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Abstract: Multiple sclerosis (MS) is a debilitating disease commonly attributed to degradation of white
matter myelin. Symptoms include fatigue, as well as problems associated with vision and movement.
Although areas of demyelination in white matter are observed routinely in patients undergoing MRI
scans, such measures are often a poor predictor of disease severity. For this reason, it is instructive to
measure associated changes in brain function. Widespread white-matter demyelination may lead to
delays of propagation of neuronal activity, and with its excellent temporal resolution, magnetoenceph-
alography can be used to probe such delays in controlled conditions (e.g., during a task). In healthy
subjects, responses to visuomotor tasks are well documented: in motor cortex, movement elicits a local-
ised decrease in the power of beta band oscillations (event-related beta desynchronisation) followed by
an increase above baseline on movement cessation (post-movement beta rebound (PMBR)). In visual
cortex, visual stimulation generates increased gamma oscillations. In this study, we use a visuomotor
paradigm to measure these responses in MS patients and compare them to age- and gender-matched
healthy controls. We show a significant increase in the time-to-peak of the PMBR in patients which
correlates significantly with the symbol digit modalities test: a measure of information processing
speed. A significant decrease in the amplitude of visual gamma oscillations in patients is also seen.
These findings highlight the potential value of electrophysiological imaging in generating a new under-
standing of visual disturbances and abnormal motor control in MS patients. Hum Brain Mapp 00:000–
000, 2017. VC 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
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INTRODUCTION

Multiple sclerosis (MS) is an inflammatory, demyelinat-
ing and neurodegenerative disease of the central nervous
system, affecting around 1 in 500 people (Mackenzie et al.,
2014). Patients have a wide range of symptoms such as
fatigue, problems with vision, limb movement, sensation
and balance. Cognitive symptoms are common, with infor-
mation processing speed being one of the first affected
domains (Strober et al., 2009). Magnetic resonance imaging
(MRI) is commonly used for diagnosis, and shows white
matter lesions which are thought to affect around 60% of
patients (Ormerod et al., 1986). However, white matter
lesion load does not necessarily correlate with physical
disability or cognitive impairment (Barkhof, 2002). This
clinicoradiological paradox has led to the search for alter-
native verifiable markers of clinical status. Recent findings
suggest that structural pathology goes well beyond classi-
cal white matter lesions, ranging from diffuse white matter
damage (Kutzelnigg et al., 2005), to atrophy of the white
and grey matter (Sanfilipo et al., 2006), including deep
grey matter structures such as the thalamus (Houtchens
et al., 2007) and cortical lesions (Sethi et al., 2013; Tallan-
tyre et al., 2010). This suggests that disease status in MS is
not the result of one structural deficit (i.e., white matter
lesions), but rather results from a weighted combination of
several types of structural pathology. It has been hypoth-
esised that any type, or combination of structural damage
will lead to disrupted brain function (Schoonheim et al.,
2015). This implies that the characterisation of brain func-
tion and its disturbance in MS may prove key to determin-
ing the neural underpinnings of cognitive disturbances
and physical disabilities. Neuroimaging investigations
using techniques such as functional MRI (fMRI) and mag-
netoencephalography (MEG) are therefore of growing
importance.

Previous fMRI studies have used a variety of tasks to
determine the impact of demyelination on function, assess-
ing visual, memory, and motor processes (Mainero et al.,
2004; Reddy et al., 2000; Rocca et al., 2002), as well as cog-
nitive function (Schoonheim et al., 2013a; Staffen et al.,
2002). General findings suggest altered patterns of activa-
tion during attention and memory tasks (Mainero et al.,
2004), a change in resting-state activity (Liu et al., 2011),
and disrupted connectivity (Dineen et al., 2009; Filippi and
Rocca, 2013; Tewarie et al., 2015). However, findings from
both task-based and resting-state studies have been some-
what contradictory (Schoonheim et al., 2015). In addition,
a recent multimodal fMRI/MEG study has shown that
MEG measures are more sensitive for detecting disease-
induced effects in cortical functional networks than fMRI
(Tewarie et al., 2015), suggesting that MEG provides a
good candidate to study perturbed brain function in MS
patients.

MEG is a noninvasive method of assessing electrophysi-
ological activity, via the measurement of extracranial mag-
netic fields generated by synchronised current flow in

neuronal cell assemblies. Signals are dominated by oscilla-
tions resulting from the rhythmic activity of large clusters
of neurons. Such neuronal oscillatory activity has been a
topic of significant research in recent years, and many
studies now show robust and focal changes in oscillations
in response to simple tasks. For example, oscillatory
changes during visuomotor tasks (visual and motor stimu-
li) have been well documented: in visual cortex, an
increase in gamma (30–70 Hz) oscillations is observed in
response to a visual stimulus (Adjamian et al., 2004;
Brookes et al., 2005). Such gamma oscillations have been
linked to a variety of behaviours such as visual perception
(Melloni et al., 2007), attention (Fries et al., 2001), memory
(Jensen et al., 2007), and motor control (Cheyne et al.,
2008). Local field potential (LFP) recordings in animals
support these findings, revealing stimulus induced gamma
oscillations with varying amplitude and/or frequency
depending on contrast (Henrie and Shapley, 2005), orienta-
tion (Friedman-Hill et al., 2000), and velocity (Friedman-
Hill et al., 2000). In motor cortex, stimulus-induced oscilla-
tory changes are dominated by the beta band (13–30 Hz)
which exhibits decreased power during movement (Jasper
and Penfield, 1949) followed by a power increase (above
baseline) on movement cessation (Neuper and Pfurtschel-
ler, 2001). These phenomena are known as the event-
related beta desynchronisation (ERBD), and the post-
movement beta rebound (PMBR), respectively. Their origin
is not understood fully; however, large beta amplitudes
are believed to reflect inhibition (Cassim et al., 2001; Gaetz
et al., 2011) and thus the ERBD might reflect an increase in
local processing during motor activity, while the PMBR
implies the inhibition of neuronal networks following
activity (Alegre et al., 2008; Solis-Escalante et al., 2012).
Oscillations have also been closely associated with com-
munication in the brain (Fries, 2005). Beta oscillations have
been linked to resting-state networks (Brookes et al.,
2011a; Hipp et al., 2012; Siegel et al., 2012) and the PMBR
in particular has been associated with long-range connec-
tivity in the sensorimotor system (Donner and Siegel, 2011;
Liddle et al., 2016; Vidaurre et al., 2016). Similarly gamma
oscillations have, for example, been related to feature
binding in the visual system (Tallon-Baudry and Bertrand,
1999). Such links between oscillations and connectivity
suggest that oscillations themselves must depend heavily
on the underlying (grey and white matter) myeloarchitec-
ture (Hunt et al., 2016). It follows that such oscillations
would likely be perturbed by the distributed myelin dam-
age associated with MS.

To date, MEG has not been used widely in the study of
MS, and the majority of studies have used resting-state
data (Cover et al., 2006; Hardmeier et al., 2012; Schoon-
heim et al., 2013b; Tewarie et al., 2013, 2014b; Van der
Meer et al., 2013), with results generally showing a lower
alpha peak frequency, decreased connectivity, and net-
work disruption in patients (Tewarie et al., 2013, 2014a).
Here, we use MEG to study MS patients whilst they

r Barratt et al. r

r 2 r



undertake a visuomotor task. We test the hypothesis that
the robust and well-characterised neural oscillatory pro-
cesses induced by this task will be perturbed significantly
in patients compared to age- and gender-matched healthy
controls.

METHODS

Participants

The study was approved by the National Research
Ethics Service and all participants gave written informed
consent. MS patients (diagnosed with clinically definite
MS (Polman et al., 2011) and no other known neurological
conditions) were recruited from the Queen’s Medical Cen-
tre in Nottingham, with healthy control subjects recruited
to match the MS patient group based on age and gender.
A total of 21 patients (12 females, age 42 6 11 years (mean
6 SD)) and 22 healthy controls (12 females, age 42 6 12
years (mean 6 SD)) were recruited (see Table I for further
details).

Severity and Cognitive Scores

Disease severity was assessed by the Multiple Sclerosis
Severity Score (MSSS) (Roxburgh et al., 2005) which deter-
mines disability progression in patients and is calculated
based on disease duration and the expanded disability sta-
tus scale (EDSS). All participants also undertook cognitive
tests using the Brief International Cognitive Assessment
for Multiple Sclerosis (BICAMS) (Langdon et al., 2012).
This comprised the Symbol Digit Modalities Test (SDMT)
(Smith, 2013), the California Verbal Learning Test (CVLT-
II) (Delis et al., 2000), and the Brief Visualspatial Memory
Test – Revised (BVMT-R) (Benedict et al., 1996). SDMT is a
measure of information processing speed and involves
participants pairing single digits with abstract symbols.
The CVLT-II provides a measure of verbal memory and
requires participants to recall lists, while the BVMT-R pro-
vides a measure of visual memory and requires partici-
pants to draw abstract shapes from memory. Patient
cognitive scores were normalised using a z-score taking
age, gender, and education into consideration. Subjects
also completed a Hospital Anxiety and Depression Scale
(HADS) questionnaire.

Task Paradigms

The visuomotor task comprised a centrally presented
vertical square grating (angular field of view �78 both hor-
izontally and vertically, spatial frequency 5 3 cycles per
degree, contrast 5 100%) shown for 2 s followed by a 7 s
fixation period during which participants viewed a cen-
trally presented fixation cross. Participants were asked to
press a button once, with their right index finger, in
response to the appearance of the grating on the screen.

The task consisted of 45 trials, lasting just under 7 min in
total. In a separate experiment, resting-state data were also
acquired in the same subjects. Subjects were asked to lie
still and ‘think of nothing’ while MEG data were recorded
continuously for 10 min. Patients were shown a fixation
cross throughout the resting-state scan. All MEG data
were acquired with participants in a supine position.

Data Acquisition

MEG data were acquired using a 275-channel whole-
head CTF system (MISL, Coquitlam, Canada) operating in
third-order synthetic gradiometer configuration, at a sam-
pling frequency of 600 Hz. Prior to acquisition, three local-
isation fiducial coils were placed on the head (at the
nasion, and left and right preauricular points). These coils
were energised periodically to continuously localise the
position of the subject’s head in the scanner. A 3D digitisa-
tion of the subject’s head shape and fiducial locations
were obtained using a 3D digitiser (polhemus Inc., Ver-
mont) system. Subsequent co-registration of the MEG data
to an anatomical MRI (acquired using a 7 T Philips
Achieva MRI scanner, or 3 T Philips Achieva for one par-
ticipant, at 1 mm3 isotropic voxel resolution) was achieved
via matching the digitised head surface to the equivalent
surface extracted from the anatomical MRI.

Data Analysis: Visuomotor Data

An overview of our data processing methodology is
shown in Figure 1. MEG data were inspected visually and
noisy trials were removed. Trials with head movement
>7 mm (Euclidean distance) from the starting position
were also removed, leaving 43 6 2 (mean 6 SD) trials for
healthy controls, and 42 6 2 (mean 6 SD) for MS patients
(there was no significant difference between patient and
control groups in the number of trials remaining). Lead
fields were computed using a dipole approximation (Sar-
vas, 1987) and a multiple-local-spheres head model

TABLE I. Descriptive variables for MS patients

MS Patients (n 5 21)

Mean 6SD

Age (years) 42 11
Disease duration (years) 7 6
EDSS 3 (median) 0-6 (range)
MSSS 65 24
MS type

RR 18 -
PP 2 -
SP 1 -

EDSS 5 expanded disability status scale; MSSS 5 multiple sclerosis
severity score; RR 5 relapsing–remitting; PP 5 primary progres-
sive; SP 5 secondary progressive.
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(Huang et al., 1999). A scalar beamformer (synthetic aper-
ture magnetometry; Robinson and Vrba, 1998) was used to
project MEG data into source space. Images showing gam-
ma band power change were generated by contrasting
30–70 Hz power in an active window of 0–2 s, and a con-
trol window of 5–7 s, relative to stimulus onset. Images
showing the spatial signature of task-induced beta band
power change were generated by contrasting oscillatory
power in the 13–30 Hz band, using an ‘active’ window of
0–1 s and a ‘control’ window of 1–2 s relative to the button
press. These windows were chosen to obtain the largest
response by contrasting the ERBD to the PMBR. In a post-
hoc analysis, we also aimed to separate the ERBD and
PMBR spatially; to this end, we contrasted a 0–0.5 s active
window to a 6–6.5 s control window to assess the spatial
location of ERBD. We further contrasted a 0.5–3 s active
window to a 4–6.5 s control window to assess the spatial
location of PMBR (all times relative to button press). In
generating all the above images, to optimise spatial specif-
icity, data covariance matrices used for beamformer
weights calculation were generated using band-limited
data, averaged across active and control windows. Both
our beta and gamma analysis produced pseudo-t-statistical
images for each participant which were used to determine
the peak location (location of the strongest response) of
beta band power change in motor cortex during move-
ment, and the peak increase in gamma oscillations in visu-
al cortex during presentation of the grating. These
locations, derived individually for each subject, were then
used in subsequent analysis.

Timecourses measuring the evolution of electrical activi-
ty at each peak location (known as virtual sensor time-
courses) were extracted, again using a scalar beamformer.

Here, beamformer weights were calculated using a covari-
ance matrix generated from the entire dataset, and fre-
quency filtered in 1–150 Hz; this enabled derivation of
time–frequency measurements spanning the whole trial
length and showing task-induced change in oscillatory
amplitude in all frequency bands. Virtual sensor time-
courses were filtered into 23 overlapping frequency bands
in the range of 1–100 Hz. For each frequency band, a Hil-
bert transform was used to compute the amplitude enve-
lope of oscillations, which was averaged across trials. Via
concatenation of these envelope timecourses in the fre-
quency dimension, a time–frequency spectrogram (TFS)
was derived showing the percentage change in the Hilbert
envelope of the oscillations in all frequency bands relative
to a baseline; baseline was defined in the 5.8–6.9 s window
relative to the button press for the motor response, and
the 5–7 s window with respect to stimulus onset for the
visual response. TFSs were averaged across participants in
both groups.

TFSs were further analysed to test for differences
between patients and controls in both the temporal signa-
ture of the movement induced beta band response and the
magnitude of the visual gamma response. For visual gam-
ma, the mean amplitude (in the 0–2 s time window and
30–70 Hz frequency range) was calculated for each group
and the difference between groups was assessed. To test
for differences in the timing of the beta rebound, the 13–30
Hz band was extracted from the TFS and modelled using
a two-parameter Weibull probability density distribution.
This function has been shown previously to be highly
suitable for modelling beta band timecourses (Liddle et al.,
2016). The Weibull probability density distribution is
given by

Figure 1.

Schematic diagram summarising the stimulus and analysis methods for our visuomotor experi-

ment. [Color figure can be viewed at wileyonlinelibrary.com]
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where a is the scale parameter determining the width of the
peak and b is the shape parameter that determines symme-
try. Beta envelope modulation was modelled using two sep-
arate Weibull curves, one representing the ERBD and the
other the PMBR. The ERBD was modelled using a Weibull
function with a scale parameter (a) ranging from 280 to 690
ms and a shape parameter (b) of 3 (roughly symmetrical).
The PMBR was modelled with a scale parameter (a) of
500–2500 ms and a shape parameter (b) ranging from 1 (neg-
ative skew) to 6 (positive skew). These parameters were cho-
sen to provide a good fit to all subjects. These curves were
entered as predictors into a series of general linear models
for each participant’s beta timecourse. The model with the
best fit was chosen, and the time-to-peak of the rebound
found. Fitting was applied to individual subjects and results
averaged. Note that computing time-to-peak using the fit
(rather than the data) reduces the effect of noise.

To determine statistical significance of the difference
between healthy controls and MS patients, a paired permuta-
tion test was used: MS patients were matched with their
healthy controls and the mean difference in the parameter of
interest (gamma amplitude or beta time-to-peak), between
all matched pairs was found. This was then repeated 20,000
times to generate a null distribution; on each iteration, the
healthy control and patient in each pair were swapped ran-
domly before recalculating the mean difference. In this way,
we reasoned that if no genuine difference between groups
was apparent, the labelling of the patient/control pairs
would be meaningless and hence the genuine difference
(with patients and controls labelled correctly) would fall
inside the null distribution. The P value was determined by
comparing the genuine value to the null distribution, assum-
ing a two-tailed test (i.e., time-to-peak of the beta response
could be faster or slower in patients relative to healthy con-
trols; similarly gamma amplitude in patients could be greater
or less than matched healthy controls).

Data Analysis: Resting-State Data

The resting-state data were used to test for differences
in the resting amplitude of visual gamma and motor beta
oscillations between groups. MEG data were inspected visual-
ly; noisy data segments and data segments with head move-
ment >7 mm (Euclidean distance) from the starting position
were removed. Segments were defined as contiguous 10 s
windows; following visual inspection, 58 6 3 (mean 6 SD)
segments remained for healthy controls and 55 6 8 segments
remained for MS patients (no significant difference). Regions
of interest (ROIs) were generated in the left motor cortex and
visual cortex for each subject. As above, a scalar beamformer
was used to project data to these regions (using a covariance
window spanning 1–150 Hz and a time window spanning the
entire experiment). Following this, a Hilbert envelope was

used to generate the mean (over all time) oscillatory ampli-
tude across a range of frequencies between 1 and 100 Hz.
These amplitude spectra were averaged over participants, and
between group differences assessed.

RESULTS

The task was well performed by all participants. Two MS
patients had unusable MEG datasets caused by dental work
and so these subjects and their paired healthy control sub-
jects were removed from all analyses. Two patients were
removed from the beta band analysis since no beta band
response could be robustly identified, leaving a total of 17
MS patients (of which 2 were left-handed, 2 were ambidex-
trous, and the remainder right-handed) and 17 matched
healthy control pairs (of which 1 was left-handed, 1 was
ambidextrous, 14 were right-handed, and data were
unavailable for 1) for the motor beta analysis. A single MS
patient, whose gamma response lay more than 3 absolute
deviations from the median of the MS group, was removed
from the visual gamma analysis, leaving 18 MS patients and
healthy controls. The raw cognitive tests compared matched
pairs of 18 MS patients and healthy controls.

Cognitive Tests

Figure 2 shows that the healthy control subjects per-
formed significantly better than MS patients in 2 out of the
3 cognitive tests (SDMT: P< 0.0001, BVMT-R: P< 0.0001),
with a trend (CVLT-II: P 5 0.06) observed in the third. The
SDMT score (healthy control score 5 63 6 4 (mean 6 SE),
MS patient score 5 44 6 2) is out of 102, the CVLT-II score
(healthy control score 5 57 6 3, MS patient score 5 49 6 2)
is out of 80, and the BVMT-R score (healthy control
score 5 27 6 1, MS patient score 5 20 6 1) is out of 36. MS
Patients were also found to be significantly more anxious
and depressed on average compared to healthy controls
(HADS: MS patient score 5 16 6 2, healthy control
score 5 9 6 1, P 5 0.009, maximum score possible is 42).

Motor Response

Results of the beta band analysis in sensorimotor cortex
are shown in Figure 3. Figure 3a shows the beamformer
images depicting the spatial location of maximum beta
change (i.e. contrasting windows encapsulating ERBD and
PMBR). Images are averaged over subjects within each
group. Importantly, there is no significant difference in the
spatial location of the peaks between groups (MNI co-
ordinates for healthy controls: [237 6 6, 228 6 8, 41 6 12]
(mean 6 SD), MNI co-ordinates for MS patients [236 6 5,
226 6 9, 47 6 7]). Figure 3b shows the results of a post-hoc
analysis in which the peak location representing maximum
beta change (shown here in blue) is contrasted with the
peak location of ERBD and PMBR. In both groups, as
would be expected from previous work (Fry et al., 2016;
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Jurkiewicz et al., 2006), a significant anterior shift in the
location of PMBR relative to ERBD was observed. Howev-
er, there was no significant difference in peak locations for
either metric between groups. Figure 3c shows the TFSs,
extracted from locations of interest (based on maximum
beta change; i.e., the blue markers in Fig. 3b) in primary
sensorimotor cortex. The TFS for MS patients is shown on
the right and the TFS for healthy controls on the left. Note
that, for both groups, the expected decrease in oscillatory
power in the beta band immediately after the button press
is apparent, and is followed by an increase above baseline
on movement cessation. Further visual inspection suggests
a lag in beta response time for MS patients compared to
healthy controls. The mean beta responses and associated
Weibull fits are shown in Figure 3d. The red curve shows
the case for patients and the blue curve shows the case for
controls. Note again the apparent PMBR delay in patients.
Figure 3e shows the measured time difference alongside
an empirically derived null distribution, with results indi-
cating that the delay in time-to-peak of the PMBR is signif-
icant (P 5 0.03; two-tailed test). The measured time-to-peak
of the beta response in both groups is shown in the inset
image. It is noteworthy that the significant difference in
time to peak of the PMBR occurs despite no measurable
difference (P 5 0.2) in the mean reaction time (RT) between
controls (0.42 6 0.03 s) and patients (0.46 6 0.02 s). There
was also no significant correlation in MS patients between
reaction time and the time-to-peak of the PMBR (P 5 0.3).
Further post-hoc analysis revealed that the significant dif-
ference in PMBR time-to-peak was also measurable at the
peak location of ERBD (P 5 0.04; two-tailed test). The peak
location of PMBR revealed the same pattern, but the effect
failed to reach significance using a two-tailed test. Figure
3f shows that, in MS patients, a significant negative corre-
lation (r 5 20.62, P 5 0.008) exists between the time-to-
peak of the PMBR and SDMT score, suggesting that

patients who performed worse on the test had a longer
delay in their peak rebound time. This relationship was
not seen in healthy controls (r 5 20.18, P 5 0.48). (Note
however that in controls, correlation was measured
between time-to-peak and raw cognitive score, as a cor-
rected score does not exist). No correlations were found
between time-to-peak and any other MS severity or cogni-
tive score. Finally, Figure 2g shows the amplitude spec-
trum of oscillations in sensorimotor cortex for resting-state
data acquired in the same subjects. There was no signifi-
cant difference in the amplitude at any frequency.

Visual Response

Figure 4 shows the results of the gamma band analysis
in visual cortex. Figure 4a shows the TFS plots for healthy
controls (left) and MS patients (right), extracted from
regions of interest in visual cortex. As expected, a strong
increase in the gamma band activity is seen during stimu-
lation for both groups. However, this response is dimin-
ished in MS patients. This finding is echoed in the t-stat
images in Figure 4b, which show a weaker response in MS
patients. Plotting the timecourse of the mean gamma per-
centage change from baseline for patients (red) and con-
trols (blue) (Fig. 4c) shows this clear reduction in the
patient response. The increase in gamma power is signifi-
cantly lower (P 5 0.04) in patients than healthy controls,
dropping from 21 6 4% (mean 6 SE) for healthy controls to
12 6 2% (mean 6 SE) for MS patients (see inset of Fig. 4d).
This was demonstrated by a paired permutation test
shown in Figure 4d; here the genuine difference between
groups is shown by the red line, and the empirical null
distribution is shown in blue. There were no measurable
correlations between visual gamma power and cognitive,
or illness severity scores. Finally, Figure 4e shows the
amplitude spectrum for an ROI in visual cortex (MS
patients in red, healthy controls in blue) during the resting
state. No significant difference was seen at any frequency
(although the apparent change in alpha oscillations is in
some agreement with a previous finding (Van der Meer
et al., 2013)) meaning that the significant effect of MS on
gamma oscillations induced by visual stimulation occurs
despite no effect on resting state gamma amplitude.

DISCUSSION

Changes in MEG-derived electrophysiological activity in
MS patients have been documented previously (Cover
et al., 2006; Hardmeier et al., 2012; Schoonheim et al.,
2013b; Tewarie et al., 2013, 2014b; Van der Meer et al.,
2013), but to date, relatively little work has been undertak-
en to study task-induced changes. In this study, we mea-
sured the neural oscillatory response, in motor and visual
cortices, in MS patients and matched healthy control sub-
jects. Our results show that, although the characteristic
motor and visual responses were present in patients, they
were perturbed significantly relative to controls.

Figure 2.

Raw cognitive scores for SDMT, CVLT-II, and BVMT-R tests for

healthy controls (blue) and MS patients (green) with SE shown

in red. Controls were found to score higher (significantly in

SDMT and BVMT-R) on all cognitive tests. [Color figure can be

viewed at wileyonlinelibrary.com]

r Barratt et al. r

r 6 r

http://wileyonlinelibrary.com


Figure 3.

Beta band motor response. (a) Average t-stat images for con-

trols (top) and patients (bottom) contrasting 0–1 s to 1–2 s

from button press in the beta (13–30 Hz) band. Images are

shown on the same scale. (b) Average peak locations for

healthy controls (top) and MS patients (bottom). The peak loca-

tion for beta change is shown in blue, the location of maximum

ERBD is shown in red, and the location of maximum PMBR in

green. (c) TFSs for healthy controls (left) and MS patients (right)

showing the mean percentage change in oscillatory power com-

pared to baseline in response to a single button press. (d) The

averaged beta response across all MS patients (red) and healthy

controls (blue) with the SE shaded. The solid lines show the

mean of the original responses, the dashed lines show the mean

of the Weibull fits for each group. (e) A paired permutation

test run on the rebound time for 20,000 iterations yielded a P

value of 0.03 (two-tailed test). The vertical red line shows the

‘true’ value in the difference between controls and patients, and

blue shows the null distribution. Inset: the mean time-to-peak of

the PMBR, measured using the Weibull fitting, with the SE

shown on the error bars. (f) Correlation for MS patients

between the time-to-peak of the rebound (x-axis) and their cor-

rected SDMT score (y-axis). Plot shows a significant negative

correlation (P 5 0.008). (g) The amplitude spectrum for the

resting state data (MS patients in red and healthy controls in

blue) extracted from a region in left somatosensory cortex.

Error bars show SE. [Color figure can be viewed at wileyonline-

library.com]
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Specifically, the time-to-peak of the PMBR was increased
in MS patients; this was despite no measurable increase in
reaction time, no correlation between reaction time and
time-to-peak, and no difference in the amplitude of motor
cortex beta oscillations in the resting state. Interestingly,
the time-to-peak of the PMBR demonstrated a significant
correlation (after multiple comparison correction) with the

SDMT score (a measure of information processing speed),
potentially suggesting a link to measurable behaviour. A
significantly decreased gamma band response to visual
stimulation was also observed and again this occurred
despite a finding of no difference in resting-state gamma
amplitude in visual cortex. Overall these findings suggest
that significant value can be found in measuring

Figure 4.

Visual gamma change. (a) TFS for controls (left) and patients

(right) showing the mean percentage change in oscillatory power

compared to baseline in visual cortex. (b) Average t-stat images

for controls (top) and patients (bottom) contrasting 0–2 s to 5–

7 s from stimulus onset in the gamma (30–70 Hz) band. Images

are shown on same scale. (c) Mean gamma (30–70 Hz) time-

courses for healthy controls (blue) and MS patients (red) with

the SE shown shaded. (d) A paired permutation test, yielding a

P value of 0.04. The red line shows the ‘true’ mean difference

between controls and patients, and blue shows the null distribu-

tion. Inset: mean percentage change in the gamma band (30–70

Hz) with SE shown in red. (e) The amplitude spectrum for rest-

ing state data (MS patients in red and healthy controls in blue)

over a range of frequencies (for a location in the visual cortex)

with SE shown on error bars. [Color figure can be viewed at

wileyonlinelibrary.com]
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electrophysiological responses to visuomotor stimuli in MS
patients. This might prove to be a useful avenue of
research to characterise visual and motor deficiencies in
MS.

The increased delay in PMBR in patients suggests a gen-
eral slowing of the beta response. Given that this delay
was observed in the absence of any measurable change in
reaction time, it is likely that it represents a genuine patho-
physiological aspect of the disease. Although observed
robustly, the beta response during motor activity is not
fully understood. A weight of literature suggests that beta
oscillations are a marker of cortical inhibition. According
to this theory, desynchronisation results from the activa-
tion of small patches of cortex serving some aspect of
motor output, while the rebound is related to the return of
those cortices to their original state (Pfurtscheller and Da
Silva, 1999). This theory also emphasizes a network
hypothesis, which suggests that the rebound is caused by
active inhibitory input to the motor cortex (Gilbertson
et al., 2005) which facilitates motor control by preventing
further unwanted movements. This is supported by the
fact that the PMBR does not develop until after childhood
(Gaetz et al., 2010), an observation that might be related to
the difficulty that young children experience in fine motor
control. The inhibition theory is also supported by in vivo
measurement and perturbation of neurochemistry. Neural
oscillations are likely to reflect a balance between excitato-
ry and inhibitory neurotransmission, which is mediated, in
part, by glutamate and GABA, respectively. Previous find-
ings using magnetic resonance spectroscopy (MRS) sug-
gest a correlation between GABA and beta dynamics
(Gaetz et al., 2011). Further, pharmacological manipulation
of GABAergic inhibition also generates measurable
changes in the beta envelope (Hall et al., 2010, 2011;
Muthukumaraswamy et al., 2013). In this context, the per-
turbed PMBR in patients could relate to altered levels of
GABAergic inhibition and this is supported by a finding
of significantly lower GABA levels in sensorimotor cortex
in MS patients (Cawley et al., 2015). A competing, but not
mutually exclusive, hypothesis regarding PMBR is that it
relates to long range communication between distal brain
areas. Evidence for this has come largely from connectivity
studies which show significant temporal correlation in the
resting and task positive beta envelopes in left and right
primary motor cortices (Brookes et al., 2011, 2011b; Hall
et al., 2013), and also increased coherence during the
PMBR following a self-paced motor task (O’Neill et al.,
2015; Vidaurre et al., 2016). Given this link to long-range
connectivity, coupled with (A) the well characterised
demyelination in MS (Calabrese et al., 2010; Steenwijk
et al., 2015), (B) the known role of myelin in neuronal con-
duction velocity (Goldman and Albus, 1968; Smith and
Koles, 1970), and (C) the strong links between myeloarchi-
tecture and neural dynamics and connectivity (Helbling
et al., 2015; Hunt et al., 2016), it is unsurprising that the
timing of the PMBR is delayed. Indeed we speculate that

the reduction in white matter integrity, inherent to MS,
could relate to a decreased ability to inhibit motor activity
quickly, and hence explain why this process is slowed.

One of the main goals of functional imaging in MS is to
generate biomarkers that relate significantly to cognitive
decline in patients. Our demonstration that the time-to-
peak of the PMBR in patients correlates negatively with
the patient’s corrected SDMT score is therefore of signifi-
cant interest, particularly given that reduction in informa-
tion processing speed has been shown to be the most
affected cognitive domain in MS (Kail, 1998; Litvan et al.,
1988; Strober et al., 2009). While the reason for this correla-
tion is unclear, it could relate to the putative role of beta
oscillations as a mechanism by which the brain facilitates
a forward internal model of desired movement. For exam-
ple, Tan et al. (2016) show that the amplitude of the PMBR
correlates negatively with uncertainty in feedforward esti-
mations. More generally, Cao and Hu (2016) suggest that
the beta rebound might not only correlate with estimation
uncertainty but also reflect an updating process of the for-
ward model. Reduced information processing speed in MS
patients, as indicated by the lower SDMT scores, would
likely lead to increased uncertainty and error on the for-
ward model; such effects may well drive the correlation
between SDMT scores and the time to PMBR peak
observed here. However, we should also point out that
correlative findings in such small sample sizes should be
interpreted cautiously; further verification of this relation-
ship in a larger sample size is therefore critical before such
links can be made. We also show that no relationship was
found between the time-to-peak and physical disability.
However, patients had a median EDSS score of 3, sugges-
ting moderate disability of one “functional system,” for
example, bladder, vision, and sensations (or multiple mild
disabilities in a few systems), but no mobility issues. It
could be for this reason that there is no correlation
between the motor response and disability.

Gamma oscillations have been observed consistently
using intracranial and noninvasive electrophysiological
recordings. These oscillations are likely generated in pyra-
midal cell populations synchronized by GABAergic inter-
neurons (Gonzalez-Burgos and Lewis, 2012), and previous
work (Buzs�aki and Wang, 2012; Fries, 2009) suggests that
such oscillations might offer a potential mechanism for
information coding in the brain, particularly since gamma
amplitudes have been consistently linked to task perfor-
mance (Dickinson et al., 2015; Edden et al., 2009). In this
study, MS patients were found to have a significant reduc-
tion in the amplitude of visual gamma oscillations in
response to a black and white grating, compared with
healthy controls. Vision problems are often experienced by
MS patients. In fact, a study examining 2265 patients
reported that 82% experience vision problems, with 41%
reporting the impact of the problem as ‘moderate’ or
‘high’ (Hemmett et al., 2004). The most common problem
with vision is optic neuritis where the optic nerve becomes
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inflamed. Visual evoked potentials have been found to be
abnormal in individuals suffering from optic neuritis
(Tobimatsu and Kato, 1998); however, to our knowledge,
this is the first study to show the perturbed visual gamma
oscillations in MS. The neurophysiological mechanism
underlying this finding remains unclear, but could again
relate to neurochemistry. Visual gamma oscillations have
been related to GABA concentration (Muthukumaraswamy
et al., 2009); for example, administration of the GABA
uptake inhibitor Tiagabine has been shown to affect signif-
icantly the frequency of induced gamma oscillations (Mag-
azzini et al., 2016). It follows that the present finding of
decreased gamma amplitude in patients might relate to
GABA abnormalities which have been previously shown
in MS patients, albeit not directly in visual cortex (Cawley
et al., 2015). Demyelination may also play a role in the
perturbation of gamma oscillations; while beta band effects
are thought to relate to long-range communication, gamma
oscillations have been suggested to be a more local phe-
nomenon, generated in relatively small cortical neural net-
works (Donner and Siegel, 2011; Hall et al., 2014;
Pfurtscheller and Da Silva, 1999; Zumer et al., 2010). This
potentially suggests that demyelination of white matter
tracts may play a lesser role in our gamma findings than
beta findings. However, it is tempting to speculate that
cortical demyelination in MS (Kutzelnigg et al., 2005; Tal-
lantyre et al., 2010), coupled with a demonstrable link
between cortical myelination and MEG networks (Hunt
et al., 2016) might offer an explanation regarding the
reduced gamma amplitude observed here. However, fur-
ther work, potentially involving MRS, myelin mapping
(Geades et al., 2016), and MEG is required to further eluci-
date this relationship.

Finally, there are a number of limitations of this study,
primarily sample size; 18 patients were included in our
visual gamma analysis and 17 in the beta band analysis.
These sample sizes are small, as are the effect sizes that
we describe, both the reduction in gamma amplitude and
increased time-to-peak of the PMBR. It therefore follows
that definitive conclusions regarding the effects that we
observe can only be drawn following a repeated demon-
stration of the same effect in an independent cohort of MS
patients. It is also important to be aware that the beta
band response can be modulated by other factors. For
example, Fry et al. (2016) show that PMBR is altered by
force output. Similarly, the duration of movement may
have an effect (Feingold et al., 2015). Unfortunately, in this
study, we had no way of controlling for such effects;
future studies of this nature should therefore employ para-
digms with controlled isometric force outputs. Similarly
our illness severity scores in patients did not relate directly
to visual acuity and this may explain the reason why visu-
al gamma amplitude failed to correlate with any metric of
behaviour. Overall, a follow-up study should aim to
address more directly the relationship between patients’
motor and visual function, and the PMBR and visual gam-
ma oscillations.

CONCLUSION

MS is characterised by widespread structural damage,
which likely leads to numerous functional deficits. In this
article, we sought to characterise those functional deficits
via assessment of the electrophysiological response to a
simple visuomotor task. We found a significant increase in
the time-to-peak of the PMBR in MS patients compared to
healthy controls, and this correlates significantly (across
patients) with a measure of information processing speed.
A significant decrease in the amplitude of visual gamma
oscillations in MS patients relative to healthy controls was
also found. These electrophysiological imaging results
offer a new insight into visual disturbances and abnormal
motor control suffered by MS patients.
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