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BAYESIAN SENSITIVITY ANALYSIS WITH FISHER-RAO METRIC

SEBASTIAN KURTEK AND KARTHIK BHARATH

Abstract. We propose a geometric framework to assess sensitivity of Bayesian procedures to mod-
elling assumptions based on the nonparametric Fisher–Rao metric. While the framework is general,
the focus of this article is on assessing local and global robustness in Bayesian procedures to pertur-
bations of the likelihood and prior, and identification of influential observations. The approach is
based on a square-root representation of densities, which enables analytic computation of geodesic
paths and distances, facilitating the definition of naturally calibrated local and global discrepancy
measures. An important feature of our approach is the definition of a geometric ε-contamination
class of sampling distributions and priors via intrinsic analysis on the space of probability density
functions. We show the applicability of our framework to generalized mixed effects models, and
directional and shape data.

Keywords:Fisher–Rao metric; Geodesic; Geometric ε-contamination; Influence analysis; Riemann-
ian manifold.

1. Introduction

The main ingredients in a Bayesian model are a likelihood f(x | θ) and a prior distribution π(θ),
where x denotes the data and θ denotes a set of unknown parameters. Interest is in performing
inference on θ using the posterior distribution p(θ | x) ∝ f(x | θ)π(θ) or some functional thereof.
It is therefore important to develop diagnostic procedures to assess the influence of the data, prior
and likelihood on posterior inference, which typically include detection of outlying or influential
observations, global sensitivity to the perturbation of the likelihood or the prior over a suitable
class, and local sensitivity to perturbations of the likelihood or the prior. Such assessments in the
Bayesian setting have received considerable attention over the years; see [23] for a detailed account.

Global Bayesian sensitivity analysis is characterized by derivation of measures from variational
properties of posterior functionals, such as their ranges, over a class of prior or likelihood pertur-
bations [5, 4, 6, 40]. Local Bayes robustness methods are based on the derivatives of posterior
functionals with respect to a small perturbation of the likelihood or prior; see [34], [21] and [20].
Outlier detection in the Bayesian setting using divergence or other discrepancy measures to ascer-
tain distances between posteriors has been employed by several authors [37, 9, 36, 14, 19]. Local
perturbations of the likelihood and prior, and development of case-deletion measures using diver-
gences are intricately related to the geometry of the nonlinear manifold of densities. Geometrical
considerations in influence analysis from a frequentist perspective have a rich history starting with
the seminal work of [12]; also see, for example, [44], [45] and [47]. In a Bayesian setting, [46] elegantly
constructed a Riemannian-geometric Bayesian perturbation model, which provided a background
into which different perturbations to a Bayesian model could be embedded.

In this paper we propose a framework for Bayes sensitivity analysis based on the manifold of
probability densities using the square-root representation; the framework is comprehensive in the
sense that perturbations to the Bayesian model are developed under the same geometric setup.
Without striving for utmost generality we ensure that the entirety of our sensitivity analysis,
global, local and data perturbation, and subsequent inference, is performed intrinsically on the
space of densities under a unified Riemannian metric. The key difference to the approach in [46]
is that we use the nonparametric version of the Fisher–Rao Riemannian metric, in contrast to the
parametric version employed in their work. The advantage of working with the nonparametric
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2 SEBASTIAN KURTEK AND KARTHIK BHARATH

metric is that under square-root transformation of the densities, the geometry of the space of
probability density functions becomes the positive orthant of the Hilbert unit sphere, and the
Riemannian metric reduces to the standard L2 metric. This allows one to develop analytic tools
for perturbing density functions and computing geodesic distances, which are bounded above by
π/2. Additionally, unlike the square-root representation used in this paper, the log transformation
of densities used by [46] requires them to be strictly positive. Our approach avoids some problems
associated with divergences like φ-divergences [13], the Kullback–Leibler divergence [28] or the
functional Bregman divergence [18], and divergence-based measures: lack of symmetry, violation of
the triangle inequality, and unboundedness and absence of natural scale. Several articles have used
the Hellinger distance to quantify differences between distributions; see, for example, [22], [32] and

[3]. This distance is symmetric and satisfies the triangle inequality, has an upper bound of 21/2,
and can be viewed as the extrinsic version of the distance we use in this paper. However, in order
to use the intrinsic structure of the manifold of densities to define perturbation classes and local
sensitivity measures, we choose to work with the intrinsic metric.

As an alternative to existing global sensitivity measures for prior and likelihood perturbations, we
propose a novel geometric ε-contamination class and develop measures based on geodesic distances.
In the local setup, we propose sensitivity measures for the Bayes factor, the geodesic distance,
and the posterior mean, which can be easily extended to other posterior functionals. These sen-
sitivity measures are derived using directional derivatives on the space of posterior distributions,
giving them a natural geometric calibration. For identifying influential observations, we propose
to use the geodesic distance under the Fisher–Rao metric to measure differences between posterior
distributions.

An important advantage of the proposed framework is that the geodesic distances are available
in closed form and can hence be computed quickly and exactly. This stands in contrast to the
geodesic distance used in [46], which requires approximation via Dijkstra’s algorithm [15]. This
affects situations wherein many such distances need to be computed, and the accuracy of the
approximation can affect the inference. In higher dimensions, this issue is exacerbated because the
estimated distance depends heavily on the discretization of the space. Also, the approximations
suffer from metrication error: roughly, the distance computed using Dijkstra’s algorithm does not
generally converge to the true geodesic distance with increasing resolution of the grid [11]. A simple
example highlighting the practical issues in using the parametric Fisher–Rao metric, proofs of all
propositions, and several additional examples, can be found in the Supplementary Material.

2. Fisher–Rao Metric and Representation Space

We restrict our attention to univariate densities on R, though the framework is equally valid
for all finite-dimensional distributions. Let P denote the Banach manifold of probability density
functions on R, defined as P = {p : R → R+ ∪ {0} :

∫
R p(x)dx = 1}. The space P is not a vector

space but a manifold with a boundary, because any density function whose value is zero for any
x ∈ R is a boundary element. For a point p in the interior of P, define the tangent space as
Tp(P) = {δp : R → R :

∫
R δp(x)p(x)dx = 0}, a vector space. The tangent space at any point

p on the manifold P can be viewed as containing all possible perturbations of p. For any two
tangent vectors δp1, δp2 ∈ Tp(P), the nonparametric version of the Fisher–Rao Riemannian metric
[38, 2, 43, 41], referred to as the Fisher–Rao metric hereafter, is defined as

(2.1) 〈〈δp1, δp2〉〉p =

∫
R
δp1(x)δp2(x)

1

p(x)
dx.

This metric is invariant to re-parameterization [10], and has already proven to be very useful in
computer vision, shape analysis and functional data analysis [41, 42, 29]. One drawback in using the
Fisher–Rao metric is the difficulty associated with computing geodesic paths and distances, which
stems from the fact that the Riemannian metric changes from point to point on the manifold. It
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is hence important to choose a representation of the space P to simplify these computations. De-
pending on the choice of the representation, the resulting Riemannian structure can have varying
degrees of complexity, requiring numerical techniques to approximate geodesics. Choices of repre-
sentation include the cumulative distribution function and the log density. Unfortunately, none of
these representations alleviates the problem of computing geodesics [41].

The square-root representation proposed by [7] provides an elegant solution to this problem. In
particular, under this representation, the Fisher–Rao metric becomes the standard L2 metric and
the space of probability density functions becomes the positive orthant of the unit hypersphere in
L2. This leads to the following definition.

Definition 1. Define a continuous mapping φ : P 7→ Ψ where the space Ψ contains the positive
square-root of all possible density functions. Using this mapping, define the square-root transform of
probability density functions as φ(p) = ψ = +p1/2. The inverse mapping is simply φ−1(ψ) = p = ψ2.

We omit the + sign from the representation for notational convenience. The space of all square-
root transform representations of probability density functions is Ψ = {ψ : R → R+ ∪ {0} :∫
R |ψ(x)|2dx = 1} and represents the positive orthant of the Hilbert sphere [31]. Since the differen-

tial geometry of the sphere is well known, one can compute geodesic paths and distances between
probability density functions analytically. Our general approach in the remainder of the paper
will be to represent probability density functions using their square-root transform representation,
compute quantities of interest on Ψ, and then map them back to P using the inverse mapping
provided in Definition 1.

We briefly describe the tools relevant to our analysis based on the geometry of Ψ. The L2

Riemmanian metric on Ψ is defined as 〈δψ1, δψ2〉 =
∫
R δψ1(x)δψ2(x)dx, where δψ1, δψ2 ∈ Tψ(Ψ)

and Tψ(Ψ) =
{
δψ : 〈δψ, ψ〉 = 0

}
. Next, we are interested in the geodesic path and distance between

two points in Ψ. Observe that since we are on the unit infinite-dimensional sphere, the geodesic
distance between any two points equals the angle between them; in other words, the geodesic
distance between ψ1, ψ2 ∈ Ψ is d(ψ1, ψ2) = θ = cos−1(〈ψ1, ψ2〉). The geodesic path between ψ1

and ψ2, indexed by τ ∈ [0, 1], is η(τ) = {sin(θ)}−1{ψ1 sin(θ − τθ) + ψ2 sin(τθ)}. The restriction
to the positive orthant of the unit sphere does not pose any additional difficulties: for two points
ψ1, ψ2 ∈ Ψ the shortest geodesic between them is entirely contained in Ψ. It is easy to see that θ is
bounded above by π/2, which imposes an upper bound on the geodesic distance between probability
densities.

In the proposed framework, the exponential and inverse exponential maps are frequently used.
The exponential map at a point ψ1 ∈ Ψ, denoted by exp : Tψ1(Ψ) 7→ Ψ, is defined as expψ1

(δψ) =

cos(‖δψ‖)ψ1 + sin(‖δψ‖)δψ(‖δψ‖)−1. The purpose of this map is to map points from the tangent
space to the representation space. The inverse exponential map, denoted by exp−1

ψ1
: Ψ 7→ Tψ1(Ψ),

is given by exp−1
ψ1

(ψ2) = θ{sin(θ)}−1 {ψ2 − ψ1 cos(θ)} , and can be used to map points from the

representation space to the tangent space. Figure 1 illustrates the relationship between P and Ψ.

3. Geometric Bayesian Sensitivity Analysis

3.1. Geometric Perturbation Class. We develop a geometric framework for assessing prior and
likelihood robustness based on the notion of ε-contamination. We use the following notation in
the rest of this paper: X denotes an observable random variable, which will be assumed to have
a density f(x | θ) with respect to Lebesgue measure, where θ is a vector of unknown parameters
lying in a compact parameter space Θ. A prior density on Θ is denoted by π and the resulting
posterior distribution of θ obtained by the Bayes rule, assuming it exists, is denoted by pπ(· | x)
and is defined by pπ(θ | x) = f(x | θ)π(θ)/m(x | π); here, m(x | π) is the marginal density of X
obtained by averaging over the prior: m(x | π) =

∫
Θ f(x | θ)π(θ)dθ. In this section, we define the
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Figure 1. Description of the square-root transformation from P to the positive
orthant of the unit Hilbert sphere Ψ. On P, at a point p, its tangent space Tp(P)
is shown with the corresponding tangent vector δp. These quantities are mapped
to the tangent space of ψ on Ψ and their counterparts are displayed in a similar
manner. Note the isometric property: dFR(p1, p2) = cos−1(〈ψ1, ψ2〉).

geometric perturbation class for the baseline prior and note that the likelihood perturbation class
can be formed in a similar manner.

Let π0 represent a baseline prior probability density on the parameter θ. Also, let G = {g1, . . . , gm}
denote a finite class of contaminants. We construct a set of tangent vectors vg1 , . . . , vgm ∈ Tπ1/2

0

(Ψ)

using the inverse exponential map as vgi = exp−1

π
1/2
0

(g
1/2
i ) (i = 1, . . . ,m). This provides a finite class

of perturbations of the baseline prior, leading to the following definition.

Definition 2. For a class of densities G = {g1, . . . , gm}, the geometric ε-contamination class corre-
sponding to the baseline prior π0 is defined as

(3.1) Γ =
{
{exp

π
1/2
0

(εvgi)}2 : 0 ≤ ε ≤ 1, gi ∈ G, i = 1, . . . ,m
}
.

The interpretation of this set is as follows: for an element gi ∈ G, by varying ε from 0 to 1, one
traces the geodesic path from π0 to gi. Thus, if we fix a value for ε, we will obtain a finite set of
priors that were contaminated in the directions of g1, . . . , gm. This is further described in Figure 2.
The class G is appropriately constructed based on the problem of interest and the baseline prior.
The choice and size of the perturbations have an effect on the assessment of robustness, and useful
guidelines have been suggested by [4]; our approach has been motivated by two of those guidelines:
calculation of the minimum and maximum of a posterior functional over the class should be as easy
as possible, and the class should correspond to easily elicitable prior information. The examples in
Section 4 comment on the choice of the classes employed. We consider finite perturbation classes,
although in principle these methods can be extended to infinite classes. An advantage of using
such a perturbation class is the natural incorporation of the geometry of the space of densities.
As will be seen in later sections, this results in geometrically calibrated local sensitivity measures
computed using directional derivatives on Ψ.

Owing to its linear structure, it is easy to see that the class Γl = {(1−ε)π+εg : 0 ≤ ε ≤ 1, g ∈ G}
induces the same kind of contamination on the marginal and the posterior. One interpretation of
ε is as a measure of uncertainty regarding the choice of the original prior π [35]. If one were to
adopt this interpretation, then under the linear ε-contamination class, the amount of uncertainty
regarding π carries over exactly to the amount of uncertainty regarding the marginal which is
averaged over the prior. If there is uncertainty regarding the choice of the likelihood as well, then
such a phenomenon is quite undesirable. On the other hand, under geometric perturbation of the
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Figure 2. Description of the geometric ε-contamination class under the square-

root transform representation. Using the baseline prior π
1/2
0 and the contamination

density g1/2, one can form a perturbation vector, vg, by mapping g1/2 to the tangent

space of π
1/2
0 with the inverse exponential map. The baseline prior π

1/2
0 is then

contaminated by mapping the point εvg onto Ψ using the exponential map.

prior, the interpretation of ε does not carry over to the marginal and the posterior densities in the
same way due to the nonlinearity in the perturbation.

3.2. Global Sensitivity Analysis. In the interest of brevity, we describe the framework for prior
perturbations only and note that it is easily extended to handle likelihood perturbations, by defining
perturbations on the space of sampling distributions with minimal change in computations. Given
a likelihood function f(x | θ) and a baseline prior π0, one can define the baseline posterior density,
when it exists, as p0(θ | x) = f(x | θ)π0(θ)/m(x | π0). In order to compute distances between
posterior probability density functions we will again use the space Ψ. We are now given p0(· | x),
the baseline posterior, and pg1(· | x), . . . , pgm(· | x), the set of posteriors generated from the ε-
contaminated priors.

Definition 3. For a class of contamination densities G, consider the geometric ε-contamination class
given by Definition 2. Then, a measure of sensitivity with respect to the geometric perturbation of
π0 is

(3.2) S(ε, π0,G) = max
{
dFR(p0, pgi) : gi ∈ G, i = 1, . . . ,m

}
.

Guided by the measure S(ε, π0,G), we can additionally compute posterior functionals with respect
to the nearest and farthest posteriors. Using the geodesic distance as a measure of robustness in
our framework is meaningful because all of the distances are bounded above by π/2. Furthermore,
this is the intrinsic metric on the space of densities and thus takes into account the geometry of
that space. An important issue is that of calibration of the measure S with respect to the choice
of G and ε: specification of values of S which imply sensitivity or lack thereof. We are unaware
of any such measure currently available which addresses this issue satisfactorily. What is clear,
however, is the subtle relationship between the mechanism of perturbation and the calibration of
the influence measure. It may be argued that the issue of calibration can be mitigated through
a judicious choice of the class G. In our setup, the construction of the geometric ε-contamination
class using the intrinsic distance on the manifold naturally provides a geometric calibration with
an upper bound on the geodesic distance.

3.3. Local Sensitivity Analysis. In this section we define first-order local sensitivity measures
based on the commonly used Bayes factor and a general posterior functional represented via an in-
tegral. We then propose a second-order local sensitivity measure based on the Fisher–Rao geodesic
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distance between posterior densities. All of the local sensitivity measures are derived under the geo-
metric ε-contamination class. First, we introduce some notation. Let p0 be the baseline posterior,
π0 be the baseline prior, π1 be another candidate prior in the model selection setup, f be the likeli-
hood, and vg = exp−1

π
1/2
0

(g1/2) ∈ T
π

1/2
0

(Ψ) be a perturbation of the baseline prior in the direction of a

prior contaminant g. Let m(x | π0) denote the marginal density with respect to the baseline prior,

and define m(x | εg) =
∫

Θ f(x | θ){exp
π

1/2
0

(εvg)(θ)}2dθ and m̃(x | vg) =
∫

Θ f(x | θ)π1/2
0 (θ)vg(θ)dθ.

We use F to denote a general functional of interest and pεg to denote the posterior obtained from
a member of the geometric ε-contamination class.

Proposition 1. Under the notation described above, the local sensitivity measures based on the Bayes
factor, posterior functional and geodesic distance, are the following.

(1) If Fπ0,π1(vg) = m(x | εg)/m(x | π1) denotes the Bayes factor for comparing the marginals of
the contaminated baseline prior and another candidate prior, then the corresponding local
sensitivity measure is dFπ0,π1(vg) |ε=0= 2m̃(x | vg)/m(x | π1).

(2) Suppose Fπ0,h(vg) is the expectation of h(θ) with respect to pεg. Then, dFπ0,h(vg) |ε=0=

2m(x | π0)−1
∫

Θ h(θ)f(x | θ)π1/2
0 (θ)vg(θ)dθ − 2m̃(x | vg)m(x | π0)−1

∫
Θ h(θ)p0(θ | x)dθ.

(3) Let Fπ0(vg) represent the squared geodesic distance between the posteriors p0 and pεg. Then,

d2Fπ0(vg) |ε=0= 4m̃(x | vg)m(x | π0)−1
∫

Θ vg(θ)π
−1/2
0 (θ)p0(θ | x)dθ−2

∫
Θ vg(θ)

2π0(θ)−1p0(θ |
x)dθ − 2m̃(x | vg)2m(x | π0)−2.

These local sensitivity measures are defined using directional derivatives, where the directions
are the perturbations defined using the proposed geometric ε-contamination method. We are hence
able to incorporate the geometry of the space of densities in the definition of the measure. In other
words, this approach unifies the local diagnostic measures with the geometry of the space under
consideration.

3.4. Influential Observations. The general methodology in identifying influential observations
is similar to that introduced in Section 3.2 in the sense that we define the influence measure based
on distances between posteriors. We again denote the baseline posterior as p0. One can evaluate the
influence of the kth observation on the posterior distribution by removing it from the observation
set and estimating the posterior distribution using the remaining observations. This results in a
new posterior distribution pk, leading to the following definition.

Definition 4. Given the baseline posterior p0 and the posterior under case deletion pk, the influence
of observation k is defined as I(k) = dFR(p0, pk).

This distance is symmetric and has an upper bound of π/2, which avoids the ambiguity present
in many divergence measures, and provides a natural scale for evaluating influence. When the
posterior density is unavailable in closed-form, and computing the marginal likelihood numerically
is infeasible, it becomes necessary to estimate the quantity in Definition 4 using Monte Carlo
methods. We propose an estimator based on samples from the baseline posterior, generated using
either direct sampling or Markov chain Monte Carlo, to evaluate the Fisher–Rao distance between
the baseline posterior and the posterior under case-deletion.

Proposition 2. Suppose pk is the posterior density under case-deletion and p0 is the baseline pos-
terior density. Correspondingly, let fk and f0 be the case-deletion and baseline likelihoods with π
representing the prior on the parameters. Let xk denote the kth observation and x(k) denote the set

of observations not containing the kth one. Then I(k) = cos−1{L(k)}, where

L(k) =

{∫
Θ
f(xk | x(k), θ)

−1p0(θ | x)dθ

}−1/2 ∫
Θ

{
fk(x | θ)f(x | θ)−1

}1/2
p0(θ | x)dθ.
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Given a sample from the baseline posterior density, θi (i = 1, . . . , N), the Monte Carlo estimate of

I(k) is given by Î(k) = cos−1
{

(b/N)

N∑
i=1

ai

}
, where

(3.3) ai = fk(x | θi)1/2f(x | θi)−1/2, b =

{
N−1

N∑
i=1

f(xk | x(k), θi)
−1

}−1/2

.

It is routine to show that the estimate Î is a consistent estimator of I using the ergodic theorem
and the continuous mapping property. Only one posterior sample needs to be generated to evaluate
the influence measure for all observations, making this approach computationally tractable.

3.5. Properties of Fisher–Rao Metric for Bayes Robustness. The Fisher–Rao metric satis-
fies two fundamental properties in Bayes robustness analysis: first, any perturbation of the baseline
prior should not affect the sampling distribution; second, when considering simultaneous perturba-
tions of the prior and likelihood, one should be able to separate their effects on the joint distribution.
We now establish these properties. Let f be the likelihood function, π0 be the baseline prior, and
let g ∈ G represent a contamination density. Under the geometric perturbation class Γ, we write a
perturbation of the baseline prior and the corresponding contaminated prior, using the square-root
transform representation, as

δgπ
1/2
0 = exp−1

π
1/2
0

(g1/2), π1/2
g = exp

π
1/2
0

(εδgπ
1/2
0 ).

The square-root transform representation of the contaminated joint density is

p1/2
g (x, θ) = {f(x | θ)πg(θ)}1/2.

Thus, the perturbation vector on the space of square-root transform representations of joint densi-
ties is

vg(x, θ) =
d

dε

{
f1/2(x | θ)π1/2

g (θ)
} ∣∣∣

ε=0
=

d

dε

{
f1/2(x | θ) exp

π
1/2
0

(εδgπ
1/2
0 )(θ)

} ∣∣∣
ε=0

=
d

dε

[
f1/2(x | θ)

{
cos(ε‖δgπ1/2

0 (θ)‖)π1/2
0 (θ) + sin(ε‖δgπ1/2

0 (θ)‖) δgπ
1/2
0 (θ)

‖δgπ1/2
0 (θ)‖

}] ∣∣∣∣∣
ε=0

= f1/2(x | θ)
{
− sin(ε‖δgπ1/2

0 (θ)‖)π1/2
0 (θ)‖δgπ1/2

0 (θ)‖+ cos(ε‖δgπ1/2
0 (θ)‖)δgπ1/2

0 (θ)
}∣∣∣∣∣
ε=0

= f1/2(x | θ)δgπ1/2
0 (θ).

Given two geometric perturbations of the baseline prior δg1π
1/2
0 , δg2π

1/2
0 (g1, g2 ∈ G), we compute

the corresponding perturbations of the joint density under the square-root transform representation
and derive the corresponding Riemannian metric on that space,

(3.4) 〈vg1 , vg2〉 =

∫
Θ

∫
R
δg1π

1/2
0 (θ)δg2π

1/2
0 (θ)f(x | θ)dxdθ =

∫
Θ
δg1π

1/2
0 (θ)δg2π

1/2
0 (θ)dθ,

which is independent of the sampling distribution, verifying our claim. Furthermore, consistent
with intuition, if the sampling distribution is fixed and the geometric perturbation model is used,
the Riemannian metric on the space of joint densities is the same as that on the space of priors.

Consider simultaneous perturbations of the prior and likelihood. Let f0 and π0 be the baseline
likelihood and prior, and let q and g represent a likelihood contaminant density and a prior con-
taminant density. Then, as before, the square-root transform representations of the contaminated
likelihood and contaminated prior are

f1/2
q = expf1/2(εδqf

1/2), π1/2
g = exp

π
1/2
0

(εδgπ
1/2
0 ),
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where

δqf
1/2 = exp−1

f1/2(q1/2), δgπ
1/2
0 = exp−1

π
1/2
0

(g1/2).

The resulting perturbations on the space of square-root transform representations of joint densities
are

vq =
d

dε
(fqπ0)1/2

∣∣∣
ε=0

= δqf
1/2
0 π

1/2
0 , vg =

d

dε
(f0πg)

1/2
∣∣∣
ε=0

= f
1/2
0 δgπ

1/2
0 .

Then,

〈vg, vq〉 =

∫
Θ

∫
R
f

1/2
0 (x | θ)δgπ1/2

0 (θ)δqf
1/2
0 (x | θ)π1/2

0 (θ)dxdθ

=

∫
Θ
δgπ

1/2
0 (θ)π

1/2
0 (θ)

∫
R
f

1/2
0 (x | θ)δqf1/2

0 (x | θ)dxdθ = 0,(3.5)

because 〈f1/2
0 , δqf

1/2
0 〉 = 0, since perturbations are orthogonal to the representation space. This

leads to a natural decomposition of the metric on the space of joint densities. To show this, consider
simultaneous perturbations of the likelihood and prior. The resulting perturbation on the space of

square-root transform representations of joint densities is v = δqf
1/2
0 π

1/2
0 + f

1/2
0 δgπ

1/2
0 . If we are

given two such simultaneous perturbations, the Riemannian metric is:

〈v1, v2〉 = 〈f1/2
0 δg1π

1/2
0 , f

1/2
0 δg2π

1/2
0 〉+ 〈δq1f

1/2
0 π

1/2
0 , f

1/2
0 δg2π

1/2
0 〉

+ 〈f1/2
0 δg1π

1/2
0 , δq2f

1/2
0 π

1/2
0 〉+ 〈δq1f

1/2
0 π

1/2
0 , δq2f

1/2
0 π

1/2
0 〉

= 〈f1/2
0 δg1π

1/2
0 , f

1/2
0 δg2π

1/2
0 〉+ 〈δq1f

1/2
0 π

1/2
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0 〉,(3.6)

where the last equality holds due to (3.5). Thus, the Riemannian metric on the space of joint
densities can be written as a sum of likelihood and prior perturbation terms.

4. Examples

4.1. Local and global robustness in a directional data model. In this example, we use
a Bayesian model to analyze directional data on the unit circle S1. This dataset consists of 76
directions of turtle movement after a certain treatment is applied; the raw data is displayed in
Figure 3(a). Assuming independent and identically distributed observations, [19] considered the
following baseline model:

xi | θ ∼ f = vM(θ, κ̂), θ ∼ π0 = vM(0, 0.01) (i = 1, . . . , 76),

where vM(µ, κ) is the von Mises distribution with mean µ and concentration κ, and κ̂ = 1.1423 is
the maximum likelihood estimator of the concentration parameter based on the given data. [19]
considered identification of influential observations based on the functional Bregman divergence.
For simplicity, they set the unknown likelihood concentration parameter to equal the maximum
likelihood estimator. We assess the global sensitivity of the posterior distribution of µ to this
choice via perturbations of the concentration parameter. Two distinct groups are apparent from
Figure 3(a). This suggests that if the concentration κ were to be small compared to κ̂, the posterior
of µ at the perturbed likelihood would significantly move away from the base posterior with κ set
to its maximum likelihood estimate; although not as drastic, similar behaviour can be expected
for large values of κ. For this purpose, we assess sensitivity of the posterior of µ at 100 different
values of κ in the likelihood function ranging from 0.01 to 10. The global sensitivity measure
is the Fisher–Rao distance between the baseline posterior and the posterior under the perturbed
likelihood. Since this is a conjugate model all of the posteriors are von Mises densities and we use
numerical integration to compute the distance. The results are shown in Figure 3(b), and are as
expected with regards to the values of κ. The range of the global measure based on the geodesic
distance between the base and perturbed posteriors is approximately 1.2. Since π/2 is the upper
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(a) Turtle Data (b) Global Sensitivity

(c) Bayes Factor (d) Posterior Mean (e) Geodesic distance

Figure 3. Results of sensitivity analysis for a directional data model. (a) Turtle
directional data with the origin marked by an empty bullet symbol. (b) Global
sensitivity to perturbations of the likelihood concentration parameter (x-axis) away
from κ̂ based on the Fisher–Rao distance. (c) Bayes factor, (d) posterior mean, and
(e) geodesic distance local influence analysis to perturbations of the baseline von
Mises prior density by a class of wrapped Laplace priors with different concentration
(y-axis) and skewness (x-axis) parameters.

bound for our distance, we can conclude that the posterior of µ is quite sensitive to the choice of
κ, advocating the use of a prior distribution for κ instead of choosing it based on the data.

Next, we assess local sensitivity to ε-contamination of the prior. The clustering of the data
suggests that we check for the assumption of a symmetric distribution for the prior. The contam-
ination class we consider is a family of wrapped Laplace distributions with zero mode [24], which
can be parameterized by a concentration parameter λ and a skewness parameter η. For η < 1,
the wrapped Laplace distribution is skewed in the counter-clockwise direction, and for η > 1 it is
skewed in the clockwise direction. When η = 1 we obtain the symmetric wrapped Laplace distri-
bution. Thus, our contamination class is formed by jointly varying the parameters λ from 0.2 to
10 and η from 0.2 to 5. For the local measure for Bayes factor, we set π1 = vM(π/2, 0.01); Figure
3(c)–(e) displays the results. The local Bayes factor measure is insensitive to perturbations of the
prior only when the contaminant is approximately symmetric, i.e. η = 1. When the contaminant
prior is highly skewed in the counter-clockwise direction, the Bayes factor sensitivity measure is
positive and vice versa when η > 1. For the concentration parameter, the local measure for Bayes
factor tends to zero as the concentration goes to zero. This is reasonable since both the von Mises
and the wrapped Laplace distributions converge to the uniform distribution. As a result, the per-
turbations have little effect on the baseline model. The posterior mean, however, is fairly sensitive
for moderately concentrated and highly counter-clockwise skewed wrapped Laplace distributions.
In these cases, the posterior mean decreases, with respect to the baseline posterior mean of 1.1198
radians, as indicated by the negative sign of the local sensitivity measure. On the other hand, when
we perturb the prior using highly clockwise skewed wrapped Laplace distributions, the posterior
mean is fairly insensitive with the local sensitivity measure close to zero. Finally, the second-order
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intercept drug-A drug-B week

Figure 4. Kernel density estimates of marginal posteriors under baseline and per-
turbed models (i)–(v). Baseline is marked in blue, (i) in green, (ii) in red, (iii) in
cyan, (iv) in purple and (v) in yellow.

measure for the geodesic distance shows a similar trend to the first-order measure for the posterior
mean. The relative ease of implementation of the sensitivity measure is due to the fact that all
geometric quantities are available analytically.

4.2. Global robustness in a generalized mixed effects model. This example considers the
presence or absence of bacteria in persons monitored through a fixed time window using a Bayesian
generalized linear mixed effects model; the data, available in the MASS package in R, was previously
used in [8]. The predictors are the week of test and the treatment groups, placebo, drug-A, drug-B.
We use the baseline logistic mixed effects model

Yij ∼ Bernoulli(pij),

log

(
pij

1− pij

)
= µ+

3∑
k=1

xkijβ
k + Vi,

µ ∼ N(0, 100), βk ∼ N(0, 100), Vi ∼ N(0, σ2), τ =
1

σ2
∼ Γ(0.01, 0.01),

where the response Yij indicates the presence or absence of bacteria in person i at week j, xij are the
week of test and indicator variables for the treatment, pij is the probability of bacteria presence,
and Vi are independent and identically distributed subject random effects; Γ(a, b) denotes the
Gamma distribution with a and 1/b as shape and scale parameters respectively. For the precision
parameter of the random effects, [39] and [33] argue against the use of a Gamma prior with small
shape and large scale parameters; instead, they advocate the use of a half-normal or a half-Cauchy
prior on the standard deviation of the random effects. They note that the effect of the choice of
prior for the precision parameter of the random effects on the posterior distribution of the fixed
effects is of particular interest. Consequently, in this example, our interest is in assessing global
robustness to such choices of prior. Aside from the baseline prior, we consider five other choices
for the precision parameter of the mixed effects: (i) half normal with variance 100, (ii) half Cauchy
with scale parameter 100, (iii) uniform on (0, 100), (iv) Γ(1, 2), and (v) Γ(9, 0.5). The prior (v) is
included here for comparison only. For all models, we use Markov chain Monte Carlo simulations to
generate 9500 samples from the posterior, after a burn-in of 1000, and use these samples to generate
individual kernel density estimates for the marginal posteriors for all of the coefficients of the fixed
effects, which are displayed in Figure 4. We then compute the Fisher–Rao distance between each
baseline marginal posterior and the corresponding posterior resulting from the perturbation of the
prior. These results are reported in Table 4.2. In this case, the baseline model and models with
priors (i)–(iv) all yield very similar marginal posteriors, as confirmed by the very small Fisher–Rao
distances. For comparison, the unreasonable prior choice in (v) results in much larger distances
between the marginal posteriors. Thus, we conclude that, for the available dataset, the Bayesian
model is insensitive to any reasonable choice of the prior for the precision of the random effects.
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Fisher–Rao distances between the baseline and perturbed marginal posteriors

Fixed Effect
Model

(i) (ii) (iii) (iv) (v)
intercept 0.1054 0.0864 0.0982 0.0740 0.6716
drug-A 0.0716 0.0499 0.0590 0.0435 0.3835
drug-B 0.0666 0.0580 0.0683 0.0445 0.3432
week 0.0524 0.0572 0.0630 0.0311 0.3670

(a) (b)

Figure 5. Handwritten digit dataset. (a) One example of each digit. (b) Influence
measures for 15 shapes of digit 0 (first 15 cases), and one shape of digit 1 (16th
case).

4.3. Identification of influential observations in a shape data model. In the final example,
we consider the effects of deleting an observation from a sample of shapes on the estimated posterior
distribution of the modal shape using a handwritten digit dataset from [1]. The full database was
created by collecting 250 writing samples of digits from 44 writers. The raw data is provided as
(x, y) coordinates of 8 landmark points on each digit. An example of each digit is shown in Figure
5(a), with the landmarks in the plot connected by straight lines for improved visualization. [26]
defined shape as a mathematical property that remains unchanged under rotation, translation, and
global scaling. In this example, we use his definition and use a Bayesian approach to estimate
the modal shape of a digit class. Throughout this description, we use material from [16]. Let a
configuration of landmarks denoting a digit be represented using a complex vector x ∈ C8. In
order to remove the translation variability from the representation space, we pre-multiply each
of the landmark configurations with a Helmert submatrix, resulting in xH = Hx ∈ C7. Then,
the pre-shape of a landmark configuration is defined as z = xH/‖xH‖ ∈ CS6, where CS6 is the
complex sphere in seven dimensions. The pre-shape is invariant to translations and scalings of
the original landmark configurations. In order to remove rotational variability from the data,
we align all of the pre-shapes to a randomly chosen observation. Then, given a sample of digit
shapes z1, . . . , zn ∈ CS6, we define the likelihood as the complex Watson distribution with mode
µ and a known concentration parameter κ. In this example, we estimate κ from the data using
Equation (6.14) in [16]. As the prior distribution for µ we choose the complex Bingham distribution
with parameter matrix A = I7. The advantage of using this distribution as a prior is that it is
invariant to rotation and it is a conjugate prior for the complex Watson distribution. The resulting
posterior distribution for the mode µ is a complex Bingham distribution with parameter matrix
κ
∑n

i=1 ziz
∗
i + I7, where z∗ is the conjugate transpose of z.

As mentioned earlier, we are interested in identifying observations that have a high influence
on the posterior distribution of µ. We again use the influence measure from Definition 4 for this
purpose, and compute the estimator of the Fisher–Rao distance given in Proposition 2. Because
the baseline posterior distribution for µ is a complex Bingham distribution, we can sample from it
directly using the methods given in [27]. In other cases, we would have to resort to Markov chain
Monte Carlo methods. The right panel of Figure 6 provides plots of sorted influence measures for
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Less Influential More Influential Sorted Influence Measures

0

1

4

6

7

Figure 6. Identification of influential digit shapes. Left: Least and most influential
digit shapes for digits 0, 1, 4, 6, 7. Note that the shapes are invariant to rotations.
Right: Sorted influence measures for all instances in each digit class.

all observations in the case of digits 0, 1, 4, 6, 7; each digit class was considered separately. First,
we observe that there is a lot of variability in each of the digit classes, due to significantly different
handwriting styles of the subjects. As a result, none of the observations is highly influential
on its own; all influence measures were less than 0.3. We hypothesize that by removing blocks
of observations, this result would change. Nonetheless, we plot the three least and three most
influential observations in each of the considered digit classes in Figure 6. Consistent with intuition,
the shapes of the three least influential digits look very similar, while the three most influential
digits look outlying. To assess the quality of the proposed estimator in this setting, we estimate
the influence measure for 50 randomly chosen shapes of digits 0, 1, 4, 6, 7 based on 50 samples of
size 100000 from the baseline posterior. The mean variances of our estimator across 50 randomly
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chosen shapes, corresponding to digits 0, 1, 4, 6, 7 respectively, were 6.9 × 10−8, 2.3 × 10−4, 1.5 ×
10−4, 1.5× 10−5 and 4.9× 10−4.

In order to further assess the effectiveness of the proposed influence measure, we generated a
dataset consisting of the fifteen least influential shapes for digit 0 and a random shape of digit 1,
and computed the influence measures for this data. We expect the shape of digit 1, the 16th shape,
to be highly influential. Figure 5(b) shows the influence measures of all 16 shapes used in this
simulation. While some of the 0 digit shapes have influence scores close to 0.5, there is one clear
highly influential shape with a score close to π/2, which is the maximum of the scale.

5. Discussion

The square-root transform representation should make a seamless transition to the Bayesian
nonparametric setting since the manifold of parametric densities is a submanifold of P considered
here; expressions for geodesic paths and distances remain unaltered. Additionally, it would be
interesting to examine issues of posterior consistency in a geometric neighbourhood such as the one
considered in this paper; much work remains to be done in this direction.

When posterior densities are unavailable in closed-form, good estimators of the geodesic distance
are imperative. Excepting the setting of influence analysis under case-deletion, they have not been
explored in this article. Methods of incorporating the calculation of geodesics into existing Markov
chain Monte Carlo procedures would be greatly beneficial. However, under the parametric setting
when the unknown parameter vector is of small dimension, similar to the settings considered in
this article, the geodesic distances can be calculated with fair accuracy.
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SUPPLEMENTARY MATERIAL

6. Additional Example for Global Sensitivity Analysis

Consider the following baseline model for independent and identically distributed observations:

xi | θ ∼ f = N(θ, 1), θ ∼ π0 = N(0, 1) (i = 1, . . . , 50).

We consider a skew normal contamination class, parameterized by a shape parameter α ∈ [−5, 5].
Figure 7 displays the considered ε-contaminated prior set under the linear and geometric frameworks
by fixing ε = 0.5 and α in the set {±1,±2,±3,±4,±5}. We begin by simulating data x1, . . . , x50

from the baseline model and generating a set of contaminated priors for 31 equally spaced values
ε ∈ [0, 1] and 101 equally spaced values α ∈ [−5, 5] using the two different types of contamination
methods. First, the baseline posterior p0 is computed, where the normalizing constant is calculated
numerically. In similar fashion, we compute the posterior densities resulting from the contaminated
priors. Denote any of the contaminated posteriors by p(θ | x). In this example, we use two
approaches for global analysis: geometric contamination with dFR between posteriors as a sensitivity
measure, and linear contamination with the Kullback–Leibler divergence as a sensitivity measure;
the results are presented in Figure 8(a)–(c). Since the Kullback–Leibler divergence is not symmetric,
we compute it in both directions. We also compute the posterior mean for ε = 0.5 based on the
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(a) (b)

Figure 7. Normal prior contaminated using the skew normal contamination class
under the (a) linear and (b) geometric frameworks. The tails are more separated
under the latter.

same set of contaminated models; when α = 0, the contaminated posterior is the same as the
baseline posterior. This procedure is repeated on three simulated datasets corresponding to the
three rows in Figure 8.

Based on Figure 8, the Kullback–Leibler divergence is asymmetric discouraging its use as a global
robustness measure. In all cases, the Fisher–Rao distance suggests that the posterior is fairly robust
to geometric contamination of the Gaussian prior using skew normal distributions, especially if one
takes ε to be small, i.e. ε < 0.5. The distance becomes relatively high only when ε approaches one
and for large α. When ε equals one, the baseline Gaussian prior is replaced by the skew normal
distribution. By considering the rate of change of the distance measures, it can also be seen that
the Fisher–Rao distance is more sensitive to departures from N(0, 1) than the Kullback–Leibler
divergence; the Kullback–Leibler divergence appears to pick up departures only for ε exceeding
0.75.

We also notice an interesting result from panel (d). When the baseline posterior mean is close to
zero, the geometric and linear contamination methods result in similar values of the contaminated
posterior mean; the difference is less than 0.02. When the baseline posterior mean is greater than
zero, the linear and geometric contamination classes yield very similar contaminated posterior
means in the positive α direction. In the negative α direction, geometric contamination yields
posterior means that depart more severely from the baseline than under linear contamination; the
opposite result is observed in the third row of panel (d). We posit that this phenomenon is due to
the nonlinear structure of the geometric contamination class and is consistent with intuition.

7. Additional Example for Local Sensitivity Analysis

Consider the following data generating model for independent and identically distributed obser-
vations:

xi | θ ∼ f = N(θ, 1), θ ∼ π0 = N(0, 1) (i = 1, . . . , 50).

We simulate 50 observations from this model to use as the given data. We consider a family of
t prior contaminations, parameterized by the degrees of freedom, df = 3, . . . , 100. We compute
the three different local sensitivity measures defined in Section 3.3 in the paper; the plots of these
sensitivity measures are provided in Figure 9. For the Bayes factor, we use π1 = N(0, 5). This
simulation example allows for an easy interpretation of the effectiveness of the proposed method.
Suppose the true model is the baseline model. As we perturb away from the baseline model, the
Bayes factor should decrease, indicated by a negative sign in its local sensitivity measure for all
degrees of freedom of the contaminating t distribution. Furthermore, as the degrees of freedom
increase, this local measure should tend to zero, because the contaminating densities look more
and more like the baseline prior. The same trend should hold for the second order local sensitivity
measure based on the geodesic distance. This is easy to see because as one increases the degrees of
freedom of the t, the perturbed posterior approaches the baseline posterior, collapsing the geodesic
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(a) (b) (c) (d)

Figure 8. Assessment of Bayesian prior robustness to ε-contamination of a Gauss-
ian prior with a skew normal distribution. (a) Image of Fisher–Rao distances be-
tween baseline and geometrically contaminated posteriors for different values of ε
(x-axis) and α (y-axis) for 3 simulated datasets. (b) Image of Kullback–Leibler
divergences (expectation computed with respect to p0) between baseline and lin-
early contaminated posteriors. (c) Same as (b) but the expectation was computed
with respect to p. (d) Posterior means for varying values of α and ε = 0.5 where
baseline=blue, geometric contamination=green, linear contamination=red.

Bayes Factor Posterior Mean Geodesic

Figure 9. Local influence analysis based on the Bayes factor, posterior mean and
geodesic distance. Here, we consider perturbing the baseline standard normal prior
with a t with increasing degrees of freedom (x-axis, df = 3, . . . , 100).

to a single point. The local sensitivity of the posterior mean is harder to interpret in this case
because the trend is dependent on the simulated data. In general, the sign of this measure should
be opposite from that of the sample mean of the simulated data, and the measure should tend
to zero for increasing degrees of freedom of the t. Overall, we expect the local sensitivity of the
posterior mean to be small since both the standard normal and the t have mean zero.
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Proposed Method Cook’s Distance [37]

Figure 10. Influence analysis in Bayesian multiple linear regression. The 54 ob-
servations are listed on the x-axis with the corresponding measure of influence on
the y-axis.

8. Additional Examples for Identifying Influential Observations

8.1. Bayesian Linear Regression. The data analyzed here comes from [30] containing 54 test
cases. The response y is the natural logarithm of survival time. There are eight predictors: blood-
clotting score, prognostic index, enzyme test, liver test, age, gender, moderate alcohol use, and
heavy alcohol use. Due to large differences in predictor scales, we standardize the response and
predictor variables. We use X to denote the standard design matrix and θ to denote the nine-
dimensional vector of unknown regression coefficients. We use the following baseline Bayesian
model:

y | θ,X ∼ f = N(XT θ, σ2I54), θ ∼ π = N(0, 1000I9).

For simplicity, instead of placing a prior on σ, we estimate it from the given data. Because we
have chosen a conjugate prior for θ, the posterior density is also a Gaussian distribution; if one
deletes a case from the data, the resulting posterior distribution is again Gaussian. Under this
setup, we are faced with computing the Fisher–Rao distance between two multivariate Gaussian
posteriors. This requires the computation of a high-dimensional integral and we will approximate
it using importance sampling. Since it is easy to sample from the baseline posterior we can use it
as a natural importance sampling density. We rewrite the Fisher–Rao inner product between the
baseline posterior and the posterior under case-deletion as

〈p1/2
0 , p

1/2
k 〉 =

∫
Θ
p

1/2
0 (θ | y,X)p

1/2
k (θ | y,X)dθ =

∫
Θ

{
pk(θ | y,X)

p0(θ | y,X)

}1/2

p0(θ | y,X)dθ,

where pk is the posterior after deletion of observation k. Our approach is to generate a large sample,
{θ1, . . . , θN}, from the baseline posterior and then estimate the Fisher–Rao distance using Monte
Carlo integration:

Î(k) = d̂FR(p0, pk) = cos−1

[
1

N

N∑
i=1

{
pk(θi|y,X)

p0(θi|y,X)

}1/2
]
.

In this example, we set N = 100000. The given approximation is possible because we can easily
evaluate the posterior density of each θ under pk and p0; in other cases, we would be forced to
resort to the estimate given in Proposition 2 in the main article.

In the left panel of Figure 10, we display Fisher–Rao distances between the baseline posterior
and the posterior under deletion of each case; the middle panel displays the standard Cook’s
distance in a frequentist setting. Finally, in the right panel we have computed the influence measure
proposed by [37] based on the Kullback–Leibler divergence. Based on the F statistic, Cook’s
distance does not flag any of the observations as influential, even though visually, observation 17
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Case 2 Case 17 Case 52

Figure 11. Convergence plots for the Monte Carlo estimate of the Fisher–Rao
distance for cases 2, 17 and 52.

Figure 12. Influence analysis in Bayesian logistic regression. Each of the 39 ob-
servations is listed on the x-axis with the corresponding measure of influence on the
y-axis.

appears highly influential. [37] suggest flagging all observations, which yield a distance greater than
0.25 as influential; under their framework, one would consider seven observations as influential, with
17 being highly influential. A similar result is observed when using the proposed influence measure.
Observation 17 is highly influential with a distance greater than 0.7, and there are eight other
possibly influential observations with distances greater than 0.3.

To numerically assess the convergence of the Monte Carlo estimator of the Fisher–Rao distance we
plot the estimate as a function of the number of samples from the baseline posterior for observations
2, 17 and 52. It is evident in Figure 11 that the estimator used in this example has good convergence
properties and can be reliably used for detecting influential observations. For all of the presented
cases, the estimate of the Fisher–Rao distance has converged with approximately 30000 samples
from the baseline posterior. We further assess the quality of our estimator by generating 50 different
samples of size 100000 from the baseline posterior and reporting the variance of the estimated
Fisher–Rao distances; for all observations, the variance of the estimates was smaller than 1× 10−5.

8.2. Bayesian Logistic Regression. In this illustration, we identify influential observations un-
der the Bayesian logistic regression setup. The dataset used here was previously analyzed by
[17] and was studied by [37] in the influence analysis setting. There are 39 cases in this data,
where the response y is a vector of binary outcomes indicating whether or not vasoconstriction
occurred. The two predictor variables are the volume of air inspired and the rate of air inspiration.
We use X to denote the standard design matrix and consider the logistic model for this data:
P (Yi = 1) = exp(XT

i θ){1 + exp(XT
i θ)}−1, where θ is the unknown vector of regression coefficients.

We assume a multivariate normal prior on θ, π = N(1, 1000I3). Then, the baseline posterior
distribution is
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p0(θ|y,X) ∝ exp

[
− 1

2000
(θ − 1)T (θ − 1) +

39∑
i=1

{yiXT
i θ − log(1 + eX

T
i θ)}

]
.

Since θ is only three-dimensional we use numerical integration to compute the Fisher–Rao distance.
Figure 12 presents the results of our analysis. The proposed influence measure indicates four
influential observations: 4, 18, 13 and 32 in order of decreasing influence. Observations 4 and 18
appear to have the most severe effect on the posterior distribution with resulting distances close
to 0.6, which is nearly half of the maximum Fisher–Rao distance. The remaining 35 observations
yield influence measures lower than 0.2, which we consider as having low influence. We compare
our result to that provided in [37]; we refer the reader to their paper for a figure similar to Figure
12. Their influence measure, based on a divergence, is asymmetric and possesses no natural scale.
The authors suggest a calibration strategy but a choice of this calibration is rather arbitrary in
general. Their method flags observations 4 and 18 as influential, in decreasing order of influence,
and many other observations as weakly influential. Our approach provides a clearer separation of
the influential versus the non-influential observations in this example.

9. Proofs

SRT representation: Let r be a small positive scalar and δp ∈ Tp(P). We begin by computing
the differential of the mapping φ, φ∗ : Tp(P)→ Tφ(p)(Ψ):

φ∗(δp) =
d

dr
φ(p+ rδp)

∣∣∣
r=0

=
d

dr
(p+ rδp)1/2

∣∣∣
r=0

=
δp

2(p+ rδp)1/2

∣∣∣
r=0

=
δp

2p1/2
.

Plugging this expression into the standard L2 metric, for two tangent vectors δp1, δp2 ∈ Tp(P),
we obtain:

〈φ∗(δp1), φ∗(δp2)〉 =

〈
δp1

2p1/2
,
δp2

2p1/2

〉
=

1

4

∫
R
δp1(x)δp2(x)

1

p(x)
dx =

1

4
〈〈δp1, δp2〉〉p,

where the metric on the right is the Fisher–Rao metric.

Proof of Proposition 1: We use the same notation as in the main text and set e(θ) = exp
π

1/2
0

(εvg)(θ),

de(θ) = d
dε exp

π
1/2
0

(εvg)(θ), and d2e(θ) = d2

dε2
exp

π
1/2
0

(εvg)(θ) for convenience. We use the following

results:

exp
π
1/2
0

(εvg)
∣∣∣
ε=0

= cos(ε‖vg‖)π1/2
0 + sin(ε‖vg‖)

vg
‖vg‖

∣∣∣
ε=0

= π
1/2
0 ,

d

dε
exp

π
1/2
0

(εvg)
∣∣∣
ε=0

= − sin(ε‖vg‖)π1/2
0 ‖vg‖+ cos(ε‖vg‖)vg

∣∣∣
ε=0

= vg,

d2

dε2
exp

π
1/2
0

(εvg)
∣∣∣
ε=0

= − cos(ε‖vg‖)π1/2
0 ‖vg‖2 − sin(ε‖vg‖)vg‖vg‖

∣∣∣
ε=0

= −π1/2
0 ‖vg‖2.

Proof of 1:

d

dε
Fπ0,π1

(vg)
∣∣∣
ε=0

=
d

dε

m(x | εg)

m(x | π1)

∣∣∣
ε=0

= 2

∫
Θ
f(x | θ)de(θ)e(θ)dθ

m(x | π1)

∣∣∣
ε=0

= 2
m̃(x | vg)
m(x | π1)

.

Proof of 2:

d

dε
Fπ0(vg)

∣∣∣
ε=0

=
d

dε

∫
Θ

h(θ)
f(x | θ)e(θ)2∫

Θ
f(x | θ)e(θ)2dθ

dθ
∣∣∣
ε=0

= 2

∫
Θ

h(θ)
f(x | θ)e(θ)de(θ)

∫
Θ
f(x | θ)e(θ)2dθ − f(x | θ)e(θ)2

∫
Θ
f(x | θ)e(θ)de(θ)dθ

{
∫

Θ
f(x | θ)e(θ)2dθ}2

dθ
∣∣∣
ε=0

=
2

m(x | π0)

∫
Θ

h(θ)f(x | θ)π1/2
0 (θ)vg(θ)dθ −

2m̃(x | vg)
m(x | π0)

∫
Θ

h(θ)p0(θ | x)dθ.
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Proof of 3: Since we are dealing with infinitesimal quantities, we make a simplification using the
local Euclidean structure of Ψ, i.e. we approximate the arc-length (Fisher–Rao) distance using a
chord-length (Hellinger) distance, which locally are essentially the same (see equation 2.9 in [25]).
Therefore,

d

dε
Fπ0

(vg)
∣∣∣
ε=0

=
d

dε

∫
Θ

[
p

1/2
0 (θ | x)−

{
f(x | θ)e(θ)2

m(x | εg)

}1/2
]2

dθ
∣∣∣
ε=0

=

∫
Θ

[
p

1/2
0 (θ | x)−

{
f(x | θ)e(θ)2

m(x | εg)

}1/2
]{

m(x | εg)

f(x | θ)e(θ)2

}1/2

{
f(x | θ)e(θ)de(θ)

∫
Θ
f(x | θ)e(θ)2dθ − f(x | θ)e(θ)2

∫
Θ
f(x | θ)e(θ)de(θ)dθ

m(x | εg)2

}
dθ
∣∣∣
ε=0

=

∫
Θ

[
p

1/2
0 (θ | x)

{
m(x | εg)

f(x | θ)e(θ)2

}1/2

− 1

]
T (θ)dθ

∣∣∣
ε=0

=

∫
Θ

[{
p0(θ | x)

p0(θ | x)

}1/2

− 1

]{
f(x | θ)π1/2

0 (θ)vg(θ)− p0(θ | x)m̃(x | vg)
m(x | π0)

}
dθ = 0,

where T (θ) =
f(x|θ)e(θ)de(θ)

∫
Θ f(x|θ)e(θ)2dθ−f(x|θ)e(θ)2

∫
Θ f(x|θ)e(θ)de(θ)dθ

m(x|εg)2 . This result is expected since

the distance is minimized at 0. Thus, we consider the second derivative with respect to ε:

d2

dε2
Fπ0

(vg)
∣∣∣
ε=0

=
d2

dε2

∫
Θ

[
p

1/2
0 (θ | x)−

{
f(x | θ)e(θ)2

m(x | εg)

}1/2
]2

dθ
∣∣∣
ε=0

= 4
m̃(x | vg)
m(x | π0)

∫
Θ

vg(θ)

π
1/2
0 (θ)

p0(θ | x)dθ − 2

∫
Θ

vg(θ)
2

π0(θ)
p0(θ | x)dθ − 2m̃(x | vg)2

m(x | π0)2
.

Proof of Proposition 2: Under the case deletion setup, the prior on the parameters does not
change. Thus, we have the following:

L(k) =

∫
Θ

p
1/2
k (θ | x)p

1/2
0 (θ | x)dθ =

∫
Θ

p
1/2
k (θ | x)

1

p
1/2
0 (θ | x)

p0(θ | x)dθ

=

∫
Θ

{
fk(x | θ)π(θ)∫

Θ
fk(x | θ)π(θ)dθ

}1/2{∫
Θ
f0(x | θ)π(θ)dθ

f0(x | θ)π(θ)

}1/2

p0(θ | x)dθ

=

∫
Θ

{
fk(x | θ)
f0(x | θ)

}1/2{ ∫
Θ
f(y | θ)π(θ)dθ∫

Θ
fk(y | θ)π(θ)dθ

}1/2

p(θ | y)dθ

=

∫
Θ

{
fk(x | θ)
f0(x | θ)

}1/2{∫
Θ

1

f(xk | x(k), θ)
p0(θ | x)dθ

}−1/2

p0(θ | x)dθ.
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