the main idea
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behind PPT.

Separability can be revealed with the aid of positive maps. Partial transposition is a

positive map. However, it is not completely positive and so it does not represent any

physical process. It can be shown that when we partially transpose a separable state

of the form (4.17) we are not affecting neither its separability nor its physicality.

This implies that all of its eigenvalues will be still positive after partial transposition.

Thus, if are given a physical state ρ̂ (all eigenvalues are positive), we partially

transpose it with respect to one of the two parties and at least one of its eigenvalues

becomes negative we can conclude that ρ̂ is entangled. Obviously the converse is not

always true. If we label the partially transposed density matrix ρ̂Tj with j = A,B,

the following statement

ρ̂Tj has at least one negative eigenvalues ⇐⇒ ρ̂ is entangled (4.18)

can be proven to be true if dAdB ≤ 6 [114,115].

At this stage, we are provided only with a detection criterion or, equivalently, an

entanglement witness. To actually quantify the amount of entanglement a measure

can be defined, based on the PPT criterion. We call this measure negativity of

entanglement N . This quantity is identically zero for all separable states and it does

not increase under LOCC operations. In this respect it matches all the requirements

for being a valid entanglement measure. For bipartite two-level systems negativity

is easily computable. Given a general d ⊗ d quantum bipartite state (in our case

we will have d = 2) ρ̂, the (normalized to 1) negativity of entanglement is defined

as [116]

N(ρ)
.
=

1

d− 1
||ρ̂TA − IAB||1, (4.19)

where the partial transposition operation is taken here with respect to A, IAB is the

identity operator in the composed Hilbert space HA ⊗ HB and ||M ||1 = Tr|M | =∑
i |mi| is the trace norm for a matrix M with eigenvalues {mi}. The same quantity

can be defined in terms of partial transposition with respect to B, leading to the

same result. Other measures of entanglement for bipartite two-level systems can be

introduced such as concurrence and entanglement of formation.

4.3.2 Quantum discord

Recently, a great deal of attention in the quantum physics community has been de-

voted to the study of quantum correlations other than entanglement. Among them,

quantum discord has surely attracted most of the interest as well as skepticism.

This quantity was first introduced independently in [68] and [69] as a measure of

quantumness of correlations in bipartite systems. The following discussion briefly
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summarizes the key points of Ref. [68]

Let us imagine we are given a bipartite system, whose subsystems we label A and

B, with density matrix ρ̂. We perform a local measurement on one of the parties

only, say A. Since in quantum mechanics a measurement alway perturbs or even

changes the state of the system to be measured, we can expect that in a two-party

scenario such an act might disturb both A and B. Quantum discord can be defined

as the minimum disturbance affecting B whenever we measure A in some suitable

basis.

The way we operatively put this concept in formulas is by looking at the discrep-

ancy, in the quantum case, between two classically equivalent definitions of mutual

information. In classical information theory when we are given a random variable

X we quantify the ignorance about it via the Shannon entropy [117]

H(X) = −
∑
x

pX=x log pX=x, (4.20)

where x labels the possible values of X and pX=x is its probability distribution.

When it comes to two random variables X, Y characterized by a joint probability

distribution pX,Y , we quantify the degree of correlation between the two by intro-

ducing the mutual information [118]

J(X : Y ) = H(X)−H(X|Y ), (4.21)

where H(X|Y ) =
∑

y pY=yH(X|Y = y) is the conditional entropy of X given Y = y.

The pY=y probability distribution is the marginal of the joint one with respect to

the X variable. Bayes rule allows us to write H(X|Y ) = H(X, Y ) − H(Y ) where

H(X, Y ) is the joint entropy. Hence, we can recast Eq.(4.21) in an equivalent form

I(X : Y ) = H(X) +H(Y )−H(X, Y ). (4.22)

Classically, Eq.(4.21) and Eq.(4.22) are completely equivalent. Now, let us turn our

attention to the quantum scenario. In this case we replace the probability distri-

butions with density matrices ρ̂ and the Shannon entropy with the von Neumann

entropy [119]

HV N(ρ̂) = −Tr (ρ̂ log ρ̂) . (4.23)

With these new ingredients at hand we can straightforwardly generalize Eq.(4.22)

to the quantum case whenever we are given a general bipartite state ρ̂. The same,

however, is not true for J . As anticipated before, in quantum mechanics it might be

impossible to gain information about one of the two subsystems without perturbing

the state of the other. Hence, the concept of conditional entropy has to be refor-
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mulated keeping this fact into account. In other words, the Bayes rule is no longer

applicable in the quantum domain. In fact, a conditional bipartite quantum state

is such only after we have measured one of the two parties, say A. Projective mea-

surements in quantum mechanics are formalized via a set of projective operators,

namely {Π̂A
j } corresponding to a certain observable. Assuming a j outcome, the

conditional state of the bipartite system after the measurement reads as

ρ̂j;A =
Π̂A
j ρ̂ Π̂A

j

Tr
[
Π̂A
j ρ̂
] . (4.24)

This leads to the following quantum version of Eq.(4.21)

J(ρ̂ : A){Π̂Aj }
= HV N(ρ̂)−

∑
j

pjHV N(ρ̂j;A), (4.25)

where pj = Tr
[
Π̂A
j ρ̂
]
. Quantum discord is defined as

δ(ρ̂)A = I(ρ̂)− min
{Π̂Aj }

[
J(ρ̂ : A){Π̂Aj }

]
, (4.26)

where the minimization, to be carried out over all the possible set of local projective

measurements, assures that we obtain the minimum disturbance possible that a

local measurement performed on A introduces in B. If we apply the same reasoning

to B instead of A we will obtain that in general δ(ρ̂)A 6= δ(ρ̂)B: quantum discord is

not symmetric under party exchange. It is straightforward to prove that a bipartite

state of the form

ρ̂ =
∑
j

Π̂A
j τ̂ Π̂A

j , (4.27)

with τ̂ a general density matrix, has vanishing discord. Conversely, if δ(ρ̂)A = 0

then ρ̂ can be written in the form (4.27), in some suitable local basis.

It is important to underline that entanglement and quantum discord embody dif-

ferent aspects regarding correlations. As mentioned above, entanglement is a direct

consequence of the linear superposition principle which, in turn, is a consequence

of the first postulate of quantum theory regarding the state of a physical system

and its preparation. Quantum discord comes instead straight from the measure-

and-collapse axiom. The common ground these two concepts share is that they

exist as such only when we look at composite systems or, more precisely, to a col-

lection of distinguishable degrees of freedom. Although for two-level system pure

states quantum discord and entanglement always coincide [68], this is no longer true

in the case of mixed states. Furthermore, separable states can have non-vanishing

discord [120–124]. The connection between these two quantities is still an open
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problem. Also, the possibility for quantum discord to be a resource in quantum

technologies has been long investigated. For an exhaustive review about the topic,

see [125].

Even though the definition of quantum discord we have introduced above perfectly

captures the key idea behind its formulation, it can be rather nasty to calculate due

to the maximization process. In order to overcome this difficulty, the authors in [66]

introduced a different definition based on a geometric approach: geometric quantum

discord D
(2)
A . The underlying idea is pretty much the same as in (4.26) but geometric

discord is much easier to compute for any general bipartite two-level system [126].

Once again, assuming a bipartite quantum state ρ̂ with total Hilbert space HA⊗HB

of dimension dA × dB, we define geometric quantum discord as follows

D
(2)
A (ρ)

.
=

dA
dA − 1

min
χ̂∈Ω0

||ρ̂− χ̂||22, (4.28)

where χ̂ is a so-called classical-quantum state belonging to the set of zero-discord

states Ω0, χ̂ =
∑

i pi|i〉〈i| ⊗ ρ̂iB and||P −Q||22 = Tr(P −Q)2 is the squared Hilbert-

Schmidt distance between a pair of operators P,Q. This definition can be proven

to be equivalent to Eq.(4.26) and it has the same operative interpretation in terms

of minimum disturbance on B whenever A is measured. For the case of interest, a

bipartite two-level system, the geometric discord reads as follows [66]

D
(2)
A (ρ) = 2Tr[S]− 2λmax(S), (4.29)

where λmax is the largest eigenvalue of the matrix S, that is defined as is defined as

S = 1
4
(~x~xT + TT T ) where the upper T stands for transpose.

4.4 Dynamics of correlations in the two-atom Fermi

problem

In this section we investigate the dynamics of negativity of entanglement N , the

square root of geometric quantum discord D(2) and maximally connected spin-spin

correlation function C for the two-atom state ρX. The maximally connected corre-

lation function C(ρ̂) function is defined as follows [67]

C(ρ̂)
.
= max

n,n′
{〈(~σ · n̂)A ⊗ (~σ · n̂′)B〉ρ − 〈(~σ · n̂)A〉ρ̂〈(~σ · n̂′)B〉ρ̂} , (4.30)

where ~σ is the three-component Pauli-operator vector and (~σ · n̂) is the projection

of such a spin vector along the direction pointed by n̂. Obviously, this quantity is

65



definable both in the classical and the quantum case.

In the following we focus on their temporal behavior in relation to the question

of causality and the analysis will involve both classical and quantum correlations,

allowing for a direct comparison. One might wonder about the reason for this specific

choice of correlations and also why we are comparing different powers. Since all the

following results are derived using a time-dependent perturbative expansion of the

general definitions (4.19), (4.29), (4.30), we need a test to check whether they are

consistent with the limitations that such an approach imposes. A hierarchic relation

exists between the three chosen quantities that is valid for any arbitrary state ρ̂ of

a bipartite two-level system

C(ρ̂) ≥
√
D(ρ̂) ≥ N(ρ̂) . (4.31)

The rightmost inequality in (4.31) was proven analytically in [127], while the left-

most one has been verified numerically in [128]. For pure two-qubit states Eq.(4.31)

becomes a chain of equalities. Let us consider the following Bloch state representa-

tion of a bipartite two-level system [129]

ρ̂ =
1

4

(
I1 ⊗ I2 +

3∑
i=1

xiσ̂i ⊗ I2 +
3∑
j=1

yjI1 ⊗ σ̂j +
3∑

i,j=1

tijσ̂i ⊗ σ̂j
)
,

where σi (i = 1, 2, 3) are the Pauli operators; ~x = {xi} and ~y = {yi} represent

the three-dimensional Bloch vectors associated to the two-level systems A and B,

respectively; and tij are the elements of the 3 × 3 spin-spin correlation matrix T .

The square root of geometric discord of the state (4.14), up to the second order of

expansion reads as √
D

(2)
A (ρX) =

√
[Re(U∗AVB)]2 + |X|2 . (4.32)

The main contributions to Eq.(4.32) come from first and second order terms that

account for 1 and 0-photon states respectively. As a explained above, the X term

accounts for excitation-swap between the two atoms and carries all the information

available about causal propagation of the traveling signal emitted by the first atom.

The negativity of ρX reads as

N(ρX) = max
{

0,
√

(|UA|2 − |VB|2)2 + 4|X|2 − |UA|2 − |VB|2
}
, (4.33)

and it depends on the same matrix elements as the geometric discord. However,

a space-time-dependent constraint for entanglement to grow exists: as long as the
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following condition is fulfilled

|X|2
|UA|2|VB|2

≤ 1, (4.34)

negativity will be zero. This entanglement activation time tells us that in order for

the atoms to get entangled second-order processes must dominate over first-orders.

This constraint is absent in the case of geometric discord. Finally, the maximum

connected correlation function reads as

C(ρX) = max
{
|UA|2 + |VB|2 + 2Re(A), 2(|X|+ |L|)

}
, (4.35)

where L = U∗AVB. Once again, only 0 and 1-photon processes contribute. Similarly

to the previous two quantities, C(ρX) also depends on X.

4.4.1 Results and Discussion

In this section we analyze and compare the time-evolution of the the quantities

introduced in previous sections. We remark that the leading terms in the second

order of perturbative expansion are UA, VB and X, which account for 0 and 1-photon

state and are appear in all the correlations we consider here. Interestingly, the

maximum connected correlation function C is also dependent upon the A coefficient.

The square root of the geometric discord is displayed in Fig.4.1. The spatial distance

between the atoms is set to r = υπ/4Ω where Ω = ΩA = ΩB. Different colors

correspond to different values of the coupling parameter, ranging from weak to

strong coupling. All the parameters have been set such that the effective coupling

constant K (Eq.(4.13)) can be written as a linear function of a parameter Z ranging

from 1 to 1000

K =
(
1.5× 10−4

)
Z, (4.36)

The first feature we see is a sharp peak at ξ = 1 after a slow but continuous growth

starting at ξ = 0. The amplitude of such a peak and the global value of
√
D(ρX)

increase with the coupling strength. The point ξ = 1 represents the light-cone

and that is when the two atoms become causally connected. After this time real

photons can be exchanged. By looking at Eq.(4.32) we can easily understand these

features. The square root of geometric quantum discord is the sum of first order

contributions (UA, VB), which account for single atom processes and do not manifest

any causality, and a second order term X that measures the probability of virtual

and real photon swapping for ξ < 1 and ξ > 1 respectively. Thus, the stronger

the coupling, the larger X. By recalling the operational interpretation of quantum

discord we discussed above, we could argue that a one-party measurement performed
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Figure 4.1: Time-evolution of the square root of geometric quantum discord
√
D(ρX)

for Z = 50 (dotted green), Z = 200 (dashed red), Z = 400 (continuous blue).

at any time will always disturb the second party and reveal the presence of the first.

Fig.4.2 shows the time evolution of the negativity of entanglement for the same

choices of the coupling strength K and the same atom-atom distance. Although a

sharp peak is exhibited at ξ = 1, the dynamics of N for ξ < 1 greatly differs from

geometric discord. In fact, entanglement starts increasing sharply just before ξ = 1

and it is zero otherwise. This feature was essentially anticipated by Eq.(4.34). Since

in the ξ < 1 region only vacuum fluctuations are responsible for correlating the two

atoms, we may conclude that entanglement is not as sensitive as geometric discord

to such effect. Moreover, quantum discord is a more general property of quantum

states than entanglement: as anticipated above, a separable quantum state can

have non-vanishing discord. Similar results were found in [108] when studying the

entanglement as measured by concurrence [130] in the same system.

Finally, Fig.4.3 shows the dynamics of the maximum connected correlation function

C(ρ̂X). Once again, all the parameters are the same as in previous figures. Pretty

much like geometric discord, also the spin-spin correlation function starts increasing

significantly for ξ < 1 and it as well displays a clear peak at ξ = 1. This quantity

is not fully quantum a priori and tells us how, on average, the Bloch vectors of

the two atoms influence each other. The optimal measurements n̂, n̂′ are different

in different space-like regions. For ξ < 1, spin-spin correlations are maximized by

measuring the x − y plane component of ~σ: no real excitation can reach the atom

B yet. For ξ ≥ 1, however, the optimal choice is to measure σ̂z for both atoms. As
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Figure 4.2: Time-evolution of the square root of the negativity of entanglement
N(ρX) for Z = 50 (dotted green), Z = 200 (dashed red), Z = 400 (continuous blue).

demonstrated in [108], only after the atoms become causally connected (ξ = 1) the

excited state population of B is no longer independent on the presence of A. Vacuum

fluctuations, whose role is important in connecting the atoms for ξ < 1 via virtual

photons, are able to correlate transversal observables only. For a longitudinal (z−z)

correlation, one has to wait the arrival of the light signal, in agreement with the

causality principle. Provided that a simultaneous space-time-region-dependent set

of measurements on the two atoms could be efficiently performed in the laboratory

frame, this result suggests that the spin-spin correlation function is a meaningful

quantity to measure experimentally.

To conclude this section we compare of all the three quantities considered here in Fig.

4.4 as functions of Z and ξ. No violation of the general hierarchy (4.31) is observed

confirming the consistency of the perturbative analysis that we have utilized.

In the last section we shall focus our attention on the non-locality of the model

so far presented. To this aim, we will check if violations of Bell-type inequalities

ever take place. Possible connections with the dynamics of the correlations that

we have already studied will be investigated as well. The first part of the section

will provide the reader with a minimum background for understanding the theory

of Bell’s inequalities.
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Figure 4.3: Time-evolution of the maximum connected correlation function C(ρX)
for Z = 50 (dotted green), Z = 200 (dashed red), Z = 400 (continuous blue).

4.5 Non-locality

In a famous paper published in 1935, Einstein, Podolsky and Rosen designed a

gedanken experiment to show the incompleteness of quantum mechanics [131]. This

result goes under the name of EPR paradox. Their conclusion was the following:

if we postulate locality and realism as essential features for any physical theory,

then quantum mechanics, with its predictions, cannot be complete. Locality meant

that no action at a distance can ever take place or, equivalently, two distant objects

cannot influence each other instantaneously. Realism implied that any observable

property of an object exists with a well-defined value whether we observe it or not.

Some consequences of quantum mechanics pose a rather clear difficulty to recon-

ciling this theory with these concepts. In particular, the existence of entangled

states seems to simultaneously contradict both realism and locality. This peculiar-

ity was what bothered Einstein the most, so much that he renamed entanglement

a ”spooky action at a distance”. The solution presented by the three authors was

simple: quantum theory is only an approximation of a complete theory, in which

”hidden variables” are the key to restoring both locality and realism.

The solution to such a speculative problem came in 1964 with a groundbreaking

paper by John Bell [106]. Here, the author pictured an experiment whose outcome

would definitely set the argument. He derived an inequality that any physical theory

respecting locality and realism can never violate. We briefly summarize the idea.
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Figure 4.4: Comparative plot displaying the maximum connected correlation func-
tion C (topmost surface, blue online), the square root

√
D of the geometric discord

(middle surface, red online), and the negativity N (bottommost surface, green on-
line), calculated for the state ρX as functions of the dimensionless time ξ and of the
coupling strength Z, for r = υπ/4Ω.
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Imagine we have two separated systems that do not interact with each other at any

point. Let us fix a set of four possible joint measurements where each of the local

measurements has a dichotomousc outcome, say ±1. Starting from the constraint

of locality and realism it is possible to write down a linear combination of the ex-

pectation values of these four joint measurements, which we label B, that is always

bounded from above by a certain value BC. Any hidden variable theory satisfying

the EPR requirements will never violate such an inequality. If quantum mechanics

does represent the surface of a more complicated hidden-variable theory, then no

violation of the Bell’s inequality should be observed ever.

Unfortunately for Einstein, a clear violation of such an inequality was experimentally

observed for the very first time in 1972 [132] and further confirmed in 1981-1982 in

a fully quantum optical setup using pairs of entangled photons [133, 134]. Quan-

tum mechanics has not been proven to be a complete theory. However, it certainly

has been proven not to be consistent with either locality or realism. Further ex-

perimental tests conducted in different setups confirmed this feature of quantum

theory [135–137]. Thus, the take-home message is simple: if we accept quantum

mechanics as the best description of what happens in nature, we are forced to reject

either realism or locality.

At this point, we wonder what the results we presented so far mean when one re-

thinks of the Fermi two-atom problem in terms of non-locality. The case of bipartite

two-level systems has been extensively investigated in literature. The classical bound

to Bell’s inequality is BC = 2 and an upper quantum bound of 2
√

2 was computed

by Tsirelson [138]. This corresponds to the value obtainable for maximally entan-

gled states, such as Bell states. The connection between entanglement and Bell’s

inequality violation is not at all immediate though. If a quantum state does vio-

late Bell’s inequality we know for sure that it does not admit a classical description

nor preparation by means of LOCC. Several entangled states of bipartite two-level

systems fulfill this condition. However, examples of entangled states that do not

violate this inequality are also well known in literature [139]. Hence, whenever we

are given a quantum state ρ̂ such that

2 < B(ρ̂) ≤ 2
√

2, (4.37)

we know that the state at hand is not predictable or reproducible classically. In the

further analysis we will consider two slightly different definitions of the B param-

eter, the one derived by Clauser, Horne, Shimony and Holt (CHSH) [107] and an

alternative optimized version for X−shaped states [140]. The first reads as follows

BCHSH = E(a1, b1)− E(a1, b2) + E(a2, b1) + E(a2, b2), (4.38)

72



where E(aj, bi) = 〈ajbi〉, j, i = 1, 2 are the average correlations of the dihcotomic

observable a1, a2 for system A and b1, b2 for system B. These can be thought of as

spin-projections along different axis for a 1/2 spin particle, or different polarization

states in a photonic system. Assuming that the outcomes are aj = ±1, bi = ±1, j, i =

1, 2 then the BC = 2 bound can be easily computed assuming locality and realism.

For a quantum state the observable aj, bi are replaced by operators and the statistical

average 〈· · · 〉 has to be computed by using Born’s rule. For an X−shaped state,

such as the one at hand in the Fermi problem we find

BCHSH(ρX) = −
√

2(ρ11 + ρ44 − ρ22 − ρ33 + 2Reρ23 + 2Reρ14). (4.39)

For a two-level system, which can always be mapped onto a fictitious 1/2 spin

system, optimizing the Bell parameter means choosing projective angles for the

set of joint spin measurements that maximize the violation of the Bell’s inequality

whenever this is present. The X−state optimized version of BCHSH is given by [140]

BOPT (ρX) = 2
√
u1 + max[u2, u3] , (4.40)

where

u1 = 4(|ρ14|+ |ρ23|)2, u3 = 4(|ρ14| − |ρ23|)2,

u2 = (ρ11 + ρ44 − ρ22 − ρ33)2 .

Fig.4.5 shows the time evolution of the the Bell parameter BCHSH . The first feature

worth noticing is the presence of a sharp peak at ξ = 1 for all of the three values

of the coupling. This behavior surely reminds us of previous plots, where we looked

at the dynamics of correlations. However, a clear difference is present here. In

fact, in order to detect any appreciable violation of Bell’s inequality we need to

push the atom-field coupling to the strong limit and still such a violation would

take place only in the neighborhood of ξ = 1. A direct comparison of this plot

with Fig.4.2 shows us how a non-violation of Bell’s inequality does not really tell

us anything about the true nature of this state: if we took BCHSH as a measure of

quantumness of ρ̂X , we would be misled into believing that we might be able prepare

it by means of LOCC operations. This is obviously not the case as the entanglement

of this state starts increasing roughly around ξ = 0.95 and keeps increasing after

the sharp peak-and-dip at ξ = 1. Fig.4.6 shows the time evolution of the optimized

Bell parameter BOPT . Although, as predictable, the optimized Bell parameter BOPT
is larger than BCHSH for all couplings and at all times, as further enlightened in

Fig.4.7, still no appreciable violation of the classical threshold is observed unless the

same conditions as in Fig.4.5 are matched. Hence, the same conclusions as in the

case of BCHSH apply: an analysis enquiring about the nature of the state ρ̂X based
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Figure 4.5: Bell-CHSH parameter BCHSH and plotted for Z = 100 (dotted green),
Z = 400 (dashed red) and Z = 800 (continuous blue), as a function of ξ. The
straight line at B = 2 gives the limit for a local realistic description.

on Bell’s inequality only is insufficient as well as mainly inconclusive. The only real

conclusion we can draw here is that measurement statistics we observe is compatible

with locality and realism.

4.6 Conclusions

In this chapter a second order perturbation theory was developed to investigate the

dynamics of classical and quantum correlations in the Fermi two-atom problem. All

of the correlations studied turn out to be extremely sensitive to the light cone cross-

ing point, at ξ = 1, where they all exhibit a sharp peak. Needless to say, this is

when the signal emitted from the first atom can finally reach the second and further

excite it.

We have seen that both geometric quantum discord and maximally connected cor-

relation function start increasing at ξ = 0 unlike entanglement which displays a

sudden birth just before ξ = 1. As all the correlations generated in the non-causal

region are due to vacuum fluctuations effectively connecting the two atoms, we can

conclude that geometric discord and spin-spin correlation functions are more sen-

sitive to such an effect than entanglement. In particular, when one looks at C a

sudden change in the nature of this function arises. For ξ < 1 these type of correla-

tions can be only transverse allowing for virtual photon exchange, whereas for ξ > 1
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Figure 4.6: Optimized Bell-CHSH parameter BOPT and plotted for Z = 100 (dotted
green), Z = 400 (dashed red) and Z = 800 (continuous blue), as a function of ξ.
The straight line at B = 2 gives the limit for a local realistic description.
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Figure 4.7: Comparison between BCHSH (red dashed) and BOPT (blue dotted) for
strong coupling Z = 1000. In all these plots r = υπ/4Ω.
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longitudinal excitations (real photons) can be finally swapped. This is in agreement

with recent results concerning the time-evolution of the excitation probability of the

atom B [105].

Finally, a possible violation of Bell type inequalities was investigated in connection

with the quantum or classical character of the state ρ̂X . Unfortunately, such an

analysis has turned out to be not sufficiently illuminating as none or very weak

violations were found.
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Chapter 5

Conclusions and future

perspectives

In this manuscript several aspects of the theory of open quantum system have been

investigated. Major attention has been devoted to studying how interactions and/or

correlations in open quantum system and its surrounding environment can be used

for disparate purposes, such as implementing of quantum gates or probing critical

phenomena.

In Chapter 2, we have introduced a novel scheme for implementing the C-NOT

gate in trapped-ion systems. The use of many-body interactions and of an enlarged

computational space makes it possible for stronger correlations between the ion’s

logic spin and the colletive motional state to develop during the execution of the

protocol. This, in turn, results in a logic gate that is faster and more robust to

dissipation and decoherence than the best experimental realization known so far.

The result is presented for a small number of trapped ions, although the method is

completely general and easily applicable to larger ion strings. Moreover, we believe

it could serve as the starting point for constructing a set of N -body universal gates

as an alternative to the traditional single and 2-qubit operations circuital decompo-

sition.

In Chapter 3 we have analyzed the critical behavior of a Coulomb crystal, exper-

imentally realizable in ion traps, from an open quantum system perspective. By

means of Ramsey interferometry of a single 1/2 spin with the rest of the chain,

intended as a phononic bath, we have witnessed a sudden transition in the reduced

dynamics of the spin whenever the rest of the chain is pushed across criticality. In

particular, we have seen how the backflow of information between the spin and the

chain dramatically drops when the latter becomes mechanically unstable. Since we

utilize this quantity as a quantifier of the degree of non-Markovianity of this process,
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we have also related the critical behavior of the chain to the type of open dynam-

ics that it can generate. Last, we have established an analytical link between the

backflow of information and the visibility of the Ramsey fringes, providing a prac-

tical recipe for experimentally testing the theory presented. The study has been

carried out in the zero and low temperature limit, leading to neat results in both

cases. However, the model utilized has one limitation: it ignores non-harmonic con-

tributions in the crystal Hamiltonian that arise at the critical point. This effect is

particularly strong in the long time-scale regime and it can be neglected strictly in

the thermodynamic limit. Hence, some open questions are left regarding the gener-

alization of the Ramsey protocol to the full anharmonic case for a finite chain. For

instance, one may wonder whether the backflow of information still drops drasti-

cally at criticality and whether a link between the visibility of the Ramsey fringes

and the non-Markovian character of the single spin dynamics still exists. These two

questions surely are of primary interest for future investigations. In a broader sense,

since a quantum probe approach appears to be very advantageous when studying

some critical phenomena in many-body physics, a general theory should be outlined.

In Chapter 4 we have presented a detailed perturbative study of the dynamics of

quantum and classical correlations as well as the degree of non-locality in the two-

atom Fermi problem. The general findings suggest that although this model can

be proven to be strictly causal, atom-atom correlations can be generated in a non-

causal space-time region as mediated by the electromagnetic field. This result does

not obviously contradict general relativity as correlations do not represent physical

information unless they are shared via communication, which cannot travel faster

than light. Interestingly, we have observed how non-locality, as quantified by viola-

tions of Bell inequalities, is not sufficient to draw significant conclusions concerning

the very nature of the atom-atom state at hand, whether this is quantum or classi-

cal. In fact, a very weak violation is observed only near that instant of time when

the two atoms become causally connected. A question that we did not address is

how other measures of quantum discord [125], other than the geometric one, behave

in relation to the light-cone-crossing. For instance, during the completion of this

project we have found the original definition by Ollivier and Zurek [68] to be unsuit-

able for a second order perturbative approach. However, such a measure could be

compatible with a higher-order expansion of the dynamics. Another more general

open question concerns the usefulness of these correlations for possible applications

to quantum communication, such as quantum teleporation [142] or remote state

preparation [143]. We believe this to be an interesting research path to take for

future perspectives.
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Appendix A

Stimulated Raman Transitions

Stimulated Raman transitions rely on the scheme illustrated in Fig.A.1 An atom in

a lambda-type configuration interacts with two propagating lasers at frequency ωL1

and ωL2 respectively. The electronic levels |↑〉 , |↓〉 forming the qubit are Zeeman

sublevels and are split by a magnetic field. The effective Hamiltonian in this case

reads as follows

Ĥ = ~Ωσ̂x{ei[(~k1−~k2)~̂r−(ωL1
−ωL2

)t+φ] + h.c.}, (A.1)

where ~k1 and ~k2 are the wave-vector of the two lasers respectively, ~̂r is the position

operator of the atom and φ is a phase. The resonance condition can be easily

matched by properly adjusting the propagation direction of the laser fields such

that |ωL1 − ωL2| = ω0 with ω0 being the transition frequency between the Zeeman

sublevels. The idea is then to drive transitions between these two levels by laser-

coupling them strongly off-resonance to a third optical level |φ〉. If we assume the

detuning ∆ � δ the optical level |φ〉 will be very unlikely to be populated and we

can then employ the adiabatic elimination approximation [141] and eliminate it from

the dynamics. The laser fields are plane waves

~Ej = Ej cos(~kj~̂r − ωLj t+ φj), (A.2)

Hence, the original lambda structure will reduce to an effective two level-scheme

where the energy of the qubit states will be Stark shifted by an amount |g1(2)|2/∆
where

g1(2) ∝ E1(2)〈↓ (↑)|~̂r |3〉 exp(−iφ1(2)). (A.3)

The Stark shift that originates from the presence of the third optical level can be

removed by properly adjusting the laser-laser detuning δ or incorporated in the ω0

energy difference.
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Figure A.1: Interaction scheme utilized to implement stimulated Raman transitions.
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Appendix B

Quantum Process Tomography

A general completely positive dynamical map ΦN acting over an N -qubit register can

be completely characterized with quantum process tomography [81]. This technique

allows one to determine of a complete set of orthogonal operators {K̂m} for which

the Kraus operator decomposition can be performed K̂i=
∑

m eimK̂m so as to get

ΦN% =
∑
m,n

χmnK̂m%K̂†n, (B.1)

where the channel matrix χmn=
∑

i eime
∗
in has been introduced. This is a very pow-

erful tool: we only need to consider a fixed set of operators, whose knowledge is

enough to characterize a channel through the matrix χ. We look at the specific

case of a system of three qubits. The action of Φ over a element of a basis in the

space of the 23×23 matrices can be determined by knowing the action of Φ over the

fixed set of states constructed as the tensor product of the single-qubit ensemble of

states |0〉 , |1〉 , |+〉=(1/
√

2)(|0〉+ |1〉) and |+y〉=(1/
√

2)(|0〉+i |1〉) as follows. Let

us illustrate this argument by means of a single-qubit example. The action of Φ1

on the generic element |n〉 〈m| of a single-qubit density matrix (n,m=0, 1) can be

reconstructed as

Φ1(|n〉 〈m|) = Φ1(|+〉 〈+|) + iΦ1(|+y〉 〈+y|)
− (i+ 1)[Φ1(|n〉 〈n|) + Φ1(|m〉 〈m|)]/2.

(B.2)

The argument can be easily extended to the case of three qubits, involving 43=64

ensemble states. Therefore, it is straightforward to see that all the entries

%k= |n1, n2, n3〉 〈m1,m2,m3| ,

(nj,mj=0, 1 with k=1, .., 64) of a 8 × 8 density matrix can be found via state to-

mography of 64 fixed states. Clearly, Φ(%j) =
∑

k λjk%k as {%k} form a basis. From
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the above discussion we have

Φ3%j=
∑
m,n

K̂m%jK̂†nχmn=
∑
m,n,k

βmnjk %kχmn=
∑
k

λjk%k, (B.3)

where we have defined K̂m%jK̂†n =
∑

k β
mn
jk %k so that we can write

λjk =
∑
m,n

βmnjk χmn. (B.4)

The complex tensor βmnjk is set once we make a choice for {K̂i} and the λjk’s are

determined from a knowledge of Φ%j. By inverting Eq. (B.4), we get the channel

matrix χ and characterize the map. Let V̂† be the operator diagonalizing the channel

matrix. Then it is straightforward to prove that if Di are the elements of the diagonal

matrix V̂†χV̂ , then eim =
√
DiV̂mi, so that

K̂i =
√
Di

∑
j

V̂jiK̂j. (B.5)
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