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Abstract

A 2D Large Time Step (LTS) explicit scheme on structured grids is presented
in this work. It is first detailed and analysed for the 2D linear advection equa-
tion and then applied to the 2D shallow water equations. The dimensional
splitting technique allows us to extend the ideas developed in the 1D case re-
lated to source terms, boundary conditions and the reduction of the time step
in the presence of large discontinuities. The boundary conditions treatment
as well as the wet/dry fronts in the case of the 2D shallow water equations
require extra effort. The proposed scheme is tested on linear and non-linear
equations and systems, with and without source terms. The numerical re-
sults are compared with those of the conventional scheme as well as with
analytical solutions and experimental data.

Keywords: Large time step scheme, Wet/dry fronts, Source terms,
Dimensional splitting, 2D Shallow water flows

1. Introduction

Explicit Large Time Step (LTS) schemes are being increasingly used in
the context of Computational Fluid Dynamics [1, 2, 3]. Apart from retaining
most of the advantages offered by explicit schemes, they are able to increase
not only the efficiency in terms of computational burden, but also the ac-
curacy of the numerical results. As long as fewer time steps are required to
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complete the simulation, the numerical diffusion associated with the nume-
rical scheme is reduced, obtaining more accurate results.

The generalization of the first order Godunov method to the LTS scheme
was proposed by Leveque [4, 5]. The scheme was able to handle hyperbolic
scalar and systems of conservation laws without source terms, relaxing the
stability condition (CFL number) and achieving accurate results and promis-
ing speed-ups.

The application of this kind of LTS scheme to scalar equations and sys-
tems of conservation laws with source terms can be found in [6] with a par-
ticular application to the 1D shallow water equations. An appropriate dis-
cretization of source terms [7, 8, 9], present in realistic cases, was adopted,
ensuring both that the size of the time step does not have to be reduced below
that imposed by the standard CFL number limit, and that the well-balanced
property is satisfied. Moreover, boundary conditions and a parameter to in-
ternally limit the time step size in the presence of large discontinuities or
wet/dry fronts were analyzed and proposed in [6].

Most numerical methods have been developed first for a 1D conservation
law and extended afterwards to multidimensional cases. In particular, the
extension of the LTS scheme to the 2D shallow water equations was firstly
mentioned in [10]. Other recent applications in connection with atmosphe-
ric dynamics [2] and Euler equations [1] have been extended to more than
one dimension using the dimensional splitting technique. In this work, the
extension of the mentioned LTS scheme to the 2D shallow water equations
is achieved by means of this dimensional splitting procedure on structured
grids.

While the advances related to source term discretization are preserved,
boundary conditions require some adjustments concerning the dimensional
splitting procedure and the characteristic line information. Another issue
of importance that appears explicitly in the 2D shallow water system is the
formulation of wet/dry fronts. The proper discretization of wet/dry fronts
to ensure positivity without drastic time step reduction below the CFL con-
dition was presented in [8, 9]. The extension of the LTS scheme to situations
with wet/dry fronts in 1D was previously discussed in [6] suggesting to recover
the conventional first order upwind scheme in those cases. When moving to
2D models of inundation problems, the likely presence of wet/dry fronts re-
quires another approach. The definition of wet/dry solid interfaces and the
correct sending of information should lead to an adequate wet/dry treatment,
not excessively restricting the time step size and avoiding the appearance of
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negative water depth values.
The remainder of this paper is organized as follows: after a brief overview

of the LTS scheme formulated for the scalar equation as well as for the 1D
shallow water equations, the 2D extension of the LTS is detailed first for
the scalar case and extended then to systems of equations (in particular to
the 2D shallow water equations) with source terms. The validation of the
procedure is carried out by means of test cases for the scalar case (section
5) and for the system case (section 6). These test cases are chosen to test
the different difficulties that arise when dealing with the LTS scheme. The
computational time is also analysed.

2. An overview of the 1D LTS scheme

2.1. Linear scalar equation

The main idea of the Large Time Step (LTS) scheme proposed by Leveque
[4] is introduced from scalar conservation laws of the form

∂u

∂t
+

∂f(u)

∂x
= 0 , (1)

where u is the conserved variable and f(u) = λu, λ = constant. From
the integral form of (1), it is possible to formulate the first order upwind
(FOU) explicit scheme. Considering a uniform discrete mesh divided into
computational cells of constant size ∆x, the updating of each cell i is achieved
according to the contributions from left and from right interfaces:

un+1
i = un

i −
∆t

∆x
(δf+

i−1/2+δf−
i+1/2) = un

i −
∆t

∆x
((λ+δu)i−1/2+(λ−δu)i+1/2) , (2)

where λ±
i+1/2 =

λi+1/2±|λi+1/2|

2
and δui+1/2 = un

i+1 − un
i .

Instead of being centred at the cells, the upwind scheme can be expressed
from the point of view of being centred at the interfaces, discriminating where
the contributions go according to the sign of λ:

if λ > 0 then ∆t
∆x

λ δui+1/2 is subtracted from cell i+ 1

if λ < 0 then ∆t
∆x

λ δui+1/2 is subtracted from cell i .
(3)
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The CFL number can be interpreted as the maximum number of cells (or
fraction of a cell) updated by a single wave in one time step and is defined
as follows:

CFL =
∆t

∆x
|λ| . (4)

It can be used as an alternative for choosing the time step size for a given
problem on a given mesh. The conventional stability constraint states that

CFL =
∆t

∆tmax
≤ 1 ⇒ ∆tmax =

∆x

|λ| . (5)

As said in [4], the second approach (3) is preferable to formulate the LTS
scheme with CFL>1. The main hypothesis is that there is no change in
speed or strength between waves and they can be propagated independently.
Consequently, for each interface i + 1/2, the algorithm for the linear scalar
equation is:

If λ > 0

δui+1/2 is subtracted from cells i+ 1, · · · , i+ µ

(ν − µ) δui+1/2 is subtracted from cell i+ µ+ 1

(6)

If λ < 0

δui+1/2 is subtracted from cells i, · · · , i+ µ+ 1

(ν − µ) δui+1/2 is subtracted from cell i+ µ

(7)

where ν =
∆t

∆x
λ and µ = int(ν). In the case of the linear scalar equation,

this parameter ν defined at each interface is constant throughout the domain
and matches the CFL number chosen. The scheme remains conservative as
the algorithm is sending a total contribution of ν δui+1/2 split into several
signals. Figure 1 shows the procedure to send the contribution from interface
i+ 1/2 to the corresponding cells when λ > 0 (a) and when λ < 0 (b).

The extension to non-linear scalar equations is achieved by defining an av-
erage discrete celerity at each interface and applying the previous algorithm
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(a)
i+1 i+2 i+... i+µ i+µ+1

i+3/2 i+5/2 i+µ+1/2

δui+1/2

δui+1/2

δui+1/2
δui+1/2

(ν − µ)i+1/2 δui+1/2

(b)
i+µ i+µ+1 i+... i-1 i

i+µ+1/2 i-3/2 i-1/2 i+1/2

δui+1/2

δui+1/2
δui+1/2

δui+1/2

(ν − µ)i+1/2 δui+1/2

Figure 1: Sketch of the contributions sent from interface i+1/2 when λ > 0 (a) and when
λ < 0 (b)
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(6), (7). It is worth stressing that non-linear equations involve rarefaction
waves and shocks. More details about the adjustments related to the lineari-
sation of both types of waves can be found in [6].

2.2. The 1D shallow water equations and the LTS scheme

The 1D shallow water system is a 2 × 2 hyperbolic system of equations
expressed in the form:

∂U

∂t
+

∂F

∂x
= H , (8)

where U is the vector of conserved variables, F represents the vector of
fluxes of these conserved variables and H is the vector of source terms. In
particular, per unit of width

U =

(
h
hu

)
, F =

(
hu

hu2 +
1

2
gh2

)
, (9)

where h is the water depth, u is the depth-averaged velocity, g is the accele-
ration due to gravity. The vector of source terms is

H =

(
0

gh (S0 − Sf)

)
(10)

where S0 is the bed slope

S0 = −∂zb
∂x

, (11)

and zb is the bed level. Sf is the friction slope, here represented by the
empirical Manning law

Sf =
u2n2

h4/3
, (12)

n being Manning’s roughness coefficient. A Jacobian matrix can be defined,
i.e.

J =
∂F

∂U
=

(
0 1

c2 − u2 2u

)
, (13)

where c =
√
g h. Discretizing the equations on a regular mesh of size ∆x

by means of the first order upwind explicit scheme, Roe’s linearization [11]
allows the expression of the differences in the conserved variables and in the
source terms across the grid edge i+ 1/2 as a sum of waves [7]:
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δUi+1/2 = Ui+1 −Ui =
2∑

m=1

(α̃m ẽm)i+1/2,

(H̃∆x)i+1/2 =
2∑

m=1

(β̃m ẽm)i+1/2 , (14)

where the tilde variables represent average values at each edge and ẽm are the
linearized eigenvectors of the Jacobian matrix, and have the corresponding
eigenvalues λ̃m [7]. The coefficients α̃m and β̃m contain the linearized set of
wave strengths and source strengths respectively, that are explicitly written
in [8]. The reason behind the treatment of the source terms as a sum of
waves defined at the cell edge is related to the necessity of ensuring a perfect
balance between flux derivatives and source terms in steady state. This has
been previously discussed in [12] and [8].

In order to compact the notation, it is possible to define γ̃m
i+1/2 including

the contributions due to the fluxes and the source terms,

γ̃m
i+1/2 =

(
α̃− β̃

λ̃

)m

i+1/2

(15)

When λ̃=0, the Harten-Hyman entropy fix [13] is used to avoid unphysical
results. Therefore, the FOU scheme can be expressed as follows, according
to the upwind reasoning:

Un+1
i = Un

i −
∆t

∆x

(
2∑

m=1

(λ̃+γẽ)mi−1/2 +

2∑

m=1

(λ̃−γẽ)mi+1/2

)n

, (16)

where λ̃m,±
i+1/2 =

1

2
(λ̃± |λ̃|)mi+1/2.

When extending the LTS scheme presented before for the linear scalar
case to the 1D shallow water equations, which is a non-linear system, the
Riemann Problem (RP) concept appears. In particular, the rarefactions as-
sociated to the RP need to be treated specially. The proposed procedure
consists of splitting each average discrete quantity coming from the Roe’s lin-
earization into different pieces of information that travel at different speeds.
This strategy is guaranteed to be conservative. More information can be
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found [6], where this technique is described for 1D non-linear scalar and
systems of equations.

In order to formulate the LTS scheme as in [6], the parameters νm
i+1/2 =

∆t

∆x
λ̃m
i+1/2,

µm
i+1/2 = int(νm

i+1/2) are defined and the scheme is written as follows:

If λ̃m
i+1/2 > 0

(γ̃ ẽ)mi+1/2 is subtracted from cells i+ 1, · · · , i+ µm
i+1/2

(ν − µ)mi+1/2 (γ̃ ẽ)mi+1/2 is subtracted from cell i+ µm
i+1/2 + 1

(17)

If λ̃m
i+1/2 < 0

(γ̃ ẽ)mi+1/2 is subtracted from cells i, · · · , i+ µm
i+1/2 + 1

(ν − µ)mi+1/2 (γ̃ ẽ)mi+1/2 is subtracted from cell i+ µm
i+1/2

(18)
The time step ∆t is dynamically chosen following the expression

∆t = CFL min
i,m


 ∆x∣∣∣λ̃m

∣∣∣
i


 (19)

where CFL is the target Courant-Friedrich-Lewy number initially chosen by
the user. Note that the parameter ν, considered as a local CFL number at
each interface may not necessarily be equal to the target CFL chosen. Also,
it should be noted that the target CFL value may be adjusted due to the
presence of large source terms, discontinuities or wet/dry fronts. This will be
highlighted later in the analysis of the performance of the method in realistic
cases.

Moreover, it is worth indicating that the assumption of Leveque’s original
LTS scheme consisting of a linear interaction between the waves underlies the
proposed LTS scheme, introducing also some source of inaccuracy and the risk
of losing robustness (TVD property) in the presence of strong discontinuities.
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3. 2D LTS scheme on structured grid

3.1. 2D Linear scalar equation

In order to introduce the 2D LTS scheme, the 2D linear scalar equation
is used:

∂u

∂t
+∇ · f(u) = 0 , f(u) = (fx, fy) , (20)

where u represents the conserved variable and f(u) is a linear function, f = λu
and λ = (λx, λy) is constant. In order to obtain a numerical solution, (20) is
integrated over a cell Ωi.

∂

∂t

∫

Ωi

u dΩ+

∫

Ωi

∇ · f(u) dΩ = 0 . (21)

Assuming a piecewise constant approximation of the function, u and f are
uniform per cell and the first integral of (21) is approximated on cell Ωi by:

∂

∂t

∫

Ωi

u dΩ =
un+1
i − un

i

∆t
Ωi , (22)

where Ωi is the cell area. The application of the Gauss theorem to the second
integral in (21) allows it to be expressed as:

∫

Ωi

∇ · f(u) dΩ =

∮

Ci

f · n dC , (23)

where n is the unit outward normal vector and Ci denotes the surface sur-
rounding Ωi. This contour integral is approximated by defining a numerical
flux at each edge k:

∮

Ci

f · n dC ≈
NE∑

k=1

f∗k · nklk , (24)

where NE is the number of edges in the cell (NE = 4 for quadrilaterals) and
lk is the length of the cell edge.

Depending on the numerical scheme, different possibilities can arise by
means of the choice of the numerical flux f∗. For example, the first order
upwind (FOU) explicit scheme discriminates the direction of propagation ac-
cording to the sign of the advection velocity λ. Expressing the numerical flux
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in a flux-difference formulation by means of the in-going contributions that
arrive to the cell [14], the FOU scheme can be formulated for the updating
of cell i:

un+1
i = un

i −
∆t

Ωi

NE∑

k=1

(λ · n)−k δuklk (25)

where δuk = un
j −un

i and i,j are the indexes of the cells sharing edge k. Being
an explicit scheme, the time step for the non-LTS approach is restricted by
stability reasons in order to fulfil the CFL condition, which can be expressed
as follows in the particular case of a quadrilateral structured mesh:

CFL =
∆t lk
Ωi

λ · n ≤ 0.5 , ∆t = CFL
Ωi

lk λ · n . (26)

This stability condition can be relaxed in the case of 2D problems by means of
the dimensional splitting technique, which creates a sequence of 1D problems.

3.2. Dimensional splitting

One general method to accomplish the 2D extension is the dimensional
splitting where the equations are simplified to solve them many times in a
1D configuration and to project onto the grid following the space directions.
The procedure is very easy to follow in a quadrilateral cartesian structured
mesh. In order to solve (20) let πx denote the evolution operator in the x
direction

∂u

∂t
+

∂fx
∂x

= 0 (27)

and Rx
τ the numerical resolution of (27) by means of the chosen solver with a

time step size of τ (analogously for the y-component). The Strang splitting
formulation [15] can be expressed as follows:

u(x, y)n+1 = [πxRx
∆t/2 ◦ πyRy

∆t ◦ πxRx
∆t/2]

n . (28)

As the interfaces are looped over in the x- or y-direction, a 1D problem can
be considered when running along a row or a column respectively. Therefore,
the computational time is increased compared to (25) because of the cost of
covering twice all the edges of each of the main directions.

When dealing with the same numerical scheme to solve the problems in
both directions, the resulting solution could be influenced by the mesh. For
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example, if the chosen solver is the first order upwind scheme and the Strang
splitting formulation is used literally as expressed in (28), the particular prob-
lem in x-direction is being solved twice with a time step size of exactly half
of that for the y-direction: hence the numerical results will be more diffusive
in the x-direction. In order to improve the Strang splitting technique, the
solution proposed in this work consists of distributing the numerical diffu-
sion due to the chosen solver alternating the x- and the y-directions in (28).
Therefore, the numerical solution will be computed for example as follows:

u(x, y)n+1 =

{
[πxRx

∆t/2 ◦ πyRy
∆t ◦ πxRx

∆t/2]
n if n is even

[πyRy
∆t/2 ◦ πxRx

∆t ◦ πyRy
∆t/2]

n if n is odd
, (29)

where n is the index of the time step. This combined strategy can handle
any numerical scheme to solve the one-dimensional problems associated with
the splitting formulation.

In particular, the LTS scheme explained before is a good candidate to
be implemented inside this combined dimensional splitting technique. While
the simplicity of solving 1D equations and the advances related to boundary
conditions and source terms are preserved, the disadvantage of the computa-
tional time associated with the splitting formulation is significantly reduced
because of using large time step sizes in the numerical resolution of the
equations. In consequence, the 2D LTS scheme for the scalar equation is
formulated simply by splitting each time step into three “sub-steps” and ap-
plying the procedure described in (6) and (7), replacing ∆x by Ωi/lk. It is
summarized in the following algorithm for the n even case:

Step 1

• Compute the discrete values at each computational interface and de-
termine the time step size using (26).

• Send the x-direction contributions with time step ∆t/2 according to (6)
and (7), only from interfaces for which n = (nx, 0) (where nx = ±1).

• Update boundaries and cells.

Step 2

• Compute the discrete values at the computational interfaces for which
n = (0, ny) (where ny = ±1).
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• Send the y-direction contributions with time step ∆t according to (6)
and (7), only from interfaces for which n = (0, ny) (where ny = ±1).

• Update boundaries and cells.

Step 3

• Compute the discrete values at each computational interfaces for which
n = (nx, 0) (where nx = ±1).

• Send the x-direction contributions with time step ∆t/2 according to (6)
and (7), only from interfaces for which n = (nx, 0) (where nx = ±1).

• Update boundaries and cells.

A corresponding algorithm is applied for n odd.

3.3. Boundary conditions for the scalar case

The boundary conditions treatment has to be reconsidered if formulating
a LTS scheme. In particular, when combining large time steps with time-
dependent boundary conditions, a special handling is necessary in order to
be accurate.

Characteristic line analysis is a useful tool to determine how many cells
are involved in the boundary stencil. The CFL value chosen for the compu-
tation gives the information about the number of cells in the interior to be
updated with information coming from the boundaries. In fact, this number
of boundary cells is related to the integer part of the target CFL value,

µCFL = int(CFL) . (30)

Moreover, in the case of considering non-integer CFL values, the solution
proposed is to consider the last cell (µCFL+1) “partially” as a boundary cell
and the fraction of the boundary information used to be the decimal part of
the CFL number.

Once the number of boundary cells is determined, the information to be
updated at each cell is obtained from the extrapolation of the boundary in-
formation through the characteristic lines. This treatment can be understood
as the imposition of ghost cells, considered in [17] or [1] in the context of LTS
schemes.
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Apart from that, the imposition of boundary conditions on 2D structured
grids using the LTS scheme is performed by taking into account the dimen-
sional splitting. Note that each sub-iteration inside a complete time step
that solves the 1D sub-problem must be considered as an independent com-
putation. Therefore, boundary cells have to be updated after each sub-step
inside the dimensional splitting, hence improving accuracy.

4. Numerical results for the 2D scalar case

4.1. Test case 1: Pure advection simulation of a circular shape

A circular shape advection test case is proposed in order to evaluate
the performance of the LTS scheme in combination with the dimensional
splitting. A square domain [0, 330m]2 discretized on a fine quadrilateral
mesh of 108 900 cells is chosen for this test case, where a circular shape of
radius 25m, centered at (50,50) is set as the initial condition:

u(x, y, 0) =

{
1.0 if

√
(x− 50)2 + (y − 50)2 ≤ 25

0.0 otherwise .
(31)

A constant advection velocity of λ = (1, 1) and open boundaries are fixed
all over the domain and the numerical results are examined after t=200 s.
The conventional upwind scheme (FOU) with a CFL of 0.5 is compared with
the LTS scheme with different CFL numbers in Figure 2. Using even CFL
values, the exact solution is achieved hence odd CFL numbers (1.0, 5.0, 25.0,
75.0 and 151.0) have been chosen in this case. Results highlight that the
higher the CFL value chosen, the more accurate the numerical solution is.
There are several reasons for this. The main reason is that characteristics
are straight lines of constant slope, the temporal error is almost negligible
and therefore the spatial accuracy dominates the temporal accuracy. As a
consequence, when increasing the CFL number, fewer time steps are done,
hence the numerical diffusion associated with the scheme (only first-order
accurate) decreases. Apart from that, there is no upper limit to the choice
of the CFL number in this case.

4.2. Test case 2: Advection simulation for a rotating cone

A square 2m × 2m domain discretized using 8 464 cells (92 × 92) is used
as a quadrilateral structured mesh to simulate the circular advection of a
“cone” defined as follows [16]:
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Figure 2: Numerical results for test case 1: FOU scheme CFL 0.5 (upper left), LTS CFL
1.0 (upper right), LTS CFL 5.0 (middle left), LTS CFL 25.0 (middle right), LTS CFL 75.0
(lower left) and LTS CFL 151.0 (lower right)

14



(-1,-1)

(1,1)(-1,1)

(1,-1)

Figure 3: Test case 2: Initial condition and detail of the quadrilateral structured mesh
(left) and velocity field (right) in x-direction(upper) and in y-direction (lower)

u(x, y, 0) =

{
cos2(2πr) r ≤ 0.25
0.0 otherwise ,

(32)

where r =
√
(x+ 0.5)2 + y2. The mesh and the initial conditions, as well

as the non-constant velocity field, λ = (−2πy, 2πx), are plotted in Figure 3.
After one period T (where T=1 in this case), the cone should return to its
original position, recovering the initial condition. Also the analytical solution
at time T/4, T/2 and 3T/4 can be easily computed.

The numerical results computed with the FOU scheme with a CFL of 0.5
and with the LTS scheme with CFL numbers of 1.0, 3.0, 10.0, 20.0 and 60.0
are shown in Figure 4 at T=1. The peak value of each numerical scheme is
also highlighted at the top of each figure.

As can be seen, the FOU scheme is not able to reproduce very well the
rotating cone due to the excessive loss of information coming from the nu-
merical diffusion. Even the LTS scheme with a CFL of 1.0 approximates
better the solution, though it is still not very accurate. When increasing the
CFL value, two phenomena occur. Firstly, the peak value, one indicator of
the accuracy of the numerical solution, increases because the time step size
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Figure 4: Numerical results for test case 2 at t=T: FOU scheme CFL 0.5 (upper left),
LTS CFL 1.0 (upper right), LTS CFL 3.0 (middle left), LTS CFL 10.0 (middle right), LTS
CFL 20.0 (lower left) and LTS CFL 60.0 (lower right)
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is bigger and fewer steps are required to compute the solution. It is worth
remarking that the numerical results improve on those obtained in [16] where
a sophisticated 2D TVD method is used. On the other hand, the solution is
deviating due to the non-uniform velocity field. As fewer time steps are done,
the larger magnitude of the time steps means that the dimensional splitting
loses too much information about the velocity field to be able to follow com-
pletely the correct “pathway”. This deviation is most obvious when using
the LTS scheme with a CFL of 60.0, but it is also visible to a lesser extent
when the same scheme is applied with with a CFL of 20.0.

In order to evaluate the quality of the results more fully, the L1 error
between the numerical and the exact solution is also estimated. These errors
are plotted in Figure 5.
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Figure 5: Test case 2: L1 errors for the LTS scheme using different CFL numbers.

The LTS scheme with a CFL of 20.0 is the most accurate in terms of
this norm, providing the best results. Also, as could be conjectured from
examining Figure 4, the least accurate choice is the LTS with a CFL of 60.0,
even though it achieves the highest peak value. It is not able to reproduce
either the exact location or the shape of the rotating cone due to the fact
that it is losing important information related to the velocity field when doing
these huge time steps.

The optimal CFL value is therefore a question of interest. It is not known
a priori what this optimum is, that is, from which CFL value the accuracy
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starts to decrease. Four different quadrilateral meshes, derived by uniform
mesh refinement (as described by grid refinement 1, Table 1), have been used
to clarify which CFL value computes the most accurate solution.

Mesh Elements
1 92×92=8464
2 184×184=33856
3 368×368=135424
4 736×736=541696

Table 1: Test case 2. Grid refinement 1. Meshes and elements.

At t=T, the comparison between the numerical solutions computed by
the four grids using different CFL values has been carried out. The results
in terms of the L1 norm are shown in Table 2. The symbol ”-” in Table
2 indicates that the results achieved in these cases are the same as for the
previous CFL number.

Mesh CFL L1 Peak value
1 20.0 2.08e-03 0.862
1 30.0 5.12e-03 0.893
1 40.0 1.22e-02 0.924
1 60.0 2.15e-02 0.912
1 100.0 2.51e-02 0.867
1 160.0 - -
2 20.0 1.46e-03 0.937
2 30.0 1.42e-03 0.954
2 40.0 2.99e-03 0.963
2 60.0 4.76e-03 0.971
2 100.0 1.57e-02 0.978
2 160.0 2.51e-02 0.964

Mesh CFL L1 Peak value
3 20.0 6.37e-04 0.968
3 30.0 6.00e-04 0.977
3 40.0 8.40e-04 0.983
3 60.0 1.21e-03 0.988
3 100.0 3.55e-03 0.993
3 160.0 1.23e-02 0.995
4 20.0 3.06e-04 0.984
4 30.0 2.37e-04 0.988
4 40.0 2.23e-04 0.992
4 60.0 4.37e-04 0.994
4 100.0 1.17e-03 0.996
4 160.0 2.92e-03 0.998

Table 2: Test case 2. Grid refinement 1. Comparison between CFL values and error norms
on each mesh.

When increasing the number of grid cells, the error in the L1 norm de-
creases, hence ensuring the convergence. Moreover, the peak value increases
not only when refining the mesh but also when increasing the CFL value due
to the fact that fewer time steps are done, making the scheme less diffusive
and allowing higher peak values.

When observing the error in the L1 norm, it is clear that very large CFL
values increase the error. However, it is also clear that an optimal CFL value
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exists for which the error is minimal. This optimal CFL number is related not
only to the spatial operator (first order) but also to the mesh, being higher
when it is refined. For example, for mesh 1, the optimum value is close to
20.0, for mesh 2 and 3, between 20.0 and 30.0 and, for mesh 4, between 30.0
and 40.0. In order to check this hypothesis, an exhaustive grid refinement 2
is proposed.

The number of cells of each mesh is summarized in Table 3, running each
one with different CFL values from CFL=10.0 to CFL=35.0 (0.5 by 0.5).

Mesh Elements
1 50×50=2500
2 55×55=3025
3 60×60=3600
... ...×...=...
99 540×540=291600
100 545×545=297025
101 550×550=302500

Table 3: Test case 2. Grid refinement 2. Meshes and elements.

The considerable amount of data is condensed in Figure 6 for the L1 norm,
where the error and the CFL value for which the norm is at a minimum are
plotted against the square root of the number of cells.
When moving towards the right along the x-axis in Figure 6, the number
of cells increases hence the accuracy should be (and is) higher. Moreover,
the CFL value for computing the numerical solution with less error (cut-
off) grows generally when the mesh increases in number of elements. The
more direct implication of this resides in the fact that the CFL value can
be increased when refining the mesh. It is worth remarking that the CFL
cut-off represents the point at which temporal error is dominating spatial
error. Being a first order scheme, the temporal error can become quite high
and still not dominate the spatial error. Moreover, in case of having a similar
test case with more sharply varying advection speeds, this CFL cut-off would
be much lower.

A rate of convergence slightly better than first order is observed in Figure
7 where a log-log graph of the error using the optimal values shown in Figure
6 and the square root of the number of cells is plotted comparing it with the
first order and second order.
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5. 2D systems of equations: Application to shallow water equations

A 2D hyperbolic non-linear system of equations with source terms can be
written in the form:

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
= H(U) (33)

or:

∂U

∂t
+∇ · E = H , (34)

in which E=(F,G). Equation (34) is integrated in a volume or grid cell Ω :

∂

∂t

∫

Ω

U dΩ +

∫

Ω

∇ · E dΩ =

∫

Ω

H dΩ

⇒ ∂

∂t

∫

Ω

U dΩ+

∮

C

E · n dC =

∫

Ω

H dΩ , (35)

where n is the outward normal direction, E · n is the normal flux and C
denotes the surface surrounding the volume Ω. The domain is divided into
computational cells, Ωi, using a fixed mesh. Assuming a piecewise constant
representation of the conserved variables [8]

∂

∂t

∫

Ωi

U dΩ+

NE∑

k=1

(δE)k · nklk =

∫

Ωi

H dΩ , (36)

where nk = (nx, ny) is the outward unit normal vector to cell edge k, δEk =
Ej − Ei, i and j being the indices of the cells sharing the edge k, lk is the
edge length and NE is the number of edges in cell i. Following [8], the source
term is linearized as follows

∫

Ωi

H dΩ =

NE∑

k=1

(S̃ · n l)nk , (37)

where S is a suitable matrix. Therefore, the fluxes and source terms can
be expressed compactly allowing (36) to be formulated as a homogeneous
problem:
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∂

∂t

∫

Ωi

U dΩ+

NE∑

k=1

(δE− S̃)k · nklk = 0 . (38)

Applying a local linearization of the problem at each edge, it is possible to
define an approximate Jacobian matrix J̃n,k satisfying:

δ(E · n)k = J̃n,kδUk . (39)

Using two approximate matrices P̃ = (ẽ1, ẽ2, ẽ3), and P̃−1, built using the

eigenvectors of the Jacobian, that diagonalize J̃n,k, giving

P̃−1
k J̃n,kP̃k = Λ̃k , (40)

where Λ̃k is a diagonal matrix with eigenvalues λ̃m
k in the main diagonal.

According to the local linearisation, the conserved variables as well as the
source terms are projected onto the matrix eigenvectors basis:

δUk = P̃kÃk (S̃ · n)k = P̃kB̃k (41)

where Ãk = (α̃1, α̃2, α̃3)
T
k and B̃k = (β̃1, β̃2, β̃3)

T
k contain the sets of

wave and source strengths, respectively. Therefore, the 2D numerical first
order upwind (FOU) scheme can be formulated as follows, dealing with the
contributions that arrive to the cell:

Un+1
i = Un

i −
∆t

Ωi

NE∑

j=1

3∑

m=1

(
(λ̃−γ̃ ẽ)ml

)n
k
. (42)

where γm
k is defined as in (15). This update corresponds to (16) for the one-

dimensional shallow water equations and (25) for the two-dimensional scalar
advection equation.

5.1. 2D shallow water equations

The two-dimensional shallow water system of equations can be expressed
as in (33). In particular, U represents the conserved variables

U = (h, qx, qy)
T , (43)

where qx and qy are the unit discharge in the x- and y-direction, respectively,
and the fluxes of these variables are given by
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Fx =

(
qx,

q2x
h

+
1

2
gh2,

qxqy
h

)T

, Fy =

(
qy,

qxqy
h

,
q2y
h

+
1

2
gh2

)T

, (44)

where g is the acceleration due to gravity. The source terms of the momentum
are due to bed slope and friction

H = (0, gh(S0x − Sfx), gh(S0y − Sfy))
T , (45)

where the bed slopes of the bottom level zb are

S0x = −∂zb
∂x

, S0y = −∂zb
∂y

, (46)

and the friction losses are written in terms of Manning’s roughness coefficient
n:

Sfx =
n2u

√
u2 + v2

h4/3
, Sfy =

n2v
√
u2 + v2

h4/3
. (47)

The Jacobian matrix of the normal flux in the 2D model is

J =
∂(E · n)

∂U
=




0 nx ny

c2 nx − uu · n u nx + u · n u ny

c2 ny − v u · n v nx v ny + u · n


 , (48)

with n = (nx, ny)
T the outward normal vector, u = qx/h, v = qy/h, c =

√
g h

and u · n = u nx + v ny. In particular, the matrices P and Λ used for
diagonalising this Jacobian matrix and its eigenvalues λm and eigenvectors
em are

P =




1 0 1
u− c nx −cny u+ c nx

v − c ny c nx v + c ny


 , Λ =




λ1 0 0
0 λ2 0
0 0 λ3


 ,

e1 =




1

u− c nx

v − c ny



 , e2 =




0

−c ny

c nx



 , e3 =




1

u+ c nx

v + c ny



 ,

λ1 = u · n− c , λ2 = u · n , λ3 = u · n+ c .

(49)
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The wave and source strengths derived from the linearization process in
(41) are:

α̃1 =
δh

2
− 1

2c̃
(δq · n− ũ · n δh) , α̃2 =

1

c̃
[δqy − ṽ δh)nx − (δqx − ũ δh)ny)] ,

α̃3 =
δh

2
+

1

2c̃
(δq · n− ũ · n δh) ,

β̃1 = − 1

2c
(δz + Sf,n) , β̃2 = 0 , β̃3 = −β̃1 ,

ũk =

√
hi ui +

√
hj uj√

hi +
√

hj

, ṽk =

√
hi vi +

√
hj vj√

hi +
√

hj

, c̃k =

√
g
hi + hj

2
,

(50)
where ũ · n = ũ nx + ṽ ny, δq · n = δqx nx + δqy ny and the tilde variables
represent the averaged states at each interface k.

The time step size for the standard first order upwind scheme is governed
by the discrete wave celerities defined at each computational cell interface
and expressed, in the particular case of a quadrilateral structured grid, as

∆t = CFL min
k,m

(
Ωi

lk |λ̃m
k |

)
, CFL ≤ 0.5 . (51)

However, a naive source term discretization could limit the time step
size required to ensure numerical stability and positivity of the scheme in
complicated test cases. In order to avoid this, a good integration not only of
the bed slope source term but also of the friction term, limiting the amount
of the numerical source instead of reducing the time step size, is assumed.
More details relating to this procedure can be found in [8, 9].

Once the correct formulation of the source term discretization has been
adopted, the restriction in (51) can be relaxed when using the 2D LTS scheme
and the dimensional splitting technique. Once the time step size is calculated,
the procedure consists of computing the contributions at each interface and
sending them along the x- or y-direction with their corresponding time step
size according to (29).

The information is sent from each computational cell interface in a similar
way to the 1D case, replacing ∆x by Ωi/lk in the case of quadrilateral struc-
tured grids. Consequently, in the x-direction, when considering an interface
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k sharing the cells i and j, the interface can be relabelled as i+ 1/2 (based
on the evolution operator πx) and cell j as i + 1, simplifying the notation
when referring to the previous or subsequent neighbouring cells. With this
notation:

If λ̃m
i+1/2 > 0

(γ̃ ẽ)mi+1/2 is subtracted from cells i+ 1, · · · , i+ µm
i+1/2

(ν − µ)mi+1/2 (γ̃ ẽ)mi+1/2 is subtracted from cell i+ µm
i+1/2 + 1

(52)

If λ̃m
i+1/2 < 0

(γ̃ ẽ)mi+1/2 is subtracted from cells i, · · · , i+ µm
i+1/2 + 1

(ν − µ)mi+1/2 (γ̃ ẽ)mi+1/2 is subtracted from cell i+ µm
i+1/2

(53)

where m = 1, 2, 3, γ̃m
k =

(
α̃− β̃

λ̃

)m

k

, νm
k =

∆t lk
Ωi

λ̃m
k and µm

k = int(νm
k ). Af-

ter each sub-iteration inside the whole time step, the cells have to be updated
also considering the information from the boundaries. The procedure for one
time step is the same as that presented in Section 3.2, sending the information
according to (52) and (53).

5.1.1. Wet/dry fronts and CFL limit

The formulation for a wet/dry front is an issue of importance in the 2D
shallow water model in order to prevent instabilities and to prevent negative
values of water depth. As the dimensional splitting technique divides each
time step into three sub steps solving three 1D problems, the way of dealing
with wet/dry interfaces is explained for the 1D system (9).

The treatment of wet/dry fronts in the LTS scheme is previously men-
tioned in [6] where a reduction in the time step size is enforced to recover
the conventional upwind scheme when a wet/dry front appears. In order to
avoid reducing the time step size in these kinds of situations, a short proce-
dure consisting of two steps is proposed in this work, following [8]. The first
step has to be carried out before the computation of the fluxes and it con-
sists of identifying the wet/dry interfaces. Assume that the potential wet/dry
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Figure 8: Sketch of the intermediate states in the (x, t) plane for the subcritical case.
Wet/dry interfaces and negative value in the intermediate state h∗∗

i+1.

front is located between cells i and i + 1. The requirement of the positivity
of the intermediate states derived from the Riemann Problem (see Figure
8) between cells i and i + 1 allows determination of the wet/dry interfaces.
They are expressed as follows:

U∗
i = Un

i + (γ̃ẽ)1i+1/2

U∗∗
i+1 = Un

i+1 − (γ̃ẽ)2i+1/2

(54)

where γ̃ and ẽ are defined in Section 2. More detailed explanation can be
found in [8]. In fact, the following rule is adopted:

• If hn
i+1 = 0 and h∗∗

i+1 < 0 set i+ 1/2 as a solid interface.

• If hn
i = 0 and h∗

i < 0 set i+ 1/2 as a solid interface.

where h∗∗
i+1 and h∗

i are defined in (54).
Once all the contributions are calculated and the wet/dry solid interfaces

are identified, the second step is applied: the information from each compu-
tational interface is sent depending on the character (solid or not solid) of
the involved interfaces. For example, consider νi+1/2 = 4.3 and the interface
i+ 5/2 as a solid wet/dry interface. The contributions will be typically sent

26



to cell i + 1 and to cell i + 2. However, as i + 5/2 is detected as a solid in-
terface, information cannot pass through this “wall” and hence is sent back
to the corresponding cells as in the reflection technique [6]. It is illustrated
in Figure 9.

i i+1 i+2 i+3

i+1/2 i+3/2 i+5/2

Figure 9: Example of the procedure to send the information with a wet/dry solid interface

.

This procedure reduces the appearance of negative water depth values.
However, the labelling of the wet/dry interfaces as solid or not comes from
a local analysis, but the information is sent far from the neighbouring cells.
Therefore, the problem of negative values for the water depth is not totally
eliminated. In these extreme cases, an option is to reduce the time step to
half the size and to recompute.

On the other hand, a parameter ξ was introduced in [6] to internally
reduce the initial target CFL value in the presence of sharp discontinuities
or large source terms. The LTS proposed may produce wrong results in the
presence of strong discontinuities in the solution behaving as shocks. To avoid
that, at the beginning of every time step the relative size of the discontinuities
is evaluated and the target CFL is adjusted accordingly. Then, it is used
globally as in any other time step so that the calculations run always with a
global time step that is controlled by the most restrictive cell.

The new wet/dry strategy requires a revision of the mentioned parameter
in order to avoid undesirable reductions in the target CFL value. In fact,
ξ = min(ξ1, ξ2), with
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ξ1 =
mini{hi, hi+1, |δhi+1/2|}

|δhi+1/2|
, ξ2 =

mini{|di|, |di+1|, |δdi+1/2|}
|δdi+1/2|

, (55)

for 1 ≤ i ≤ N , where h is the water depth, d = h + z is the water surface
level and 0 ≤ ξ ≤ 1. This parameter ξ gives a measure of the size of the
discontinuity, being closer to 0.0 when the discontinuity is strong and around
1.0 when the variables h and d are smooth or gradually varying.

However, the evaluation of ξ in (55) when hi or hi+1 is zero enforces the
recovery of the FOU scheme. Therefore, wet/dry fronts must be reformulated
inside (55) in order to refrain from reducing the CFL initially chosen and a
tolerance (TOL) for the variables is proposed. For example, parameter ξ1
will only act if

min{hi, hi+1, |δhi+1/2|} > TOL , (56)

with an analogous condition imposed for parameter ξ2, replacing h by d. In
this work, TOL = 0.05m.

6. Numerical results for the 2D shallow water equations

In this section, four challenging time-dependent test cases are presented
to test the performance of the 2D LTS scheme and to introduce the wet/dry
treatment explored in this work. The CPU time is evaluated.

6.1. Test case 3: Circular dam break

Dam break problems are widely used to test the behaviour of a numerical
scheme. Consider a square frictionless domain Ω = [0, 200m]2 discretized in
a quadrilateral regular mesh of 40 000 cells (200×200) with flat bed elevation
and closed boundaries. The initial condition consists of still water of depth
1m over all the domain except a circular sector in the lower left corner which
has a 4m depth of water (see Figure 10):

h(x, y, 0) =

{
4.0 if

√
x2 + y2 ≤ 100m

1.0 otherwise .
(57)

The boundary treatment was previously considered in [6] for the 1D shal-
low water equations. As the information is sent by rows or columns in the 2D
LTS scheme, the same technique is adopted. In particular, when dealing with
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Figure 10: Test case 3: Initial state and sampling line.

closed boundaries, the reflection technique, that considers the corresponding
downstream edge as a mirror and reflects the waves, is utilised in this work.
The numerical results achieved by the conventional FOU scheme with a CFL
of 1.0 are compared with those obtained by the LTS scheme with CFLs of
2.0, 4.0 and 8.0 at t = 12 s and t = 20 s (Figures 11 and 12 respectively) for
the water depth.

Although spurious oscillations are detected near the location of the shock
when increasing the CFL number, the solutions seem to be less diffusive, not
only in the shock front but also near the rarefaction. In order to corrobo-
rate this hypothesis, the comparison through the line plotted in Figure 10 is
considered, where a high resolution numerical solution (from now on called
’exact’) can be computed evaluating the problem as a 1D problem on the
radial direction. Figures 13 and 14 show the exact and numerical results at
t = 12 s for the water depth and for the x- and y-unitary discharge respec-
tively. The LTS scheme becomes visibly less diffusive as the CFL number is
increased, although several oscillations appear. However, the velocity field
tends to be more sensitive and larger oscillations near the shock fronts are
clearly visible in Figure 14.

6.2. Test case 4: Dam break over adverse slope

When incorporating friction and an adverse slope, the dam break problem
becomes an example of unsteady flow with source terms. Also, if the initial
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Figure 11: Test case 3. Numerical results for water depth at t = 12 s. FOU CFL 0.5 (upper
left), LTS CFL 2.0 (upper right), LTS CFL 4.0 (lower left) and LTS CFL 8.0 (lower right).

30



Figure 12: Test case 3. Numerical results for water depth at t = 20 s. FOU CFL 0.5 (upper
left), LTS CFL 2.0 (upper right), LTS CFL 4.0 (lower left) and LTS CFL 8.0 (lower right).
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Figure 13: Test case 3: Exact and numerical results for water depth at t = 12 s.

discontinuity is over a dry bed, the test case contains all the elements that
represent a challenge in shallow flow modelling. A test case, consisting of a
dam break over dry bed with adverse slope, is performed as a good measure
of the behaviour of the wet/dry front treatment in unsteady flow. Consider
the same domain and discretization as the previous test case. The friction is
modelled now using a Manning friction coefficient n = 0.03 s/m

1

3 . The initial
condition and the bed level (see Figure 15) are set to

h(x, y, 0) =





2.0 if
√

x2 + y2 < 100

0.0 if 100 <
√
x2 + y2 <

√
2 100.0

0.0 if x >
√
2 100.0 ,

(58)

z(x, y) =





0.0 if
√

x2 + y2 < 100

0.0 if 100 <
√

x2 + y2 <
√
2 100.0√

2(x2 + y2)

100
− 2 if x >

√
2 100.0 .

(59)

The convergence to an equilibrium state has been simulated over 40 000 s.
The time evolution of the longitudinal profile along the diagonal (as in the
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Figure 14: Test case 3: Exact and numerical results at t = 12 s for x-unitary discharge
(left) and y-unitary discharge (right).

Figure 15: Test case 4: Initial condition and bed level. Plan view (left) and 3D view
(right).
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Figure 16: Test case 4. Longitudinal profile along the diagonal line achieved by the FOU
scheme and the LTS scheme with a CFL of 3.7 at t = 10 s (upper left), at t = 50 s (upper
right), at t = 100 s (lower left) and at t = 40 000 s (lower right)

previous test case) is plotted in Figure 16 at t = 10 s, t = 50 s and t = 100 s
comparing the numerical results achieved by the FOU scheme and the LTS
scheme with an arbitrarily chosen CFL value of 3.7. Also the final state
at t = 40 000 s is shown in Figure 16 (lower right). The same source term
treatment, checking the non-negativity property of the intermediate states
of the Riemann Problems, has been implemented in both simulations.

The results illustrate that the location of the wet/dry front is well repro-
duced by the LTS scheme in comparison with the FOU scheme, as well as the
still water surface final state. It is worth remarking that the well-balanced
property is demonstrated, as expected, due to the careful discretization of
the source terms.
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6.3. Test case 5: tsunami test case

The simulation of a tsunami event modelled in a 1/400 laboratory scale
[18, 19] is used to demonstrate the applicability of the LTS scheme to un-
steady real problems. Gauging points were located at

P1 = (4.52, 2.196) , P2 = (4.52, 1.696) , P3 = (4.52, 1.196) , (60)

where the evolution in time of the water level surface is registered. Figure
17 shows the bathymetry of the reduced model as well as the location of
the gauging points mentioned. According to the reported bed material, the
friction is modelled with a Manning coefficient of n = 0.01 s/m

1

3 . More details
about the description and the experimental data can be found in [19, 20].

Figure 17: Test case 5: Bed elevation and probe locations.

The initial condition is fixed as a constant water surface level of h+z = 0.0
and the domain ([0, 5.488] × [0, 3.388]) has been discretized with a mesh
of 23 716 cells (196 × 121). The boundary conditions are considered as
closed vertical sidewalls (as in the laboratory model) except the incident wave
coming from offshore, defined as a variation in time of the water depth (see
Figure 19). It is worth remarking that, in this finite volume implementation,
the information given as the boundary condition is imposed at the center of
the boundary cells.

The numerical simulation has been carried out using the FOU scheme
with a CFL of 0.5 and the LTS scheme with three different CFL values: 2.4,
4.8 and 7.2. As an example, two states corresponding to times t = 13 s and
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Figure 18: Test case 5: 3D plot of the water level surface at t = 13 s (upper) and t = 18 s
(lower)

t = 18 s are illustrated in Figure 18, simulated with the LTS scheme with
a CFL of 4.8. At t = 13 s the shoreline is moving backward due to the
depression wave, but by t = 18 s the wave has reached the end of the domain
and has been reflected.

The time evolution registered experimentally at measured points P1, P2
and P3 is also compared with the numerical results obtained by the FOU
scheme and the LTS scheme with the mentioned CFL values in Figure 19.

Wet/dry boundaries are present throughout this test case. However, the
results achieved by the LTS scheme with different CFL values are very sim-
ilar to those obtained by the FOU scheme with a CFL of 0.5 with respect
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Figure 19: Test case 5: Inlet boundary condition (upper left) and experimental vs. nume-
rical results at probe 1 (upper right), probe 2 (lower left) and probe 3 (lower right)
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Figure 20: Test case 5: L1-error at probes P1, P2, and P3 relative to a grid converged
solution

to the experimental measurements. Also the results achieved by the three
different CFL values used for the LTS scheme do not generate ’a priori’ many
differences. It is due to the internal reduction in the time step size during
the computation to avoid negative water depth values.

In order to strengthen this hypothesis, the time evolution L1-error in these
probes P1, P2, and P3 relative to a grid converged solution (the maximum
available resolution data, 392 × 242 cells) is plotted in Figure 20. Firstly, as
probes are placed in a critical location, just behind the island, with wet/dry
transitions, the L1-error can provide a very local estimation of the error
made. Observing the graph, a clear tendency of the error cannot be detected
. Results with the LTS CFL 2.4 and even CFL 4.8 improves those obtained
by the FOU scheme, mainly at probes P1 and P2. However, P3 registers a
better behaviour when using the FOU scheme. Results with the LTS scheme
CFL 7.2 are usually worse than with the other schemes. However, the error
remains under acceptable values in comparison with the FOU scheme.
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Figure 21: Test case 6: Topography and location of the boundaries

6.4. Test case 6: Real world configuration: Ebro river

The proposed LTS scheme is now applied to a realistic test case in order
to evaluate its uncertainty in the flooding prediction. For this purpose, a me-
andering reach of the Ebro river (Spain) is used. The Digital Terrain Model
(DTM) including the bathymetry was provided by the Ebro River Basin Ad-
ministration (www.chebro.es). The domain (3 × 2 km2) is discretized in 300
× 200 square cells, integrating the information coming from the DTM. This
grid will be used for the simulation of a flooding event with the LTS scheme
with CFL 4.2 and with the FOU scheme with CFL 0.5. A steady state of 100
m3/s is computed and set as the initial condition before the flooding event,
which represents the failure of a dam located upstream. Therefore, the inlet
boundary condition consists of a one day abrupt hydrograph raising to 1400
m3/s in 180 s and decreasing afterwards linearly during the rest of the day
(see Figure 22, left). With this choice, all kind of scenarios such as sharp
shocks, wetting and drying situations, are present. A free flow condition is
chosen as the outlet boundary. The location of the inlet and outlet bound-
ary conditions, as well as the topography of the test case are displayed in
Figure 21. According to the aerial photograph of the domain, a Manning’s
roughness map is considered, shown in Figure 22 (right).

In addition, the simulation of the same configuration with a very fine
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Figure 22: Test case 6: Inlet hydrograph and Manning’s roughness map

grid of 1500000 (1500 × 1000) squared cells using the first order upwind
scheme with CFL 0.5 is chosen as a reference solution in order to compare
the schemes mentioned above. The comparison is firstly done using map
errors. Therefore, a mapping from the coarse to the fine grid is performed to
be able to extract the spatial distribution of the error. The relative error with
respect to the reference solution is analysed for the variables h and velocity
magnitude (modU). As an example, a map error is included corresponding to
t=3h (Figure 23) for the FOU scheme (left) and for the LTS scheme (right).
The meaning is as follows: 0.0 means no differences, 1.0 has to be understood
as the scheme (FOU or LTS) is wetting a cell that is completely dry on the
reference solution and -1.0 is a dry zone for the scheme (FOU or LTS) that
is wetted on the reference solution.

As can be seen, the error for both schemes is almost totally located at the
floodplain, where the coarse grid is overestimating the flooding area, possibly
due to the incorrect definition of levees. It can be concluded that in terms
of water depth, at t=3h, the LTS scheme computes a more accurate solution
than the FOU scheme. The main factor responsible for this is the wet/dry
treatment, which seems to be more restrictive in this situation. The velocity
magnitude is overall well-reproduced in the main river, while the flooding
extension overestimates it in the floodplain.

In order to have a quantitative measure of the error, Figure 24 shows
two graphs. On the left, the evolution of the L1-error along the domain over
the 24h hydrograph is extracted for the water depth and for the velocity
magnitude. On the right, the evolution of the flooded area computed by
each model is compared against the flooded area achieved by the reference
solution.

Observing the figures, the LTS scheme approximates better the results
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Figure 23: Test case 6: Map error of water depth for the FOU scheme (upper left) and
for the LTS scheme (upper right) at t=3h. Map error of velocity magnitude for the FOU
scheme (lower left) and for the LTS scheme (lower right) at t=3h.
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Figure 24: Test case 6: Evolution of the L1-error (left) and flooded area (right) with
respect to the reference solution
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obtained by the reference solution although both models overestimate the
flooded area.

6.5. Computational time

The use of a LTS scheme with larger CFL values than the conventional
schemes should imply a reduction in the computational burden. Table 4
summarizes the CPU time consumed by each scheme (FOU and LTS) in
each test case of relevance. Note that the CFL value of 0.5 (the maximum
allowable in squared meshes) is used for the computation with the FOU
scheme and the number of cells in both models is always the same for each
test case.

Test case FOU time (s) LTS Speed-up
CFL number time (s)

4 11227 CFL 3.7 5105 2.199

5 72 CFL 2.4 48 1.5
CFL 4.8 40 1.8
CFL 7.2 46 1.565

6 22380 CFL 4.2 7405 3.022

Table 4: CPU time consumed by the each model in each test case of relevance

As can be seen, the results show a computational gain associated to the
LTS scheme. However, the correspondence between the speed-up and the
choice of the CFL value does not scale linearly. Two main factors affect con-
siderably this response. Firstly, it is important to highlight the complexity of
the algorithms to send appropriately the information distinguishing between
shocks and rarefactions, solid and not-solid wet/dry interfaces and closed
boundaries, in addition to the reduction of the CFL value in the presence
of large discontinuities. Secondly, the structure of the dimensional splitting
procedure doubles the interface accessing and triples the cell updating, mak-
ing the process slower due to the memory access. Summing up, although the
number of time steps carried out is reduced, the cost of each one is increased.
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7. Conclusions

The implementation of a 2D Large Time Step (LTS) finite volume method
has been presented in this work. The extension to two-dimensional domains is
achieved by means of the dimensional splitting technique. Previous advances
related to the source term discretization and boundary conditions treatment
detailed for the 1D case are preserved due to the splitting procedure, solving
“by rows” or “by columns” three 1D problems per time step.

The LTS scheme has been presented for the 2D scalar case, dealing with
constant and variable velocity fields and with boundary conditions. An easy
to follow algorithm is detailed. Some considerations have been highlighted
connected to the boundary treatment and information provided by the char-
acteristic curves has been utilised. The scheme is less diffusive than the first
order upwind (FOU) scheme with a CFL of 0.5 for the 2D scalar equation.

The extension to systems of equations has been described generally, and is
then applied to the 2D shallow water equations with source terms. Wet/dry
fronts are of interest in any 2D shallow water model. A short procedure based
on the reflection technique at closed boundaries is proposed here for dealing
with them. It consists of identifying the wet/dry solid interfaces and ensur-
ing that information is not sent through them. Associated with the wet/dry
treatment, the CFL limit, that reduces the time step size in the presence of
large discontinuities has been reformulated according to [8]. The proposed
wet/dry treatment, combined with a careful source term discretization, en-
sures the well-balanced property and makes the reduction in the time step
size and the appearance of negative values of the water depth less extreme.

Realistic and notably complex test cases have been suggested to evalu-
ate the performance of the 2D LTS scheme under exacting conditions. As
expected, it is demonstrated to be less diffusive the standard FOU scheme,
although several oscillations appear in the most extreme situations, as in the
1D case. Moreover, the wet/dry fronts are well reproduced, achieving results
which are as good as those of the conventional first order upwind scheme,
but with the larger CFLs giving the potential for faster computation.

The computational time is assessed briefly for three test cases. An ap-
preciable gain is achieved when dealing with the 2D LTS scheme although
the improvement is less than the ratio of the respective CFL numbers.
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[9] J. Murillo and P. Garćıa-Navarro, Wave Riemann description of friction
terms in unsteady shallow flows: Application to water and mud/debris
floods, J. Comput. Phys., 231 (2012) 1963–2001.
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