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Abstract 26 
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The land-snail genus Corilla is endemic to Sri Lanka and India’s Western Ghats. The ten extant Sri Lankan 28 

species belong to two distinct shell forms that are associated respectively with lowland and montane 29 

rainforest. We here present the first molecular phylogenetic analysis for Corilla. Our dataset includes nine 30 
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nominal Sri Lankan species and is based on three mitochondrial genes (CO1, ND1 and 16S). Although the 1 

deeper nodes in the trees are not fully resolved, the results do suggest speciation in Corilla has involved 2 

repeated, ecologically-driven convergence in shell form. The mtDNA data agree with the current shell-based 3 

taxonomy for C. adamsi, C. beddomeae, C. carabinata, C. humberti and C. colletti, consistently supporting 4 

the first four as monophyletic, and supporting the last also as monophyletic in nearly all analyses. Corilla 5 

adamsi, C. beddomeae and C. colletti may each contain at least one additional, previously-undescribed 6 

species. The relationship between northern and eastern C. odontophora couldn’t be reliably resolved, but our 7 

results suggest that they are distinct species and that there is further species-level or intraspecific 8 

(geographical) differentiation within eastern C. odontophora. The current, morphologically-defined species 9 

limits of the three remaining nominal species, C. gudei, C. erronea and C. fryae, are inconsistent with the 10 

mtDNA sequence data. Northern and southern C. gudei appear to be distinct species: the sister taxon of 11 

southern C. gudei is C. humberti, and in the Bayesian trees alone the sister taxon of northern C. gudei is the 12 

lowland C. carabinata. Corilla erronea and C. fryae constitute a well supported clade in which both nominal 13 

species are paraphyletic. While most intra-clade CO1 p-distances are moderate to relatively large, the 14 

phylogenetic structuring within the clade does not seem to correspond to any obvious morphological, 15 

elevational or geographical patterns. These results are difficult to interpret, and further detailed study is 16 

needed before the taxonomic status of C. erronea and C. fryae can be resolved. 17 

 18 

 19 

 20 

1. Introduction 21 

 22 

The native land-snail fauna of the Western Ghats-Sri Lanka biodiversity hotspot is phylogenetically diverse 23 

and is dominated by species endemic to the region, many of them belonging to genera endemic or largely 24 

endemic to the Western Ghats and Sri Lanka (Raheem et al., 2014). One of the genera endemic to the hotspot 25 

is Corilla H. & A. Adams, 1858, the sole representative of the stylommatophoran family Corillidae, a 26 

putative Gondwanan relict (Naggs & Raheem, 2005). Species of Corilla inhabit tropical rainforest and moist 27 

monsoon forest, where they are usually found on the forest floor, among leaf litter and decaying wood. The 28 

current species-level taxonomy for Corilla largely follows Gude’s (1896a, 1896b, 1914) revisionary work, 29 
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and is based entirely on shell morphology, the key characters being shell shape and size, the form of the lip, 1 

the arrangement of the folds inside the mouth of the shell (the palatal and parietal folds) and shell sculpture. 2 

Species identification within this taxonomic framework is generally straightforward, but the status of these 3 

nominal species as monophyletic taxa has not been investigated and molecular phylogenetic studies of this 4 

genus have still to be carried out.  5 

 6 

Taxonomic diversity in Corilla is concentrated in Sri Lanka, where ten of the 11 extant species occur, 7 

all endemic to the island (Gude, 1914; Barnacle, 1956) and all highly restricted in distribution (Figs. 1A, B). 8 

The Sri Lankan species belong to two distinct shell forms that are associated respectively with the forests of 9 

the lowlands (lowland rainforest and moist monsoon forest occurring up to an elevation of 1000 m, Legg and 10 

Jewell, 1995) and the mountains (submontane and montane rainforest above elevations of 1000 m, Legg and 11 

Jewell, 1995). The lowland species are Corilla adamsi (Gude, 1914), C. carabinata (Férussac, 1821), C. 12 

colletti Sykes, 1897 and C. lesleyae Barnacle, 1956, all of which are parapatric/allopatric. The montane 13 

species comprise three parapatric/allopatric taxa, C. gudei Sykes, 1897, C. humberti (Brot, 1864), C. 14 

odontophora (Benson, 1865), and three partly sympatric ones, C. beddomeae (Hanley in Hanley & Theobald, 15 

1876), C. erronea (Albers, 1853) and C. fryae Gude, 1896. The shells of the lowland species are wide-lipped 16 

and dull yellow or red-brown in colour, whereas montane species possess narrow-lipped shells that are black 17 

or dark brown (Figs. 1C, D). These differences may have evolved once, reflecting sustained independent 18 

diversification within lowland and montane rainforest regions. Or, they may have evolved several times with 19 

closely-related species diverging in bioclimatic distribution and morphology and distantly related species 20 

converging on similar bioclimatic distributions and morphology. Exploring the evolutionary basis of these 21 

differences will provide new insights into the relationship between species diversification and the evolution 22 

of habitat-specific morphological characters in rainforest taxa. This is a neglected topic in rainforest research 23 

(but see Dowle et al., 2015) – the major focus among workers has been on issues such as the phylogenetic 24 

relationships between lowland and montane taxa, the role of specific extrinsic factors (e.g. palaeo-climatic 25 

change, tectonic changes such as mountain uplift) in speciation, and the timing and rate of diversification 26 

(e.g. Moritz et al., 2000; Elias et al., 2009; Santos et al., 2009; Fjeldså et al., 2012; Leubert and Wiegand, 27 

2014).  28 

 29 
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Here we explore the taxonomy and diversification of Sri Lankan Corilla using a phylogenetic analysis 1 

of three mitochondrial gene fragments. We focus on two questions: 2 

1. Did the lowland and montane shell forms evolve once or several times? 3 

2. To what extent do the current, shell-based species-level taxa (nominal species) correspond to well 4 

supported mtDNA clades? 5 

 6 

 7 

 8 

2. Material and methods 9 

 10 

The ingroup consisted of nine of the ten nominal species of Sri Lankan Corilla (the other Sri Lankan species, 11 

C. lesleyae and the Indian species Corilla anax (Benson, 1865) were not sampled), and four other land 12 

stylommatophoran taxa, Albinaria caerulea (Deshayes, 1835) (Clausiliidae), Cornu aspersum (Müller, 1774) 13 

(Helicidae), Sculptaria damarensis damarensis H. Adams, 1870 (Sculptariidae) and Halongella 14 

schlumbergeri (Morlet, 1886) (Plectopylidae) (Table1). Lissachatina fulica (Bowdich, 1822) (Achatinidae) 15 

was used as the outgroup. The inclusion of Sculptaria and the plectopylid Halongella in the ingroup was 16 

based on the classifications of Nordsieck (1986) and Bouchet and Rocroi (2005). These authors treated the 17 

Corillidae, Sculptariidae and Plectopylidae as three distinct, but putatively-related families and placed them 18 

together to form the superfamily Plectopyloidea. The other ingroup taxa and the outgroup were selected on 19 

the basis of Wade et al.’s (2001, 2006) molecular phylogenetic trees for stylommatophoran pulmonates. For 20 

Corilla, the monophyly of the nine nominal species was evaluated by sampling two to six populations from 21 

across the range of each species, with 42 individuals being sampled in total (Table1). The type localities of 22 

C. colletti (“Balangoda, Ceylon”, Sykes, 1897) and C. fryae (“Albion Estate, Lindula District”, Gude, 1896a) 23 

were sampled. Corilla odontophora was originally described from three localities (“Near Fort McDonald, 24 

Bandarawella and Bibiligamua, at 4,500 feet”, Benson, 1865) and we sampled in the vicinity of two of these 25 

(i.e. haplotypes C. odontophora 1a and 1b are from “Bibiligamua” and haplotype C. odontophora 2 from 26 

“Fort McDonald”). The type locality of C. carabinata is unknown (Férussac, 1821) and data are inadequate 27 

or inaccurate for the remaining sampled species. For C. adamsi, C. erronea and C. humberti the type locality 28 

was simply indicated as ‘the island of Ceylon’ (Albers, 1853; Pfeiffer, 1854; Brot, 1864). The type localities 29 
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for C. beddomeae (“Haycock Mountain”, a hill in southern Sri Lanka with a maximum elevation of 661 m, 1 

Gude, 1896b) and C. gudei (“Kurunegala, at 1,500 feet”, Sykes, 1897) are almost certainly incorrect; these 2 

two localities lie well outside the known range of C. beddomeae and C. gudei, both of which are montane 3 

rainforest species and have not been recorded below 900 m (≈2950 ft).  4 

 5 

Phylogenetic analyses were based on nucleotide sequences of three mtDNA gene fragments: the 6 

protein-coding cytochrome c oxidase 1 (CO1, ~680 bp) and NADH dehydrogenase 1 (ND1, ~470 bp), and 7 

the ribosomal 16S rRNA (16S, ~480 bp) (Table 2). New sequence data were generated for Corilla, 8 

Halongella and Sculptaria; data for A. caerulea, Cornu aspersum and L. fulica were obtained from GenBank 9 

(Table 1). For each individual, genomic DNA was extracted from a c. 6-10 mm
3 
piece of foot tissue with the 10 

Nucleospin® Tissue kit (Macherey-Nagel, Düren, Germany), following the manufacturers’s standard 11 

protocol, or using a CTAB (hexadecyltrimethylammonium bromide) protocol (Goodacre and Wade, 2001). 12 

PCR amplifications were done by adding 1 µl of DNA extract to 10-µl volumes containing 1 µl of 10x 13 

Qiagen® CoralLoad PCR Buffer (including 1.5 mM MgCl2), 0.2 mM of dNTP (GE Healthcare, 14 

Buckinghamshire, U.K.), 0.2 µM of each of the primers, 0.25 U of Qiagen® Taq DNA polymerase (Qiagen, 15 

Venlo, the Netherlands), and 0.625 mM of Qiagen® MgCl2 solution (i.e. with the MgCl2 in the buffer the 16 

total was 2.125 mM MgCl2 per reaction volume). When amplifying ND1, the amount of MgCl2 solution was 17 

increased to 1.25 mM (i.e. total of 2.75 mM MgCl2 per reaction volume). For CO1 the PCR mix also 18 

contained 5.5 µg of Ambion® Ultrapure Bovine Serum Albumin (Life Technologies, Ghent, Belgium). The 19 

PCR temperature profile for 16S consisted of: first, an initial denaturation for 5 min at 95 ºC; then, 35 cycles 20 

of 45 s at 95 ºC, 30 s at an annealing temperature of 45 ºC, and 2 min at 72 ºC; and finally, an extension step 21 

of 10 min at 72 ºC. These conditions were the same for the other markers apart from the annealing 22 

temperature (i.e. 40-45 ºC for CO1 and 50 ºC for ND1). Amplification products were purified using the GFX 23 

PCR DNA Purification Kit (GE Healthcare), following the manufacturer’s instructions, and purified DNA 24 

was diluted in 15 μl of sterile water. 25 

 26 

Both DNA strands were sequenced on an ABI3130xl Genetic Analyzer using ABI PRISM BigDye® 27 

Teminator v. 1.1. Cycle Sequencing Kit (Life Technologies). Sequences have been deposited in GenBank 28 

(Table 1, accession numbers: CO1 XXXXXXXX–XXXXXX; ND1 XXXXXXXX–XXXXXX; 16S 29 
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XXXXXXXX–XXXXXX). Sequence data for each of the marker regions were assembled using SeqScape v. 1 

2.5 (Life Technologies) and the chromatograms were checked by eye for inconsistencies. Assembled data 2 

were aligned using MAFFT v. 7 (Katoh and Standley, 2013) and trimmed to equal length. Alignments were 3 

carried out with default parameters on the MAFFT online server (http://mafft.cbrc.jp/alignment/server), 4 

using the Q-INS-i alignment strategy for the 16S data and the L-INS-i strategy for the other data. Using 5 

BioEdit v. 7.0.9.0 (Hall, 1999), alignments were checked by eye, all alignment gaps were removed and 6 

concatenated datasets were assembled. Alignments are available at the NHM data portal 7 

(http://data.nhm.ac.uk). 8 

 9 

Two main sets of replicated phylogenetic analyses were run: one using the complete dataset (46 ingroup 10 

sequences and one outgroup) and a second omitting two of the samples of C. colletti, C. colletti 5 and 6 (44 11 

ingroup sequences and one outgroup). The second set of analyses was carried out because support for the 12 

basal split within Corilla declined when C. colletti 5 and 6 were included. In order to assess the stability of 13 

relationships within Corilla in the absence of the five other stylommatophoran genera, all phylogenetic 14 

analyses were re-run using the Corilla sequences alone; trees were rooted on C. beddomeae (recovered as the 15 

sister clade of all other Sri Lankan Corilla in the analyses that also included the five other 16 

stylommatophorans). 17 

 18 

Phylogenetic analyses were carried out employing Bayesian (Huelsenbeck et al., 2001) and Maximum 19 

Likelihood (ML; Felsenstein, 1981) approaches, the software programmes used being respectively MrBayes 20 

v. 3.2 (Ronquist et al., 2012) and RAxML v. 8 (Stamatakis, 2014a). Analyses were run on the CIPRES 21 

Science Gateway v. 3.3 (http://www.phylo.org/index.php, Miller et al., 2010). The concatenated mtDNA 22 

dataset was divided into seven data blocks: six separate blocks for the first, second and third codon positions 23 

of CO1 and ND1 and a seventh block for 16S.  This scheme was analysed using PartitionFinder version 1.1.1 24 

(Lanfear et al., 2012) and the best-fit combinations of partitioning schemes and nucleotide substitution 25 

models were selected. The settings common to all PartitionFinder analyses were branchlengths = linked, 26 

model_selection = BIC (Bayesian Information Criterion), and search = all. For MrBayes datasets the models 27 

option in PartitionFinder was set at ‘mrbayes’ (i.e. the option specifying the 24 nucleotide models available 28 

http://mafft.cbrc.jp/alignment/server
http://data.nhm.ac.uk/
http://www.phylo.org/index.php
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in MrBayes), and for RAxML datasets this option was set at ‘GTR+G’ (the GTR model with gamma-shaped 1 

rate variation across sites), with RAxML also being implemented at the command line (Lanfear, 2013).  2 

 3 

Each MrBayes analysis involved two independent MCMC runs (with four chains per run) for 20-40 4 

million generations, sampling every 1000 generations, and discarding the first 25% of samples as burn-in; 5 

each analysis was repeated at least once. All analyses were run until the average standard deviation of split 6 

frequencies dropped and remained below 0.01; convergence was also assessed by examining the other 7 

diagnostics (i.e. the Potential Scale Reduction Factor for the various model parameters including the branch 8 

and node parameters) and summary statistics (e.g. plot of the generation vs. the log probability of the data 9 

given the parameter values) reported to the MrBayes log file, as well as by analysing the trace files generated 10 

by the MCMC runs using Tracer v. 1.6 (Rambaut et al., 2014). Each RAxML analysis involved a single 11 

programme run and consisted of a rapid bootstrap analysis with the extended majority rule boot stopping 12 

criterion (maximum of 1000 bootstrap replicates), followed by a search for the best-scoring ML tree 13 

(Stamatakis et al., 2008; Pattengale et al., 2010; Stamatakis, 2014b); each run was repeated at least once. As 14 

recommended by Stamatakis (2014b), the model of nucleotide substitution used for the RAxML analyses 15 

was GTR+G.  Trees were rooted on the outgroup taxon L. fulica using the tree-viewing software FigTree (v. 16 

1.4, Rambaut, 2006-2012). Branches with bootstrap values ≥70% and posterior probabilities ≥0.95 were 17 

considered to be well/strongly supported (Hillis and Bull, 1993; Alfaro and Holder, 2006), and we treated 18 

branches with bootstrap values <70% and posterior probabilities <0.95 as not being reliably resolved. 19 

 20 

Substitution saturation of the third codon position of CO1 and ND1 was assessed for the 42 Corilla 21 

sequences using Xia’s method (Xia et al., 2003; Xia and Lemey, 2009) and the software DAMBE v.5.5.1 22 

(Xia, 2013). For both CO1 and ND1, there was little saturation of the third codon position assuming a 23 

symmetrical topology (Iss < Iss.c, p < 0.01, number of OTUs = 8), but substantial saturation assuming an 24 

asymmetrical tree topology (Iss < Iss.c, p > 0.01, number of OTUs = 8). Therefore, all Bayesian and ML 25 

analyses were undertaken both including and excluding the third codon position of CO1 and ND1.  26 

 27 
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Pairwise uncorrected p-distances were calculated for CO1 using MEGA6 (Tamura et al., 2013) and 1 

were summarised on the basis of selected clades/samples. Additional support for these clades/samples was 2 

obtained by examining the 16S and ND1 alignments of Corilla (42 sequences) for differences in indels. 3 

 4 

 5 

 6 

3. Results 7 

 8 

The phylogenetic analyses of the two mtDNA datasets (including and excluding the two samples of C. 9 

colletti, 5 and 6, see Table 3 for properties) yielded similar results (Table 4). When the third codon positions 10 

of the protein coding genes were excluded the resulting trees were less well resolved and branch support 11 

generally declined (Table 4). Nevertheless, the results were consistent with the analyses based on the 12 

complete CO1 and ND1 datasets, so unless stated otherwise we focus here on the complete datasets. 13 

 14 

The monophyly of Corilla was well supported in all our analyses (Table 4, Fig. 2). The relationships 15 

among Corilla and the other ingroup taxa (A. caerulea, Cornu aspersum, H. schlumbergeri and S. 16 

damarensis damarensis) were not reliably resolved in the ML analyses. In the Bayesian analyses, while 17 

Corilla always formed a well supported clade with Cornu aspersum and A. caerulea, the relationships among 18 

Corilla, S. damarensis damarensis and H. schlumbergeri were not reliably resolved. 19 

 20 

The sister-group relationship between C. beddomeae and all other Sri Lankan Corilla was consistently 21 

well supported in the Bayesian analyses. It was well supported (bootstrap value ≥76%) in the ML analyses 22 

only when C. colletti 5 and 6 were excluded (analyses 4 and 8 in Table 4). This sister-group relationship was 23 

only weakly supported in the ML analysis of the complete dataset (analysis 2, Table 4), whereas all the 24 

deeper nodes within Corilla were not reliably resolved in the ML analysis excluding the CO1 and ND1 third 25 

codon positions (analysis 6, Table 4). While most of the deeper nodes within the sister clade of C. 26 

beddomeae (Clade A of Fig. 2) were not reliably resolved in both Bayesian and ML analyses, the Bayesian 27 

analyses (analyses 1, 3, 5 and 7 in Table 4) always recovered a well supported sister-group relationship 28 

between the lowland C. adamsi and all the remaining species in Clade A (Clade B in Fig. 2). 29 
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 1 

The monophyly of four of the nine nominal species, C. adamsi, C. beddomeae, C. carabinata and C. 2 

humberti, was consistently well supported. The monophyly of a fifth nominal species, C. colletti, was also 3 

well supported in nearly all analyses. When all the samples of C. colletti were included (analyses 1, 2, 5 and 4 

6 in Table 4) two deeply-divergent and well supported sister clades were usually recovered for C. colletti: 5 

one clade from the western part of the range (C. colletti 1-4) and one from the east (C. colletti 5 and 6). In 6 

the ML analysis excluding the CO1 and ND1 third codon positions, the western clade of C. colletti was well 7 

supported, but relationships between it and C. colletti 5 and 6 were not reliably resolved.  8 

 9 

Our results are consistent with the non-monophyly of each of the remaining nominal species of Corilla. 10 

Both C. erronea and C. fryae were paraphyletic and together formed a well supported clade (C. erronea-11 

fryae clade of Fig. 2) with substantial mtDNA diversity (e.g. compare with C. carabinata). In the case of C. 12 

gudei, the southern haplotype (C. gudei 3) was consistently well supported as sister to C. humberti, whereas 13 

in the analyses including the complete CO1and ND1 datasets (analyses 1-4 in Table 4), the two northern 14 

haplotypes (C. gudei 1 and 2) formed a well supported sister-group relationship with C. carabinata. For C. 15 

odontophora, the three eastern haplotypes (C. odontophora 1a, 1b and 2) formed a well supported clade, but 16 

their relationship to the northern haplotype (C. odontophora 3) was not reliably resolved. 17 

 18 

Corilla beddomeae comprised two relatively deeply divergent and well supported clades, corresponding 19 

to haplotypes from the western extremity of the range (C. beddomeae 1a and 1b) vs. all the other haplotypes 20 

(C. beddomeae 2a-5). Corilla adamsi also comprised two relatively deeply divergent lineages, the northern 21 

haplotype (C. adamsi 1) vs. a well supported clade of the southern haplotypes (C. adamsi 2-4). Less marked 22 

divergences were present in the southern clade of C. adamsi (C. adamsi 2 vs. 3 and 4), and in eastern C. 23 

odontophora (one population represented by C. odontophora 2 vs. a second population, C. odontophora 1a 24 

and 1b). Corilla carabinata comprised a well supported clade of northern haplotypes (C. carabinata 2-5) and 25 

its sister, the haplotype from the south (C. carabinata 1).  26 

 27 

The Bayesian and ML analyses of the 42 sequences of Corilla on their own (see Supplementary Table 28 

S1 for dataset properties and Supplementary Table S2 for support values of selected clades) were consistent 29 
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with the analyses of Corilla and the five other stylommatophoran genera. The key findings were that clades 1 

A and B (Fig. 2) were consistently well supported and that the clade comprising C. carabinata and northern 2 

C. gudei was well supported in all but one of the analyses. 3 

 4 

P-distances for the CO1 gene (see Table 5 for summary, and Supplementary Table S3 for data in full) 5 

were large between the two sister clades within C. beddomeae (range = 0.126-0.150, mean = 0.136), between 6 

northern and southern C. adamsi (range = 0.150-0.179, mean = 0.167), and between eastern and western C. 7 

colletti (range = 0.111-0.131, mean = 0.122). These p-distances are comparable, in most cases, to p-distances 8 

among nominal species (e.g. C. adamsi vs. C. beddomeae, range = 0.176-0.218, mean = 0.194). P-distances 9 

were also large between northern and southern C. gudei (range = 0.157-0.163, mean = 0.160), between 10 

northern and eastern C. odontophora (range = 0.166-0.170, mean = 0.168), between C. adamsi 2 and each of 11 

the two haplotypes C. adamsi 3 and 4 (range = 0.124-0.126, mean = 0.125), and between C. odontophora 2 12 

and each of the two haplotypes C. odontophora 3a and 3b (0.181). In comparison, p-distances were smaller 13 

between C. humberti and southern C. gudei (range = 0.070-0.072, mean = 0.071); these were more similar to 14 

the p-distances among the haplotypes of species such as C. carabinata (range = 0-0.041, mean = 0.022) and 15 

among the haplotypes of certain, other clades (e.g. western C. colletti, range = 0.002-0.089, mean = 0.069). 16 

Although p-distances between southern and northern C. carabinata were relatively small (range = 0.037-17 

0.041, mean = 0.038), they were nevertheless two orders of magnitude greater than those between the two 18 

haplotypes of northern C. carabinata (range = 0-0.009, mean = 0.005). P-distances between C. colletti 3 and 19 

the other members of the western clade of C. colletti (1, 2 and 4) were larger (range = 0.057-0.089, mean = 20 

0.078), but of a similar order of magnitude to the p-distances among the latter three haplotypes of C. colletti 21 

(range = 0.002-0.089, mean = 0.060).  P-distances among sequences in the C. erronea-fryae clade varied 22 

substantially (range = 0.002-0.102, mean = 0.070), with most being in the range = 0.078-0.102; p-distances 23 

were small only between haplotypes C. erronea 3 and C. fryae 2 (0.037) and among haplotypes C. erronea 1 24 

and 2 and C. fryae 1a and 1 b (range = 0.002-0.015). 25 

 26 

The clades within C. adamsi, C. beddomeae, C. carabinata and C. colletti are characterised by 27 

differences in 16S indels (Table 6). Northern and southern C. adamsi differed at seven indel positions, the 28 

two sister clades within C. beddomeae at eight indels, southern and northern C. carabinata at two indels and 29 
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western and eastern C. colletti at one indel. In addition, northern and southern C. gudei differed from each 1 

other at seven indels and eastern and northern C. odontophora at five indels. The ND1 sequence alignment of 2 

Corilla (440 bp in length) contained an indel at positions 383-385 and only C. colletti 3 had a codon (GAA) 3 

at this indel.  4 

 5 

 6 

 7 

4. Discussion 8 

 9 

The monophyly of Corilla was well supported in both Bayesian and ML analyses. Although the Bayesian 10 

analyses suggest that the Plectopyloidea (the superfamily comprising the Plectopylidae, Corillidae and 11 

Sculptariidae, Nordsieck, 1986, Bouchet and Rocroi, 2005) are non-monophyletic, overall our data shed little 12 

light on the relationships among Halongella (Plectopylidae), Sculptaria (Sculptariidae) and Corilla 13 

(Corillidae). 14 

 15 

We found strong support for the montane species C. beddomeae being sister to all other Sri Lankan 16 

Corilla. Several studies on the diversification of rainforest taxa have shown that while montane taxa have 17 

frequently evolved from lowland ancestors (Moritz et al., 2000; Fjeldså et al., 2012; Wesener et al., 2011), 18 

some diverse lowland taxa have a montane origin (Elias et al., 2009; Santos et al., 2009; Fjeldså et al., 2012; 19 

Leubert & Wiegand, 2014). The pattern for Corilla is unclear because the deeper nodes in both Bayesian and 20 

ML trees were not reliably resolved. Nevertheless, the results do suggest that lowland and montane shell 21 

forms have evolved on at least two separate occasions. Speciation thus appears to have involved repeated, 22 

ecologically-driven convergence in shell morphology; to our knowledge the only broadly comparable data 23 

are for two distantly-related lineages of the pulmonate land snail Placostylus on New Caledonia (Dowle et 24 

al., 2015). Improving phylogenetic resolution is essential for a clearer understanding of diversification in 25 

Corilla. 26 

 27 

The mtDNA data agree with the current shell-based taxonomy for C. adamsi, C. beddomeae, C. 28 

carabinata, C. humberti and C. colletti, supporting the first four as monophyletic, and supporting the last as 29 
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monophyletic in most analyses. The relatively deep phylogenetic divergences within C. adamsi, C. 1 

beddomeae and C. colletti are reflected in large CO1 p-distances (i.e. comparable to those among most 2 

nominal species) and are characterised by differences in one or more 16S indels. This evidence suggests that 3 

these three nominal species may each contain at least one additional species that has yet to be described.  4 

 5 

The presence of an extra codon in the ND1 sequence of C. colletti 3 together with the relatively small 6 

CO1 p-distances among members of the western clade of C. colletti suggest a possible case of intraspecific 7 

geographic differentiation. C. colletti 3 is from a site (~1200 m) close to the summit of the Rakwana Massif 8 

(Fig. 1A), whereas all the other members of the western clade of C. colletti are from lowland sites to the 9 

south and north. The shallow divergence between southern and northern C. carabinata may also indicate 10 

intraspecific geographical differentiation. The relationship between the northern haplotype and eastern clade 11 

of C. odontophora was not reliably resolved. Nonetheless, the mean CO1 p-distance between these two 12 

groups is similar to most interspecific p-distances and to p-distances between the deeply-divergent clades 13 

within C. adamsi, C. beddomeae and C. colletti. This coupled with the differences in 16S indels points to the 14 

possibility that northern and eastern C. odontophora are separate species. The deep divergence within eastern 15 

C. odontophora (C. odontophora 2 vs. 1a and 1b, Fig. 2) and the correspondingly large mean CO1 p-16 

distance also suggests a further species-level split or possible geographical differentiation.  17 

 18 

The current, morphologically-defined species limits of the three remaining nominal species, C. gudei, 19 

C. erronea and C. fryae, are inconsistent with the mtDNA sequence data. Corilla gudei is a montane species 20 

restricted to the Knuckles Massif (Fig. 1A), an isolated mountain range located to the north of the Central 21 

Highlands, and haplotypes from the northern and southern parts of this range were included in the study. The 22 

sister taxon of southern C. gudei is C. humberti from the Central Highlands and in the Bayesian trees alone 23 

the sister taxon of northern C. gudei is the lowland C. carabinata. These findings suggest that northern and 24 

southern C. gudei are distinct species; the high mean CO1 p-distance between northern and southern C. 25 

gudei and the differences observed at seven 16S indel positions provide further support for this. Preliminary 26 

data also indicate that the shells of northern and southern C. gudei differ very subtly. The shell sculpture of 27 

all Corilla (Figs. 1E, F) consists of striae (shallow incised lines) and/or ribs (raised lines) corresponding to 28 
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the direction of growth of the shell and running parallel to the edge of the lip (i.e. collabral sculpture sensu 1 

Cox, 1960). In northern C. gudei the collabral sculpture is generally stronger than in southern C. gudei. 2 

  3 

The divergence between C. humberti and southern C. gudei is noticeably shallow in comparison to all 4 

other interspecific divergences in the tree (Fig. 2) and this is reflected in a relatively small mean CO1 p-5 

distance (7.1%); there were also no differences in 16S indels.  We would argue, however, that because 6 

southern C. gudei and C. humberti are conchologically very different (C. humberti is the only montane 7 

species without palatal folds in the mouth of the shell) they are distinct species. These snails also occur in 8 

disjunct mountain ranges and have distinct elevational ranges (southern C. gudei, 1180-1370 m, C. humberti, 9 

1640-2025 m).  10 

 11 

Corilla erronea and C. fryae are confusingly similar in their shell morphology (see descriptions by 12 

Albers, 1853; Gude, 1896a), with both species sharing a previously unreported, yet highly distinctive 13 

character not found in other extant Corilla species (the collabral sculpture of the shell is intersected by faint 14 

striae running in the opposite direction, Fig. 1E). Following traditional usage and as followed here, C. fryae 15 

is the name used for specimens from the southwestern sector of the Central Highlands, whereas C. erronea 16 

refers to individuals from other montane areas. Our results show that specimens identified as C. erronea and 17 

C. fryae constitute a well supported clade in which both nominal species are paraphyletic. The mean CO1 p-18 

distance among members of the C.erronea-fryae clade is small, but most values range from 7.8%-10.2% and 19 

are thus larger than the mean CO1 p-distance between C. humberti and southern C. gudei. While these 20 

moderate to relatively large CO1 p-distances reflect substantial mtDNA sequence diversity, the phylogenetic 21 

structuring within the C.erronea-fryae clade does not seem to correspond to any obvious morphological, 22 

elevational or geographical patterns. These results are difficult to interpret, and further detailed study is 23 

needed before the taxonomic status of C. erronea and C. fryae can be resolved. 24 

 25 

Future research needs to address three crucial issues. First, phylogenetic resolution has to be improved, 26 

likely through additional sampling of loci. Second, more populations need to be sampled. Many/most of the 27 

populations sampled for this study are represented by only a single haplotype, and most species have been 28 

inadequately sampled across their geographical range. For example, southern C. gudei was represented by 29 
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only a single individual, and only two of the three localities given in the original description of C. 1 

odontophora were sampled in this study. Third, detailed studies are needed on the internal anatomy of 2 

Corilla. Apart from brief descriptions of the genitalia and radula of C. erronea and C. humberti (Semper, 3 

1870, pp. 100-102; Pilsbry, 1894, p. 147-149; Pilsbry, 1905; Godwin-Austen, 1907, p. 199-201), published 4 

data on the anatomy of Corilla are scarce. At present we do not know which internal anatomical characters if 5 

any correspond with key shell-based characters and how useful such anatomical characters might be in 6 

discriminating between taxa that are morphologically very similar.  7 

 8 

 9 

 10 
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Figure Captions (Fig. 1 to appear in colour, Fig. 2 in black-and-white) 1 

 2 

Figure 1. A, B. Sampled localities (symbols) and distributional limits (dashed lines) of Sri Lankan Corilla 3 

(see Table 1 for sample codes). The distributional limits (approximating to extent of occurrence sensu 4 

Gaston, 1991) are based on unpublished distributional data from field surveys and museum collections 5 

(primarily two Sri Lankan institutions the Colombo Museum and the University of Peradeniya, and the 6 

Natural History Museum, London, UK). These data consist of >200 individual records and date mainly from 7 

the last 3 decades. A, the 3 lowland species (C. adamsi, C. carabinata and C. colletti) and 3 of the montane 8 

species (C. beddomeae, C. gudei and C. humberti); B, the 3 other montane species (C. erronea, C. fryae and 9 

C. odontophora). The type localities of C. colletti, C. fryae and C. odontophora (Benson, 1865; Gude, 10 

1896a; Sykes, 1897) are shown by open circles and are numbered if they have been sampled in this study. 11 

Although they are almost certainly incorrect, the type localities for C. beddomeae () and C. gudei () are 12 

also shown. The Central Highlands, Knuckles Massif and Rakwana Massif are the three main mountain 13 

masses of Sri Lanka (Cooray, 1984). C-F. Shell morphology of Corilla: C, shell of the lowland C. adamsi; 14 

D, shell of the montane C. erronea; E, collabral sculpture (black arrows) of C. erronea and striae running in 15 

opposing direction (white arrows); F, collabral sculpture (black arrows) of C. gudei.  16 

 17 

Figure 2. Bayesian majority consensus tree of the complete concatenated CO1-ND1-16S sequence dataset 18 

for Corilla and some other stylommatophorans with Lissachatina fulica as the outgroup (see Table 3). 19 

Support values are given as posterior probabilities for Bayesian analyses (only values ≥0.95 are shown) and 20 

as bootstrap percentages for ML analyses (only values ≥70% are shown); maximal support (Bayesian = 1, 21 

ML = 100%) is indicated by an asterisk. Montane and lowland taxa are indicated by black and grey shading 22 

respectively, and clades A and B by arrows.  23 

 24 
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Table 1. Taxa used in this study with sample codes, localities and GenBank accession numbers. Taxonomy for Corilla follows 

Gude (1914). Sampled type localities are indicated by an asterisk. The DNA sequence data for Albinaria caerulea, Cornu 

aspersum and Lissachatina fulica are from complete mt genomes generated respectively by Hatzoglou et al. (1995), Gaitán-

Espitia et al. (2013) and He et al. (2014).  

 

 

Taxon, Sample Code & Locality 
GenBank Accession Number  

CO1 ND1 16S 

Corilla adamsi  

 1: 1.6 km ne Ingiriya, Kalutara District 

 2: Homadola, near Udugama, Galle District 

 3: Kospelaketiya, Kanneliya, Galle District 

 4: Nakiyadeniya, Galle District 

 

pending 

pending 

pending 

pending 

 

pending 

pending 

pending 

pending 

 

pending 

pending 

pending 

pending 

Corilla beddomeae      

 1a, 1b: Adam’s Peak (eastern face), Nuwara Eliya District 

 2a, 2b: 4.8 km n Opanayaka, Hunuwalakanda,  Ratnapura District 

 3: 4 km se Agrapatana, Nuwara Eliya District 

 4a, 4b: 7.5 km se Maskeliya, Nuwara Eliya District 

 5: 4.5 km se Pupuressa, Kandy District 

 

pending 

pending 

pending 

pending 

pending 

 

pending 

pending 

pending 

pending 

pending 

 

pending 

pending 

pending 

pending 

pending 

Corilla carabinata  
 1: 1.6 km ne Dedugala, Kegalle District 

 2a, 2b: Kandy, Kandy District 

 3: Matale, Matale District 

 4: 5.1 km e Dodangaslanda, Matale District 

 5a, 5b: Ambokka-Neugala range, above Selagama, Matale District 

 

pending 

pending 

pending 

pending 

pending 

 

pending 

pending 

pending 

pending 

pending 

 

pending 

pending 

pending 

pending 

pending 

Corilla colletti 

 1*: Balangoda, Ratnapura District 

 2: Rajawaka, Ratnapura District 

 3: above Bulutota, Rakwana, Ratnapura District 

 4: Makandura, Matara District 

 5: Maragalakanda range, Moneragala District    

 6: 5.4 km se Lunugala, Badulla District  

 

pending 

pending 

pending 

pending 

pending 

pending 

 

pending 

pending 

pending 

pending 

pending 

pending 

 

pending 

pending 

pending 

pending 

pending 

pending 

Corilla erronea 

 1: above Northcove Estate, Bogowantalawa, Nuwara Eliya District 

 2: 7.5 km se Maskeliya, Nuwara Eliya District  

 3: 4.8 km nw Ambawela, Nuwara Eliya District 

 4: 5.1 km sw Aranayaka, Kegalle District 

 5: Galheeria Estate, above Elkaduwa, Matale District 

 

pending 

pending 

pending 

pending 

pending 

 

pending 

pending 

pending 

pending 

pending 

 

pending 

pending 

pending 

pending 

pending 

Corilla fryae 

 1a*, 1b*: Albion Estate, 7km sw Lindula, Nuwara Eliya District   

 2: Adam’s Peak (eastern face), Nuwara Eliya District 

 

pending 

pending 

 

pending 

pending 

 

pending 

pending 

Corilla gudei Sykes, 1897 

 1: Laggala, above Illukkumbura, Matale District 

 2: 2.2 km ne Gammaduwa, Matale District 

 3: Nawanagala, Kandy District 

 

pending 

pending 

pending 

 

pending 

pending 

pending 

 

pending 

pending 

pending 

Corilla humberti  

 1: Between Nuwara Eliya and Hakgala, Nuwara Eliya District 

 2: Nuwara Eliya, Nuwara Eliya District 

 

pending 

pending 

 

pending 

pending 

 

pending 

pending 

Corilla odontophora  

 1a*, 1b*: Namunukula, above Bibilegama (=“Bibiligamua”), Badulla District 

 2: 5.7 km nw Lunugala, Badulla District 

 3*: 4 km nw historic site of “Fort McDonald”, Paranagama, Nuwara Eliya District 

 

pending 

pending 

pending 

 

pending 

pending 

pending 

 

pending 

pending 

pending 

Albinaria caerulea  
   Locality not indicated 

NC_001761  NC_001761  NC_001761  

Cornu aspersum  

   Chile 

NC_021747.1 NC_021747.1 NC_021747.1 

 

Lissachatina fulica  
   Locality not indicated 

NC_024601.1 

 

NC_024601.1 

 

NC_024601.1 

 

Halongella schlumbergeri  

   Cat Ba National Park, Vietnam 

pending pending pending 

Sculptaria damarensis damarensis                    

   Khubis Springs, Namibia 

pending pending pending 

    

 

 



Table 2. Primers used in the study. Sources: 1, Simon et al. (1994); 2, Folmer et al. (1994); 3, primers designed for this study 

by S. T. Williams; 4, Quintero et al. (2005). 

 

 

Marker Primer Direction Annealing 

temperature 

Sequence (5’-3’) Fragment 

size 

16S 16Sar
1
 Forward 45 °C CGCCTGTTTAACAAAAACAT ~450 bp 

 16Sbr
1
 Reverse 45 °C CCGGTCTGAACTCAGATCACGT ~450 bp 

CO1 LCO1490
2
 Forward 40-45 °C GGTCAACAAATCATAAAGATATTGG ~650 bp 

 HCO2198
2
 Reverse 40-45 °C TAAACTTCAGGGTGACCAAAAAATCA ~650 bp 

 CORR-CO1-F
3
 Forward 45 °C TGATGTGGTATAGTAGGAAC ~460 bp 

 CORR-CO1-R
3
 Reverse 45 °C TAATAGCACCTGCTAAGACTG ~460 bp 

ND1 MOL-NAD1F
4
 Forward 50 °C CGRAARGGMCCTAACAARGTTGG ~430 bp 

 MOL-NAD1R
4
 Reverse 50 °C GGRGCACGATTWGTCTCNGCTA ~430 bp 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Properties of the two concatenated datasets. The first dataset consists of 42 Corilla samples and 5 other taxa, 

Albinaria caerulea, Cornu aspersum, Lissachatina fulica (outgroup), Halongella schlumbergeri and Sculptaria damaraensis 

damaraensis; the second contains all these samples apart from C. colletti 5 and 6. The original concatenated alignments (i.e. 

including indels) for these two datasets were respectively 2166 bp (with 29 indels in 16S and 1 indel in ND1) and 2163 bp 

(with 31 indels in 16S and 1 indel in ND1).  

 

 

 46 ingroup + 1 outgroup 44 ingroup + 1 outgroup 

Number of Corilla samples 42 40 

Markers CO1 + ND1 + 16S CO1 + ND1 + 16S 

Number of haplotypes 47 (43 + 44 + 43) 45 (41 + 42 + 41) 

Total number of sites 1277 (459 + 429 + 389) 1281 (459 + 429 + 393) 

Number of invariable sites 502 (238 + 93 + 171) 503 (238 + 93 + 172) 

Number of variable sites 775 (221 + 336 + 218) 778 (221 + 336 + 221) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Patterns of support for selected clades recovered in phylogenetic analyses of Corilla, Albinaria caerulea, Cornu 

aspersum, Lissachatina fulica, Halongella schlumbergeri and Sculptaria damaraensis damarensis (all alignments gaps have 

been excluded). Analyses excluding the 3
rd

 codon position of CO1 and ND1 are presented for comparison. Clades follow Fig. 

2. For properties of the mtDNA datasets including all codon positions of CO1 and ND1see Table 3. The datasets excluding the 

3
rd

 codon position of CO1 and ND1 have the following composition: dataset of 46 ingroup sequences + 1 outgroup, CO1 = 306 

bp, ND1 = 286 bp, 16S = 389 bp; dataset of 44 ingroup sequences + 1 outgroup, CO1 = 306 bp, ND1 = 286 bp, 16S = 393 bp. 

Support values are given as posterior probabilities for Bayesian analyses and as bootstrap percentages for ML; maximal 

support (Bayesian = 1, ML = 100%) is indicated by an asterisk. Apart from one of the ML analyses (all deeper nodes not 

reliably resolved in analysis 6 below), C. beddomeae was consistently recovered as sister to all other Corilla. Abbreviations 

are: nr, relationships not reliably resolved; na, support value not available because the relevant samples were excluded from the 

analysis.  

 

 

Dataset C01 (all codon positions), ND1 (all codon positions), 16S C01 (codon positions 1+2), ND1 (codon positions 1+2), 16S 

Constituent samples 46 ingroup + 1 outgroup 44 ingroup + 1 outgroup 46 ingroup + 1 outgroup 44 ingroup + 1 outgroup 

Method 1. Bayesian 2. ML 3. Bayesian 4. ML 5. Bayesian 6. ML 7. Bayesian 8. ML 
         

  Clade         

  Corilla * * * * * * * 99 

  A * 65 * 76 0.95 nr * 78 

  B * 63 * 63 0.96 nr * 66 

  C. beddomeae * * * * * * * * 

  C. adamsi * 98 * 96 * 90 * 90 

  C. erronea-fryae * 92 * 84 * 84 * 79 

  C. humberti + C. gudei South * 98 * 97 * * * 99 

  C. humberti * 97 * 98 * * * * 

  C. carabinata + C. gudei North 0.99 85 0.99 79 nr nr nr 49 

  C. carabinata * * * * * * * * 

  C. gudei North * * * * * * * * 

  C. colletti * 76 * 93 0.96 nr * 90 

  C. odontophora East  * * * * * 98 * 99 

  C. adamsi (2-4) * * * * * * * 99 

  C. beddomeae (1a, 1b) * * * * * * * * 

  C. beddomeae (2a-5) * * * * * * * * 

  C. carabinata (2a-5b) 0.99 90 0.98 88 * 98 0.99 97 

  C. colletti (1-4) * 82 * 93 0.99 73 * 90 

  C. colletti (5, 6) * 87 na na 0.97 nr na na 

  C. odontophora (1a, 1b) * * * * * * * * 
         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5. p-distances between 42 Corilla sequences based on CO1 (459 bp).  Distances have been pooled to correspond with the clades/groups shown in Fig. 2, and are gives as ranges (in plain font) 

and as means (bold font). Distances for members of the same clade/group are in the shaded cells. The letters N, S and E indicate north, south and east respectively. 

 

 
 C. adamsi 

(1) 

C. adamsi  

(2-4) 

C. beddomeae 

(1a, 1b) 

C. beddomeae 

(2a-5) 

C. gudei N 

(1, 2) 

C. carabinata 

(1) 

C. carabinata 

(2a-5b) 

C. colletti 

(5, 6) 

C. colletti 

(1-4) 

C. erronea-

fryae 

C. gudei S 

(3) 

C. humberti C. odontophora N 

(3) 

C. odontophora E 

(1a-2) 

C. adamsi 

(1) 

- 

- 

0.150-179 0.179 0.176-0.194 0.172-0.181 0.224 0.218-0.220 0.207-0.216 0.200-0.214 0.172-0.190 0.196 0.183 0.207 0.181-0.198 

C. adamsi  

(2-4) 

 

0.167 

0.022-0.124 

0.091 

0.200-0.207 0.196-0.218 0.176-0.190 0.185-0.205 0.192-0.218 0.207-0.218 0.185-0.209 0.187-0.214 0.187-0.207 0.176-0.187 0.185-0.198 0.183-0.214 

C. beddomeae 

(1a, 1b) 

 

0.179 

 

0.203 

0.004         

0.004 

0.126-0.150 0.176-0.187 0.220-0.222 0.216-0.220 0.222-0.229 0.198-0.218 0.176-0.207 0.19 0.168-0.172 0.216-0.218 0.192-0.235 

C. beddomeae 

(2a-5) 

 

0.186 

 

0.208 

 

0.136 

0.000-0.050 

0.038 

0.192-0.214 0.218-0.233 0.218-0.240 0.200-0.227 0.181-0.220 0.172-0.209 0.196-0.216 0.181-0.205 0.207-0.214 0.166-0.242 

C. gudei N 

(1, 2) 

 

0.176 

 

0.182 

 

0.182 

 

0.201 

0.015     

0.015 

0.161-0.163 0.166-0.170 0.168-0.179 0.163-0.185 0.137-0.159 0.157-0.163 0.153-0.163 0.153-0.159 0.159-0.172 

C. carabinata 

(1) 

 

0.224 

 

0.193 

 

0.221 

 

0.225 

 

0.162 

- 

- 

0.037-0.041 0.192-0.196 0.187-0.192 0.174-0.203 0.192 0.194-0.198 0.168 0.179-0.205 

C. carabinata 

(2a-5b) 

 

0.219 

 

0.200 

 

0.218 

 

0.230 

 

0.168 

 

0.038 

0-0.009   

0.005 

0.198-0.205 0.181-0.196 0.172-0.198 0.192-0.194 0.194-0.200 0.174-0.181 0.176-0.200 

C. colletti 

(5, 6) 

 

0.211 

 

0.212 

 

0.225 

 

0.215 

 

0.171 

 

0.194 

 

0.202 

0.017     

0.017 

0.111-0.131 0.172-0.194 0.172-0.183 0.174-0.190 0.17 0.179-0.190 

C. colletti 

(1-4) 

 

0.204 

 

0.196 

 

0.207 

 

0.199 

 

0.173 

 

0.190 

 

0.189 

 

0.122 

0.002-0.089  

0.069 

0.155-0.190 0.146-0.168 0.133-0.176 0.157-0.179 0.170-0.192 

C. erronea-fryae  

0.179 

 

0.201 

 

0.188 

 

0.185 

 

0.148 

 

0.184 

 

0.182 

 

0.182 

 

0.172 

0.002-0.102 

0.07 

0.157-0.168 0.139-0.181 0.148-0.163 0.092-0.179 

C. gudei S 

(3) 

 

0.196 

 

0.200 

 

0.190 

 

0.207 

 

0.160 

 

0.192 

 

0.192 

 

0.178 

 

0.157 

 

0.167 

- 

- 

0.070-0.072 0.168 0.157-0.190 

       C. humberti  

0.183 

 

0.184 

 

0.170 

 

0.191 

 

0.158 

 

0.196 

 

0.197 

 

0.182 

 

0.155 

 

0.155 

 

0.071 

0.004     

0.004 

0.161-0.163 0.153-0.168 

 C. odontophora N 

(3) 

 

0.207 

 

0.194 

 

0.217 

 

0.210 

 

0.156 

 

0.168 

 

0.177 

 

0.170 

 

0.166 

 

0.155 

 

0.168 

 

0.162 

- 

- 

0.166-0.170 

C. odontophora E 

(1a-2) 

 

0.192 

 

0.196 

 

0.220 

 

0.208 

 

0.167 

 

0.190 

 

0.186 

 

0.184 

 

0.180 

 

0.147 

 

0.179 

 

0.162 

 

0.168 

0.011-0.181  

0.124 

 

 

 

 

 

 

 

 

 

 

 

 



Table 6. Indels in the aligned 16S region of Corilla (42 sequences, 462 bp) that define some of the clades discussed in the text. Shading indicates indels consisting of ≥2 base positions. Clades/groups 

follow Fig. 2. The letters N, S and E indicate north, south and east respectively. 

 

 12 13 43 44 46 50 51 157 163 198 243 244 245 246 283 284 285 299 303 304 305 306 307 312 325 326 327 346 432 

C. adamsi  

(1) 
- A T T A A - - - - - - - - - - - - - - - - - G - - - T - 

C. adamsi 

(2-4) 

C/ 

- 
T T T - A - - - T 

G/ 

- 
- - - A - - T - - - - - T - - T T - 

C.beddomeae  

(1a, 1b) 
- A - - - T - - - T - - - T - - - A A T T T T T - T T C - 

C. beddomeae  

(2a-5) 
- - T 

C/

T 
- T - - - T T A T T T - - A - - - 

A/ 

T 

A/ 

T 

C/T/

- 
- - T T T 

C. carabinata  

(1) 
- - T T - A C - - - - - - - A A T A - - - - A A - T T T - 

C. carabinata  

(2a-5b) 
- - T T - A C - - - T - - - A A T A - - - - G A - T T T - 

C. colletti  

(1-4) 
- - T T - A T - - - 

T/ 

- 
- 

T/ 

- 

A/ 

- 
A 

A/ 

G 
T A - - - - - A - 

C/ 

T 
T 

C/ 

T 
- 

C. colletti  

(5, 6) 
- - T T - G T - - - - - - - A A T A - - - - - A - T T C - 

C. erronea-fryae 

 
- - T T - 

A/

T 

C/

T 
- 

T/ 

- 
- - - - - A 

A/ 

T 
- A - - - - A/G

/T 
A - T T T - 

C. gudei N 
(1, 2) 

- - T T - - T - - - - - - - A 
A/ 
G 

C G - - - - G A - C T T - 

C. gudei S 

(3) 
- - T T - A T C - - - - - - A T - A - - - - T A - T T - - 

C. humberti 
 

- - T T - A T C - - - - - - A T - A - - - - T A - T T - - 

C. ondontophora E 

(1a-2) 
- - T T - A - - - - T - - - A A - A - - - - A A - T T C - 

C. odontophora N 
(3) 

- - T T - G T - - - - - - - A G - A - - - - - A T T T C - 

 

 

 

 

 

 

 



Appendix A. Supplementary Material. 

 

 

Table S1. Properties of the two concatenated datasets consisting of Corilla alone. The first dataset comprises 42 samples and 

the second 40 samples (i.e. excluding C. colletti 5 and 6). The original concatenated alignments (i.e. including indels) for these 

two datasets were respectively 1361 bp (with 31 indels in 16S and 1 indel in ND1) and 1360 bp (with 29 indels in 16S and 1 

indel in ND1).  

 

 

 42 Corilla samples 40 Corilla samples 

Markers CO1 + ND1 + 16S CO1 + ND1 + 16S 

Number of haplotypes 42 (38 + 39 + 40) 40 (36+ 37 + 38) 

Total number of sites 1327 (459 + 437 + 431) 1328 (459 + 437 + 432) 

Number of invariable sites 668 (261 + 162 + 245) 673 (261 + 165 + 247) 

Number of variable sites 659 (198 + 275 + 186) 655 (198 + 272 + 185) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S2. Patterns of support for selected clades recovered in phylogenetic analyses of Corilla alone (all alignments gaps have 

been excluded). Analyses excluding the 3
rd

 codon position of CO1 and ND1 are presented for comparison. Clades follow Fig. 

2. For properties of the mtDNA datasets including all codon positions of CO1 and ND1see Table S1. The datasets excluding 

the 3
rd

 codon position of CO1 and ND1 have the following composition: dataset of 42 Corilla samples, CO1 = 306 bp, ND1 = 

291 bp, 16S = 431 bp; dataset of 40 Corilla samples, CO1 = 306 bp, ND1 = 291 bp, 16S = 432 bp. Support values are given as 

posterior probabilities for Bayesian analyses and as bootstrap percentages for ML. Maximal support (Bayesian = 1, ML = 

100%) is indicated by an asterisk and ‘na’ indicates that values were not available because the relevant samples were excluded 

from the analysis. Trees were rooted on C. beddomeae so this taxon is not considered here. 

 

 

Dataset C01 (all codon positions), ND1 (all codon positions), 16S C01 (codon positions 1+2), ND1 (codon positions 1+2), 16S 

Constituent samples 42 Corilla samples 40 Corilla samples 42 Corilla samples 40 Corilla samples 

Method 1. Bayesian 2. ML 3. Bayesian 4. ML 5. Bayesian 6. ML 7. Bayesian 8. ML 
         

  Clade         

  A * * * * * * * * 

  B * 98 * 98 * 91 * 93 

  C. adamsi * 99 * * * 98 * * 

  C. erronea-fryae * 98 * 96 * 88 * 88 

  C. humberti + C. gudei South * 99 * * * * * * 

  C. humberti * 97 * * * * * * 

  C. carabinata + C. gudei North * 94 * 94 0.94 76 0.96 78 

  C. carabinata * * * * * * * * 

  C. gudei North * * * * * * * * 

  C. colletti * 99 * * * * * * 

  C. odontophora East  * * * * * * * * 

  C. adamsi (2-4) * * * * * * * * 

  C. carabinata (2a-5b) 0.97 84 0.96 87 0.99 94 0.99 76 

  C. colletti (1-4) * 96 * * 0.99 87 * * 

  C. colletti (5, 6) * * na na * * na na 

  C. odontophora (1a, 1b) * * * * * 90 * 83 
         

 

 

 



Appendix A. Supplementary Material

Table S3. P -distances between 42 Corilla sequences based on CO1 (459 bp). Shading indicates distances among members of the same clade and/or nominal species.
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C. adamsi  1

C. adamsi  2 0.150

C. adamsi  3 0.179 0.124

C. adamsi  4 0.172 0.126 0.022

C. beddomeae  1a 0.179 0.203 0.207 0.200

C. beddomeae  1b 0.179 0.200 0.207 0.200 0.004

C. beddomeae  2a 0.194 0.211 0.216 0.218 0.150 0.150

C. beddomeae  2b 0.192 0.214 0.214 0.216 0.146 0.146 0.009

C. beddomeae  5 0.192 0.203 0.209 0.216 0.135 0.133 0.044 0.046

C. beddomeae  4a 0.176 0.200 0.203 0.205 0.129 0.131 0.046 0.048 0.039

C. beddomeae  4b 0.176 0.200 0.203 0.205 0.129 0.131 0.046 0.048 0.039 0.000

C. beddomeae  3 0.183 0.196 0.209 0.211 0.126 0.129 0.050 0.052 0.022 0.044 0.044

C. gudei  1 0.181 0.176 0.190 0.185 0.187 0.185 0.214 0.209 0.203 0.203 0.203 0.207

C. gudei  2 0.172 0.176 0.185 0.181 0.179 0.176 0.203 0.198 0.192 0.192 0.192 0.198 0.015

C. carabinata  1 0.224 0.205 0.190 0.185 0.222 0.220 0.233 0.229 0.227 0.218 0.218 0.227 0.161 0.163

C. carabinata  2a 0.220 0.207 0.192 0.196 0.218 0.216 0.231 0.240 0.231 0.218 0.218 0.231 0.166 0.168 0.037

C. carabinata  2b 0.220 0.207 0.192 0.196 0.218 0.216 0.231 0.240 0.231 0.218 0.218 0.231 0.166 0.168 0.037 0.000

C. carabinata  3 0.218 0.209 0.194 0.198 0.218 0.216 0.235 0.240 0.235 0.222 0.222 0.235 0.168 0.170 0.037 0.004 0.004

C. carabinata  4 0.218 0.209 0.194 0.198 0.218 0.216 0.235 0.240 0.235 0.222 0.222 0.235 0.168 0.170 0.037 0.004 0.004 0.000

C. carabinata  5a 0.218 0.214 0.194 0.198 0.220 0.218 0.233 0.237 0.233 0.220 0.220 0.233 0.168 0.170 0.041 0.009 0.009 0.004 0.004

C. carabinata  5b 0.218 0.214 0.194 0.198 0.220 0.218 0.233 0.237 0.233 0.220 0.220 0.233 0.168 0.170 0.041 0.009 0.009 0.004 0.004 0.000

C. colletti  3 0.200 0.185 0.198 0.200 0.214 0.214 0.209 0.207 0.220 0.211 0.211 0.209 0.179 0.176 0.190 0.194 0.194 0.196 0.196 0.196 0.196

C. colletti  1 0.200 0.187 0.190 0.200 0.198 0.198 0.196 0.194 0.185 0.183 0.183 0.179 0.163 0.163 0.190 0.185 0.185 0.187 0.187 0.183 0.183 0.089

C. colletti  4 0.214 0.194 0.203 0.209 0.218 0.216 0.209 0.207 0.211 0.207 0.207 0.203 0.185 0.183 0.192 0.192 0.192 0.194 0.194 0.194 0.194 0.057 0.089

C. colletti  2 0.203 0.190 0.192 0.203 0.200 0.200 0.198 0.196 0.187 0.185 0.185 0.181 0.166 0.166 0.187 0.183 0.183 0.185 0.185 0.181 0.181 0.087 0.002 0.087

C. colletti  6 0.216 0.214 0.216 0.218 0.229 0.227 0.227 0.224 0.216 0.220 0.220 0.205 0.170 0.179 0.196 0.203 0.203 0.205 0.205 0.205 0.205 0.131 0.124 0.124 0.122

C. colletti  5 0.207 0.207 0.207 0.209 0.224 0.222 0.218 0.216 0.211 0.211 0.211 0.200 0.168 0.168 0.192 0.200 0.200 0.203 0.203 0.198 0.198 0.126 0.120 0.111 0.118 0.017

C. erronea  1 0.181 0.209 0.190 0.190 0.187 0.185 0.192 0.185 0.174 0.179 0.179 0.181 0.144 0.139 0.176 0.181 0.181 0.183 0.183 0.183 0.183 0.176 0.155 0.172 0.157 0.183 0.176

C. erronea  2 0.179 0.207 0.187 0.187 0.179 0.179 0.190 0.183 0.174 0.176 0.176 0.179 0.142 0.137 0.179 0.174 0.174 0.176 0.176 0.176 0.176 0.176 0.155 0.176 0.157 0.187 0.181 0.011

C. fryae  1a 0.179 0.207 0.196 0.196 0.181 0.179 0.187 0.181 0.174 0.179 0.179 0.181 0.146 0.142 0.179 0.174 0.174 0.176 0.176 0.176 0.176 0.185 0.159 0.181 0.161 0.192 0.185 0.015 0.009

C. fryae  1b 0.176 0.205 0.194 0.194 0.179 0.176 0.185 0.179 0.172 0.176 0.176 0.179 0.144 0.139 0.176 0.172 0.172 0.174 0.174 0.174 0.174 0.183 0.157 0.179 0.159 0.190 0.183 0.013 0.007 0.002

C. erronea  5 0.183 0.205 0.194 0.196 0.194 0.192 0.196 0.198 0.190 0.190 0.190 0.194 0.155 0.153 0.174 0.174 0.174 0.176 0.176 0.176 0.176 0.174 0.174 0.179 0.176 0.183 0.172 0.081 0.078 0.078 0.081

C. erronea  4 0.190 0.203 0.209 0.214 0.207 0.205 0.190 0.192 0.181 0.181 0.181 0.187 0.155 0.148 0.203 0.194 0.194 0.192 0.192 0.192 0.192 0.190 0.170 0.183 0.168 0.185 0.174 0.102 0.096 0.100 0.098 0.098

C. erronea  3 0.172 0.211 0.196 0.200 0.198 0.196 0.209 0.207 0.194 0.198 0.198 0.192 0.155 0.150 0.190 0.190 0.190 0.187 0.187 0.187 0.187 0.187 0.168 0.185 0.170 0.183 0.172 0.085 0.083 0.087 0.085 0.085 0.102

C. fryae  3 0.176 0.209 0.205 0.209 0.183 0.181 0.196 0.194 0.181 0.181 0.181 0.183 0.159 0.155 0.196 0.196 0.196 0.198 0.198 0.194 0.194 0.187 0.161 0.190 0.163 0.194 0.179 0.083 0.081 0.085 0.083 0.089 0.102 0.037

C. gudei  3 0.196 0.187 0.207 0.207 0.190 0.190 0.216 0.216 0.203 0.205 0.205 0.196 0.157 0.163 0.192 0.192 0.192 0.194 0.194 0.192 0.192 0.168 0.146 0.168 0.148 0.183 0.172 0.166 0.166 0.166 0.168 0.157 0.181 0.168 0.163

C. humberti  1 0.183 0.187 0.185 0.176 0.168 0.172 0.205 0.203 0.192 0.187 0.187 0.185 0.157 0.163 0.198 0.198 0.198 0.200 0.200 0.198 0.198 0.170 0.137 0.176 0.139 0.190 0.179 0.155 0.150 0.157 0.155 0.157 0.181 0.157 0.144 0.070

C. humberti  2 0.183 0.187 0.185 0.181 0.168 0.172 0.200 0.198 0.187 0.183 0.183 0.181 0.153 0.159 0.194 0.194 0.194 0.196 0.196 0.194 0.194 0.170 0.133 0.176 0.135 0.185 0.174 0.150 0.146 0.153 0.150 0.153 0.176 0.153 0.139 0.072 0.004

C. odontophora  2 0.181 0.214 0.209 0.209 0.194 0.192 0.183 0.181 0.170 0.166 0.166 0.172 0.159 0.159 0.205 0.198 0.198 0.200 0.200 0.196 0.196 0.181 0.170 0.192 0.172 0.185 0.179 0.107 0.107 0.111 0.109 0.102 0.115 0.094 0.092 0.157 0.157 0.153

C. odontophora  1a 0.196 0.187 0.183 0.190 0.233 0.233 0.240 0.242 0.224 0.216 0.216 0.220 0.170 0.172 0.179 0.179 0.179 0.176 0.176 0.176 0.176 0.181 0.176 0.185 0.176 0.190 0.183 0.163 0.161 0.166 0.163 0.172 0.179 0.168 0.174 0.190 0.168 0.163 0.181

C. odontophora  1b 0.198 0.192 0.187 0.194 0.235 0.235 0.237 0.240 0.222 0.218 0.218 0.218 0.170 0.172 0.185 0.185 0.185 0.183 0.183 0.179 0.179 0.185 0.176 0.190 0.176 0.190 0.179 0.161 0.159 0.163 0.161 0.174 0.176 0.170 0.172 0.190 0.168 0.163 0.181 0.011

C. odontophora  3 0.207 0.185 0.198 0.198 0.218 0.216 0.214 0.214 0.209 0.207 0.207 0.209 0.153 0.159 0.168 0.174 0.174 0.176 0.176 0.181 0.181 0.172 0.157 0.179 0.157 0.170 0.170 0.148 0.159 0.159 0.157 0.150 0.163 0.150 0.153 0.168 0.163 0.161 0.170 0.166 0.168
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