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Abstract

The first problem we address concerns Hamilton cycles. Suppose G is a large digraph in

which every vertex has in- and outdegree at least |G|/2. We show that G contains every

orientation of a Hamilton cycle except, possibly, the antidirected one. The antidirected

case was settled by DeBiasio and Molla. Our result is best possible and improves on an

approximate result by Häggkvist and Thomason.

We then investigate the random greedy F -free process which was initially studied

by Erdős, Suen and Winkler and by Spencer. This process greedily adds edges without

creating a copy of F , terminating in a maximal F -free graph. We provide an upper bound

on the number of hyperedges at the end of this process for a large class of hypergraphs.

The remainder of this thesis focuses on F -decompositions, i.e., whether the edge set

of a graph can be partitioned into copies of F . We obtain the best known bounds on the

minimum degree which ensures a Kr-decomposition of an r-partite graph, with applica-

tions to Latin squares. Lastly, we find exact bounds on the minimum degree for a large

graph to have a C2k-decomposition where k 6= 3. In both cases, we assume necessary

divisibility conditions are satisfied.
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CHAPTER 1

INTRODUCTION

1.1 Extremal graph theory

What conditions guarantee that a graph contains a triangle? When we can be sure that a

graph contains a perfect matching? These questions are typical of those asked in extremal

graph theory. Indeed, Mantel [59] showed that having more than |G|2/4 edges suffices

for a graph G to contain a triangle. In a similar spirit, Tutte [79] described all graphs

which have a perfect matching. Extremal results demonstrate how global parameters such

as the total number of edges or the chromatic number of a graph can have considerable

influence on its local structure. Take Turán’s theorem [78], for example, which determines

the maximum number of edges in any graph which contains no clique of size r.

Often, the subgraph of interest will be a Hamilton cycle, that is, a cycle which visits

every vertex of the graph exactly once. The problem of finding a Hamilton cycle is

exactly that faced in the famous Travelling Salesman Problem which has long fascinated

mathematicians. Imagine a salesman has been given a list of cities. He must visit each

city exactly once before returning to his starting point. Clearly he wants to minimise

the time spent travelling, so the question we are asked is: can we find a Hamilton cycle

of minimum length? Problems of this type are faced daily by those working in logistics,

transport and telecommunications.

Karp [45] showed that the problem of finding a Hamilton cycle in a graph is NP-
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complete and so it is unlikely that we can find a complete classification of those graphs

that are Hamiltonian. Instead, we seek sufficient conditions that will ensure a graph

contains a Hamilton cycle. These conditions often involve the minimum degree or the

degree sequence of the graph.

A classical result is Dirac’s theorem [26] which states that if G is a graph on n ≥ 3

vertices with minimum degree δ(G) ≥ n/2, then G contains a Hamilton cycle. This result

is best possible in that there are graphs with minimum degree dn/2e − 1 which do not

contain a Hamilton cycle. Indeed, if n is even, consider the graph consisting of two disjoint

cliques each on n/2 vertices and if n is odd consider the complete bipartite graph with

vertex classes of size (n− 1)/2 and (n+ 1)/2.

It is also natural to consider conditions on the degree sequence of a graph. We define

the degree sequence of G to be the sequence d1, d2, . . . , dn, which lists the degrees of the

vertices in G such that d1 ≤ d2 ≤ . . . ≤ dn. In 1962, Pósa showed that if di ≥ i + 1 for

all i < (n− 1)/2 and, if n is odd, ddn/2e ≥ dn/2e, then G contains a Hamilton cycle. This

result is much stronger than Dirac’s theorem since we allow the graph to contain vertices

with degree much smaller than n/2. Chvátal [22] generalised Pósa’s theorem further still

by describing those degree sequences which ensure that a graph is Hamiltonian. His result

states that if G is a graph on n at least three vertices and di ≥ i + 1 or dn−i ≥ n− i for

all i < n/2, then G has a Hamilton cycle. What is more, if we fix n and 1 ≤ r < n/2, we

can find a graph G with degree sequence d1, . . . , dn which satisfies this condition, apart

from at i = r in which case dr = r and dn−r = n− r − 1, such that G does not contain a

Hamilton cycle. This shows that Chvátal’s theorem is best possible.

Hamiltonicity has also been intensively studied in the digraph setting. Many results

involve the minimum semidegree δ0(G) of a digraph G, the minimum of all the in- and

outdegrees of the vertices in G. For instance, Ghouila-Houri [37] proved an analogue of

Dirac’s theorem for digraphs which guarantees that any digraph of minimum semidegree

δ0(G) ≥ n/2 contains a consistently oriented Hamilton cycle. (By consistently oriented we

mean that all edges of the cycle are oriented in the same direction.) To see that Ghouila-
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Houri’s result is best possible, take the extremal graphs for Dirac’s theorem and orient

the edges in both directions. Whether an analogue of Chvátal’s theorem, conjectured by

Nash-Williams [63] in 1975, holds for digraphs remains an open problem.

An oriented graph is a special type of digraph which can be obtained by orienting

the edges of a graph. So, whilst in a digraph we allow two edges of opposite orientations

between a pair of vertices, in an oriented graph at most one edge is allowed between any

pair of vertices. Keevash, Kühn and Osthus [47] proved a version of Dirac’s theorem

for oriented graphs. Here the minimum semidegree threshold turns out to be δ0(G) ≥

(3n− 4)/8.

A notion that has proved very useful in the search for Hamilton cycles is that of robust

expansion, first introduced by Kühn, Osthus and Treglown in [57]. Roughly speaking, a

digraph is a robust outexpander if every set of vertices of reasonable size has an out-

neighbourhood at least a little larger than itself and this property should hold, even if we

delete a small proportion of edges from the graph. Kühn, Osthus and Treglown showed

that if a sufficiently large digraph is a robust expander then a linear minimum semidegree

condition δ0(G) ≥ ηn guarantees a consistently oriented Hamilton cycle. Their proof uses

Szemerédi’s regularity lemma [73]. This powerful tool allows us to approximate any large

graph by a random one and is particularly useful in embedding problems.

So far, we have always assumed that in a digraph, the edges of a Hamilton cycle should

be oriented consistently around the cycle. But it is natural to seek minimum semidegree

conditions which guarantee a Hamilton cycle whose edges have any prescribed orientation.

Perhaps we desire a Hamilton cycle whose edges are oriented alternately forwards and

backwards around the cycle (we call such a cycle antidirected). In Chapter 2, we provide

an exact bound on the minimum semidegree for a (sufficiently large) digraph to contain

any given orientation of a Hamilton cycle.
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1.2 Probabilistic graph theory

We are surrounded by a vast collection of networks: social networks, transport infras-

tructures and the internet to name but a few. Random graphs have attracted significant

attention because of their potential to model these large networks. There is also a keen

interest in generating random graphs for the purpose of algorithm testing. Running an

algorithm on a random graph allows us to analyse how well the algorithm performs on

average.

Another motivation for the study of random graphs is the following. Sometimes it can

be difficult to find a graph satisfying a certain property P and this is when probabilistic

methods come into their own. Instead of trying to design the required graph, we construct

one at random. If we are able to show that this random graph satisfies P with positive

probability, we have proved the existence of a graph with property P without ever finding

it explicitly. A surprising result obtained using probabilistic techniques, due to Erdős [31],

proves the existence of graphs with large girth (i.e. graphs containing no short cycles)

and large chromatic number.

Ramsey theory, the search for structure in large graphs, provided Erdős with the initial

motivation for developing probabilistic techniques. Ramsey’s theorem [69] tells us that,

given any sufficiently large graph, we are guaranteed to find a large complete graph or

a large independent set. The Ramsey number R(s, t) is the smallest positive integer n

such that any graph on n vertices contains a clique of size s or an independent set of size

t. Ramsey numbers are notoriously difficult to calculate and, as a result, very few are

known. In 1947, Erdős [30] considered a random two-colouring to give a lower bound on

the diagonal Ramsey number R(k, k).

The binomial random graph Gn,p is the probability space consisting of all graphs G

with n vertices and an edge between each pair of vertices independently with probability

p. For example, we could construct the random graph Gn,1/2 by tossing a coin for each

pair of vertices in turn and drawing an edge if the coin shows heads. Random graphs

have been studied extensively and questions asked include:
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(i) for what values of p do we expect Gn,p to be connected and

(ii) how large does p have to be before Gn,p will almost certainly contain a Hamilton

cycle?

The first of these was answered by Erdős and Rényi [32]. Bollobás [15] and Ajtai, Komlós

and Szemerédi [1] solved the second. The Gn,p model continues to captivate mathemati-

cians and forms the basis of a huge body of research.

Random graph processes are used to gain an insight into how the random graph

develops over time. We start by assigning a birthtime which is uniformly distributed

in [0, 1] to each edge of the complete graph on n vertices. Initially the graph is empty

and we gradually increase p, adding in new edges as they are born. At time p in this

process, the graph is Gn,p. This process is well understood but the analysis becomes more

complicated if we add extra rules. For example, we can produce a graph with bounded

maximum degree by adding the condition that an edge can only be added if it does

not create a vertex of degree greater than d. This process was studied by Ruciński and

Wormald [70].

We are particularly interested in how local constraints can influence the global evo-

lution of a random process. Studying these processes allows us to obtain probabilistic

analogues of classical extremal problems. Recall Mantel’s theorem which says that any

graph which does not contain a triangle has at most |G|2/4 edges. The complete bipartite

graph Kn/2,n/2 attains this bound. We can also study a random graph process which cre-

ates maximal triangle-free graphs. At each step of the triangle-free process, we only add

in the new edge if it does not create a triangle. By counting the average number of edges

at the end of this process, we obtain a lower bound on the number of edges permitted in a

triangle-free graph. This greedy process falls significantly short of n2/4 edges, so studying

random processes can be thought of as analysing an average case.

The triangle-free process was suggested as a means to study the off-diagonal Ramsey

number R(3, k) and was first investigated by Erdős, Suen and Winkler [33] and Spencer

[72]. Bohman and Keevash [13] and Fiz Pontiveros, Griffiths and Morris [35] studied
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this process using the differential equation method introduced by Wormald [84]. Inde-

pendently, they obtained a lower bound of R(3, k) ≥ (1/4 − o(1))k2/ log k, improving

on previous results in [50] and [11]. The power of random techniques is highlighted by

the fact that the best explicit construction (i.e. the largest known concrete example of

a graph with no triangles and no independent set of size k) gives a lower bound of only

Ω(k3/2), see [2]. The natural variant of the triangle-free process, the F -free process where

F is any fixed graph, is discussed further in Chapter 3.

It is logical to start asking similar questions of hypergraphs. A k-uniform hypergraph

is made up of hyperedges, each of which contains exactly k vertices (so a 2-uniform

hypergraph is a graph). We can define a random k-uniform hypergraph Hn,p in exactly

the same way as Gn,p and we can now consider random hypergraph processes. However,

much less is known about these processes for hypergraphs than graphs. We investigate

the F -free hypergraph process in Chapter 3.

1.3 Graph decompositions

Given graphs F and G, is it possible to cover the edges of G completely using edge-disjoint

copies of F? If the answer to this question is yes, we say that G has an F -decomposition.

One of the first results of this kind was proved by Kirkman [51] in 1847. He showed that

the complete graph on n vertices can be decomposed into triangles if and only if n ≡ 1, 3

mod 6. In order for a graph G to have a triangle decomposition, it is clearly necessary

that the number of edges in G must be divisible by three and that every vertex in G

must have even degree (these conditions are guaranteed for Kn precisely when n ≡ 1, 3

mod 6). We say that a graph which satisfies these edge and degree divisibility conditions

is K3-divisible. But these conditions alone are not sufficient; there are graphs which are

K3-divisible but which do not have a K3-decomposition, take G to be a cycle of length

six for example.

In 1850, Kirkman [52] set the following puzzle in the Lady’s and Gentleman’s Diary:
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Fifteen schoolgirls must go for a walk three abreast each day for seven days.
Find an arrangement so that no pair of girls must walk in the same row as
each other more than once.

With a little thought, we can translate this problem into a graph setting. Each girl

becomes a vertex and we add all edges between. Any row of three girls defines a triangle

so, on any day, the arrangement defines five disjoint triangles in this graph. An answer

to the puzzle gives a triangle decomposition of the graph since each edge (or pair of girls)

appears in a triangle (or row) exactly once. In fact, what we have just seen is an example

of a Steiner triple system. A Steiner triple system is a family of triples S ⊆ {1, . . . , n}

such that every pair {i, j} ⊆ {1, . . . , n} lies in exactly one set S ∈ S. This system is none

other than a K3-decomposition of Kn. So an equivalent statement of Kirkman’s theorem

would be: Steiner triple systems exist if and only if n ≡ 1, 3 mod 6. A famous example

of a Steiner triple system is the Fano plane.

In a similar fashion, Steiner systems can be defined for larger sets. In general, a Steiner

system S(t, k, n) is a family of k-sets S ⊆ {1, . . . , n} such that every t-set is contained

in exactly one S ∈ S. A key objective in design theory is to determine for which values

of t, k and n Steiner systems exist. When t = 2, Steiner systems S(2, k, n) correspond

directly to Kk-decompositions of Kn and, for higher values of t, Steiner systems relate

to hypergraph decompositions, see Keevash [46]. This means that decompositions are

particularly prevalent in design theory.

But let us return once again to 1847 when Kirkman determined exactly which cliques

have triangle decompositions. It would be more than 100 years before anyone generalised

Kirkman’s result and the person in question was Wilson [82]. Wilson proved an analogue

for arbitrary F -decompositions of large cliques. He showed that any sufficiently large

clique which satisfies the necessary divisibility conditions can be decomposed into copies

of F . But when G is not a clique, deciding whether G is F -decomposable is a very

difficult problem. In fact, it is NP-complete when F has a connected component with at

least three edges, see [27]. For this reason, we seek sufficient conditions which guarantee

an F -decomposition and these often focus on the minimum degree. For triangles, Nash-
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Williams [62] conjectured that every K3-divisible graph G with minimum degree at least

3|G|/4 has a K3-decomposition. Recently, there has been much progress in the study of

F -decompositions. For example, Barber, Kühn, Lo and Osthus [7], showed how to turn

an approximate F -decomposition (one which covers almost all of the edges in G) into a

perfect one. This reduces the problem of finding a decomposition to instead bounding

the so-called fractional decomposition threshold. Currently, the best known minimum

degree bound for triangles is 0.9|G| (see [28]), still some way away from Nash-Williams’

conjectured bound.

We can even extend the Hamiltonicity problem discussed in Section 1.1 into a de-

composition setting. Here, we are interested in whether a graph G has a Hamilton-

decomposition, that is, whether we can partition the edges of G into edge-disjoint Hamil-

ton cycles. In 1892, Walecki showed that every clique on an odd number of vertices

has a Hamilton-decomposition (see [4], for example). Tillson [77] considered the directed

analogue, determining when a complete digraph has a Hamilton-decomposition. Kelly

conjectured in 1962 that every regular tournament (an orientation of the complete graph

Kn) should also have a decomposition into Hamilton cycles. This was recently verified

for large n by Kühn and Osthus [55]. A surprising application of their result is to the

Asymmetric Travelling Salesman Problem (a weighted directed version of the problem

discussed in Section 1.1).

In this thesis, we will investigate two distinct decomposition problems. The first of

which is explored in Chapter 4 and concerns clique decompositions of graphs in a mul-

tipartite setting. For instance, we bound the minimum degree for a tripartite graph to

have a decomposition into triangles. The direct correspondence between such decompo-

sitions and Latin squares makes these results particularly meaningful. Latin squares are

n× n grids which are filled with entries from {1, . . . , n} in such a way that each number

appears exactly once in each row and column. They were notably investigated by Euler.

These grids appear in many branches of mathematics, studied not only for their own sake

(they form the basis of the popular Sudoku puzzle), but because of their applications to
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experiment design, group theory and error-correcting codes. In Chapter 4, we address the

question: given a partially completed Latin square, when are we able to fill in the rest of

the boxes?

Finally, in Chapter 5 we investigate C2k-decompositions, that is, decompositions of

graphs into cycles of even length. We determine exact minimum degree bounds for a

graph G (which is large and satisfies the necessary divisibility conditions) to have such a

decomposition for all lengths apart from six.

Chapter 2 is based on work with DeBiasio, Kühn, Molla and Osthus [24].

Chapter 3 is based on work with Kühn and Osthus [56]. Chapter 4 is based

on work with Barber, Kühn, Lo and Osthus [8]. Chapter 5 is based on [75].
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CHAPTER 2

ARBITRARY ORIENTATIONS OF HAMILTON
CYCLES IN DIGRAPHS

2.1 Introduction

A classical result on Hamilton cycles is Dirac’s theorem [26] which states that if G is a

graph on n ≥ 3 vertices with minimum degree δ(G) ≥ n/2, then G contains a Hamilton

cycle. Ghouila-Houri [37] proved an analogue of Dirac’s theorem for digraphs which

guarantees that any digraph of minimum semidegree at least n/2 contains a consistently

oriented Hamilton cycle (where the minimum semidegree δ0(G) of a digraph G is the

minimum of all the in- and outdegrees of the vertices in G). In [47], Keevash, Kühn

and Osthus proved a version of this theorem for oriented graphs. Here the minimum

semidegree threshold turns out to be δ0(G) ≥ (3n − 4)/8. (In a digraph we allow two

edges of opposite orientations between a pair or vertices, in an oriented graph at most

one edge is allowed between any pair of vertices.)

Instead of asking for consistently oriented Hamilton cycles in an oriented graph or

digraph, it is natural to consider different orientations of a Hamilton cycle. For exam-

ple, Thomason [76] showed that every sufficiently large strongly connected tournament

contains every orientation of a Hamilton cycle. Häggkvist and Thomason [42] proved an

approximate version of Ghouila-Houri’s theorem for arbitrary orientations of Hamilton

cycles. They showed that a minimum semidegree of n/2+n5/6 ensures the existence of an
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arbitrary orientation of a Hamilton cycle in a digraph. This improved a result of Grant

[39] for antidirected Hamilton cycles. The exact threshold in the antidirected case was

obtained by DeBiasio and Molla [25], here the threshold is δ0(G) ≥ n/2 + 1, i.e., larger

than in Ghouila-Houri’s theorem. In Figure 2.1, we give two digraphs G on 2m vertices

which satisfy δ0(G) = m and have no antidirected Hamilton cycle, showing that this

bound is best possible. (The first of these examples is already due to Cai [18].)

Figure 2.1: In digraphs F 1
2m and F 2

2m, A and B are independent sets of size m − 1 and
bold arrows indicate that all possible edges are present in the directions shown.

Theorem 2.1.1 (DeBiasio & Molla, [25]). There exists an integer m0 such that the

following hold for all m ≥ m0. Let G be a digraph on 2m vertices. If δ0(G) ≥ m, then

G contains an antidirected Hamilton cycle, unless G is isomorphic to F 1
2m or F 2

2m. In

particular, if δ0(G) ≥ m+ 1, then G contains an antidirected Hamilton cycle.

In this thesis, we settle the problem by completely determining the exact threshold

for arbitrary orientations. We show that a minimum semidegree of n/2 suffices if the

Hamilton cycle is not antidirected. This bound is best possible by the extremal examples

for Ghouila-Houri’s theorem, i.e., if n is even, the digraph consisting of two disjoint

complete digraphs on n/2 vertices and, if n is odd, the complete bipartite digraph with

vertex classes of size (n− 1)/2 and (n+ 1)/2.

Theorem 2.1.2. There exists an integer n0 such that the following holds. Let G be a

digraph on n ≥ n0 vertices with δ0(G) ≥ n/2. If C is any orientation of a cycle on n

vertices which is not antidirected, then G contains a copy of C.

12



Kelly [49] proved an approximate version of Theorem 2.1.2 for oriented graphs. He

showed that the semidegree threshold for an arbitrary orientation of a Hamilton cycle in

an oriented graph is 3n/8 + o(n). It would be interesting to obtain an exact version of

this result.

2.2 Proof sketch

The proof of Theorem 2.1.2 utilizes the notion of robust expansion which has been very

useful in several settings recently. Roughly speaking, a digraph G is a robust outexpander

if every vertex set S of reasonable size has an outneighbourhood which is at least a little

larger than S itself, even if we delete a small proportion of the edges of G. A formal

definition of robust outexpansion is given in Section 2.4. In Lemma 2.4.4, we observe

that any graph satisfying the conditions of Theorem 2.1.2 must be a robust outexpander

or have a large set which does not expand, in which case we say that G is ε-extremal.

Theorem 2.1.2 was verified for the case when G is a robust outexpander by Taylor in

[74] based on the approach of Kelly [49]. This allows us to restrict our attention to the

ε-extremal case. We introduce three refinements of the notion of ε-extremality: ST -

extremal, AB-extremal and ABST -extremal. These are illustrated in Figure 2.2, the

arrows indicate that G is almost complete in the directions shown. In each of these cases,

we have that |A| ∼ |B| and |S| ∼ |T |. If G is ST -extremal, then the sets A and B are

almost empty and so G is close to the digraph consisting of two disjoint complete digraphs

on n/2 vertices. If G is AB-extremal, then the sets S and T are almost empty and so in

this case G is close to the complete bipartite digraph with vertex classes of size n/2 (thus

both digraphs in Figure 2.1 are AB-extremal). Within each of these cases, we further

subdivide the proof depending on how many changes of direction the desired Hamilton

cycle has. Note that in the directed setting the set of extremal structures is much less

restricted than in the undirected setting (in the undirected case, it is well known that the

extremal graphs are close to the complete bipartite graph Kn/2,n/2 or two disjoint cliques

13



on n/2 vertices).

Figure 2.2: An ABST -extremal graph. When G is AB-extremal, the sets S and T are
almost empty and when G is ST -extremal the sets A and B are almost empty.

The main difficulty in each of the cases is covering the exceptional vertices, i.e., those

vertices with low in- or outdegree in the vertex classes where we would expect most of

their neighbours to lie. When G is AB-extremal, we also consider the vertices in S ∪ T

to be exceptional and, when G is ST -extremal, we consider the vertices in A ∪ B to

be exceptional. In each case we find a short path P in G which covers all of these

exceptional vertices. When the cycle C is close to being consistently oriented, we cover

these exceptional vertices by short consistently oriented paths and when C has many

changes of direction, we will map sink or source vertices in C to these exceptional vertices

(here a sink vertex is a vertex of indegree two and a source vertex is a vertex of outdegree

two).

An additional difficulty is that in the AB- and ABST -extremal cases we must ensure

that the path P leaves a balanced number of vertices in A and B uncovered. Once we

have found P in G, the remaining vertices of G (i.e., those not covered by P ) induce a

balanced almost complete bipartite digraph and one can easily embed the remainder of

C using a bipartite version of Dirac’s theorem. When G is ST -extremal, our aim will be

to split the cycle C into two paths PS and PT and embed PS into the digraph G[S] and

PT into G[T ]. So a further complication in this case is that we need to link together PS

and PT as well as covering all vertices in A ∪B.

This chapter is organised as follows. Sections 2.3 and 2.4 introduce the notation and
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tools which will be used throughout this chapter. In Section 2.4.3 we describe the structure

of an ε-extremal digraph and formally define what it means to be ST -, AB- or ABST -

extremal. The remaining sections prove Theorem 2.1.2 in each of these three cases: we

consider the ST -extremal case in Section 2.5, the AB-extremal case in Section 2.6 and

the ABST -extremal case in Section 2.7.

2.3 Notation

Let G be a digraph on n vertices. We will write xy ∈ E(G) to indicate that G con-

tains an edge oriented from x to y. If G is a digraph and x ∈ V (G), we will write

N+
G (x) for the outneighbourhood of x and N−G (x) for the inneighbourhood of x. We define

d+
G(x) := |N+

G (x)| and d−G(x) := |N−G (x)|. We will write, for example, d±G(x) ≥ a to mean

d+
G(x), d−G(x) ≥ a. We sometimes omit the subscript G if this is unambiguous. We let

δ0(G) := min{d+(x), d−(x) : x ∈ V (G)}. If A ⊆ V (G), we let d+
A(x) := |N+

G (x) ∩ A| and

define d−A(x) and d±A(x) similarly. We say that x ∈ V (G) is a sink vertex if d+(x) = 0 and

a source vertex if d−(x) = 0.

Let A,B ⊆ V (G) and xy ∈ E(G). If x ∈ A and y ∈ B we say that xy is an AB-edge.

We write E(A,B) for the set of all AB-edges and we write E(A) for E(A,A). We let

e(A,B) := |E(A,B)| and e(A) := |E(A)|. We write G[A,B] for the digraph with vertex

set A∪B and edge set E(A,B)∪E(B,A) and we write G[A] for the digraph with vertex

set A and edge set E(A). We say that a path P = x1x2 . . . xq is an AB-path if x1 ∈ A and

xq ∈ B. If x1, xq ∈ A, we say that P is an A-path. If A ⊆ V (P ), we say that P covers A.

If P is a collection of paths, we write V (P) for
⋃
P∈P V (P ).

Let P = x1x2 . . . xq be a path. The length of P is the number of its edges. Given sets

X1, . . . , Xq ⊆ V (G), we say that P has form X1X2 . . . Xq if xi ∈ Xi for i = 1, 2, . . . , q.

We will use the following abbreviation

(X)k := XX . . .X︸ ︷︷ ︸
k times

.
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We will say that P is a forward path of the form X1X2 . . . Xq if P has form X1X2 . . . Xq

and xixi+1 ∈ E(P ) for all i = 1, 2, . . . , q − 1. Similarly, P is a backward path of the form

X1X2 . . . Xq if P has form X1X2 . . . Xq and xi+1xi ∈ E(P ) for all i = 1, 2, . . . , q − 1.

A digraph G is oriented if it is an orientation of a simple graph (i.e., if there are no

x, y ∈ V (G) such that xy, yx ∈ E(G)). Suppose that C = (u1u2 . . . un) is an oriented

cycle. We let σ(C) denote the number of sink vertices in C. We will write (uiui+1 . . . uj)

or (uiCuj) to denote the subpath of C from ui to uj. In particular, (uiui+1) may represent

the edge uiui+1 or ui+1ui. Given edges e = (ui, ui+1) and f = (uj, uj+1), we write (eCf)

for the path (uiCuj+1). We say that an edge (uiui+1) is a forward edge if (uiui+1) = uiui+1

and a backward edge if (uiui+1) = ui+1ui. We say that a cycle is consistently oriented

if all of its edges are oriented in the same direction (forward or backward). We define

a consistently oriented subpath P of C in the same way. We say that P is forward if

it consists of only forward edges and backward if it consists of only backward edges. A

collection of subpaths of C is consistent if they are all forward paths or if they are all

backward paths. We say that a path or cycle is antidirected if it contains no consistently

oriented subpath of length two.

Given C as above, we define dC(ui, uj) to be the length of the path (uiCuj) (so, for

example, dC(u1, un) = n − 1 and dC(un, u1) = 1). For a subpath P = (uiui+1 . . . uk)

of C, we call ui the initial vertex of P and uk the final vertex. We write (ujP ) :=

(ujuj+1 . . . uk) and (Puj) := (uiui+1 . . . uj). If P1 and P2 are subpaths of C, we define

dC(P1, P2) := dC(v1, v2), where vi is the initial vertex Pi. In particular, we will use this

definition when one or both of P1, P2 are edges. Suppose P1, P2, . . . , Pk are internally

disjoint subpaths of C such that the final vertex of Pi is the initial vertex of Pi+1 for

i = 1, . . . , k− 1. Let x denote the initial vertex of P1 and y denote the final vertex of Pk.

If x 6= y, we write (P1P2 . . . Pk) for the subpath of C from x to y. If x = y, we sometimes

write C = (P1P2 . . . Pk).

Throughout this thesis we will use hierarchies, for example 1/n � a � b < 1, where

constants are chosen from right to left. The notation a � b means that there exists an

16



increasing function f for which the result holds whenever a ≤ f(b). In order to simplify

the presentation, we will not determine these functions explicitly.

2.4 Tools

2.4.1 Hamilton cycles in dense graphs and digraphs

We will use the following standard results concerning Hamilton paths and cycles. Theo-

rem 2.4.1 is a bipartite version of Dirac’s theorem. Proposition 2.4.2 is a simple conse-

quence of Dirac’s theorem and this bipartite version.

Theorem 2.4.1 (Moon & Moser, [61]). Let G = (A,B) be a bipartite graph with |A| =

|B| = n. If δ(G) ≥ n/2 + 1, then G contains a Hamilton cycle.

Proposition 2.4.2. (i) Let G be a digraph on n vertices with δ0(G) ≥ 7n/8. Let

x, y ∈ V (G) be distinct. Then G contains a Hamilton path of any orientation between

x and y.

(ii) Let m ≥ 10 and G = (A,B) be a bipartite digraph with |A| = m + 1 and |B| = m.

Suppose that δ0(G) ≥ (7m + 2)/8. Let x, y ∈ A. Then G contains a Hamilton path

of any orientation between x and y.

Proof. To prove (i), we define an undirected graph G′ on the vertex set V (G) where

uv ∈ E(G′) if and only if uv, vu ∈ E(G). Let G′′ be the graph obtained from G′ by

contracting the vertices x and y to a single vertex x′ with NG′′(x
′) := NG′(x) ∩ NG′(y).

Note that

δ(G′′) ≥ (n− 1)/2 = |G′′|/2.

Hence G′′ has a Hamilton cycle by Dirac’s theorem. This corresponds to a Hamilton path

of any orientation between x and y in G.

For (ii), we proceed in the same way, using Theorem 2.4.1 instead of Dirac’s theorem.

�
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2.4.2 Robust expanders

Let 0 < ν ≤ τ < 1, let G be a digraph on n vertices and let S ⊆ V (G). The ν-robust

outneighbourhood RN+
ν,G(S) of S is the set of all those vertices x ∈ V (G) which have at

least νn inneighbours in S. G is called a robust (ν, τ)-outexpander if |RN+
ν,G(S)| ≥ |S|+νn

for all S ⊆ V (G) with τn < |S| < (1− τ)n.

Recall from Section 2.1 that Kelly [49] showed that any sufficiently large oriented graph

with minimum semidegree at least (3/8+α)n contains any orientation of a Hamilton cycle.

It is not hard to show that any such oriented graph is a robust outexpander (see [55]). In

fact, in [49], Kelly observed that his arguments carry over to robustly expanding digraphs

of linear degree. Taylor [74] has verified that this is indeed the case, proving the following

result.

Theorem 2.4.3 ([74]). Suppose 1/n� ν ≤ τ � η < 1. Let G be a digraph on n vertices

with δ0(G) ≥ ηn and suppose G is a robust (ν, τ)-outexpander. If C is any orientation of

a cycle on n vertices, then G contains a copy of C.

2.4.3 Structure

Let ε > 0 and G be a digraph on n vertices. We say that G is ε-extremal if there is a

partition A,B, S, T of its vertices into sets of sizes a, b, s, t such that |a − b|, |s − t| ≤ 1

and e(A ∪ S,A ∪ T ) < εn2.

The following lemma describes the structure of a graph which satisfies the conditions

of Theorem 2.1.2.

Lemma 2.4.4. Suppose 0 < 1/n � ν � τ, ε < 1 and let G be a digraph on n vertices

with δ0(G) ≥ n/2. Then G satisfies one of the following:

(i) G is ε-extremal;

(ii) G is a robust (ν, τ)-outexpander.
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Proof. Suppose that G is not a robust (ν, τ)-outexpander. Then there is a set X ⊆ V (G)

with τn ≤ |X| ≤ (1 − τ)n and |RN+
ν,G(X)| < |X| + νn. Define RN+ := RN+

ν,G(X). We

consider the following cases:

Case 1: τn ≤ |X| ≤ (1/2−√ν)n.

Note that any vertex in RN+ has fewer than νn inneighbours in X so e(X,RN+) <

νn2. Together with the fact that δ0(G) ≥ n/2, this implies

|X|n/2 ≤ e(X,RN+) + e(X,RN+) ≤ |X||RN+|+ νn2 ≤ |X|(|RN+|+ νn/τ).

So |RN+| ≥ (1/2− ν/τ)n ≥ |X|+ νn, which gives a contradiction.

Case 2: (1/2 + ν)n ≤ |X| ≤ (1− τ)n.

For any v ∈ V (G) we note that d−X(v) ≥ νn. Hence |RN+| = |G| ≥ |X| + νn, a

contradiction.

Case 3: (1/2−√ν)n < |X| < (1/2 + ν)n.

Suppose that |RN+| < (1/2 − 3ν)n. Since δ0(G) ≥ n/2, each vertex in X has more

than 3νn outneighbours in RN+. Thus, there is a vertex v 6∈ RN+ with more than

3νn|X|/n > νn inneighbours in X, which is a contradiction. Therefore,

(1/2− 3ν)n ≤ |RN+| < |X|+ νn < (1/2 + 2ν)n. (2.1)

Write A0 := X \ RN+, B0 := RN+ \ X, S0 := X ∩ RN+ and T0 := X ∩ RN+. Let

a0, b0, s0, t0, respectively, denote their sizes. Note that |X| = a0 +s0, |RN+| = b0 +s0 and

a0 + b0 + s0 + t0 = n. It follows from (2.1) and the conditions of Case 3 that

(1/2−√ν)n ≤ a0 + s0, b0 + t0, b0 + s0, a0 + t0 ≤ (1/2 +
√
ν)n

and so |a0 − b0|, |s0 − t0| ≤ 2
√
νn. Note that

e(A0 ∪ S0, A0 ∪ T0) = e(X,RN+) < νn2.

19



By moving at most
√
νn vertices between the sets A0 and B0 and

√
νn between the sets

S0 and T0, we obtain new sets A,B, S, T of sizes a, b, s, t satisfying |a− b|, |s− t| ≤ 1 and

e(A ∪ S,A ∪ T ) ≤ εn2. So G is ε-extremal. �

2.4.4 Refining the notion of ε-extremality

Let n ∈ N and ε, ε1, ε2, ε3, ε4, η1, η2, τ be positive constants satisfying

1/n� ε� ε1 � ε2 � η1 � τ � ε3 � ε4 � η2 � 1.

We now introduce three refinements of ε-extremality. (The constants ε2 and ε4 do not

appear in these definitions but will be used at a later stage in the proof so we include

them here for clarity.) Let G be a digraph on n vertices.

Firstly, we say that G is ST -extremal if there is a partition A,B, S, T of V (G) into

sets of sizes a, b, s, t such that:

(P1) a ≤ b, s ≤ t;

(P2) bn/2c − ε3n ≤ s, t ≤ dn/2e+ ε3n;

(P3) δ0(G[S]), δ0(G[T ]) ≥ η2n;

(P4) d±S (x) ≥ n/2− ε3n for all but at most ε3n vertices x ∈ S;

(P5) d±T (x) ≥ n/2− ε3n for all but at most ε3n vertices x ∈ T ;

(P6) a+ b ≤ ε3n;

(P7) d−T (x), d+
S (x) > n/2− 3η2n and d−S (x), d+

T (x) ≤ 3η2n for all x ∈ A;

(P8) d−S (x), d+
T (x) > n/2− 3η2n and d−T (x), d+

S (x) ≤ 3η2n for all x ∈ B.

Secondly, we say that G is AB-extremal if there is a partition A,B, S, T of V (G) into

sets of sizes a, b, s, t such that:
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(Q1) a ≤ b, s ≤ t;

(Q2) bn/2c − ε3n ≤ a, b ≤ dn/2e+ ε3n;

(Q3) δ0(G[A,B]) ≥ n/50;

(Q4) d±B(x) ≥ n/2− ε3n for all but at most ε3n vertices x ∈ A;

(Q5) d±A(x) ≥ n/2− ε3n for all but at most ε3n vertices x ∈ B;

(Q6) s+ t ≤ ε3n;

(Q7) d−A(x), d+
B(x) ≥ n/50 for all x ∈ S;

(Q8) d−B(x), d+
A(x) ≥ n/50 for all x ∈ T ;

(Q9) if a < b, d±B(x) < n/20 for all x ∈ B; d−B(x) < n/20 for all x ∈ S and d+
B(x) < n/20

for all x ∈ T .

Thirdly, we say that G is ABST -extremal if there is a partition A,B, S, T of V (G)

into sets of sizes a, b, s, t such that:

(R1) a ≤ b, s ≤ t;

(R2) a, b, s, t ≥ τn;

(R3) |a− b|, |s− t| ≤ ε1n;

(R4) δ0(G[A,B]) ≥ η1n;

(R5) d+
B∪S(x), d−A∪S(x) ≥ η1n for all x ∈ S;

(R6) d+
A∪T (x), d−B∪T (x) ≥ η1n for all x ∈ T ;

(R7) d±B(x) ≥ b− ε1/3n for all but at most ε1n vertices x ∈ A;

(R8) d±A(x) ≥ a− ε1/3n for all but at most ε1n vertices x ∈ B;
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(R9) d+
B∪S(x) ≥ b+ s− ε1/3n and d−A∪S(x) ≥ a+ s− ε1/3n for all but at most ε1n vertices

x ∈ S;

(R10) d+
A∪T (x) ≥ a+ t−ε1/3n and d−B∪T (x) ≥ b+ t−ε1/3n for all but at most ε1n vertices

x ∈ T .

Proposition 2.4.5. Suppose

1/n� ε� ε1 � η1 � τ � ε3 � η2 � 1

and G is an ε-extremal digraph on n vertices with δ0(G) ≥ n/2. Then there is a partition

of V (G) into sets A,B, S, T of sizes a, b, s, t satisfying (P2)–(P8), (Q2)–(Q9) or (R2)–

(R10). Moreover, if A,B, S, T satisfies (Q2)–(Q9), we also have that a ≤ b.

Proof. Consider a partition A0, B0, S0, T0 of V (G) into sets of sizes a0, b0, s0, t0 such

that |a0 − b0|, |s0 − t0| ≤ 1 and e(A0 ∪ S0, A0 ∪ T0) < εn2. Define

X1 := {x ∈ A0 ∪ S0 : d+
B0∪S0

(x) < n/2−√εn},

X2 := {x ∈ A0 ∪ T0 : d−B0∪T0
(x) < n/2−√εn},

X3 := {x ∈ B0 ∪ T0 : d+
A0∪T0

(x) < n/2−√εn},

X4 := {x ∈ B0 ∪ S0 : d−A0∪S0
(x) < n/2−√εn}

and let X :=
⋃4
i=1 Xi. We now compute an upper bound for |X|. Each vertex x ∈ X1 has

d+
A0∪T0

(x) >
√
εn, so |X1| ≤ εn2/

√
εn =

√
εn. Also, each vertex x ∈ X2 has d−A0∪S0

(x) >

√
εn, so |X2| ≤

√
εn. Observe that

|A0 ∪ T0|n/2− εn2 ≤ e(B0 ∪ T0, A0 ∪ T0)

≤ (n/2−√εn)|X3|+ |A0 ∪ T0|(|B0 ∪ T0| − |X3|)
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which gives

|X3|(|A0 ∪ T0| − n/2 +
√
εn) ≤ |A0 ∪ T0|(|B0 ∪ T0| − n/2) + εn2 ≤ 2εn2.

So |X3| ≤ 2εn2/(
√
εn/2) = 4

√
εn. Similarly, we find that |X4| ≤ 4

√
εn. Therefore,

|X| ≤ 10
√
εn.

Case 1: a0, b0 < 2τn.

Let Z := X ∪A0∪B0. Choose disjoint Z1, Z2 ⊆ Z so that d±S0
(x) ≥ 2η2n for all x ∈ Z1

and d±T0
(x) ≥ 2η2n for all x ∈ Z2 and |Z1 ∪ Z2| is maximal. Let S := (S0 \X) ∪ Z1 and

T := (T0 \X) ∪ Z2. The vertices in Z \ (Z1 ∪ Z2) can be partitioned into two sets A and

B so that d+
S (x), d−T (x) ≥ n/2− 3η2n for all x ∈ A and d−S (x), d+

T (x) ≥ n/2− 3η2n for all

x ∈ B. The partition A,B, S, T satisfies (P2)–(P8).

Case 2: s0, t0 < 2τn.

Partition X into four sets Z1, Z2, Z3, Z4 so that d±B0
(x) ≥ n/5 for all x ∈ Z1; d±A0

(x) ≥

n/5 for all x ∈ Z2; d+
B0

(x), d−A0
(x) ≥ n/5 for all x ∈ Z3 and d−B0

(x), d+
A0

(x) ≥ n/5 for all

x ∈ Z4. Then set A1 := (A0 \X) ∪ Z1, B1 := (B0 \X) ∪ Z2.

Assume, without loss of generality, that |A1| ≤ |B1|. To ensure that the vertices in

B satisfy (Q9), choose disjoint sets B′, B′′ ⊆ B1 so that |B′ ∪ B′′| is maximal subject to:

|B′ ∪ B′′| ≤ |B1| − |A1|, d+
B1

(x) ≥ n/20 for all x ∈ B′ and d−B1
(x) ≥ n/20 for all x ∈ B′′.

Set B := B1 \ (B′ ∪B′′), S1 := (S0 \X)∪Z3 ∪B′ and T1 := (T0 \X)∪Z4 ∪B′′. To ensure

that the vertices in S ∪ T satisfy (Q9), choose sets S ′ ⊆ S1, T
′ ⊆ T1 which are maximal

subject to: |S ′| + |T ′| ≤ |B| − |A1|, d±B(x) ≥ n/20 for all x ∈ S ′ and d±B(x) ≥ n/20 for

all x ∈ T ′. We define A := A1 ∪ S ′ ∪ T ′, S := S1 \ S ′ and T := T1 \ T ′. Then a ≤ b and

(Q2)–(Q9) hold.

Case 3: a0, b0, s0, t0 ≥ 2τn− 1.

The case conditions imply a0, b0, s0, t0 < n/2 − τn. Then, since δ0(G) ≥ n/2, each

vertex must have at least 2η1n inneighbours in at least two of the sets A0, B0, S0, T0. The

same holds when we consider outneighbours instead. So we can partition the vertices in X
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into sets Z1, Z2, Z3, Z4 so that: d±B0
(x) ≥ 2η1n for all x ∈ Z1; d±A0

(x) ≥ 2η1n for all x ∈ Z2;

d+
B0∪S0

(x), d−A0∪S0
(x) ≥ 2η1n for all x ∈ Z3 and d+

A0∪T0
(x), d−B0∪T0

(x) ≥ 2η1n for all x ∈ Z4.

Let A := (A0 \X) ∪ Z1, B := (B0 \X) ∪ Z2, S := (S0 \X) ∪ Z3 and T := (T0 \X) ∪ Z4.

This partition satisfies (R2)–(R10). �

The above result implies that to prove Theorem 2.1.2 for ε-extremal graphs it will suf-

fice to consider only graphs which are ST -extremal, AB-extremal or ABST -extremal. In-

deed, to see that we may assume that a ≤ b and s ≤ t, suppose that G is ε-extremal. Then

G has a partition satisfying (P2)–(P8), (Q2)–(Q9) or (R2)–(R10) by Proposition 2.4.5.

Note that relabelling the sets of the partition (A,B, S, T ) by (B,A, T, S) if necessary

allows us to assume that a ≤ b. If s ≤ t, then we are done. If s > t, reverse the orien-

tation of every edge in G to obtain the new graph G′. Relabel the sets (A,B, S, T ) by

(A,B, T, S). Under this new labelling, the graph G′ satisfies all of the original properties

as well as a ≤ b and s ≤ t. Obtain C ′ from the cycle C by reversing the orientation of

every edge in C. The problem of finding a copy of C in G is equivalent to finding a copy

of C ′ in G′.

2.5 G is ST -extremal

The aim of this section is to prove the following lemma which settles Theorem 2.1.2 in

the case when G is ST -extremal.

Lemma 2.5.1. Suppose that 1/n� ε3 � ε4 � η2 � 1. Let G be a digraph on n vertices

such that δ0(G) ≥ n/2 and G is ST -extremal. If C is any orientation of a cycle on n

vertices, then G contains a copy of C.

We will split the proof of Lemma 2.5.1 into two cases based on how close the cycle C

is to being consistently oriented. Recall that σ(C) denotes the number of sink vertices in

C. Observe that in any oriented cycle, the number of sink vertices is equal to the number

of source vertices.
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2.5.1 C has many sink vertices, σ(C) ≥ ε4n

The rough strategy in this case is as follows. We would like to embed half of the cycle

C into G[S] and half into G[T ], making use of the fact that these graphs are nearly

complete. At this stage, we also suitably assign the vertices in A ∪ B to G[S] or G[T ].

We will partition C into two disjoint paths, PS and PT , each containing at least σ(C)/8

sink vertices, which will be embedded into G[S] and G[T ]. The main challenge we will

face is finding appropriate edges to connect the two halves of the embedding.

Lemma 2.5.2. Suppose that 1/n� ε3 � ε4 � η2 � 1. Let G be a digraph on n vertices

with δ0(G) ≥ n/2. Suppose A,B, S, T is a partition of V (G) satisfying (P1)–(P8). Let C

be an oriented cycle on n vertices with σ(C) ≥ ε4n. Then there exists a partition S∗, T ∗ of

the vertices of G and internally disjoint paths R1, R2, PS, PT such that C = (PSR1PTR2)

and the following hold:

(i) S ⊆ S∗ and T ⊆ T ∗;

(ii) |PT | = |T ∗|;

(iii) PS and PT each contain at least ε4n/8 sink vertices;

(iv) |Ri| ≤ 3 and G contains disjoint copies RG
i of Ri such that RG

1 is an ST -path, RG
2

is a TS-path and all interior vertices of RG
i lie in S∗.

In the proof of Lemma 2.5.2 we will need the following proposition.

Proposition 2.5.3. Suppose that 1/n � ε3 � ε4 � η � 1. Let G be a digraph on n

vertices with δ0(G) ≥ n/2. Suppose A,B, S, T is a partition of V (G) satisfying (P1)–(P8).

(i) If a = b ∈ {0, 1} then there are two disjoint edges between S and T of any given

direction.

(ii) If A = ∅ then there are two disjoint TS-edges.

(iii) If a = 1 and b ≥ 2 then there are two disjoint TS-edges.
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(iv) There are two disjoint edges in E(S, T ∪ A) ∪ E(T, S ∪B).

Proof. Let

S ′ := {x ∈ S : N+
A (x), N−B (x) = ∅} and T ′ := {x ∈ T : N+

B (x), N−A (x) = ∅}.

First we prove (i). If a = b ∈ {0, 1} then it follows from (P7), (P8) that |S ′|, |T ′| ≥ n/4.

Since s ≤ t, it is either the case that s ≤ (n−1)/2−b or s = t = n/2−b. If s ≤ (n−1)/2−b

choose any x 6= y ∈ S ′. Both x and y have at least dn/2 − ((n − 1)/2 − b − 1 + b)e =

2 inneighbours and outneighbours in T , so we find the desired edges. Otherwise s =

t = n/2 − b and each vertex in S ′ must have at least one inneighbour and at least one

outneighbour in T and each vertex in T ′ must have at least one inneighbour and at least

one outneighbour in S. It is now easy to check that (i) holds. Indeed, König’s theorem

gives the two required disjoint edges provided they have the same direction. Using this,

it is also easy to find two edges in opposite directions.

We now prove (ii). Suppose that A = ∅. We have already seen that the result holds

when B = ∅. So assume that b ≥ 1. Since s ≤ (n− b)/2, each vertex in S must have at

least b/2+1 inneighbours in T∪B. Assume for contradiction that there are no two disjoint

TS-edges. Then all but at most one vertex in S must have at least b/2 inneighbours in

B. So e(B, S) ≥ bn/8 which implies that there is a vertex v ∈ B with d+
S (v) ≥ n/8. But

this contradicts (P8). So there must be two disjoint TS-edges.

For (iii), suppose that a = 1 and b ≥ 2. Since s ≤ (n − b − 1)/2, each vertex in S

must have at least (b+1)/2 inneighbours in T ∪B. Assume that there are no two disjoint

TS-edges. Then all but at most one vertex in S have at least (b − 1)/2 inneighbours in

B. So e(B, S) ≥ nb/12 which implies that there is a vertex v ∈ B with d+
S (v) ≥ n/12

which contradicts (P8). Hence (iii) holds.

For (iv), we observe that min{s + b, t + a} ≤ (n − 1)/2 or s + b = t + a = n/2. If

s + b ≤ (n− 1)/2 then each vertex in S has at least two outneighbours in T ∪ A, giving

the desired edges. A similar argument works if t+ a ≤ (n− 1)/2. If s+ b = t+ a = n/2
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then each vertex in S has at least one outneighbour in T ∪A and each vertex in T has at

least one outneighbour in S ∪ B. It is easy to see that there must be two disjoint edges

in E(S, T ∪ A) ∪ E(T, S ∪B). �

Proof of Lemma 2.5.2. Observe that C must have a subpath P1 of length n/3

containing at least ε4n/3 sink vertices. Let v ∈ P1 be a sink vertex such that the subpaths

(P1v) and (vP1) of P1 each contain at least ε4n/7 sink vertices. Write C = (v1v2 . . . vn)

where v1 := v and write k′ := n− t.

Case 1: a ≤ 1

If a = b, set S∗ := S ∪ A ∪ B, T ∗ := T , R1 := (vk′vk′+1) and R2 := (vnv1) = vnv1.

By Proposition 2.5.3(i), G contains a pair of disjoint edges between S and T of any given

orientation. So we can map vnv1 to a TS-edge and (vk′vk′+1) to an edge between S and

T of the correct orientation such that the two edges are disjoint.

Suppose now that b ≥ a + 1. By Proposition 2.5.3(ii)–(iii), we can find two disjoint

TS-edges e1 and e2. If vk′ is not a source vertex, set S∗ := S ∪ A ∪ B, T ∗ := T ,

R1 := (vk′−1vk′vk′+1) and R2 := vnv1. Map vnv1 to e1. If vk′+1vk′ ∈ E(C), map R1 to a

path of the form SST which uses e2. Otherwise, since vk′ is not a source vertex, R1 is a

forward path. Using (P8), we find a forward path of the form SBT for RG
1 .

So let us suppose that vk′ is a source vertex. Let b1 ∈ B and set S∗ := S∪A∪B \{b1}

and T ∗ := T ∪ {b1}. Let R1 := (vk′−1vk′) = vk′vk′−1 and R2 := vnv1. We know that

vnv1, vk′vk′−1 ∈ E(C), so we can map these edges to e1 and e2.

In each of the above, we define PS and PT to be the paths, which are internally disjoint

from R1 and R2, such that C = (PSR1PTR2). Note that (i)–(iv) are satisfied.

Case 2: a ≥ 2

Apply Proposition 2.5.3(iv) to find two disjoint edges e1, e2 ∈ E(S, T∪A)∪E(T, S∪B).

Choose any distinct x, y ∈ A ∪B such that x and y are disjoint from e1 and e2.

First let us suppose that vk′ is a sink vertex. If e1, e2 ∈ E(S,A) ∪ E(T, S ∪ B), set

S∗ := S∪A∪B, T ∗ := T , R1 := (vk′−1vk′vk′+1) and R2 := (vnv1v2). If e1 ∈ E(T, S∪B), use
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(P3) and (P8) to find a path of the form S(S∪B)T which uses e1 for RG
1 . If e1 ∈ E(S,A),

we use (P7) to find a path of the form SAT using e1 for RG
1 . In the same way, we find a

copy RG
2 of R2. If exactly one of ei, e2 say, lies in E(S, T ), set S∗ := (S ∪ A ∪ B) \ {x},

T ∗ := T ∪ {x}, R1 := (vk′−1vk′vk′+1) and R2 := (v1v2). Then v2v1 can be mapped

to e2 and we use e1 to find a copy RG
1 of R1 as before. If both e1, e2 ∈ E(S, T ), set

S∗ := (S ∪ A ∪ B) \ {x, y}, T ∗ := T ∪ {x, y}, R1 := (vk′−1vk′) and R2 := (v1v2). Then

map v2v1 and vk′−1vk′ to the edges e1 and e2.

Suppose now that (vk′−1vk′vk′+1) is a consistently oriented path. If e2 6∈ E(S, T ), let

S∗ := S ∪ A ∪ B, T ∗ := T , R1 := (vk′−1vk′vk′+1) and R2 := (vnv1v2) and, if e2 ∈ E(S, T ),

let S∗ := (S ∪A ∪B) \ {x}, T ∗ := T ∪ {x}, R1 := (vk′−1vk′vk′+1) and R2 := (v1v2). Then

use the edge e2 to find a copy RG
2 of R2 as above. We use (P7) or (P8) to map R1 to a

backward path of the form SAT or a forward path of the form SBT as appropriate.

We let PS and PT be paths which are internally disjoint from R1 and R2 such that

C = (PSR1PTR2). Then (i)–(iv) are satisfied.

It remains to consider the case when vk′ is a source vertex. We now consider the vertex

vk′−1 instead of vk′ . Note that C cannot contain two adjacent source vertices, so either

vk′−1 is a sink vertex or (vk′−2vk′−1vk′) is a backward path. We proceed as previously.

Note that when we define the path PT it will have one additional vertex and so we must

allocate an additional vertex from A∪B to T ∗, we are able to do this since a+b > 3. �

Apply Lemma 2.5.2 to G and C to obtain internally disjoint subpaths R1, R2, PS and

PT of C as well as a partition S∗, T ∗ of V (G). Let RG
i be copies of Ri in G satisfying

the properties of the lemma. Write R′ for the set of interior vertices of the RG
i . Define

GS := G[S∗ \R′] and GT := G[T ∗]. Let xT and xS be the images of the final vertices of R1

and R2 and let yS and yT be the images of the initial vertices of R1 and R2, respectively.

Also, let VS := S∗ ∩ (A ∪B) and VT := T ∗ ∩ (A ∪B).

The following proposition allows us to embed copies of PS and PT in GS and GT . The

idea is to greedily find a short path which will contain all of the vertices in VS and VT and

any vertices of “low degree”. We then use that the remaining graph is nearly complete to
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complete the embedding.

Proposition 2.5.4. Let GS, PS, PT , xS, yS, xT and yT be as defined above.

(i) There is a copy of PS in GS such that the initial vertex of PS is mapped to xS and

the final vertex is mapped to yS.

(ii) There is a copy of PT in GT such that the initial vertex of PT is mapped to xT and

the final vertex is mapped to yT .

Proof. We prove (i), the proof of (ii) is identical. Write PS = (u1u2 . . . uk). An averaging

argument shows that there exists a subpath P of PS of order at most ε4n containing at

least
√
ε3n sink vertices.

Let X := {x ∈ S : d+
S (x) < n/2− ε3n or d−S (x) < n/2− ε3n}. By (P4), |X| ≤ ε3n and

so, using (P3), we see that every vertex x ∈ X is adjacent to at least η2n/2 vertices in

S \X. So we can assume that xS, yS ∈ S \X since otherwise we can embed the second

and penultimate vertices on PS to vertices in S \X and consider these vertices instead.

Let u′1 be the initial vertex of P and u′k be the final vertex. Define m1 := dPS(u1, u
′
1)+1

and m2 := dPS(u′k, uk) + 1. Suppose first that m1,m2 > η2
2n. We greedily find a copy PG

of P in GS which covers all vertices in VS ∪X such that u′1 and u′k are mapped to vertices

s1, s2 ∈ S\X. This is possible since any two vertices in X can be joined by a path of length

at most three of any given orientation, by (P3) and (P4), and we can use each vertex in

VS as the image of a sink or source vertex of P . Partition (V (GS) \ V (PG)) ∪ {s1, s2},

arbitrarily, into two sets L1 and L2 of size m1 and m2 respectively so that s1, xS ∈ L1

and s2, yS ∈ L2. Consider the graphs Gi := GS[Li] for i = 1, 2. Then (P4) implies that

δ(Gi) ≥ mi− ε3n− ε4n ≥ 7mi/8. Applying Proposition 2.4.2(i), we find suitably oriented

Hamilton paths from s1 to xS in G1 and s2 to yS in G2 which, when combined with P ,

form a copy of PS in GS (with endvertices xS and yS).

It remains to consider the case when m1 < η2
2n or m2 < η2

2n. Suppose that the former

holds (the latter is similar). Let P ′ be the subpath of PS between u1 and u′k. So P ⊆ P ′.

Similarly as before, we first greedily find a copy of P ′ in GS which covers all vertices of
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X ∪ VS and then extend this to an embedding of PS. �

Proposition 2.5.4 allows us to find copies of PS and PT in GS and GT with the desired

endvertices. Combining these with RG
1 and RG

2 found in Lemma 2.5.2, we obtain a copy

of C in G. This proves Lemma 2.5.1 when σ(C) ≥ ε4n.

2.5.2 C has few sink vertices, σ(C) < ε4n

Our approach will closely follow the argument when C had many sink vertices. The

main difference will be how we cover the exceptional vertices. We will call a consistently

oriented subpath of C which has length 20 a long run. If C contains few sink vertices, it

must contain many of these long runs. So, whereas previously we used sink and source

vertices, we will now use long runs to cover the vertices in A ∪B.

Proposition 2.5.5. Suppose that 1/n � ε � 1 and n/4 ≤ k ≤ 3n/4. Let C be an

oriented cycle with σ(C) < εn. Then we can write C as (u1u2 . . . un) such that there

exist:

(i) Long runs P1, P2 such that P1 is a forward path and dC(P1, P2) = k,

(ii) Long runs P ′1, P
′
2, P

′
3, P

′
4 such that dC(P ′i , P

′
i+1) = bn/4c for i = 1, 2, 3.

Proof. Let P be a subpath of C of length n/8. Let Q be a consistent collection of

vertex disjoint long runs in P of maximum size. Then |Q| ≥ 2εn, with room to spare.

We can write C as (u1u2 . . . un) so that the long runs in Q are forward paths.

Suppose that (i) does not hold. For each Qi ∈ Q, let Q′i be the path of length 20 such

that dC(Qi, Q
′
i) = k. Since Q′i is not a long run, Q′i must contain at least one sink or source

vertex. The paths Q′i are disjoint so, in total, C must contain at least |Q|/2 ≥ εn > σ(C)

sink vertices, a contradiction. Hence (i) holds.

We call a collection of four disjoint long runs P1, P2, P3, P4 good if P1 ∈ Q and

dC(Pi, Pi+1) = bn/4c for all i = 1, 2, 3. Suppose C does not contain a good collection

of long runs. In particular, this means that each long run in Q does not lie in a good
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collection. For each path Qi ∈ Q, let Qi,1, Qi,2, Qi,3 be subpaths of C of length 20 such

that dC(Qi, Qi,j) = jbn/4c. Since {Qi, Qi,1, Qi,2, Qi,3} does not form a good collection, at

least one of the Qi,j must contain a sink or source vertex. The paths Qi,j where Qi ∈ Q

and j = 1, 2, 3 are disjoint so, in total, C must contain at least |Q|/2 ≥ εn > σ(C) sink

vertices, which is a contradiction. This proves (ii). �

The following proposition finds a collection of edges oriented in an atypical direction

for an ε-extremal graph. We will use these edges to find consistently oriented S- and

T -paths covering all of the vertices in A ∪ B. This proposition will be used again in

Section 2.7.1, where it allows us to correct an imbalance in the sizes of A and B.

Proposition 2.5.6. Let G be a digraph on n vertices with δ0(G) ≥ n/2. Let d ≥ 0 and

suppose A,B, S, T is a partition of V (G) into sets of size a, b, s, t with t ≥ s ≥ d+ 2 and

b = a + d. Then G contains a collection M of d + 1 edges in E(T, S ∪ B) ∪ E(B, S)

satisfying the following. The endvertices of M outside B are distinct and each vertex in

B is the endvertex of at most one TB-edge and at most one BS-edge in M . Moreover, if

e(T, S) > 0, then M contains a TS-edge.

Proof. Let k := t − s. We define a bipartite graph G′ with vertex classes S ′ := S ∪ B

and T ′ := T ∪ B together with all edges xy such that x ∈ S ′, y ∈ T ′ and yx ∈ E(T, S ∪

B) ∪ E(B, S). We claim that G′ has a matching of size d + 2. To prove the claim,

suppose that G′ has a vertex cover X of size |X| < d+ 2. Then |X ∩ S ′| < (d− k)/2 + 1

or |X ∩ T ′| < (d + k)/2 + 1. Suppose that the former holds and consider any vertex

t1 ∈ T \X. Since δ+(G) ≥ n/2 and a + t = (n − d + k)/2, t1 has at least (d − k)/2 + 1

outneighbours in S ′. But these vertices cannot all be covered by X. So we must have

that |X ∩ T ′| < (d + k)/2 + 1. Consider any vertex s1 ∈ S \X. Now δ−(G) ≥ n/2 and

a+ s = (n− d− k)/2, so s1 must have at least (d+ k)/2 + 1 inneighbours in T ′. But not

all of these vertices can be covered by X. Hence, any vertex cover of G′ must have size

at least d+ 2 and so König’s theorem implies that G′ has a matching of size d+ 2.

If e(T, S) > 0, either the matching contains a TS-edge, or we can choose any TS-edge
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e and at least d of the edges in the matching will be disjoint from e. This corresponds to

a set of d+ 1 edges in E(T, S ∪B) ∪ E(B, S) in G with the required properties. �

We define a good path system P to be a collection of disjoint S- and T -paths such that

each path P ∈ P is consistently oriented, has length at most six and covers at least one

vertex in A∪B. Each good path system P gives rise to a modified partition AP , BP , SP , TP

of the vertices of G (we allow AP , BP to be empty) as follows. Let IntS(P) be the set of

all interior vertices on the S-paths in P and IntT (P) be the set of all interior vertices on

the T -paths. We set AP := A\V (P), BP := B \V (P), SP := (S∪ IntS(P))\ IntT (P) and

TP := (T ∪ IntT (P)) \ IntS(P) and say that AP , BP , SP , TP is the P-partition of V (G).

Lemma 2.5.7. Suppose that 1/n� ε3 � ε4 � η2 � 1. Let G be a digraph on n vertices

with δ0(G) ≥ n/2. Suppose A,B, S, T is a partition of V (G) satisfying (P1)–(P8). Let

C be a cycle on n vertices with σ(C) < ε4n. Then there exists t∗ such that one of the

following holds:

• There exist internally disjoint paths PS, PT , R1, R2 such that:

(i) C = (PSR1PTR2);

(ii) |PT | = t∗;

(iii) R1 and R2 are paths of length two and G contains disjoint copies RG
i of Ri

whose interior vertices lie in V (G) \ T . Moreover, RG
1 is an ST -path and RG

2

is a TS-path.

• There exist internally disjoint paths PS, P
′
S, PT , P

′
T , R1, R2, R3, R4 such that:

(i) C = (PSR1PTR2P
′
SR3P

′
TR4);

(ii) |PT |+ |P ′T | = t∗ and |PS|, |P ′S|, |PT |, |P ′T | ≥ n/8;

(iii) R1, R2, R3, R4 are paths of length two and G contains disjoint copies RG
i of Ri

whose interior vertices lie in V (G) \ T . Moreover, RG
1 and RG

3 are ST -paths

and RG
2 and RG

4 are TS-paths.
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Furthermore, G has a good path system P such that the paths in P are disjoint from each

RG
i , P covers (A ∪ B) \ ⋃V (RG

i ) and the P-partition AP , BP , SP , TP of V (G) satisfies

|TP | = t∗.

Proof. Let d := b− a and k := t− s.

We first obtain a good path system P0 covering A ∪ B as follows. Apply Proposi-

tion 2.5.6 to obtain a collection M0 of d + 1 edges as described in the proposition. Let

M ⊆M0 of size d such that M contains a TS-edge if d ≥ 1 and e(T, S) > 0. We use each

edge e ∈ M together with properties (P3), (P5) and (P8) to cover one vertex in B by a

consistently oriented path of length at most six as follows. If e ∈ E(T,B) and e is disjoint

from all other edges in M , find a consistently oriented path of the form TBT using e. If

e ∈ E(B, S) and e is disjoint from all other edges in M , find a consistently oriented path

of the form SBS using e. If e ∈ E(T, S), we note that (P3), (P5) and (P8) allows us to

find a consistently oriented path of length three between any vertex in B and any vertex

in T . So we can find a consistently oriented path of the form SB(T )3S which uses e.

Finally, if e ∈ E(T,B) and shares an endvertex with another edge e′ ∈ M ∩ E(B, S) we

find a consistently oriented path of the form SB(T )3BS using e and e′. This path uses

two edges in M but covers two vertices in B. Since we have many choices for each such

path, we can choose them to be disjoint, so M allows us to find a good path system P1

covering d vertices in B.

Label the vertices in A by a1, a2, . . . , aa and the remaining vertices in B by b1, b2, . . . , ba.

We now use (P6)–(P8) to find a consistently oriented S- or T -path Li covering each pair

ai, bi. If 1 ≤ i ≤ d(4a + k)/8e, cover the pair ai, bi by a path of the form SBTAS. If

d(4a+k)/8e < i ≤ a cover the pair ai, bi by a path of the form TASBT . Let P2 :=
⋃a
i=1 Li.

We are able to choose all of these paths so that they are disjoint and thus obtain a

good path system P0 := P1∪P2 covering A∪B. Let AP0 , BP0 , SP0 , TP0 be the P0-partition

of V (G) and let t′ := |TP0|, s′ := |SP0|.

By Proposition 2.5.5(i), we can enumerate the vertices of C so that there are long

runs P1, P2 such that P1 is a forward path and dC(P1, P2) = t′. We will find consistently
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oriented ST - and TS-paths for RG
1 and RG

2 which depend on the orientation of P2. The

paths R1 and R2 will be consistently oriented subpaths of P1 and P2 respectively, whose

position will be chosen later.

Case 1: b ≥ a+ 2.

Suppose first that P2 is a backward path. If P1 contains a path of the form SB(T )3BS,

let b0 and b′0 be the two vertices in B on this path. Otherwise, let b0 and b′0 be arbitrary

vertices in B which are covered by P1. Use (P8) to find a forward path for RG
1 which is of

the form S{b0}T . We also find a backward path of the form T{b′0}S for RG
2 . We choose

the paths RG
1 and RG

2 to be disjoint from all paths in P0 which do not contain b0 or b′0.

Suppose now that P2 is a forward path. If a ≥ 1, consider the path L1 ∈ P2 covering

a1 ∈ A and b1 ∈ B. Find forward paths of the form S{b1}T for RG
1 and T{a1}S for RG

2 ,

using (P7) and (P8), which are disjoint from all paths in P0 \ {L1}. Finally, we consider

the case when a = 0. Recall that e(T, S) > 0 by Proposition 2.5.3(ii) and so M contains

a TS-edge. Hence there is a path P ′ in P1 of the form SB(T )3S, covering a vertex b0 ∈ B

and an edge t1s1 ∈ E(T, S), say. We use (P3) and (P8) to find forward paths of the form

S{b0}T for RG
1 and {t1}{s1}S for RG

2 which are disjoint from all paths in P0 \ {P ′}.

Obtain the good path system P from P0 by removing all paths meeting RG
1 or RG

2 .

Let AP , BP , SP , TP be the P-partition of V (G) and t∗ := |TP |. The only vertices which

could have moved to obtain TP from TP0 are interior vertices on the paths in P0 \ P , so

|t∗ − t′| ≤ 2 · 5 = 10. Thus we can choose R1 and R2 to be subpaths of length two of P1

and P2 so that |PT | = t∗, where PS and PT are defined by C = (PSR1PTR2).

Case 2: b ≤ a+ 1.

Case 2.1: a ≤ 1.

If a = b, by Proposition 2.5.3(i) we can find disjoint e1, e2 ∈ E(S, T ) and disjoint

e3 ∈ E(S, T ), e4 ∈ E(T, S). Note that P0 = P2, since a = b, so we may assume that all

paths in P0 are disjoint from e1, e2, e3, e4. If P2 is a forward path, find a forward path of

the form SST for RG
1 using e3 and a forward path of the form TSS for RG

2 using e4. If P2

is a backward path, find a forward path of the form SST for RG
1 using e1 and a backward
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path of the form TSS for RG
2 using e2. In both cases, we choose RG

1 and RG
2 to be disjoint

from all paths in P0.

If b = a + 1, note that there exist e1 ∈ E(S, T ) and e2 ∈ E(T, S). (To see this, use

that δ0(G) ≥ n/2 and the fact that (P7) and (P8) imply that |{x ∈ S : N+
A (x), N−B (x) =

∅}| ≥ n/4.) We may assume that all paths in P2 are disjoint from e1, e2. Let b0 ∈ B be

the vertex covered by the single path in P1. Find a forward path of the form S{b0}T for

RG
1 , using (P8). Find a consistently oriented path of the form TSS for RG

2 which uses e1

if P2 is a backward path and e2 if P2 is a forward path. Choose the paths RG
1 and RG

2 to

be disjoint from the paths in P0 \ P1 = P2.

In both cases, we obtain the good path system P from P0 by removing at most one

path which meets RG
1 or RG

2 . Let AP , BP , SP , TP be the P-partition of V (G) and let

t∗ := |TP |. The only vertices which could have moved to obtain TP from TP0 are interior

vertices on the path in P0 \ P if P0 6= P , so |t∗ − t′| ≤ 5. So we can choose subpaths Ri

of Pi so that |PT | = t∗, where PS and PT are defined by C = (PSR1PTR2).

Case 2.2: 2 ≤ a ≤ k.

If P2 is a forward path, consider a1 ∈ A and b1 ∈ B which were covered by the path

L1 ∈ P0. Use (P7) and (P8) to find forward paths, disjoint from all paths in P0 \ {L1},

of the form S{b1}T and T{a1}S for RG
1 and RG

2 respectively.

Suppose now that P2 is a backward path. We claim that G contains 2 − d disjoint

ST -edges. Indeed, suppose not. Then d+
T (x) ≤ 1− d for all but at most one vertex in S.

Note that b+ s = (n− k + d)/2, so d+
A∪T (x) ≥ (k − d)/2 + 1 for all x ∈ S. So

e(S,A) ≥ (s− 1)((k − d)/2 + 1− (1− d)) = (s− 1)(k + d)/2 ≥ nk/8 ≥ na/8.

Hence, there is a vertex x ∈ A with d−S (x) ≥ n/8, contradicting (P7). Let E = {ei : 1 ≤

i ≤ 2−d} be a set of 2−d disjoint ST -edges. We may assume that P2 is disjoint from E.

If a = b, use (P3) to find a forward path of the form SST using e1 for RG
1 and a

backward path of the form TSS using e2 for R2. If b = a + 1, let b0 ∈ B be the vertex
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covered by the single path in P1. Use (P3) and (P8) to find a forward path of the form

S{b0}T for RG
1 and a backward path of the form TSS using e1 for RG

2 . We choose the

paths RG
1 and RG

2 to be disjoint from all paths in P2.

In both cases, we obtain the good path system P from P0 by removing at most one path

which meets RG
1 or RG

2 . Let AP , BP , SP , TP be the P-partition of V (G) and t∗ := |TP |.

The only vertices which could have moved to obtain TP from TP0 are interior vertices on

the path in P0 \ P if P0 6= P , so |t∗ − t′| ≤ 5. Thus we can choose R1 and R2 to be

subpaths of length two of P1 and P2 so that |PT | = t∗, where PS and PT are defined by

C = (PSR1PTR2).

Case 2.3: a ≥ 2, k.

We note that

t′ − s′ = |(T ∪ IntT (P0)) \ IntS(P0)| − |(S ∪ IntS(P0)) \ IntT (P0)|

= |(T ∪ IntT (P2)) \ IntS(P2)| − |(S ∪ IntS(P2)) \ IntT (P2)|+ c

= (t+ 3a− 4d(4a+ k)/8e)− (s+ 4d(4a+ k)/8e − a) + c

= 4a+ k − 8d(4a+ k)/8e+ c

where −7 ≤ c ≤ 1 is a constant representing the contribution of interior vertices on the

path in P1 if b = a + 1 and c = 0 if b = a. In particular, this implies that |t′ − s′| ≤ 15

and

(n− 15)/2 ≤ s′, t′ ≤ (n+ 15)/2.

Apply Proposition 2.5.5(ii) to find long runs P ′1, P
′
2, P

′
3, P

′
4 such that dC(P ′i , P

′
i+1) =

bn/4c for i = 1, 2, 3. Let xi be the initial vertex of each P ′i . If {P ′i , P ′i+2} is consistent for

some i ∈ {1, 2}, consider a1 ∈ A, b1 ∈ B which which were covered by the path L1 ∈ P0. If

P ′i , P
′
i+2 are both forward paths, let RG

1 and RG
2 be forward paths of the form S{b1}T and

T{a1}S respectively. If P ′i , P
′
i+2 are both backward paths, let RG

1 and RG
2 be backward

paths of the form S{a1}T and T{b1}S respectively. Choose the paths RG
1 and RG

2 to be
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disjoint from the paths in P := P0 \{L1}. Let AP , BP , SP , TP be the P-partition of V (G)

and let t∗ = |TP |. The only vertices which could have been added or removed to obtain

TP from TP0 are interior vertices on L1 so (n − 15)/2 − 3 ≤ t∗ ≤ (n + 15)/2 + 3. Then

we can choose R1 and R2 to be subpaths of length two of P ′i and P ′i+2 so that |PT | = t∗,

where PS, PT are defined so that C = (PSR1PTR2).

So let us assume that {P ′i , P ′i+2} is not consistent for i = 1, 2. We may assume that

the paths P ′1 and P ′4 are both forward paths, by relabelling if necessary, and we illustrate

the situation in Figure 2.3.

Figure 2.3: A good collection of long runs.

Consider the vertices ai ∈ A and bi ∈ B covered by the paths Li ∈ P0 for i = 1, 2. Let

P := P0\{L1, L2} and let AP , BP , SP , TP be the P-partition of V (G). Let t∗ := |TP |. The

only vertices which can have been added or removed to obtain TP from TP0 are interior

vertices on the paths L1 and L2, so (n− 15)/2− 6 ≤ t∗ ≤ (n+ 15)/2 + 6. Find a forward

path of the form S{b1}T for RG
1 . Then find backward paths of the form T{b2}S and

S{a1}T for RG
2 and RG

3 respectively. Finally, find a forward path of the form T{a2}S

for RG
4 . We can choose the paths RG

i to be disjoint from all paths in P . Since P ′1 and

P ′2 are of length 20 we are able to find subpaths R1, R2, R3, R4 of P ′1, P
′
2, P

′
3, P

′
4 so that

|PT |+ |P ′T | = t∗, where PS, P
′
S, PT , P

′
T are defined so that C = (PSR1PTR2P

′
SR3P

′
TR4).

�

In order to prove Lemma 2.5.1 in the case when σ(C) < ε4n, we first apply Lemma 2.5.7

to G. We now proceed similarly as in the case when C has many sink vertices (see
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Proposition 2.5.4) and so we only provide a sketch of the argument. We first observe that

any subpath of the cycle of length 100ε4n must contain at least

b100ε4n/21c − 2ε4n > 2ε3n ≥ a+ b ≥ |P| (2.2)

disjoint long runs. Let s1 be the image of the initial vertex of PS. Let P ∗S be the subpath

of PS formed by the first 100ε4n edges of PS. We can cover all S-paths in P and all

vertices x ∈ S which satisfy d+
S (x) < n/2− ε3n or d−S (x) < n/2− ε3n greedily by a path

in G starting from s1 which is isomorphic to P ∗S . Note that (2.2) ensures that P ∗S contains

|P| disjoint long runs. So we can map the S-paths in P to subpaths of these long runs.

Let P ′′S be the path formed by removing from PS all edges in P ∗S .

If Lemma 2.5.7(i) holds and thus PS is the only path to be embedded in G[S], we

apply Proposition 2.4.2(i) to find a copy of P ′′S in G[S], with the desired endvertices. If

Lemma 2.5.7(ii) holds, we must find copies of both PS and P ′S in G[S]. So we split the

graph into two subgraphs of the appropriate size before applying Proposition 2.4.2(i) to

each. We do the same to find copies of PT (or PT and P ′T ) in G[T ]. Thus, we obtain a

copy of C in G. This completes the proof of Lemma 2.5.1.

2.6 G is AB-extremal

The aim of this section is to prove the following lemma which shows that Theorem 2.1.2

is satisfied when G is AB-extremal. Recall that an AB-extremal graph closely resembles

a complete bipartite graph. We will proceed as follows. First we will find a short path

which covers all of the exceptional vertices (the vertices in S ∪ T ). It is important that

this path leaves a balanced number of vertices uncovered in A and B. We will then apply

Proposition 2.4.2 to the remaining, almost complete, balanced bipartite graph to embed

the remainder of the cycle.

Lemma 2.6.1. Suppose that 1/n � ε3 � 1. Let G be a digraph on n vertices with
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δ0(G) ≥ n/2 and assume that G is AB-extremal. If C is any orientation of a cycle on n

vertices which is not antidirected, then G contains a copy of C.

If b > a, the next lemma implies that E(B∪T,B) contains a matching of size b−a+2.

We can use b− a of these edges to pass between vertices in B whilst avoiding A allowing

us to correct the imbalance in the sizes of A and B.

Proposition 2.6.2. Suppose 1/n � ε3 � 1. Let G be a digraph on n vertices with

δ0(G) ≥ n/2. Suppose A,B, S, T is a partition of V (G) satisfying (Q1)–(Q9) and b = a+d

for some d > 0. Then there is a matching of size d+ 2 in E(B ∪ T,B).

Proof. Consider a maximal matching M in E(B ∪T,B) and suppose that |M | ≤ d+ 1.

Since a + s ≤ (n − d)/2, each vertex in B has at least d/2 inneighbours in B ∪ T . In

particular, since M was maximal, each vertex in B \ V (M) has at least d/2 inneighbours

in V (M). Then there is a v ∈ V (M) ⊆ B ∪ T with

d+
B(v) ≥ (b− 2|M |)

2|M |
d

2
≥ n

20
,

contradicting (Q9). Therefore |M | ≥ d+ 2. �

We say that P is an exceptional cover of G if P ⊆ G is a copy of a subpath of C and

(EC1) P covers S ∪ T ;

(EC2) both endvertices of P are in A;

(EC3) |A \ V (P )|+ 1 = |B \ V (P )|.

We will use the following notation when describing the form of a path. If X, Y ∈

{A,B} then we write X ∗Y for any path which alternates between A and B whose initial

vertex lies in X and final vertex lies in Y . For example, A ∗ A(ST )2 indicates any path

of the form ABAB . . . ASTST .

Suppose P is of the form Z1Z2 . . . Zm, where Zi ∈ {A,B, S, T}. Let Zi1 , Zi2 , . . . , Zij

be the appearances of A and B, where ij < ij+1. If Zij = A = Zij+1
, we say that Zij+1

is
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a repeated A. We define a repeated B similarly. Let rep(A) and rep(B) be the numbers

of repeated As and repeated Bs, respectively. Suppose that P has both endvertices in A

and P uses ` + rep(B) vertices from B. Then P will use ` + rep(A) + 1 vertices from A

(we add one because both endvertices of P lie in A). So we have that

|B \ V (P )| − |A \ V (P )| = b− a− rep(B) + rep(A) + 1. (2.3)

Given a set of edges M ⊆ E(G) we define the graph GM ⊆ G whose vertex set is

V (G) and whose edge set is E(A,B ∪S)∪E(B,A∪T )∪E(T,A)∪E(S,B)∪M ⊆ E(G).

Informally, in addition to the edges of M , GM has edges between two vertex classes when

the bipartite graph they induce in G is dense.

We will again split our argument into two cases depending on the number of sink

vertices in C.

2.6.1 Finding an exceptional cover when C has few sink vertices,
σ(C) < ε4n

It is relatively easy to find an exceptional cover when C has few sink vertices by observing

that C must contain many disjoint consistently oriented paths of length three. We can

use these consistently oriented paths to cover the vertices in S ∪ T by forward paths of

the form ASB or BTA, for example.

Proposition 2.6.3. Suppose 1/n � ε3 � ε4 � 1. Let G be a digraph on n vertices

with δ0(G) ≥ n/2. Suppose A,B, S, T is a partition of V (G) satisfying (Q1)–(Q9). If

σ(C) < ε4n, then there is an exceptional cover of G of length at most 21ε4n.

Proof. Let d := b−a. Let P be any subpath of C of length 20ε4n. Let Q be a maximum

consistent collection of disjoint paths of length three in P , such that dC(Q,Q′) ≥ 7 for all

distinct Q,Q′ ∈ Q. Then

|Q| ≥ (b20ε4n/7c − 2ε4n)/2 > 4ε3n > d+ s+ t.

40



If necessary, reverse the order of all vertices in C so that the paths in Q are forward

paths. Apply Proposition 2.6.2 to find a matching M ⊆ E(B ∪ T,B) of size d and write

M = {e1, . . . , em, fm+1, . . . , fd}, where ei ∈ E(B) and fi ∈ E(T,B). Map the initial

vertex of P to any vertex in A. We will greedily find a copy of P in GM which covers M

and S ∪ T as follows.

Note that, by (Q8), we can cover each edge fi ∈ M by a forward path of the form

BTB. By (Q7), each of the vertices in S can be covered by a forward path of the form

ASB. Similarly, (Q8) allows us to find a forward path of the form BTA covering each

vertex in T . Moreover, note that (Q2)–(Q5) allow us to find a path of length three of

any orientation between any pair of vertices x ∈ A and y ∈ B using only edges from

E(A,B)∪E(B,A). So we can find a copy of P which covers every edge in M (first the ei

and then the fi) and every vertex in (S ∪ T ) \ V (M) by a copy of a path in Q and which

has the form

(A ∗BB)m(A ∗BTB)d−m(A ∗ ASB)s(A ∗BT )t−d+mA ∗X,

where X ∈ {A,B}. We may assume that X = A by extending the path P by one vertex

if necessary. Let PG denote this copy of P in G.

Now (EC1) and (EC2) hold. It remains to check (EC3). Observe that PG contains

no repeated As and exactly d repeated Bs, these occur in the subpath of PG of the form

(A ∗BB)m(A ∗BTB)d−m. By (2.3), we see that

|B \ V (PG)| − |A \ V (PG)| = 1,

so (EC3) is satisfied. Hence PG forms an exceptional cover. �
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2.6.2 Finding an exceptional cover when C has many sink ver-
tices, σ(C) ≥ ε4n

When C is far from being consistently oriented, we use sink and source vertices to cover

the vertices in S ∪ T . A natural approach would be to try to cover the vertices in S ∪ T

by paths of the form ASA and BTB whose central vertex is a sink or by paths of the

form ATA and BSB whose central vertex is a source. In essence, this is what we will

do, but there are some technical issues we will need to address. The most obvious is

that each time we cover a vertex in S or T by a path of one of the above forms, we will

introduce a repeated A or a repeated B, so we will need to cover the exceptional vertices

in a “balanced” way.

Let P be a subpath of C and let m be the number of sink vertices in P . Suppose that

P1, P2, P3 is a partition of P into internally disjoint paths such that P = (P1P2P3). We

say that P1, P2, P3 is a useful tripartition of P if there exist Qi ⊆ V (Pi) such that:

• P1 and P2 have even length;

• |Qi| ≥ bm/12c for i = 1, 2, 3;

• all vertices in Q1 ∪Q3 are sink vertices and are an even distance apart;

• all vertices in Q2 are source vertices and are an even distance apart.

Note that a useful tripartition always exists. We say that Q1,Q2,Q3 are sink/source/sink

sets for the tripartition P1, P2, P3. We say that a subpath L ⊆ P2 is a link if L has even

length and, if, writing x for the initial vertex and y for the final vertex of L, the paths

(P2x) and (yP2) each contain at least |Q2|/3 elements of Q2.

Proposition 2.6.4. Let 1/n � ε � η � τ ≤ 1. Let G be a digraph on n vertices and

let A,B, S, T be a partition of V (G). Let SA, SB be disjoint subsets of S and TA, TB be

disjoint subsets of T . Let a := |A|, b := |B|, sA := |SA|, sB := |SB|, tA := |TA|, tB := |TB|

and let a1 ∈ A. Suppose that:

(i) a, b ≥ τn;
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(ii) sA, sB, tA, tB ≤ εn;

(iii) δ0(G[A,B]) ≥ ηn;

(iv) d±B(x) ≥ b− εn for all but at most εn vertices x ∈ A;

(v) d±A(x) ≥ a− εn for all but at most εn vertices x ∈ B;

(vi) d−A(x) ≥ ηn for all x ∈ SA, d+
B(x) ≥ ηn for all x ∈ SB, d+

A(x) ≥ ηn for all x ∈ TA
and d−B(x) ≥ ηn for all x ∈ TB.

Suppose that P is a path of length at most η2n which contains at least 200εn sink vertices.

Let P1, P2, P3 be a useful tripartition of P with sink/source/sink sets Q1,Q2,Q3. Let

L ⊆ P2 be a link. Suppose that G \ (SA ∪ SB ∪ TA ∪ TB) contains a copy LG of L which

is an AB-path if dC(P,L) is even and a BA-path otherwise. Let rA be the number of

repeated As in LG and rB be the number of repeated Bs in LG. Let G′ be the graph with

vertex set V (G) and edges

E(A,B ∪ SA) ∪ E(B,A ∪ TB) ∪ E(TA, A) ∪ E(SB, B) ∪ E(LG).

Then G′ contains a copy PG of P such that:

• LG ⊆ PG;

• PG covers SA, SB, TA, TB;

• a1 is the initial vertex of PG;

• The final vertex of PG lies in B if P has even length and A if P has odd length;

• PG has sA + tA + rA repeated As and sB + tB + rB repeated Bs.

Proof. We may assume, without loss of generality, that the initial vertex of P lies in Q1.

If not, let x be the first vertex on P lying in Q1 and greedily embed the initial segment

(Px) of P starting at a1 using edges in E(A,B)∪E(B,A). Let a′1 be the image of x. We
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can then use symmetry to relabel the sets A,B, SA, SB, TA, TB, if necessary, to assume

that a′1 ∈ A.

We will use (vi) to find a copy of P which covers the vertices in SA ∪ TB by sink

vertices in Q1 ∪ Q3 and the vertices in SB ∪ TA by source vertices in Q2. We will use

that |Qi| ≥ 15εn for all i and also that (iii)–(v) together imply that G′ contains a path

of length three of any orientation between any pair of vertices in x ∈ A and y ∈ B.

Consider any q1 ∈ Q1 and q2 ∈ Q2. The order in which we cover the vertices will depend

on whether dC(q1, q2) is even or odd (note that the parity of dC(q1, q2) does not depend

on the choice of q1 and q2).

Suppose first that dC(q1, q2) is even. We find a copy of P in G′ as follows. Map the

initial vertex of P to a1. Then greedily cover all vertices in TB so that they are the

images of sink vertices in Q1 using a path PG
1 which is isomorphic to P1 and has the form

(A∗BTBB)tBA∗A. Let xL be the initial vertex of L and yL be the final vertex. Let xGL and

yGL be the images of xL and yL in LG. Cover all vertices in SB so that they are the images

of source vertices in Q2 using a path isomorphic to (P2xL) which starts from the final

vertex of PG
1 and ends at xGL . This path has the form (A ∗BSBB)sBA ∗X, where X := A

if dC(P,L) is even and X := B if dC(P,L) is odd. Now use the path LG. Next cover all

vertices in TA so that they are the images of source vertices in Q2 using a path isomorphic

to (yLP2) whose initial vertex is yGL . This path has the form Y ∗ A(B ∗ ATAA)tAB ∗ B,

where Y := B if dC(P,L) is even and Y := A if dC(P,L) is odd. Let PG
2 denote the copy

of P2 obtained in this way. Finally, starting from the final vertex of PG
2 , find a copy of P3

which covers all vertices in SA by sink vertices in Q3 and has the form (B ∗ASAA)sAB ∗B

if P (and thus also P3) has even length and (B ∗ ASAA)sAB ∗ A if P (and thus also P3)

has odd length. If dC(q1, q2) is odd, we find a copy of P which covers TB, TA, V (LG), SB,

SA (in this order) in the same way. Observe that PG has sA + tA + rA repeated As and

sB + tB + rB repeated Bs, as required. �

We are now in a position to find an exceptional cover. The proof splits into a number

of cases and we will require the assumption that C is not antidirected. We will need a
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matching found using Proposition 2.6.2 and a careful assignment of the remaining vertices

in S ∪ T to sets SA, SB, TA and TB to ensure that the path found by Proposition 2.6.4

leaves a balanced number of vertices in A and B uncovered.

Lemma 2.6.5. Suppose 1/n � ε3 � ε4 � 1. Let G be a digraph on n vertices with

δ0(G) ≥ n/2. Suppose A,B, S, T is a partition of V (G) satisfying (Q1)–(Q9). If C is

an oriented cycle on n vertices, C is not antidirected and σ(C) ≥ ε4n, then there is an

exceptional cover P of G of length at most 2ε4n.

Proof. Let d := b − a, k := t − s and r := s + t. Since σ(C) ≥ ε4n, we can use an

averaging argument to guarantee a subpath Q′ of C of length at most ε4n such that Q′

contains at least 2
√
ε3n sink vertices. Let Q be an initial subpath of Q′ which has odd

length and contains
√
ε3n sink vertices.

Case 1: a < b or s < t.

We will find disjoint sets of vertices SA, SB, TA, TB, of sizes sA, sB, tA, tB respectively,

and a matching M ′ = E ∪E ′ (where E and E ′ are disjoint) such that the following hold:

(E1) SA ∪ SB = S and TA ∪ TB = T \ V (E ′);

(E2) E ⊆ E(B), |E| ≤ d;

(E3) E ′ ⊆ E(B ∪ T,B) ∪ E(A,A ∪ T ) and 1 ≤ |E ′| ≤ 2;

(E4) If p := |E ′ ∩ E(B)| − |E ′ ∩ E(A)|, then sA + tA + d = sB + tB + p+ |E|.

We find sets satisfying (E1)–(E4) as follows. Suppose first that n is odd. Note that

we can find a matching M ⊆ E(B ∪ T,B) of size d + 1. Indeed, if a < b then M

exists by Proposition 2.6.2 and if a = b, and so s < t, we use that a + s < n/2 and

δ0(G) ≥ n/2 to find M of size d+1 = 1. Fix one edge e ∈M and let E ′ := {e}. There are

r′ := r−|V (E ′)∩T | vertices in S∪T which are not covered by E ′. Set d′ := min{r′, d−p}

and let E ⊆ (M \ E ′) ∩ E(B) have size d− p− d′.
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Suppose that n is even. If a < b, by Proposition 2.6.2, we find a matching M of size

d+ 2 in E(B ∪ T,B). Fix two edges e1, e2 ∈ M and let E ′ := {e1, e2}. Choose r′, d′ and

E as above.

If n is even and a = b, then a + s = b + s = (n− k)/2 ≤ n/2− 1. So d+
A∪T (x) ≥ k/2

for each x ∈ A and d−B∪T (x) ≥ k/2 for each x ∈ B. Either we can find a matching M

of size two in E(B ∪ T,B) ∪ E(A,A ∪ T ) or t = s + 2 and there is a vertex v ∈ T such

that A ⊆ N−(v) and B ⊆ N+(v). In the latter case, move v to S to get a new partition

satisfying (Q1)–(Q9) and the conditions of Case 2. So we will assume that the former

holds. Let E ′ := M , E := ∅, r′ := r − |V (E ′) ∩ T | and d′ := −p.

In each of the above cases, note that d′ ≡ r′ mod 2 and |d′| ≤ r′. So we can choose

disjoint subsets SA, SB, TA, TB satisfying (E1) such that sA+tA = (r′−d′)/2 and sB+tB =

(r′ + d′)/2. Then (E4) is also satisfied.

We construct an exceptional cover as follows. Let L1 denote the oriented path of

length two whose second vertex is a sink and let L2 denote the oriented path of length

two whose second vertex is a source. For each e ∈ E ′, we find a copy L(e) of L1 or L2

covering e. If e ∈ E(A) let L(e) be a copy of L1 of the form AAB, if e ∈ E(B) let L(e)

be a copy of L1 of the form ABB, if e ∈ E(A, T ) let L(e) be a copy of L1 of the form

ATB and if e ∈ E(T,B) let L(e) be a copy of L2 of the form ATB. Note that for each

e ∈ E ′, the orientation of L(e) is the same regardless of whether it is traversed from its

initial vertex to final vertex or vice versa. This means that we can embed it either as an

AB-path or a BA-path.

Let a1 be any vertex in A and let e1 ∈ E ′. Let rA and rB be the number of repeated

As and Bs, respectively, in L(e1). So rA = 1 if and only if e1 ∈ E(A), otherwise rA = 0.

Also, rB = 1 if and only if e1 ∈ E(B), otherwise rB = 0. Consider a useful tripartition

P1, P2, P3 of Q. Let L ⊆ P2 be a link which is isomorphic to L(e1). Let x denote the

final vertex of Q. Using Proposition 2.6.4 (with 2ε3, ε4, 1/4 playing the roles of ε, η, τ),

we find a copy QG of Q covering SA, SB, TA, TB whose initial vertex is a1. Moreover,

L(e1) ⊆ QG ⊆ G{e1} ⊆ GM , the final vertex xG of QG lies in A, QG has sA + tA + rA
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repeated As and sB+ tB+rB repeated Bs. If |E ′| = 2, let e2 ∈ E ′\{e1}. Let Q′′ := (xQ′).

Let y be the second source vertex in Q′′ if e2 ∈ E(T,B) and the second sink vertex in Q′′

otherwise. Let y− be the vertex preceding y on C, let y+ be the vertex following y on C

and let q := dC(x, y−). Find a path in G whose initial vertex is xG which is isomorphic to

(Q′′y−) and is of the form A∗A if q is even and A∗B if q is odd, such that the final vertex

of this path is an endvertex of L(e2). Then use the path L(e2) itself. Let Z := B if q is

even and Z := A if q is odd. Finally, extend the path to cover all edges in E using a path

of the form Z ∗B(A ∗ABB)|E|A which is isomorphic to an initial segment of (y+Q′′). Let

P denote the resulting extended subpath of C, so Q ⊆ P ⊆ Q′. Let PG be the copy of P

in GM .

Note that (EC1) and (EC2) hold. Each repeated A in PG is either a repeated A in

QG or it occurs when PG uses L(e2) in the case when e2 ∈ E(A). Similarly, each repeated

B in PG is either a repeated B in QG or it occurs when PG uses L(e2) in the case when

e2 ∈ E(B) or when PG uses an edge in E. Substituting into (2.3) and recalling (E4) gives

|B \ V (PG)| − |A \ V (PG)| =b− a− (sB + tB + |E|+ |E ′ ∩ E(B)|)

+ (sA + tA + |E ′ ∩ E(A)|) + 1

=d− (sB + tB + |E|)− p+ (sA + tA) + 1 = 1.

So (EC3) is satisfied and PG is an exceptional cover.

Case 2: a = b and s = t.

If s = t = 0 then any path consisting of one vertex in A is an exceptional cover. So

we will assume that s, t ≥ 1. We say that C is close to antidirected if it contains an

antidirected subpath of length 500ε3n.

Case 2.1: C is close to antidirected.

If there is an edge e ∈ E(T,B)∪E(B, S)∪E(S,A)∪E(A, T ) then we are able to find an

exceptional cover in the graph G{e}. We illustrate how to do this when e = t1b1 ∈ E(T,B),

the other cases are similar. Since C is close to but not antidirected, it follows that C
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contains a path P of length 500ε3n which is antidirected except for the initial two edges

which are oriented consistently. Let s1 ∈ S. If the initial edge of P is a forward edge, let

P ′ be the subpath of P consisting of the first three edges of P and find a copy (P ′)G of

P ′ in G of the form A{s1}BA. If the initial edge of P is a backward edge, let P ′ consist

of the first two edges of P and let (P ′)G be a backward path of the form B{s1}A. Let

P ′′ be the subpath of P formed by removing from P all edges in P ′. Let xG ∈ A be the

final vertex of (P ′)G. Set SA := S \ {s1}, TB := T \ {t1} and SB, TA := ∅. Let P1, P2, P3

be a useful tripartition of P ′′. As in Case 1, let L2 denote the oriented path of length two

whose second vertex is a source. Let L ⊆ P2 be a link which is isomorphic to L2 and map

L to a path LG of the form BTA which uses the edge t1b1. We use Proposition 2.6.4 to

find a copy (P ′′)G of P ′′ which uses LG, covers SA∪TB and whose initial vertex is mapped

to xG. Moreover, the final vertex of P ′′ is mapped to A ∪ B and (P ′′)G has sA = s − 1

repeated As and tB = t − 1 repeated Bs. Let PG be the path (P ′)G ∪ (P ′′)G. Then PG

satisfies (EC1) and we may assume that (EC2) holds, by adding a vertex in A as a new

initial vertex and/or final vertex if necessary. The repeated As and Bs in PG are precisely

the repeated As and Bs in (P ′′)G. Therefore, (2.3) implies that (EC3) holds and PG forms

an exceptional cover.

Let us suppose then that E(T,B) ∪ E(B, S) ∪ E(S,A) ∪ E(A, T ) is empty. If S =

{s1}, T = {t1} then, since δ0(G) ≥ n/2, G must contain the edge s1t1 and edges a1s1, b1t1

for some a1 ∈ A, b1 ∈ B. Since C is not antidirected but has many sink vertices we may

assume that C contains a subpath P = (uvxyz) where uv, vx, yx ∈ E(C). We use the

edges a1s1, s1t1, b1t1, as well as an additional AB- or BA-edge, to find a copy PG of P in

G of the form ASTBA. The path PG forms an exceptional cover.

If s = t = 2 and e(S) = e(T ) = 2, we find an exceptional cover as follows. Write

S = {s1, s2}, T = {t1, t2}. We have that sisj, titj ∈ E(G) for all i 6= j. Note that C

is not antidirected, so C must contain a path of length six which is antidirected except

for its initial two edges which are consistently oriented. Suppose first that the initial two

edges of P are forward edges. Let a1 ∈ A be an inneighbour of s1. Note that s2 has an
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inneighbour in T , without loss of generality t1. Let b1 ∈ B be an inneighbour of t2 and

a2 ∈ A be an outneighbour of b1. We find a copy PG of P which has the form ASSTTBA

and uses the edges a1s1, s1s2, t1s2, t1t2, b1t2, b1a2, in this order. If the initial two edges of

P are backward, we instead find a path of the form ATTSSBA. Note that in both cases,

PG satisfies (EC1) and (EC2). PG has no repeated As and Bs and (2.3) implies that

(EC3) holds. So PG forms an exceptional cover.

So let us assume that s, t ≥ 2 and, additionally, e(S) + e(T ) < 4 if s = 2. There

must exist two disjoint edges e1 = t1s1, e2 = s2t2 where s1, s2 ∈ S and t1, t2 ∈ T (since

δ0(G) ≥ n/2 and E(T,B)∪E(B, S)∪E(S,A)∪E(A, T ) = ∅). We use these edges to find

an exceptional cover as follows. We let SA := S \ {s1, s2}, TB := T \ {t1, t2}, sA := |SA|

and tB := |TB|. We use e1 and e2 to find an antidirected path PG which starts with a

backward edge and is of the form

A{t1}{s1}A(B ∗ ASAA)sAB ∗B{s2}{t2}B(A ∗BTBB)sBA.

The length of PG is less than 500ε3n. So, as C is close to antidirected, C must contain a

subpath isomorphic to PG. We claim that PG is an exceptional cover. Clearly, PG satisfies

(EC1) and (EC2). For (EC3), note that PG contains an equal number of repeated As and

repeated Bs. Then (2.3) implies that |B ∩ V (PG)| = |A ∩ V (PG)|+ 1.

Case 2.2: C is far from antidirected.

Recall that Q is a subpath of C of length at most ε4n containing at least
√
ε3n sink

vertices. Let Q be a maximum collection of sink vertices in Q such that all vertices in Q

are an even distance apart, then |Q| ≥ √ε3n/2. Partition the path Q into 11 internally

disjoint subpaths so that Q = (P1P
′
1P2P

′
2 . . . P5P

′
5P6) and each subpath contains at least

300ε3n elements of Q. Note that each P ′i has length greater than 500ε3n and so is not

antidirected, that is, each P ′i must contain a consistently oriented subpath P ′′i of length

two. At least three of the P ′′i must form a consistent set. Thus there must exist i < j

such that dC(P ′′i , P
′′
j ) is even and {P ′′i , P ′′j } is consistent. We may assume, without loss of
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generality, that P ′′i , P
′′
j are forward paths and that the second vertex of Pi is in Q. Let P

be the subpath of Q whose initial vertex is the initial vertex of Pi and whose final vertex

is the final vertex of P ′′j .

We will find an exceptional cover isomorphic to P as follows. Choose s1 ∈ S and

t1 ∈ T arbitrarily. Set SA := S \ {s1} and TB := T \ {t1}. Map the initial vertex of P

to A. We find a copy of P which maps each vertex in SA to a sink vertex in Pi and each

vertex in TB to a sink vertex in Pj. If dC(Pi, P
′′
i ) is even, P ′′i is mapped to a path L′ of

the form A{s1}B and P ′′j is mapped to a path L′′ of the form B{t1}A. If dC(Pi, P
′′
i ) is

odd, P ′′i is mapped to a path L′ of the form B{t1}A and P ′′j is mapped to a path L′′ of

the form A{s1}B. Thus, if dC(Pi, P
′′
i ) is even, we obtain a copy PG which starts with a

path of the form A(B ∗ ASAA)sAB ∗ A, then uses L′ and continues with a path of the

form B ∗ B(A ∗ BTBB)tBA ∗ B. Finally, the path uses L′′. The case when dC(Pi, P
′′
i ) is

odd is similar. (EC1) holds and we may assume that (EC2) holds by adding one vertex to

P if necessary. Note that PG contains an equal number of repeated As and Bs, so (2.3)

implies that (EC3) holds and PG is an exceptional cover. �

2.6.3 Finding a copy of C

Proposition 2.6.3 and Lemma 2.6.5 allow us to find a short exceptional cover for any

cycle which is not antidirected. We complete the proof of Lemma 2.6.1 by extending this

path to cover the small number of vertices of low degree remaining in A and B and then

applying Proposition 2.4.2.

Proof of Lemma 2.6.1. Let P be an exceptional cover of G of length at most 21ε4n,

guaranteed by Proposition 2.6.3 or Lemma 2.6.5. Let

X := {v ∈ A : d+
B(v) < n/2− ε3n or d−B(v) < n/2− ε3n} and

Y := {v ∈ B : d+
A(v) < n/2− ε3n or d−A(v) < n/2− ε3n}.
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(Q4) and (Q5) together imply that |X ∪Y | ≤ 2ε3n. Together with (Q3), this allows us to

cover the vertices in X ∪Y by any orientation of a path of length at most ε4n. So we can

extend P to cover the remaining vertices in X ∪ Y (by a path which alternates between

A and B). Let P ′ denote this extended path. Thus |P ′| ≤ 22ε4n. Let x and y be the

endvertices of P ′. We may assume that x, y ∈ A \X. Let A′ := (A \ V (P ′)) ∪ {x, y} and

B′ := B \ V (P ′) and consider G′ := G[A′, B′]. Note that |A′| = |B′|+ 1 by (EC3) and

δ0(G′) ≥ n/2− ε3n− 22ε4n ≥ (7|B′|+ 2)/8.

Thus, by Proposition 2.4.2(ii), G′ has a Hamilton path of any orientation between x and

y in G. We combine this path with P ′, to obtain a copy of C. �

2.7 G is ABST -extremal

In this section we prove that Theorem 2.1.2 holds for all ABST -extremal graphs. When

G is ABST -extremal, the sets A, B, S and T are all of significant size; G[S] and G[T ] look

like cliques and G[A,B] resembles a complete bipartite graph. The proof will combine

ideas from Sections 2.5 and 2.6.

Lemma 2.7.1. Suppose that 1/n � ε � ε1 � η1 � τ � 1. Let G be a digraph on n

vertices with δ0(G) ≥ n/2 and assume that G is ABST -extremal. If C is any orientation

of a cycle on n vertices which is not antidirected, then G contains a copy of C.

We will again split the proof into two cases, depending on how many changes of

direction C contains. In both cases, the first step is to find an exceptional cover (defined

in Section 2.6) which uses only a small number of vertices from A ∪B.
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2.7.1 Finding an exceptional cover when C has few sink vertices,
σ(C) < ε2n

The following lemma allows us to find an exceptional cover when C is close to being

consistently oriented. The two main components of the exceptional cover are a path

PS ⊆ G[S] covering most of the vertices in S and another path PT ⊆ G[T ] covering

most of the vertices in T . We are able to find PS and PT because G[S] and G[T ] are

almost complete. A shorter path follows which uses long runs (recall that a long run is

a consistently oriented path of length 20) and a small number of vertices from A ∪ B to

cover any remaining vertices in S∪T . We use edges found by Proposition 2.5.6 to control

the number of repeated As and Bs on this path.

Lemma 2.7.2. Suppose 1/n � ε � ε1 � ε2 � η1 � τ � 1. Let G be a digraph on

n vertices with δ0(G) ≥ n/2. Suppose A,B, S, T is a partition of V (G) satisfying (R1)–

(R10). Let C be an oriented cycle on n vertices. If σ(C) < ε2n, then G has an exceptional

cover P such that |V (P ) ∩ (A ∪B)| ≤ 2η2
1n.

Proof. Let s∗ := s−dε2ne and d := b− a. Define S ′ ⊆ S to consist of all vertices x ∈ S

with d+
B∪S(x) ≥ b+ s− ε1/3n and d−A∪S(x) ≥ a+ s− ε1/3n. Define T ′ ⊆ T similarly. Note

that |S \ S ′|, |T \ T ′| ≤ ε1n by (R9) and (R10).

We may assume that the vertices of C are labelled so that the number of forward

edges is at least the number of backward edges. Let Q ⊆ C be a forward path of length

two, this exists since σ(C) < ε2n. If C is not consistently oriented, we may assume

that Q is immediately followed by a backward edge. Define e1, e2, e3 ∈ E(C) such that

dC(e1, Q) = s∗, dC(Q, e2) = s∗ + 1, dC(Q, e3) = 2. Let P0 := (e1Ce2).

If at least one of e1, e2 is a forward edge, define paths PT and PS of order s∗ so that

P0 = (e1PTQPSe2). In this case, map Q to a path QG in G of the form T ′AS ′. If e1 and

e2 are both backward edges, our choice of Q implies that e3 is also a backward edge. Let

PT and PS be defined so that P0 = (e1PTQe3PSe2). So |PT | = s∗ and |PS| = s∗ − 1. In

this case, map (Qe3) to a path QG of the form T ′ABS ′.

Let pT := |PT | and pS := |PS|. Our aim is to find a copy PG
0 of P0 which maps PS to
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G[S] and PT to G[T ]. We will find PG
0 of the form F as given in Table 2.1. Let M be a set

e1 forward forward backward backward
e2 forward backward forward backward

F B(T )pTA(S)pSB B(T )pTA(S)pSA A(T )pTA(S)pSB A(T )pTAB(S)pSA

Table 2.1: Proof of Lemma 2.7.2: PG
0 has form F .

of d+ 1 edges in E(T,B ∪ S) ∪E(B, S) guaranteed by Proposition 2.5.6. We also define

a subset M ′ of M which we will use to extend PG
0 to an exceptional cover. If e1, e2 are

both forward edges, choose M ′ ⊆ M of size d. Otherwise let M ′ := M . Let d′ := |M ′|.

Let M ′
1 be the set of all edges in M ′ which are disjoint from all other edges in M ′ and let

d′1 := |M ′
1|. So M ′ \M ′

1 consists of (d′ − d′1)/2 =: d′2 disjoint consistently oriented paths

of the form TBS.

We now fix copies eG1 and eG2 of e1 and e2. If e1 is a forward edge, let eG1 be a BT ′-edge,

otherwise let eG1 be a T ′A-edge. If e2 is a forward edge, let eG2 be a S ′B-edge, otherwise

let eG2 be an AS ′-edge. Let t1 be the endpoint of eG1 in T ′, s2 be the endpoint of eG2 in S ′

and let t2 ∈ T ′ and s1 ∈ S ′ be the endpoints of QG. Let v be the final vertex of eG2 and

let X ∈ {A,B} be such that v ∈ X.

We now use (R5), (R6), (R9) and (R10) to find a collection P of at most 3ε1n + 1

disjoint, consistently oriented paths which cover the edges in M ′ and the vertices in S \S ′

and T \ T ′. P uses each edge e ∈ M ′
1 in a forward path Pe of the form B(S ∪ T )jB for

some 1 ≤ j ≤ 4 and P uses each path in M ′\M ′
1 in a forward path of the form BT jBSj

′
B

for some 1 ≤ j, j′ ≤ 4. The remaining vertices in S \ S ′, T \ T ′ are covered by forward

paths in P of the form A(S)jB or B(T )jA, for some 1 ≤ j ≤ 3.

Let S ′′ ⊆ S \ (V (P) ∪ {s1, s2}) and T ′′ ⊆ T \ (V (P) ∪ {t1, t2}) be sets of size at most

2ε2n so that |S ′′| + pS = |S \ V (P)| and |T ′′| + pT = |T \ V (P)|. Note that S ′′ ⊆ S ′ and

T ′′ ⊆ T ′. So we can cover the vertices in S ′′ by forward paths of the form ASB and we

can cover the vertices in T ′′ by forward paths of the form BTA. Let P ′ be a collection of

disjoint paths thus obtained. Let P1 be the subpath of order η2
1n following P0 on C. Note

that P1 contains at least
√
ε2n disjoint long runs. Each path in P ∪ P ′ will be contained
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in the image of such a long run. (Each forward path in P ∪P ′ might be traversed by PG
1

in a forward or backward direction, for example, a forward path of the form BT jBSj
′
B

could appear in PG
1 as a forward path of the form BT jBSj

′
B or a backward path of the

form BSj
′
BT jB.) So we can find a copy PG

1 of P1 starting from v which uses P ∪P ′ and

has the form

X ∗ AX1X2 . . . Xd′1
Y1Y2 . . . Yd′2Z1Z2 . . . Z`B ∗ Y

for some ` ≥ 0 and Y ∈ {A,B}, where Xi ∈ {B(S ∪ T )jB ∗ A : 1 ≤ j ≤ 4}, Yi ∈

{B(S ∪ T )jB(S ∪ T )j
′
B ∗ A : 1 ≤ j, j′ ≤ 4} and

Zi ∈ {BA(S ∪ T )jB ∗ A,B(S ∪ T )jA ∗ A : 1 ≤ j ≤ 3}.

Let S∗ be the set of uncovered vertices in S together with the vertices s1, s2 and let

T ∗ be the set of uncovered vertices in T together with t1 and t2. Write GS := G[S∗]

and GT := G[T ∗]. Now δ0(GT ) ≥ t − √ε2n ≥ 7|GT |/8 and so GT has a Hamilton path

from t1 to t2 which is isomorphic to PT , by Proposition 2.4.2(i). Similarly, we find a path

isomorphic to PS from s1 to s2 in GS. Altogether, this gives us the desired copy PG
0 of P0

in G. Let PG := PG
0 P

G
1 .

We now check that PG forms an exceptional cover. Clearly (EC1) holds and we may

assume that PG has both endvertices in A (by extending the path if necessary) so that

(EC2) is also satisfied. For (EC3), observe that PG
1 contains exactly d′1+2d′2 = d′ repeated

Bs, these occur in the subpath of the form X1X2 . . . Xd′1
Y1Y2 . . . Yd′2 covering the edges in

M ′. If e1 and e2 are both forward edges, then, consulting Table 2.1, we see that PG
0 has

no repeated As and that there are no other repeated As or Bs in PG. Recall that in this

case d′ = d, so (2.3) gives |B \ V (PG)| − |A \ V (PG)| = d− d′ + 1 = 1. If at least one of

e1, e2 is a backward edge, using Table 2.1, we see that there is one repeated A in PG
0 and

there are no other repeated As or Bs in PG. In this case, we have d′ = d + 1, so (2.3)

gives |B \V (PG)|− |A\V (PG)| = d−d′+ 1 + 1 = 1. Hence PG satisfies (EC3) and forms

an exceptional cover. Furthermore, |V (PG) ∩ (A ∪B)| ≤ 2η2
1n. �
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2.7.2 Finding an exceptional cover when C has many sink ver-
tices, σ(C) ≥ ε2n

In Lemma 2.7.4, we find an exceptional cover when C contains many sink vertices. The

proof will use the following result which allows us to find short AB- and BA-paths of

even length. We will say that an AB- or BA-path P in G is useful if it has no repeated

As or Bs and uses an odd number of vertices from S ∪ T .

Proposition 2.7.3. Suppose 1/n � ε � ε1 � η1 � τ � 1. Let G be a digraph on n

vertices with δ0(G) ≥ n/2. Suppose A,B, S, T is a partition of V (G) satisfying (R1)–

(R10). Let L1 and L2 be oriented paths of length eight. Then G contains disjoint copies

LG1 and LG2 of L1 and L2 such that each LGi is a useful path. Furthermore, we can specify

whether LGi is an AB-path or a BA-path.

Proof. Define S ′ ⊆ S to be the set consisting of all vertices x ∈ S with d±S (x) ≥ η1n/2.

Define T ′ ⊆ T similarly. Note that |S \ S ′|, |T \ T ′| ≤ ε1n by (R9) and (R10). We claim

that G contains disjoint edges e, f ∈ E(B∪T, S ′)∪E(A∪S, T ′). Indeed, if a+ s < n/2 it

is easy to find disjoint e, f ∈ E(B ∪ T, S ′), since δ0(G) ≥ n/2. Otherwise, we must have

a + s = b + t = n/2 and so each vertex in S ′ has at least one inneighbour in B ∪ T and

each vertex in T ′ has at least one inneighbour in A ∪ S. Let G′ be the bipartite digraph

with vertex classes A ∪ S and B ∪ T and all edges in E(B ∪ T, S ′) ∪ E(A ∪ S, T ′). The

claim follows from applying König’s theorem to the underlying undirected graph of G′.

We demonstrate how to find a copy LG1 of L1 in G which is an AB-path. The argument

when LG1 is a BA-path is very similar. LG1 will have the form A ∗B(T )i(S)j(T )kA ∗B or

A ∗ A(T )i(S)j(T )kB ∗ B, for some i, j, k ≥ 0 such that i + j + k is odd. Note then that

LG1 will have no repeated As or Bs.

First suppose that L1 is not antidirected, so L1 has a consistently oriented subpath L′

of length two. We will find a copy of L1, using (R9)–(R10) to map L′ to a forward path

of the form ASB or BTA or a backward path of the form BSA or ATB. More precisely,

if L′ is a forward path, let LG1 be a path of the form A ∗ ASB ∗ B if dC(L1, L
′) is even

and a path of the form A ∗ BTA ∗ B if dC(L1, L
′) is odd. If L′ is backward, let LG1 be a
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path of the form A ∗ ATB ∗ B if dC(L1, L
′) is even and a path of the form A ∗ BSA ∗ B

if dC(L1, L
′) is odd.

Suppose now that L1 is antidirected. We will find a copy LG1 of L1 which contains e.

If e ∈ E(B, S ′), we use (R9) and the definition of S ′ to find a copy of L1 of the following

form. If the initial edge of L1 is a forward edge, we find LG1 of the form A(S)3B ∗ B. If

the initial edge is a backward edge, we find LG1 of the form AB(S)3A ∗B. If e ∈ E(A, T ′)

we will use (R10) and the definition of T ′ to find a copy of L1 of the following form. If

the initial edge of L1 is a forward edge, we find LG1 of the form A(T )3B ∗B. If the initial

edge is a backward edge, we find LG1 of the form AB(T )3A ∗B.

If L1 is antidirected and e ∈ E(T, S ′), we will use (R4), (R6), (R9), (R10) and the

definition of S ′ to find a copy of L1 containing e. If the initial edge of L1 is a forward

edge, find LG1 of the form AB(S)2(T )2h−1A ∗ B, where 1 ≤ h ≤ 2. If the initial edge is

a backward edge, find LG1 of the form A(T )2h−1(S)2B ∗ B, where 1 ≤ h ≤ 2. Finally, we

consider the case when e ∈ E(S, T ′). If the initial edge of L1 is a forward edge, we find LG1

of the form AB(S)2h−1(T )2A ∗B, where 1 ≤ h ≤ 2. If the initial edge of L1 is a backward

edge, we find LG1 of the form A(T )2(S)2h−1B ∗B, where 1 ≤ h ≤ 2.

We find a copy LG2 of L2 (which is disjoint from LG1 ) in the same way, using the edge

f if L2 is an antidirected path. �

As when there were few sink vertices, we will map long paths to G[S] and G[T ]. It will

require considerable work to choose these paths so that G contains edges which can be

used to link these paths together and so that we are able to cover the remaining vertices

in S ∪ T using sink and source vertices in a “balanced” way. In many ways, the proof is

similar to the proof of Lemma 2.6.5. In particular, we will use Proposition 2.6.4 to map

sink and source vertices to some vertices in S ∪ T .

Lemma 2.7.4. Suppose 1/n � ε � ε1 � ε2 � η1 � τ � 1. Let G be a digraph on

n vertices with δ0(G) ≥ n/2. Suppose A,B, S, T is a partition of V (G) satisfying (R1)–

(R10). Let C be an oriented cycle on n vertices which is not antidirected. If σ(C) ≥ ε2n,

then G has an exceptional cover P such that |V (P ) ∩ (A ∪B)| ≤ 5ε2n.
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Proof. Let d := b− a. Define S ′ ⊆ S to be the set consisting of all vertices x ∈ S with

d±S (x) ≥ η1n/2 and define T ′ ⊆ T similarly. Let S ′′ := S \ S ′ and T ′′ := T \ T ′. Note that

|S ′′|, |T ′′| ≤ ε1n by (R9) and (R10). By (R5), all vertices x ∈ S ′′ satisfy d−A(x) ≥ η1n/2 or

d+
B(x) ≥ η1n/2 and, by (R6), all x ∈ T ′′ satisfy d+

A(x) ≥ η1n/2 or d−B(x) ≥ η1n/2. In our

proof below, we will find disjoint sets SA, SB ⊆ S and TA, TB ⊆ T of suitable size such

that

d−A(x) ≥ η1n/2 for all x ∈ SA and d+
B(x) ≥ η1n/2 for all x ∈ SB; (2.4)

d−B(x) ≥ η1n/2 for all x ∈ TB and d+
A(x) ≥ η1n/2 for all x ∈ TA. (2.5)

Note that (R9) implies that all but at most ε1n vertices from S could be added to SA or

SB and satisfy the conditions of (2.4). Similarly, (R10) implies that all but at most ε1n

vertices in T are potential candidates for adding to TA or TB so as to satisfy (2.5). We

will write sA := |SA|, sB := |SB|, tA := |TA| and tB := |TB|.

Let s∗ := s−d√ε1ne and let ` := 2dε2ne−1. If C contains an antidirected subpath of

length `, let Q2 denote such a path. We may assume that the initial edge of Q2 is a forward

edge by reordering the vertices of C if necessary. Otherwise, choose Q2 to be any subpath

of C of length ` such that Q2 contains at least ε
1/3
1 n sink vertices and the second vertex

of Q2 is a sink. Let Q1 be the subpath of C of length ` such that dC(Q1, Q2) = 2s∗ + `.

Note that if Q1 is antidirected then Q2 must also be antidirected. Let e1, e2 be the final

two edges of Q1 and let f1, f2 be the initial two edges of Q2 (where the edges are listed in

the order they appear in Q1 and Q2, i.e., (e1e2) ⊆ Q1 and (f1f2) ⊆ Q2). Note that f1 is

a forward edge and f2 is a backward edge.

Let Q′ be the subpath of C of length 14 such that dC(Q′, Q2) = s∗. If Q′ is antidirected,

let Q be the subpath of Q′ of length 13 whose initial edge is a forward edge. Otherwise

let Q ⊆ Q′ be a consistently oriented path of length two. We will consider the three cases

stated below.

Case 1: Q1 and Q2 are antidirected. Moreover, {e2, f1} is consistent if and only if n is
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even.

We will assume that the initial edge of Q is a forward edge, the case when Q is a

backward path of length two is very similar. We will find a copy QG of Q which is a

T ′S ′-path. If Q is a forward path of length two, map Q to a forward path QG of the

form T ′AS ′. If Q is antidirected, we find a copy QG of Q as follows. Let Q′′ be the

subpath of Q of length eight such that dC(Q,Q′′) = 3. Recall that a path in G is useful

if it has no repeated As or Bs and uses an odd number of vertices from S ∪ T . Using

Proposition 2.7.3, we find a copy (Q′′)G of Q′′ in G which is a useful AB-path. We find

QG which starts with a path of the form T ′ABA, uses (Q′′)G and then ends with a path

of the form BAS ′. Let qS and qT be the numbers of interior vertices of QG in S and T ,

respectively.

If n is even, let e := e2 and, if n is odd, let e := e1. In both cases, let f := f1. The

assumptions of this case imply that e and f are both forward edges. Let P := (Q1CQ2)

and let PT and PS be subpaths of C which are internally disjoint from e, f and Q and are

such that (eCf) = (ePTQPSf). Our plan is to find a copy of PT in G[T ] and a copy of

PS in G[S]. Let pT := |PT | and pS := |PS|. If Q is a consistently oriented path we have

that qS, qT = 0 and pS + pT = dC(e, f)− 1. If Q is antidirected, then qS + qT is odd and

pS + pT = dC(e, f)− 12. So in both cases we observe that

pS + pT + qS + qT ≡ dC(e, f)− 1 ≡ n mod 2. (2.6)

Choose SA, SB, TA, TB to satisfy (2.4) and (2.5) so that S ′′ \ V (QG) ⊆ SA ∪ SB, T ′′ \

V (QG) ⊆ TA∪TB, s = sA + sB + pS + qS, t = tA + tB + pT + qT and sA + tA +d = sB + tB.

To see that this can be done, first note that the choice of s∗ implies that s − pS − qS ≥
√
ε1n/2 > |S ′′|+d and t−pT−qT ≥

√
ε1n/2 > |T ′′|+d. Let r := s+t−(pS+pT +qS+qT ).

So r is the number of vertices in S ∪ T which will not be covered by the copies of PT , PS

or Q. Then (2.6) implies that

r ≡ s+ t− n ≡ d mod 2.
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Thus we can choose the required subsets SA, SB, TA, TB so that sA + tA = (r − d)/2 and

sB+ tB = (r+d)/2. Note that (R3) and the choice of s∗ also imply that sA+sB, tA+ tB ≤

2
√
ε1n.

Recall that Q1 is antidirected. So we can find a path (Q1e)
G isomorphic to (Q1e)

which covers the vertices in TA by source vertices and the vertices in TB by sink vertices.

We choose this path to have the form

X ∗ A(BATAA ∗ A)tA(BTBB ∗ A)tBB ∗BT ′,

where X ∈ {A,B}. Observe that (Q1e)
G has tA repeated As and tB repeated Bs. Find a

path QG
2 isomorphic to Q2 of the form

S ′B ∗ A(BASAA ∗ A)sA(BSBB ∗ A)sBB ∗B

which covers all vertices in SA by sink vertices and all vertices in SB by source vertices.

QG
2 has sA repeated As and sB repeated Bs. So far, we have been working under the

assumption that Q starts with a forward edge. If Q is a backward path, the main difference

is that we let e := e1 if n is even and let e := e2 if n is odd. We let f := f2 so that e and

f are both backward edges and we map Q to a backward path QG of the form T ′BS ′.

Then (2.6) holds and we can proceed similarly as in the case when Q is a forward path.

We find copies of PT in G[T ′] and PS in G[S ′] as follows. Greedily embed the first

√
ε1n vertices of PT to cover all uncovered vertices x ∈ T ′ with d+

T (x) ≤ t − ε1/3n or

d−T (x) ≤ t − ε1/3n. Note that, by (R10), there are at most ε1n such vertices. Write

P ′T ⊆ PT for the subpath still to be embedded and let t1 and t2 be the images of its

endvertices in T . Let T ∗ denote the sets of so far uncovered vertices in T together with

t1 and t2 and define GT := G[T ∗]. We have that δ0(GT ) ≥ t− ε1/3n− 3
√
ε1n ≥ 7|GT |/8,

using (R2), and so we can apply Proposition 2.4.2(i) to find a copy of P ′T in GT with the

desired endpoints. In the same way, we find a copy of PS in G[S ′]. Together with QG,

(Q1e)
G and QG

2 , this gives a copy PG of P in G such that |V (PG) ∩ (A ∪B)| ≤ 5ε2n.

59



The path PG satisfies (EC1) and we may assume that (EC2) holds, by extending the

path by one or two vertices, if necessary, so that both of its endvertices lie in A. Let us

now verify (EC3). All repeated As and Bs in PG are repeated As and Bs in the paths

(Q1e)
G and QG

2 . So in total, PG has sA + tA repeated As and sB + tB repeated Bs. Then

(2.3) gives that PG satisfies

|B \ V (PG)| − |A \ V (PG)| = d− (sB + tB) + (sA + tA) + 1 = 1.

So (EC3) is satisfied and PG is an exceptional cover.

Case 2: There exists e ∈ {e1, e2} and f ∈ {f1, f2} such that {e, f} is consistent and

n− dC(e, f) is even.

Let v be the final vertex of f . Recall the definitions of a useful tripartition and a link

from Section 2.6. Consider a useful tripartition P1, P2, P3 of (vQ2) and let Q1,Q2,Q3 be

sink/source/sink sets. Let L ⊆ P2 be a link of length eight such that dC(v, L) is even. If

Q is a consistently oriented path, use Proposition 2.7.3 to find a copy LG of L which is a

useful BA-path if e is forward and a useful AB-path if e is backward. Map Q to a path

QG of the form T ′AS ′ if Q is a forward path and T ′BS ′ if Q is a backward path. If Q is

antidirected, let Q′′ be the subpath of Q of length eight such that dC(Q,Q′′) = 3. Using

Proposition 2.7.3, we find disjoint copies (Q′′)G of Q′′ and LG of L in G such that (Q′′)G

is a useful AB-path and LG is as described above. We find QG which starts with a path

of the form T ′ABA, uses (Q′′)G and then ends with a path of the form BAS ′. Let qS be

the number of interior vertices of QG and LG in S and let qT be the number of interior

vertices of QG and LG in T . Note that in all cases, QG is a T ′S ′-path with no repeated

As or Bs.

Let P := (eCQ2) and let P0 := (eCf). Define subpaths PT and PS of C which are

internally disjoint from Q, e, f and are such that P0 = (ePTQPSf). Let pT := |PT | and

pS := |PS|. Our aim will be to find a copy PG
0 of P0 which uses QG and maps PT to G[T ]

and PS to G[S]. PG
0 will have the form F given in Table 2.2. We fix edges eG and fG
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for e and f . If e is a forward edge, then choose eG to be a BT ′-edge and fG to be an

S ′B-edge. If e is a backward edge, let eG be a T ′A-edge and fG be an AS ′-edge. We also

define a constant d′ in Table 2.2 which will be used to ensure that the final assignment is

balanced. So, if rA and rB are the numbers of repeated As and Bs in PG
0 respectively, we

Initial edge of Q forward forward backward backward
e forward backward forward backward

F BT pTASpSB AT pTASpSA BT pTBSpSB AT pTBSpSA

d′ d d+ 2 d− 2 d

Table 2.2: Proof of Lemma 2.7.4, Cases 2 and 3: PG
0 has form F , where A denotes an

A-path with no repeated As or Bs.

will have rA − rB = d′ − d.

Note that

pT + pS + qT + qS ≡ dC(e, f) ≡ n mod 2. (2.7)

The number of vertices in S ∪ T which will not be covered by PG
0 or LG is equal to

r := s+ t− (pT + pS + qT + qS) and (2.7) implies that

r ≡ s+ t− n ≡ d ≡ d′ mod 2.

Also note that the choice of s∗ implies that s − pS − qS ≥
√
ε1n/2 > |S ′′| + d′ and

t − pT − qT ≥
√
ε1n/2 > |T ′′| + d′. Thus we can choose sets SA, SB, TA, TB satisfying

(2.4) and (2.5) so that S ′′ \ V (QG ∪ LG) ⊆ SA ∪ SB, T ′′ \ V (QG ∪ LG) ⊆ TA ∪ TB,

s = sA + sB + pS + qS, t = tA + tB + pT + qT and sA + tA + d′ = sB + tB. (R3) and the

choice of s∗ imply that sA + sB, tA + tB ≤ 2
√
ε1n. Recall that v denotes the final vertex

of f and let vG be the image of v in G. If vG ∈ A (i.e., if e is backward), let v′ := v and

(v′)G := vG. If vG ∈ B, let v′ denote the successor of v on C. If vv′ ∈ E(C), map v′ to

an outneighbour of vG in A and, if v′v ∈ E(C), map v′ to an inneighbour of vG in A. Let

(v′)G be the image of v′. Then we can apply Proposition 2.6.4, with 2
√
ε1, η1/2, τ/2, (v

′)G

playing the roles of ε, η, τ, a1, to find a copy (v′Q2)G of (v′Q2) which starts at (v′)G, covers

SA, SB, TA, TB and contains LG. Note that we make use of (2.4) and (2.5) here. We obtain
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a copy (vQ2)G of (vQ2) (by combining vG(v′)G with (v′Q2)G if v′ 6= v) which has sA + tA

repeated As and sB + tB repeated Bs.

We find copies of PT in G[T ] and PS in G[S] as in Case 1. Combining these paths with

(vQ2)G, eG, QG and fG, we obtain a copy PG of P in G such that |V (PG)∩(A∪B)| ≤ 3ε2n.

The path PG satisfies (EC1) and we may assume that (EC2) holds, by extending the path

if necessary to have both endvertices in A. All repeated As and Bs in PG occur as repeated

As and Bs in the paths PG
0 and (vQ2)G so we can use (2.3) to see that

|B \ V (PG)| − |A \ V (PG)| = d− (sB + tB) + (d′ − d) + (sA + tA) + 1 = 1.

Therefore, (EC3) is satisfied and PG is an exceptional cover.

Case 3: The assumptions of Cases 1 and 2 do not hold.

Recall that f1 is a forward edge and f2 is a backward edge. Since Case 2 does not

hold, this implies that e2 is a forward edge if n is even (otherwise e := e2 and f := f2

would satisfy the conditions of Case 2) and e2 is a backward edge if n is odd (otherwise

e := e2 and f := f1 would satisfy the conditions of Case 2). In particular, since Case 1

does not hold, this in turn implies that Q1 is not antidirected. We claim that Q1 \ {e2}

is not antidirected. Suppose not. Then it must be the case that {e1, e2} is consistent.

If e1 and e2 are forward edges (and so n is even), then e := e1 and f := f1 satisfy the

conditions of Case 2. If e1 and e2 are both backward edges (and so n is odd), then e := e1

and f := f2 satisfy the conditions of Case 2. Therefore, Q1 \ {e2} is not antidirected and

must contain a consistently oriented path Q′1 of length two.

Let e := e2. If n is even, let f := f1 and, if n is odd, let f := f2. In both cases,

we have that {e, f} is consistent. Let P := (Q′1CQ2) and P0 := (ePf). Let PT and PS

be subpaths of C defined such that P0 = (ePTQPSf). Set pT := |PT | and pS := |PS|.

Our aim is to find a copy PG
0 which is of the form given in Table 2.2. We also define a

constant d′ as in Table 2.2. So if rA and rB are the numbers of repeated As and Bs in

PG
0 respectively, then again rA − rB = d′ − d.
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Let v be the final vertex of f . Consider a tripartition P1, P2, P3 of (vQ2) and a link

L ⊆ P2 of length eight such that dC(v, L) is even. Proceed exactly as in Case 2 to find

copies QG and LG of Q and L. Use (R4), (R9) and (R10) to fix a copy (Q′1Ce)
G of (Q′1Ce)

which is disjoint from QG and LG and is of the form given in Table 2.3. Note that the

Q′1 forward forward backward backward
dC(Q′1, e) odd even odd even

Form of (Q′1Ce)
G if e is

forward
BTA ∗BT ′ ASB ∗BT ′ BSA ∗BT ′ ATB ∗BT ′

Form of (Q′1Ce)
G if e is

backward
ASB ∗ AT ′ BTA ∗ AT ′ ATB ∗ AT ′ BSA ∗ AT ′

Table 2.3: Form of (Q′1Ce)
G in Case 3.

interior of (Q′1Ce)
G uses exactly one vertex from S ∪ T and (Q′1Ce)

G has no repeated As

or Bs. Write (Q′1)G for the image of Q′1. We also fix an edge fG for the image of f which

is disjoint from QG, LG and (Q′1Ce)
G and is an S ′B-edge if e is forward and an AS ′-edge

if e is backward. Let qS be the number of interior vertices of QG, LG and (Q′1)G in S and

let qT be the number of interior vertices of QG, LG and (Q′1)G in T .

Note that pS + pT + qS + qT ≡ dC(e, f) − 1 ≡ n mod 2. Using the same reasoning

as in Case 2, we find sets SA, SB, TA, TB satisfying (2.4) and (2.5) such that S ′′ \ V (QG ∪

LG ∪ (Q′1)G) ⊆ SA ∪ SB, T ′′ \ V (QG ∪ LG ∪ (Q′1)G) ⊆ TA ∪ TB, s = sA + sB + pS + qS,

t = tA + tB + pT + qT and sA + tA + d′ = sB + tB. (R3) and the choice of s∗ imply that

sA, tA, sB, tB ≤ 2
√
ε1n. Recall that v denotes the final vertex of f . Similarly as in Case 2,

we now use Proposition 2.6.4 to find a copy (vQ2)G of (vQ2) which covers SA, SB, TA, TB,

contains LG and has sA + tA repeated As and sB + tB repeated Bs.

We find copies of PT in G[T ] and PS in G[S] as in Case 1. Together with (Q′1Ce)
G, QG,

fG and (vQ2)G, these paths give a copy PG of P in G such that |V (PG)∩(A∪B)| ≤ 5ε2n.

The path PG satisfies (EC1) and we may assume that (EC2) holds, by extending the path

so that both endvertices lie in A if necessary. All repeated As and Bs in PG occur as

repeated As and Bs in the paths PG
0 and (vQ2)G, so we can use (2.3) to see that

|B \ V (PG)| − |A \ V (PG)| = d− (sB − tB)− (d− d′) + (sA + tA) + 1 = 1.
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So (EC3) is satisfied and PG is an exceptional cover. �

2.7.3 Finding a copy of C

As we did in the AB-extremal case, we will now use an exceptional cover to find a copy

of C in G.

Proof of Lemma 2.7.1. Apply Lemma 2.7.2 or Lemma 2.7.4 to find an exceptional

cover P of G which uses at most 2η2
1n vertices from A ∪B. Let P ′ be the path of length

√
ε1n following P on C. Extend P by a path isomorphic to P ′, using this path to cover

all x ∈ A such that d+
B(x) ≤ b − ε1/3n or d−B(x) ≤ b − ε1/3n and all x ∈ B such that

d+
A(x) ≤ a− ε1/3n or d−A(x) ≤ a− ε1/3n, using only edges in E(A,B) ∪ E(B,A). Let P ∗

denote the resulting extended path.

We may assume that both endvertices a1, a2 of P ∗ are in A and also that d±B(ai) ≥

b− ε1/3n (by extending the path if necessary). Let A∗, B∗ denote those vertices in A and

B which have not already been covered by P ∗ together with a1 and a2 and let G∗ :=

G[A∗, B∗]. We have that |A∗| = |B∗|+ 1 and δ0(G∗) ≥ a−3η2
1n ≥ (7|B∗|+ 2)/8. Then G∗

has a Hamilton path of any orientation with the desired endpoints by Proposition 2.4.2(ii).

Together with P ∗, this gives a copy of C in G. �
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CHAPTER 3

ON THE RANDOM GREEDY F -FREE
HYPERGRAPH PROCESS

3.1 Introduction

3.1.1 Results

Fix a k-uniform hypergraph F . In this thesis, we study the following random greedy pro-

cess, which constructs a maximal F -free k-uniform hypergraph. Assign a birthtime which

is uniformly distributed in [0, 1] to each hyperedge of the complete k-uniform hypergraph

Kk
n on n vertices. Start with the empty hypergraph on n vertices at time p = 0. Increase

p and each time that a new hyperedge is born, add it to the hypergraph provided that it

does not create a copy of F (edges with equal birthtime are added in any order). Denote

the resulting hypergraph at time p by Rn,p.

The random greedy graph process (i.e. the case when k = 2) has been studied for

many graphs. The initial motivation (see for example [33]) was to study the Ramsey

number R(3, t). Indeed, the best current lower bounds on R(3, t) were obtained via the

study of the triangle-free process ([13], [35]). Osthus and Taraz [64] gave an upper bound

on the number of edges in the graph Rn,1 when F is strictly 2-balanced (this condition

is defined formally on the next page but, roughly speaking, guarantees that F does not

contain particularly dense subgraphs). They showed that a.a.s. Rn,1 has maximum de-
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gree O(n1−(|F |−2)/(e(F )−1)(log n)1/(∆(F )−1)). (Here a.a.s. stands for ‘asymptotically almost

surely’, i.e. for the property that an event occurs with probability tending to one as n tends

to infinity.) Results for the cases when F = C4 and F = K4 were obtained independently

by Bollobás and Riordan [16]. Bohman and Keevash [12] showed that a.a.s. Rn,1 has min-

imum degree Ω(n1−(|F |−2)/(e(F )−1)(log n)1/(e(F )−1)) whenever F is strictly 2-balanced and

conjectured that this gives the correct order of magnitude. Improved upper bounds have

been obtained for some graphs. For instance, the number of edges has been determined

asymptotically when F is a cycle ([11], [13], [35], [65], [80]) and when F = K4 ([81],

[83]). Picollelli [66] determined asymptotically the number of edges when F is a diamond,

i.e. the graph obtained by removing one edge from K4. Note that this graph is not strictly

2-balanced.

Much less is known about the process when F is a k-uniform hypergraph and k ≥ 3.

The only known upper bound is due to Bohman, Mubayi and Picollelli [14], who studied

the F -free process when F is a k-uniform generalisation of a graph triangle (with an

application to certain Ramsey numbers). In this thesis, we obtain a generalisation of the

upper bound in [64] to strictly k-balanced hypergraphs. Here we say that a k-uniform

hypergraph F is strictly k-balanced if |F | ≥ k + 1 and for all proper subgraphs F ′ ( F

with |F ′| ≥ k + 1 we have

e(F )− 1

|F | − k >
e(F ′)− 1

|F ′| − k .

We also need the following definition. Given a hypergraph H and i ∈ N, we define the

maximum i-degree of H by

∆i(H) := max{dH(U) : U ⊆ V (H), |U | = i},

where dH(U) is the number of hyperedges in H containing U . For any k-uniform hyper-

graph, the maximum co-degree, ∆k−1(H) refers to the maximum (k − 1)-degree.

Theorem 3.1.1. Let k ∈ N be such that k ≥ 2. Let F be a strictly k-balanced k-uniform

hypergraph which has v vertices and h ≥ v − k + 1 hyperedges. Suppose ∆k−1(F ) ≥ 2.
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Then there exists a constant c such that a.a.s.

∆k−1(Rn,1) < t where t := cn1− v−k
h−1 (log n)

3
∆k−1(F )−1

− 1
h−1 . (3.1)

In particular, a.a.s. Rn,1 has at most tnk−1 hyperedges.

Note that Theorem 3.1.1 applies, for example, to all k-uniform cliques Kk
v on v ≥ k+1

vertices and more generally to all balanced complete `-partite k-uniform hypergraphs with

` ≥ k and more than k vertices.

Bennett and Bohman [10] studied a random greedy independent set algorithm in

certain quasi-random hypergraphs. This algorithm finds a maximal independent set by

choosing vertices uniformly at random and adding them to the existing set provided they

do not create a hyperedge. Note that we can define an e(F )-regular hypergraph H whose

set of vertices is E(Kk
n) and whose hyperedges correspond to all copies of F in Kk

n. In this

case, the random greedy independent set process on H is exactly the F -free process. Their

result can be applied in the context of the F -free process to show that if F is a strictly

k-balanced k-uniform hypergraph and every vertex of F lies in at least two hyperedges,

then a.a.s. Rn,1 has Ω(nk−(|F |−k)/(e(F )−1)(log n)1/(e(F )−1)) hyperedges. Up to logarithmic

factors, this matches the upper bound given in Theorem 3.1.1.

3.1.2 Open questions

There are many natural open questions related to the random greedy F -free process.

First, we discuss bounds on the number of edges in Rn,1 when F is an `-cycle. The-

orem 3.1.1 applies in the case when F is a k-uniform tight cycle. However, there are

other natural notions of a hypergraph cycle: Given ` ∈ N with ` < k, we say that a

k-uniform hypergraph C`,h is an `-cycle of length h if there is a cyclic ordering of its

vertices x1, . . . , xh(k−`) and a corresponding ordering on its hyperedges e0, . . . , eh−1 such

that ei = {xi(k−`)+1, . . . , xi(k−`)+k}. So consecutive hyperedges on the cycle intersect in

exactly ` vertices. The case when ` = k − 1 corresponds to C`,h being a tight cycle of
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length h. It is easy to check that all `-cycles are strictly k-balanced, but only tight cycles

satisfy the co-degree condition in Theorem 3.1.1. In the case when ` ≥ k/2, `-cycles meet

the conditions in [10]. We conjecture that the bound on the number of hyperedges in [10]

is of the correct magnitude for any `.

Conjecture 3.1.2. Let `, k ∈ N be such that k ≥ 2 and k > ` and let F := C`,h be the

`-cycle of length h. Then a.a.s. Rn,1 has Θ(n
h`
h−1 (log n)

1
h−1 ) hyperedges.

One motivation for Conjecture 3.1.2 is that p = nh`/(h−1)−k(log n)1/(h−1) is the thresh-

old for the property that every hyperedge in Hn,p lies in an `-cycle of length h.

Another open problem would be to generalise Theorem 3.1.1 by finding an upper

bound on the number of steps in the random greedy independent set process studied in

[10].

The random greedy independent set process can also be applied to study arithmetic

progression free sets. Suppose k, n ∈ N. The kAP-free process generates a subset I of

Zn which does not contain an arithmetic progression of length k as follows. The elements

of Zn are ordered uniformly at random. Each is then, in turn, added to the set I if

it does not create a k term arithmetic progression. So this is another instance of the

random greedy independent set algorithm, this time on the hypergraph with vertex set

Zn whose hyperedges are all arithmetic progressions of length k. When n is prime, Bennett

and Bohman [10] showed that a.a.s. the kAP-free process generates a kAP-free set I of

size Ω(n(k−2)/(k−1)(log n)1/(k−1)). It would be interesting to obtain a corresponding upper

bound on I. (Note that an upper bound on the number of steps in the random greedy

independent set process would imply an upper bound for the kAP-free process.)

3.1.3 Sketch of the argument

Rather than studying the random greedy process itself, we are able to prove Theorem 3.1.1

by obtaining precise information about the random binomial hypergraph Hn,p. (This idea

was first used in [64].) More precisely, write Hn,p for the random binomial k-uniform

68



hypergraph on n vertices with hyperedge probability p, i.e., each hyperedge is included

in Hn,p with probability p, independently of all other hyperedges. We write H−n,p for the

hypergraph formed by removing all (hyperedges in) copies of F from Hn,p. Note that Hn,p

can also be viewed as the random hypergraph consisting of all hyperedges with birthtime

at most p. Thus, for all p ∈ [0, 1] we have

H−n,p ⊆ Rn,p ⊆ Rn,1.

We will always assume that Kk
n, Hn,p, H

−
n,p and Rn,p use the vertex set [n].

In Section 3.2, we collect some large deviation inequalities. The proof of Theorem 3.1.1

is given in Section 3.3, the strategy is as follows. We first identify the largest point p where

we can still use Hn,p to approximate the behaviour of H−n,p (i.e. for this p, only a small

proportion of edges of Hn,p lie in a copy of F ). Now let U be a set of k − 1 vertices in F

such that dF (U) = ∆k−1(F ). Let F̂ be the subgraph of F obtained by deleting all those

hyperedges which contain U . Let t be as in (3.1). Suppose for a contradiction that there

exists a (k−1)-set V of degree t in Rn,1 and let T be the neighbourhood of V in Rn,1. We

will show that in this case we would almost certainly find a copy α of F̂ in H−n,p[T ∪ V ]

which maps U to V . Since H−n,p ⊆ Rn,1, α would also be a copy of F̂ in Rn,1[T ∪V ] which

maps U to V . But this actually yields a copy of F in Rn,1, a contradiction. So a.a.s.

∆k−1(Rn,1) < t. It is perhaps surprising that for our analysis the order of hyperedges

added after this critical point p is irrelevant.

3.2 Tools

Let S be a collection of subsets of E(Kk
n). For each α ∈ S, let Iα denote the indicator

variable which equals one if all hyperedges in α lie in Hn,p and zero otherwise. Set

X :=
∑
α∈S

Iα and µ := E[X].
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Let Y be the size of a largest hyperedge-disjoint collection of elements of S in Hn,p

(i.e. the maximum size of a set S ′ ⊆ S such that Iα = 1 for all α ∈ S ′ and α ∩ α′ = ∅ for

all distinct α, α′ ∈ S ′). Erdős and Tetali [34] proved the following upper tail bound on Y .

Theorem 3.2.1. [34]. For every a ∈ N, we have P[Y ≥ a] ≤ (eµ/a)a.

We also require a lower tail bound on Y . For all α, α′ ∈ S with α 6= α′, we write

α ∼ α′ if α ∩ α′ 6= ∅. Define

∆ :=
∑
α′∼α

E[IαIα′ ],

where the sum is over all ordered pairs α′ ∼ α in S. Also, let

η := max
α∈S

E[Iα] and ν := max
α∈S

∑
α′∈S:α′∼α

E[Iα′ ].

The following bound follows from Lemma 4.2 in Chapter 8 and Theorem A.15 in [3], see

[64].

Theorem 3.2.2. Let ε > 0. Then P[Y ≤ (1− ε)µ] ≤ e(1−ε)µν+ ∆
2(1−η)

− ε
2µ
2 .

3.3 Proof of Theorem 3.1.1

3.3.1 Basic parameters

Let F be a strictly k-balanced k-uniform hypergraph which has v vertices, h hyperedges

and d := ∆k−1(F ) ≥ 2. Choose positive constants c1, c2 satisfying

1/c1 � 1/c2 � 1/v, 1/h.

Given functions f and g, we will write f = Õ(g) if there exists a constant c such that

f(n) ≤ (log n)cg(n) for all sufficiently large n.

Set

p :=
1

c2(nv−k log n)1/(h−1)
and t := c1np(log n)3/(d−1).
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Here p is chosen to be as large as possible subject to the constraint that a.a.s. only a small

proportion of the hyperedges of Hn,p lie in a copy of F . For each k+ 1 ≤ i ≤ v, we define

hi := max{e(F ′) : F ′ ( F, |F ′| = i}.

Since F is strictly k-balanced, we have

h− 1

v − k >
hi − 1

i− k .

So for each k + 1 ≤ i ≤ v we can define a positive constant

δi := i− k − (hi − 1)
v − k
h− 1

> 0. (3.2)

Let

δ := min{δi : k + 1 ≤ i ≤ v}.

We will often use that for k + 1 ≤ i ≤ v

nv−iph−hi ≤ nv−i−
v−k
h−1

(h−hi) (3.2)
= nv−i−

v−k
h−1

(h−1− i−k−δi
v−k (h−1)) = n−δi ≤ n−δ. (3.3)

Note that this bounds the expected number of extensions of a fixed subgraph of F on i

vertices into copies of F in Hn,p.

3.3.2 Many copies of F containing a fixed hyperedge

For a given hyperedge f ∈ E(Kk
n), an (r, f)-cluster is a collection F1, F2, . . . , Fr of r copies

of F such that each Fi contains f and for each 1 < i ≤ r, there exists fi ∈ E(Fi) such

that fi /∈ E(Fj) for any j < i. Define A to be the event that Hn,p has no (log n, f)-cluster

for any hyperedge f . We will bound the probability of Ac, i.e., the probability that Hn,p

has a (log n, f)-cluster for some hyperedge f .
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Lemma 3.3.1. We have P[Ac] ≤ n−k.

Proof. Fix some f ∈ E(Kk
n). Write Zr,f for the number of (r, f)-clusters in Hn,p, so Z1,f

counts copies of F which contain the hyperedge f . There are h hyperedges in F which

could be mapped to f , so

E[Z1,f ] ≤ hnv−kph ≤ e−2k

with room to spare. Let r < log n and consider a fixed (r, f)-cluster C in Hn,p. Let ZC

be the number of (1, f)-clusters in Hn,p which contain at least one hyperedge which does

not lie in C, so each of these (1, f)-clusters together with C forms an (r + 1, f)-cluster.

Suppose that α is a (1, f)-cluster sharing k + 1 ≤ i ≤ v vertices with C. The set of

hyperedges shared by α and C forms a proper subgraph of F on i vertices, so α and C

can have at most hi common hyperedges. This allows us to estimate E[ZC ] as

E[ZC ] ≤ hnv−kph−1 +
v∑

i=k+1

vi(rv)i−knv−iph−hi
(3.3)

≤ e−3k + Õ(n−δ) ≤ e−2k.

If we sum over all (r, f)-clusters in Kk
n, we find that

E[Zr+1,f ] ≤ E[Zr,f ]e
−2k ≤ e−2(r+1)k

and hence E[Zlogn,f ] ≤ n−2k. By summing over all f ∈ E(Kk
n), we obtain

P[Ac] ≤
(
n

k

)
n−2k ≤ n−k,

as required. �

3.3.3 Estimating the number of extensions of a fixed set

Recall that d = ∆k−1(F ). Let U = {u1, u2, . . . , uk−1} ⊆ V (F ) be such that dF (U) = d.

Let NF (U) denote the neighbourhood of U in F , i.e. NF (U) := {x ∈ V (F ) : U ∪ {x} ∈

E(F )}. Define F̂ ⊆ F which has vertex set V (F ) and all hyperedges f ∈ E(F ) such that
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|f ∩ U | ≤ k − 2. Fix T ⊆ [n] of size t and an ordered sequence V = (v1, v2, . . . , vk−1) of

distinct vertices, where vi ∈ [n] \ T for each 1 ≤ i ≤ k − 1. Given a hypergraph H ⊆ Kk
n,

let S(H) = S(H,T, V ) be the set of all copies of F̂ in H such that the following hold:

• for each 1 ≤ i ≤ k − 1, ui is mapped to vi;

• NF (U) is mapped into T and

• V (F ) \NF (U) is mapped into [n] \ T .

We let X := |S(Hn,p)| and X− := |S(H−n,p)|. Note that X− ≤ X since H−n,p ⊆ Hn,p.

Note that if T ⊆ NRn,1(V ), then S(Rn,1) = ∅, as otherwise we could find a copy of F

in Rn,1. Since H−n,p ⊆ Rn,1, it follows that X− = 0. So, in order to prove Theorem 3.1.1,

it will suffice to prove that a.a.s. we have X− > 0 for any choice of T, V .

Lemma 3.3.2. Given T ⊆ [n] of size t and an ordered sequence V = (v1, v2, . . . , vk−1) of

distinct vertices, where vi ∈ [n] \ T for each 1 ≤ i ≤ k − 1, define X− as above. Then

P[(X− = 0) ∩ A] ≤ 2n−2t.

Proof. Write S := S(Kk
n). Note that

µ1 := E[X] ≥
(
t

d

)(
n− t− k + 1

v − d− k + 1

)
ph−d ≥ ttd−1nv−d−k+1ph−d

ddvv

=
tcd−1

1 nv−kph−1(log n)3

ddvv
=

cd−1
1

ddvvch−1
2

t(log n)2 ≥ 24h2t(log n)2. (3.4)

Let S ′(Hn,p) be a hyperedge-disjoint collection of elements of S(Hn,p) of maximum size

and let Y1 := |S ′(Hn,p)|. In order to apply Theorem 3.2.2, we will estimate ν, ∆ and η.

First we estimate ν. Define

ν∗ := max
α∈S

∑
α′∈S:α′∼α

E[Iα′ | Iα = 1]

and note that ν ≤ ν∗. We count the expected number of elements α′ ∈ S(Hn,p) \ {α}

sharing at least one hyperedge with some fixed element α ∈ S. Note that α and α′ must
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share at least two vertices outside V by the definition of F̂ . We let k+1 ≤ i+j ≤ v denote

the number of shared vertices, where i is the number of vertices shared in T . Consider

any α′ ∈ S \ {α} sharing i+ j vertices with α. Let K be the hypergraph on i+ j vertices

formed by the set of hyperedges shared by α and α′. Let K ′ be the hypergraph on i + j

vertices obtained from K by adding all hyperedges of the form V ∪ x for each of the i

vertices x ∈ T shared by α and α′. Since K ′ ( F , e(K ′) ≤ hi+j and so α and α′ can have

at most hi+j − i common hyperedges. Then

ν ≤ ν∗ ≤
v∑

i+j=k+1

vi+jtd−inv−d−jph−d−(hi+j−i)

=
v∑

i+j=k+1

vi+j(c1(log n)
3
d−1 )d−inv−(i+j)ph−hi+j

(3.3)
= Õ(n−δ) = o(1).

Since ∆ counts the expected number of ordered pairs of elements in S(Hn,p) which share

at least one hyperedge, we have

∆ ≤ µ1ν
∗ = o(µ1).

Finally, the probability of a fixed element in S being present in Hn,p is given by

η = ph−d = o(1).

So we can apply Theorem 3.2.2 to see that

P[Y1 ≤ µ1/2] ≤ e−µ1/10
(3.4)

≤ n−2t. (3.5)

We define a couple (α, F ′) to be the union of an element α ∈ S ′(Hn,p) and a copy F ′

of F in Hn,p which share at least one hyperedge. Note that deleting F ′ from Hn,p to form

H−n,p will destroy α.

We define an auxiliary graph G as follows. For each element of S ′(Hn,p) which lies in

a couple, choose one. These couples form the vertices of G. Draw an edge between two
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vertices in G if the corresponding couples share a hyperedge. We will use that

|G| ≤ (∆(G) + 1)α(G), (3.6)

where α(G) denotes the size of the largest independent set in G. We will use this inequality

(which holds for all graphs) to bound the number of vertices in G and show that with

sufficiently high probability |G| < Y1. (This in turn implies that at least one element of

S ′(Hn,p) will remain in H−n,p, i.e. X− > 0.)

First, we bound α(G). Let X2 be the number of couples in Hn,p. We estimate µ2 :=

E[X2], breaking the sum into parts depending on the number i of vertices shared by α

and F ′ in each couple (α, F ′). For k + 1 ≤ i ≤ v, we use that α and F ′ intersect in a

proper subgraph of F (this is true even when i = v) and thus can have at most hi common

hyperedges. The first term in our bound on µ2 corresponds to those couples (α, F ′) where

α and F ′ share exactly one hyperedge:

µ2 = E[X2] ≤ µ1h
2nv−kph−1 +

v∑
i=k+1

µ1v
inv−iph−hi

(3.3)

≤ µ1h
2nv−kph−1 +O(µ1n

−δ) ≤ µ1/(12e2h2 log n). (3.7)

Let Y2 be the size of a largest hyperedge-disjoint collection of couples in Hn,p. We note

that α(G) ≤ Y2 and use Theorem 3.2.1 to bound Y2:

P
[
α(G) ≥ µ1/(12h2 log n)

]
≤ P

[
Y2 ≥ µ1/(12h2 log n)

]
≤
(
eµ212h2 log n

µ1

)µ1/(12h2 logn)

(3.7)

≤ e−µ1/(12h2 logn)
(3.4)

≤ n−2t. (3.8)

We now bound ∆(G). Assume that A holds, that is, Hn,p does not contain a (log n, f)-

cluster for any hyperedge f . Fix some hyperedge f ∈ E(Hn,p). Let F be a collection of

couples (αi, Fi) such that f ∈ E((αi, Fi)) for each i and αi 6= αj if i 6= j. Suppose, for

contradiction, that |F| ≥ h log n+ 1. For each couple (αi, Fi) in F , let ei be a hyperedge

75



shared by αi and Fi. The αi are hyperedge-disjoint by the definition of S ′(Hn,p), so

f ∈ E(Fi) for all but at most one couple (αi, Fi) ∈ F where f ∈ E(αi). If F contains

such a couple, delete it from F . Then, starting with i = 1, if (αi, Fi) has not already been

deleted, delete from F any couples (αj, Fj) with j > i such that ej lies in (αi, Fi). Do

this for each i in turn. Since the αi are hyperedge-disjoint, at each step we delete at most

h− 1 couples from F . So a collection F ′ ⊆ F of at least log n couples remains. Note that

for any i < j such that (αi, Fi), (αj, Fj) ∈ F ′, we have ej ∈ E(Fj) but ej /∈ E(Fi). But

then, the set of all Fi such that (αi, Fi) ∈ F ′ contains a (log n, f)-cluster in Hn,p which is a

contradiction to A. Thus the assumption that |F| ≥ h log n+ 1 was incorrect. Therefore,

|F| < h log n+ 1. Since every couple has fewer than 2h hyperedges, we must have

∆(G) < 2h2 log n. (3.9)

So, if A holds, if α(G) < µ1/(12h2 log n) and if |Y1| ≥ µ1/2, then

|G|
(3.6),(3.9)

≤ (2h2 log n+ 1)µ1/(12h2 log n) ≤ µ1/4 < |Y1|.

Thus,

P[(X− = 0) ∩ A] = P[(|G| = Y1) ∩ A]

≤ P[Y1 ≤ µ1/2] + P[α(G) ≥ µ1/(12h2 log n)]
(3.5),(3.8)

≤ 2n−2t,

as desired. �

3.3.4 Combining the bounds

We now use Lemmas 3.3.1 and 3.3.2 to prove Theorem 3.1.1.

Proof of Theorem 3.1.1. Define B to be the event that there exist T ⊆ [n] of size t

and an ordered sequence V = (v1, v2, . . . , vk−1) of distinct vertices such that vi ∈ [n] \ T
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for each 1 ≤ i ≤ k − 1 and X− = 0. As remarked before Lemma 3.3.2, ∆k−1(Rn,1) ≥ t

implies B. So we can apply Lemmas 3.3.1 and 3.3.2 to see that

P[∆k−1(Rn,1) ≥ t] ≤ P[B] ≤ P[Ac] + P[A ∩ B] ≤ n−k + nt+k−1(2n−2t) = o(1).

This completes the proof of Theorem 3.1.1. �

77



78



CHAPTER 4

CLIQUE DECOMPOSITIONS OF MULTIPARTITE
GRAPHS AND COMPLETION OF LATIN

SQUARES

4.1 Introduction

A Kr-decomposition of a graph G is a partition of its edge set E(G) into cliques of order

r. If G has a Kr-decomposition, then certainly e(G) is divisible by
(
r
2

)
and the degree of

every vertex is divisible by r − 1. A classical result of Kirkman [51] asserts that, when

r = 3, these two conditions ensure that Kn has a triangle decomposition (i.e. Steiner

triple systems exist). This was generalized to arbitrary r (for large n) by Wilson [82] and

to hypergraphs by Keevash [46]. Recently, there has been much progress in extending

this from decompositions of complete host graphs to decompositions of graphs which are

allowed to be far from complete. In this chapter, we investigate this question in the r-

partite setting. This is of particular interest as it implies results on the completion of

partial Latin squares and more generally partial mutually orthogonal Latin squares.

4.1.1 Clique decompositions of r-partite graphs

Our main result (Theorem 4.1.1) states that if G is (i) balanced r-partite, (ii) satisfies

the necessary divisibility conditions and (iii) its minimum degree is at least a little larger

79



than the minimum degree which guarantees an approximate decomposition into r-cliques,

then G in fact has a decomposition into r-cliques. (Here an approximate decomposition

is a set of edge-disjoint copies of Kr which cover almost all edges of G.) To state this

result precisely, we need the following definitions.

We say that a graph or multigraph G on (V1, . . . , Vr) is Kr-divisible if G is r-partite

with vertex classes V1, . . . , Vr and for all 1 ≤ j1, j2 ≤ r and every v ∈ V (G) \ (Vj1 ∪ Vj2),

d(v, Vj1) = d(v, Vj2).

Note that in this case, for all 1 ≤ j1, j2, j3, j4 ≤ r with j1 6= j2, j3 6= j4, we automatically

have e(Vj1 , Vj2) = e(Vj3 , Vj4). In particular, e(G) is divisible by e(Kr) =
(
r
2

)
.

Let G be an r-partite graph on (V1, . . . , Vr) with |V1| = · · · = |Vr| = n. Let

δ̂(G) := min{d(v, Vj) : 1 ≤ j ≤ r, v ∈ V (G) \ Vj}.

An η-approximate Kr-decomposition of G is a set of edge-disjoint copies of Kr covering

all but at most ηn2 edges of G. We define δ̂ηKr(n) to be the infimum over all δ such that

every Kr-divisible graph G on (V1, . . . , Vr) with |V1| = · · · = |Vr| = n and δ̂(G) ≥ δn has

an η-approximate Kr-decomposition. Let δ̂ηKr := lim supn→∞ δ̂
η
Kr

(n). So if ε > 0 and G is

sufficiently large, Kr-divisible and δ̂(G) > (δ̂ηKr + ε)n, then G has an η-approximate Kr-

decomposition. Note that it is important here that G is Kr-divisible. Take, for example,

the complete r-partite graph with vertex classes of size n and remove dηne edge-disjoint

perfect matchings between one pair of vertex classes. The resulting graph G satisfies

δ̂(G) = n− dηne, yet has no η-approximate Kr-decomposition whenever r ≥ 3.

Theorem 4.1.1. For every r ≥ 3 and every ε > 0 there exists an n0 ∈ N and an

η > 0 such that the following holds for all n ≥ n0. Suppose G is a Kr-divisible graph

on (V1, . . . , Vr) with |V1| = · · · = |Vr| = n. If δ̂(G) ≥ (δ̂ηKr + ε)n, then G has a Kr-

decomposition.
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By a result of Haxell and Rödl [43], the existence of an approximate decomposition

follows from that of a fractional decomposition. So together with very recent results of

Bowditch and Dukes [17] as well as Montgomery [60] on fractional decompositions into

triangles and cliques respectively, Theorem 4.1.1 implies the following explicit bounds.

We discuss this derivation in Section 4.1.3.

Theorem 4.1.2. For every r ≥ 3 and every ε > 0 there exists an n0 ∈ N such that the

following holds for all n ≥ n0. Suppose G is a Kr-divisible graph on (V1, . . . , Vr) with

|V1| = · · · = |Vr| = n.

(i) If r = 3 and δ̂(G) ≥
(

101
104

+ ε
)
n, then G has a K3-decomposition.

(ii) If r ≥ 4 and δ̂(G) ≥
(
1− 1

106r3 + ε
)
n, then G has a Kr-decomposition.

If G is the complete r-partite graph, this corresponds to a theorem of Chowla, Erdős

and Straus [21]. A bound of (1 − 1/(1016r29))n was claimed by Gustavsson [40]. The

following conjecture seems natural (and is implicit in [40]).

Conjecture 4.1.3. For every r ≥ 3 there exists an n0 ∈ N such that the following holds

for all n ≥ n0. Suppose G is a Kr-divisible graph on (V1, . . . , Vr) with |V1| = · · · = |Vr| =

n. If δ̂(G) ≥ (1− 1/(r + 1))n, then G has a Kr-decomposition.

A construction which matches the lower bound in Conjecture 4.1.3 is described in

Section 4.3.1 (this construction also gives a similar lower bound on δ̂ηKr). In the non-

partite setting, the triangle case is a long-standing conjecture by Nash-Williams [62]

that every graph G on n vertices with minimum degree at least 3n/4 has a triangle

decomposition (subject to divisibility conditions). Barber, Kühn, Lo and Osthus [7]

recently reduced its asymptotic version to proving an approximate or fractional version.

Corresponding results on fractional triangle decompositions were proved by Yuster [86],

Dukes [29], Garaschuk [36] and Dross [28].

More generally [7] also gives results for arbitrary graphs, and corresponding frac-

tional decomposition results have been obtained by Yuster [86], Dukes [29] as well as
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Barber, Kühn, Lo, Montgomery and Osthus [6]. Further results on F -decompositions of

non-partite graphs (leading on from [7]) have been obtained by Glock, Kühn, Lo, Mont-

gomery and Osthus [38]. Amongst others, for any bipartite graph F , they asymptotically

determine the minimum degree threshold which guarantees an F -decomposition.

4.1.2 Mutually orthogonal Latin squares and Kr-decompositions
of r-partite graphs

A Latin square T of order n is an n × n grid of cells, each containing a symbol from

[n], such that no symbol appears twice in any row or column. It is easy to see that T

corresponds to a K3-decomposition of the complete tripartite graph Kn,n,n with vertex

classes consisting of the rows, columns and symbols.

Now suppose that we have a partial Latin square; that is, a partially filled in grid of

cells satisfying the conditions defining a Latin square. When can it be completed to a

Latin square? This natural question has received much attention. For example, a classical

theorem of Smetaniuk [71] as well as Anderson and Hilton [5] states that this is always

possible if at most n− 1 entries have been made (this bound is best possible). The case

r = 3 of Conjecture 4.1.3 implies that, provided we have used each row, column and

symbol at most n/4 times, it should also still be possible to complete a partial Latin

square. This was conjectured by Daykin and Häggkvist [23]. (Note that this conjecture

corresponds to the special case of Conjecture 4.1.3 when r = 3 and the condition of

G being Kr-divisible is replaced by that of G being obtained from Kn,n,n by deleting

edge-disjoint triangles.)

More generally, we say that two Latin squares R (red) and B (blue) drawn in the

same n× n grid of cells are orthogonal if no blue symbol appears twice next to the same

red symbol. In the same way that a Latin square corresponds to a K3-decomposition of

Kn,n,n, a pair of orthogonal Latin squares corresponds to a K4-decomposition of Kn,n,n,n

where the vertex classes are rows, columns, red symbols and blue symbols. More generally,

there is a natural bijection between sequences of r− 2 mutually orthogonal Latin squares
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(where every pair from the sequence are orthogonal) and Kr-decompositions of complete

r-partite graphs with vertex classes of equal size. Sequences of mutually orthogonal Latin

squares are also known as transversal designs. Theorem 4.1.2 can be used to show the

following (see Section 4.3.2 for details).

Theorem 4.1.4. For every r ≥ 3 and every ε > 0 there exists an n0 ∈ N such that the

following holds for all n ≥ n0. Let

cr :=


3

104
if r = 3,

9
107r3 if r ≥ 4.

Let T1, . . . , Tr−2 be a sequence of mutually orthogonal partial n× n Latin squares (drawn

in the same n× n grid). Suppose that each row and column of the grid contains at most

(cr− ε)n non-empty cells and each coloured symbol is used at most (cr− ε)n times. Then

T1, . . . , Tr−2 can be completed to a sequence of mutually orthogonal Latin squares.

The best previous bound for the triangle case r = 3 is due to Bartlett [9], who obtained

a minimum degree bound of (1 − 10−4)n. This improved an earlier bound of Chetwynd

and Häggkvist [20] as well as the one claimed by Gustavsson [40].

4.1.3 Fractional and approximate decompositions

A fractional Kr-decomposition of a graph G is a non-negative weighting of the copies of

Kr in G such that the total weight of all the copies of Kr containing any fixed edge of

G is exactly 1. Fractional decompositions are of particular interest to us because of the

following result of Haxell and Rödl, of which we state only a very special case.

Theorem 4.1.5 (Haxell and Rödl [43]). For every r ≥ 3 and every η > 0 there exists

an n0 ∈ N such that the following holds. Let G be a graph on n ≥ n0 vertices that has a

fractional Kr-decomposition. Then G has an η-approximate Kr-decomposition.
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We define δ̂∗Kr(n) to be the infimum over all δ such that every Kr-divisible graph G on

(V1, . . . , Vr) with |V1| = · · · = |Vr| = n and δ̂(G) ≥ δn has a fractional Kr-decomposition.

Let δ̂∗Kr := lim supn→∞ δ̂
∗
Kr

(n). Theorem 4.1.5 implies that, for every η > 0, δ̂ηKr ≤ δ̂∗Kr .

Together with Theorem 4.1.1, this yields the following.

Corollary 4.1.6. For every r ≥ 3 and every ε > 0 there exists an n0 ∈ N such that the

following holds for all n ≥ n0. Suppose G is a Kr-divisible graph on (V1, . . . , Vr) with

|V1| = · · · = |Vr| = n. If δ̂(G) ≥ (δ̂∗Kr + ε)n, then G has a Kr-decomposition.

In particular, to prove Conjecture 4.1.3 asymptotically, it suffices to show that δ̂∗Kr ≤

1 − 1/(r + 1). For triangles, the best bound on the ‘fractional decomposition threshold’

is due to Bowditch and Dukes [17].

Theorem 4.1.7 (Bowditch and Dukes [17]). δ̂∗K3
≤ 101

104
.

For arbitrary cliques, Montgomery obtained the following bound. Somewhat weaker

bounds (obtained by different methods) are also proved in [17].

Theorem 4.1.8 (Montgomery [60]). For every r ≥ 3, δ̂∗Kr ≤ 1− 1
106r3 .

Note that together with Corollary 4.1.6, these results immediately imply Theorem 4.1.2.

This chapter is organised as follows. In Section 4.2 we introduce some notation and

tools which will be used throughout this chapter. In Section 4.3 we give extremal con-

structions which support the bounds in Conjecture 4.1.3 and we provide a proof of Theo-

rem 4.1.4. Section 4.4 outlines the proof of Theorem 4.1.1 and guides the reader through

the remaining sections in this chapter.

4.2 Notation and tools

Let G be a graph and let P = {U1, . . . , Uk} be a partition of V (G). We write G[U1] for

the subgraph of G induced by U1 and G[U1, U2] for the bipartite subgraph of G induced

by the vertex classes U1 and U2. We will also sometimes write G[U1, U1] for G[U1]. We
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write G[P ] := G[U1, . . . , Uk] for the k-partite subgraph of G induced by the partition P .

We write U<i for U1 ∪ · · · ∪U i−1. We say the partition P is equitable if its parts differ in

size by at most one. Given a set U ⊆ V (G), we write P [U ] for the restriction of P to U .

Let G be a graph and let U, V ⊆ V (G). We write NG(U, V ) := {v ∈ V : xv ∈

E(G) for all x ∈ U} and dG(U, V ) := |NG(U, V )|. For v ∈ V (G), we write NG(v, V ) for

NG({v}, V ) and dG(v, V ) for dG({v}, V ). If U and V are disjoint, we let eG(U, V ) :=

e(G[U, V ]).

Let G and H be graphs. We write G − H for the graph with vertex set V (G) and

edge set E(G) \ E(H). We write G \H for the subgraph of G induced by the vertex set

V (G) \ V (H). We call a vertex-disjoint collection of copies of H in G an H-matching . If

the H-matching covers all vertices in G, we say that it is perfect .

Throughout this chapter, we consider a partition V1, . . . , Vr of a vertex set V such that

|Vj| = n for all 1 ≤ j ≤ r. Given a set U ⊆ V , we write

Uj := U ∩ Vj.

We write Kr(k) for the complete r-partite graph with vertex classes of size k. We say

that an r-partite graph G on (V1, . . . , Vr) is balanced if |V1| = · · · = |Vr|.

Let m,n,N ∈ N with m,n < N . The hypergeometric distribution with parameters

N , n and m is the distribution of the random variable X defined as follows. Let S be

a random subset of {1, 2, . . . , N} of size n and let X := |S ∩ {1, 2, . . . ,m}|. We will

frequently use the following bounds, which are simple forms of Hoeffding’s inequality.

Lemma 4.2.1 (see [44, Remark 2.5 and Theorem 2.10]). Let X ∼ B(n, p) or let X have a

hypergeometric distribution with parameters N, n,m. Then P(|X−E(X)| ≥ t) ≤ 2e−2t2/n.

Lemma 4.2.2 (see [44, Corollary 2.3 and Theorem 2.10]). Suppose that X has binomial

or hypergeometric distribution and 0 < a < 3/2. Then P(|X − E(X)| ≥ aE(X)) ≤

2e−a
2E(X)/3.
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4.3 Extremal graphs and completion of Latin squares

4.3.1 Extremal graphs

The following proposition shows that the minimum degree bound conjectured in Conjec-

ture 4.1.3 would be best possible. It also provides a lower bound on the approximate

decomposition threshold δ̂ηKr (and thus on the fractional decomposition threshold δ̂∗Kr).

Proposition 4.3.1. Let r ∈ N with r ≥ 3 and let η > 0. For infinitely many n, there

exists a Kr-divisible graph G on (V1, . . . , Vr) with |V1| = · · · = |Vr| = n and δ̂(G) = d(1−

1/(r+1))ne−1 which does not have a Kr-decomposition. Moreover, δ̂ηKr ≥ 1−1/(r+1)−η.

Proof. Let m ∈ N with 1/m � η and let n := (r − 1)m. Let {U1, . . . , U r−1} be a

partition of V1∪· · ·∪Vr such that, for each 1 ≤ i ≤ r−1 and each 1 ≤ j ≤ r, U i
j = U i∩Vj

has size m.

Let G0 be the intersection of the complete r-partite graph on (V1, . . . , Vr) and the

complete (r − 1)-partite graph on (U1, . . . , U r−1). For each 1 ≤ q ≤ m and each 1 ≤ i ≤

r − 1, let H i
q be a graph formed by starting with the empty graph on U i and including

a q-regular bipartite graph with vertex classes (U i
j1
, U i

j2
) for each 1 ≤ j1 < j2 ≤ r. Let

Hq := H1
q ∪ · · · ∪ Hr−1

q and let Gq := G0 ∪ Hq. Observe that Gq is regular, Kr-divisible

and

δ̂(Gq) = (r − 2)m+ q.

Now G0 is (r− 1)-partite, so every copy of Kr in Gq contains at least one edge of Hq.

Therefore, any collection of edge-disjoint copies of Kr in G will leave at least

`(Gq) := e(Gq)− e(Hq)

(
r

2

)
=
(
(r − 2)m+ q −

(
r

2

)
q
)(r

2

)
n

= (m− (r + 1)q/2)(r − 2)

(
r

2

)
n

edges of Gq uncovered. Let q0 := d2m/(r + 1)e − 1. Then `(Gq0) > 0, so Gq0 does not
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have a Kr-decomposition. Also,

δ̂(Gq0) = (r − 2)m+ d2m/(r + 1)e − 1 = d(1− 1/(r + 1))ne − 1.

Now let qη := d2m/(r + 1)− ηne. We have δ̂(Gqη) ≥ (1− 1/(r + 1)− η)n and

`(Gqη) ≥ (m− (2m/(r + 1)− ηn+ 1)(r + 1)/2)(r − 2)

(
r

2

)
n

= (ηn− 1)(r + 1)(r − 2)r(r − 1)n/4 ≥ 6(ηn− 1)n > ηn2.

Thus, δ̂ηKr ≥ 1− 1/(r + 1)− η. �

4.3.2 Completion of mutually orthogonal Latin squares

In this section, we give a proof of Theorem 4.1.4. Note that better bounds on the fractional

decomposition threshold would immediately lead to better bounds on cr. For any r-partite

graph H on (V1, . . . , Vr), we let H denote the r-partite complement of H on (V1, . . . , Vr).

Proof of Theorem 4.1.4. By making ε smaller if necessary, we may assume that ε� 1.

Let n0 ∈ N be such that 1/n0 � ε, 1/r. Use T1, . . . , Tr−2 to construct a balanced r-partite

graph G with vertex classes Vj = [n] for 1 ≤ j ≤ r as follows. For each 1 ≤ i, j, k ≤ n

and each 1 ≤ m ≤ r − 2, if in Tm the cell (i, j) contains the symbol k, include a K3

on the vertices i ∈ Vr−1, j ∈ Vr and k ∈ Vm. (If the cell (i, j) is filled in different Tm,

this leads to multiple edges between i ∈ Vr−1 and j ∈ Vr, which we disregard.) For each

1 ≤ i, j, k, k′ ≤ n and each 1 ≤ m < m′ ≤ r − 2 such that the cell (i, j) contains symbol

k in Tm and symbol k′ in Tm′ , add an edge between the vertices k ∈ Vm and k′ ∈ Vm′ .

If r = 3, then G is an edge-disjoint union of copies of K3, so G is K3-divisible. Then

G is also K3-divisible and δ̂(G) ≥ (101/104 + ε)n. So we can apply Theorem 4.1.2 to find

a K3-decomposition of G which we can then use to complete T1 to a Latin square.

Suppose now that r ≥ 4. Observe that G consists of an edge-disjoint union of cliques
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H1, . . . , Hq such that, for each 1 ≤ i ≤ q, Hi contains an edge of the form xy where

x ∈ Vr−1 and y ∈ Vr. We have q ≤ (cr − ε)n2. We now show that we can extend G

to a graph which has a Kr-decomposition. We will do this by greedily extending each

Hi in turn to a copy H ′i of Kr. Suppose that 1 ≤ p ≤ q and we have already found

edge-disjoint H ′1, . . . , H
′
p−1. Given v ∈ V (G), let s(v, p − 1) be the number of graphs in

{H ′1, . . . , H ′p−1}∪{Hp, . . . , Hq} which contain v. Suppose that s(v, p−1) ≤ 10(cr−ε2)n/9

for all v ∈ V (G). For each 1 ≤ j ≤ r, let Bj := {v ∈ Vj : s(v, p − 1) ≥ 10(cr − ε)n/9}.

We have

|Bj| ≤
q

10(cr − ε)n/9
≤ 9n

10
. (4.1)

Let Gp−1 := G ∪⋃p−1
i=1 (H ′i −Hi). Note that

δ̂(Gp−1) ≥ (1− 10(cr − ε2)/9)n. (4.2)

We will extend Hp to a copy of Kr as follows. Let {j1, . . . , jm} = {j : 1 ≤ j ≤

r and V (Hp) ∩ Vj = ∅}. For each ji in turn, starting with j1, choose one vertex xji

from the set NGp−1
(V (Hp) ∪ {xj1 , . . . , xji−1

}, Vji \ Bji). This is possible since (4.1) and

(4.2) imply

dGp−1
(V (Hp) ∪ {xj1 , . . . , xji−1

}, Vji \Bji) ≥ (1/10− (r − 1)10(cr − ε2)/9)n > 0.

Let H ′p be the copy of Kr with vertex set V (Hp) ∪ {xj : 1 ≤ j ≤ r and V (Hp) ∩ Vj = ∅}.

By construction, for every v ∈ V (G), the number s(v, p) of graphs in {H ′1, . . . , H ′p} ∪

{Hp+1, . . . , Hq} which contain v satisfies s(v, p) ≤ 10(cr − ε2)n/9.

Continue in this way to find edge-disjoint H ′1, . . . , H
′
q such that s(v, q) ≤ 10(cr−ε2)n/9.

Let Gq :=
⋃

1≤i≤qH
′
i. We have δ̂(Gq) ≥ (1 − 10(cr − ε2)/9)n = (1 − 1/106r3 + 10ε2/9)n

and, since Gq is an edge-disjoint union of copies of Kr, we know that Gq is Kr-divisible.

So we can apply Theorem 4.1.2 to find a Kr-decomposition F of Gq. Note that F ′ :=

F ∪ ⋃1≤i≤qH
′
i is a Kr-decomposition of the complete r-partite graph. Since Hi ⊆ H ′i
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for each 1 ≤ i ≤ q, we can use F ′ to complete T1, . . . , Tr−2 to a sequence of mutually

orthogonal Latin squares. �

4.4 Proof sketch

Our proof of Theorem 4.1.1 builds on the proof of the main results of [7], but requires

significant new ideas. In particular, the r-partite setting involves a stronger notion of

divisibility (the non-partite setting simply requires that r − 1 divides the degree of each

vertex of G and that
(
r
2

)
divides e(G)) and we have to work much harder to preserve it

during our proof. This necessitates a delicate ‘balancing’ argument (see Section 4.10).

In addition, we use a new construction for our absorbers, which allows us to obtain

the best possible version of Theorem 4.1.1. (The construction of [7] would only achieve

1− 1/3(r − 1) in place of 1− 1/(r + 1).)

The idea behind the proof is as follows. We are assuming that we have access to

a black box approximate decomposition result: given a Kr-divisible graph G on vertex

classes of size n with δ̂(G) ≥ (δ̂ηKr + ε)n we can obtain an approximate Kr-decomposition

that leaves only ηn2 edges uncovered. We would like to obtain an exact decomposition by

‘absorbing’ this small remainder. By an absorber for a Kr-divisible graph H we mean a

graph AH such that both AH and AH ∪H have a Kr-decomposition. For any fixed H we

can construct an absorber AH . But there are far too many possibilities for the remainder

H to allow us to reserve individual absorbers for each in advance.

To bridge the gap between the output of the approximate result and the capabili-

ties of our absorbers, we use an iterative absorption approach (see also [7] and [53]).

Our guiding principle is that, since we have no control on the remainder if we apply

the approximate decomposition result all in one go, we should apply it more carefully.

More precisely, we begin by partitioning V (G) at random into a large number of parts

U1, . . . , Uk. Since k is large, G[U1, . . . , Uk] still has high minimum degree, and, since

the partition is random, each G[U i] also has high minimum degree. We first reserve a
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sparse and well structured subgraph J of G[U1, . . . , Uk], then we obtain an approximate

decomposition of G[U1, . . . , Uk] − J leaving a sparse remainder H. We then use a small

number of edges from the G[U i] to cover all edges of H ∪J by copies of Kr. Let G′ be the

subgraph of G consisting of those edges not yet used in the approximate decomposition.

Then all edges of G′ lie in some G′[U i], and each G′[U i] has high minimum degree, so we

can repeat this argument on each G′[U i]. Suppose that we can iterate in this way until

we obtain a partition W1 ∪ · · · ∪Wm of V (G) such that each Wi has size at most some

constant M and all edges of G have been used in the approximate decomposition except

for those contained entirely within some Wi. Then the remainder is a vertex-disjoint union

of graphs H1, . . . , Hm, with each Hi contained within Wi. At this point we have already

achieved that the total leftover H1∪· · ·∪Hm has only O(n) edges. More importantly, the

set of all possibilities for the graphs Hi has size at most 2M
2
m = O(n), which is a small

enough number that we are able to reserve special purpose absorbers for each of them in

advance (i.e. right at the start of the proof).

The above sketch passes over one genuine difficulty. Recall that H ⊆ G[U1, . . . , Uk]

denotes the sparse remainder obtained from the approximate decomposition, which we

aim to ‘clean up’ using a well structured graph J set aside at the beginning of the proof,

i.e. we aim to cover all edges of H ∪ J with copies of Kr by using a few additional edges

from the G[U i]. So consider any vertex v ∈ U1
1 (recall that U i

j = U i ∩ Vj). In order to

cover the edges in H∪J between v and U2, we would like to find a perfect Kr−1-matching

in N(v) ∩ U2. However, for this to work, the number of neighbours of v inside each of

U2
2 , . . . , U

2
r must be the same, and the analogue must hold with U2 replaced by any of

U3, . . . , Uk. (This is in contrast to [7], where one only needs that the number of leftover

edges between v and any of the parts U i is divisible by r, which is much easier to achieve.)

We ensure this balancedness condition by constructing a ‘balancing graph’ which can be

used to transfer a surplus of edges or degrees from one part to another. This ‘balancing

graph’ will be the main ingredient of J . Another difficulty is that whenever we apply the

approximate decomposition result, we need to ensure that the graph is Kr-divisible. This
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means that we need to ‘preprocess’ the graph at each step of the iteration.

The rest of this chapter is organised as follows. In Section 4.5, we present general pur-

pose embedding lemmas that allow us to find a wide range of desirable structures within

our graph. In Section 4.6, we detail the construction of our absorbers. In Section 4.7, we

prove some basic properties of random subgraphs and partitions. In Section 4.8, we show

how we can assume that our approximate decomposition result produces a remainder with

low maximum degree rather than simply a small number of edges. In Section 4.9, we clean

up the edges in the remainder using a few additional edges from inside each part of the

current partition. However, we assume in this section that our remainder is balanced in

the sense described above. In Section 4.10, we describe the balancing operation which

ensures that we can make this assumption. Finally, in Section 4.11 we put everything

together to prove Theorem 4.1.1.

4.5 Embedding lemmas

Let G be an r-partite graph on (V1, . . . , Vr) and let P = {U1, U2, . . . , Uk} be a partition

of V (G). Recall that U i
j := U i ∩ Vj for each 1 ≤ i ≤ k and each 1 ≤ j ≤ r. We say that a

graph (or multigraph) H is P-labelled if:

(a) every vertex of H is labelled by one of: {v} for some v ∈ V (G); U i
j for some 1 ≤ i ≤ k,

1 ≤ j ≤ r or Vj for some 1 ≤ j ≤ r;

(b) the vertices labelled by singletons (called root vertices) form an independent set in

H, and each v ∈ V (G) appears as a label {v} at most once;

(c) for each 1 ≤ j ≤ r, the set of vertices v ∈ V (H) such that v is labelled L for some

L ⊆ Vj forms an independent set in H.

Any vertex which is not a root vertex is called a free vertex .

Let H be a P-labelled graph and let H ′ be a copy of H in G. We say that H ′ is

compatible with its labelling if each vertex of H gets mapped to a vertex in its label.

91



Given a graph H and U ⊆ V (H) with e(H[U ]) = 0, we define the degeneracy of H

rooted at U to be the least d for which there is an ordering v1, . . . , vb of the vertices of H

such that

• there is an a such that U = {v1, . . . , va} (the ordering of U is unimportant);

• for a < j ≤ b, vj is adjacent to at most d of the vi with 1 ≤ i < j.

The degeneracy of a P-labelled graph H is the degeneracy of H rooted at U , where U is

the set of root vertices of H.

In the proof of Lemma 4.10.9, we use the following special case of Lemma 5.1 from

[7] to find copies of labelled graphs inside a graph G, provided their degeneracy is small.

Moreover, this lemma allows us to assume that the subgraph of G used to embed these

graphs has low maximum degree.

Lemma 4.5.1. Let 1/n � η � ε, 1/d, 1/b ≤ 1 and let G be a graph on n vertices.

Suppose that:

(i) for each S ⊆ V (G) with |S| ≤ d, dG(S, V (G)) ≥ εn.

Let m ≤ ηn2 and let H1, . . . , Hm be labelled graphs such that, for every 1 ≤ i ≤ m, every

vertex of Hi is labelled {v} for some v ∈ V (G) or labelled by V (G) and that property (b)

above holds for Hi. Moreover, suppose that:

(ii) for each 1 ≤ i ≤ m, |Hi| ≤ b;

(iii) for each 1 ≤ i ≤ m, the degeneracy of Hi (rooted at the set of vertices labelled by

singletons) is at most d;

(iv) for each v ∈ V (G), there are at most ηn graphs Hi with some vertex labelled {v}.

Then there exist edge-disjoint embeddings φ(H1), . . . , φ(Hm) of H1, . . . , Hm compatible

with their labellings such that the subgraph H :=
⋃m
i=1 φ(Hi) of G satisfies ∆(H) ≤ εn.
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We will also use the following partite version of the lemma to find copies of P-labelled

graphs in an r-partite graph G. We omit the proof since it is very similar to the proof of

Lemma 5.1 in [7] (for details, see Appendix A).

Lemma 4.5.2. Let 1/n � η � ε, 1/d, 1/b, 1/k, 1/r ≤ 1 and let G be an r-partite graph

on (V1, . . . , Vr) where |V1| = · · · = |Vr| = n. Let P = {U1, . . . , Uk} be a k-partition of

V (G). Suppose that:

(i) for each 1 ≤ i ≤ k and each 1 ≤ j ≤ r, if S ⊆ V (G) \ Vj with |S| ≤ d then

dG(S, U i
j) ≥ ε|U i

j |.

Let m ≤ ηn2 and let H1, . . . , Hm be P-labelled graphs such that the following hold:

(ii) for each 1 ≤ i ≤ m, |Hi| ≤ b;

(iii) for each 1 ≤ i ≤ m, the degeneracy of Hi is at most d;

(iv) for each v ∈ V (G), there are at most ηn graphs Hi with some vertex labelled {v}.

Then there exist edge-disjoint embeddings φ(H1), . . . , φ(Hm) of H1, . . . , Hm in G which

are compatible with their labellings such that H :=
⋃

1≤i≤m φ(Hi) satisfies ∆(H) ≤ εn.

4.6 Absorbers

Let H be any r-partite graph on the vertex set V = (V1, . . . , Vr). An absorber for H is a

graph A such that both A and A ∪H have Kr-decompositions.

Our aim is to find an absorber for each small Kr-divisible graph H on V . The con-

struction develops ideas in [7]. In particular, we will build the absorber in stages using

transformers, introduced below, to move between Kr-divisible graphs.

Let H and H ′ be vertex-disjoint graphs. An (H,H ′)r-transformer is a graph T which

is edge-disjoint from H and H ′ and is such that both T ∪ H and T ∪ H ′ have Kr-

decompositions. Note that if H ′ has a Kr-decomposition, then T ∪ H ′ is an absorber

for H. So the idea is that we can use a transformer to transform a given H into a
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new graph H ′, then into H ′′ and so on, until finally we arrive at a graph which has a

Kr-decomposition.

Let V = (V1, . . . , Vr). Throughout this section, given two r-partite graphs H and

H ′ on V , we say that H ′ is a partition-respecting copy of H if there is an isomorphism

f : H → H ′ such that f(v) ∈ Vj for every vertex v ∈ V (H) ∩ Vj.

Given r-partite graphsH andH ′ on V , we say thatH ′ is obtained from H by identifying

vertices if there exists a sequence of r-partite graphs H0, . . . , Hs on V such that H0 = H,

Hs = H ′ and the following holds. For each 0 ≤ i < s, there exists 1 ≤ ji ≤ r and vertices

xi, yi ∈ V (Hi) ∩ Vji satisfying the following:

(i) NHi(xi) ∩NHi(yi) = ∅.

(ii) Hi+1 is the graph which has vertex set V (Hi)\{yi} and edge set E(Hi\{yi})∪{vxi :

vyi ∈ E(Hi)} (i.e., Hi+1 is obtained from Hi by identifying the vertices xi and yi).

Condition (i) ensures that the identifications do not produce multiple edges. Note that

if H and H ′ are r-partite graphs on V and H ′ is a partition-respecting copy of a graph

obtained from H by identifying vertices then there exists a graph homomorphism φ : H →

H ′ that is edge-bijective and maps vertices in Vj to vertices in Vj for each 1 ≤ j ≤ r.

In the following lemma, we find a transformer between a pair of Kr-divisible graphs

H and H ′ whenever H ′ can be obtained from H by identifying vertices.

Lemma 4.6.1. Let r ≥ 3 and 1/n � η � 1/s � ε, 1/b, 1/r ≤ 1. Let G be an r-

partite graph on V = (V1, . . . , Vr) with |V1| = · · · = |Vr| = n. Suppose that δ̂(G) ≥

(1 − 1/(r + 1) + ε)n. Let H and H ′ be vertex-disjoint Kr-divisible graphs on V with

|H| ≤ b. Suppose further that H ′ is a partition-respecting copy of a graph obtained from

H by identifying vertices. Let B ⊆ V be a set of at most ηn vertices. Then G contains

an (H,H ′)r-transformer T such that V (T ) ∩B ⊆ V (H ∪H ′) and |T | ≤ s2.

In our proof of Lemma 4.6.1, we will use the following multipartite asymptotic version

of the Hajnal–Szemerédi theorem.
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Theorem 4.6.2 ([48] and [58]). Let r ≥ 2 and let 1/n � ε, 1/r. Suppose that G is an

r-partite graph on (V1, . . . , Vr) with |V1| = · · · = |Vr| = n and δ̂(G) ≥ (1 − 1/r + ε)n.

Then G contains a perfect Kr-matching.

Proof of Lemma 4.6.1. Let φ : H → H ′ be a graph homomorphism from H to H ′

that is edge-bijective and maps vertices in Vj to Vj for each 1 ≤ j ≤ r.

Let T be any graph defined as follows:

(a) For each xy ∈ E(H), Zxy := {zxyj : 1 ≤ j ≤ r and x, y /∈ Vj} is a set of r− 2 vertices.

For each x ∈ V (H), let Zx :=
⋃
y∈NH(x) Z

xy.

(b) For each x ∈ V (H), Sx is a set of (r − 1)s vertices.

(c) For all distinct e, e′ ∈ E(H) and all distinct x, x′ ∈ V (H), the sets Ze, Ze′ , Sx, Sx
′

and V (H ∪H ′) are disjoint.

(d) V (T ) := V (H) ∪ V (H ′) ∪⋃e∈E(H) Z
e ∪⋃x∈V (H) S

x.

(e) EH := {xz : x ∈ V (H) and z ∈ Zx}.

(f) EH′ := {φ(x)z : x ∈ V (H) and z ∈ Zx}.

(g) EZ := {wz : e ∈ E(H) and w, z ∈ Ze}.

(h) ES := {xv : x ∈ V (H) and v ∈ Sx}.

(i) E ′S := {φ(x)v : x ∈ V (H) and v ∈ Sx}.

(j) For each x ∈ V (H), F x
1 is a perfect Kr−1-matching on Sx ∪ Zx.

(k) For each x ∈ V (H), F x
2 is a perfect Kr−1-matching on Sx.

(l) For each x ∈ V (H), F x
1 and F x

2 are edge-disjoint.

(m) For each x ∈ V (H), Zx is independent in F x
1 .

(n) E(T ) := EH ∪ EH′ ∪ EZ ∪ ES ∪ E ′S ∪
⋃
x∈V (H) E(F x

1 ∪ F x
2 ).
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Zxy

Figure 4.1: Left: Subgraph of T1 associated with xy ∈ E(H). Right: Subgraph of T2

associated with x ∈ V (H) in the case when r = 4.

Then

|T | = |H|+ |H ′|+
∑

e∈E(H)

|Ze|+
∑

x∈V (H)

|Sx| = |H|+ |H ′|+ (r− 2)e(H) + (r− 1)s|H| ≤ s2.

Let T1 be the subgraph of T with edge set EH ∪ EH′ ∪ EZ and let T2 := T − T1. So

E(T2) = ES ∪ E ′S ∪
⋃
x∈V (H) E(F x

1 ∪ F x
2 ). In what follows, we will often identify certain

subsets of the edge set of T with the subgraphs of T consisting of these edges. For example,

we will write ES[{x}, Sx] for the subgraph of T consisting of all the edges in ES between

x and Sx. Note that there are several possibilities for T as we have several choices for the

perfect Kr−1-matchings in (j) and (k).

Lemma 4.6.1 will follow from Claims 1 and 2 below.

Claim 1: If T satisfies (a)–(n), then T is an (H,H ′)r-transformer.

Proof of Claim 1. Note that H ∪ EH ∪ EZ can be decomposed into e(H) copies of Kr,

where each copy of Kr has vertex set {x, y} ∪ Zxy for some edge xy ∈ E(H). Similarly,

H ′ ∪ EH′ ∪ EZ can be decomposed into e(H) copies of Kr.

For each x ∈ V (H), note that (EH′ ∪E ′S)[{φ(x)}, Sx ∪Zx]∪ F x
1 and ES[{x}, Sx]∪ F x

2
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are edge-disjoint and have Kr-decompositions. Since

T2 ∪ EH′ =
⋃

x∈V (H)

(
(EH′ ∪ E ′S)[{φ(x)}, Sx ∪ Zx] ∪ F x

1

)
∪

⋃
x∈V (H)

(
ES[{x}, Sx] ∪ F x

2

)
,

it follows that T2 ∪ EH′ has a Kr-decomposition. Similarly, for each vertex x ∈ V (H),

(EH ∪ ES)[{x}, Sx ∪ Zx] ∪ F x
1 and E ′S[{φ(x)}, Sx] ∪ F x

2 are edge-disjoint and have Kr-

decompositions, so T2 ∪ EH has a Kr-decomposition.

To summarise, H ∪ EH ∪ EZ , H ′ ∪ EH′ ∪ EZ , T2 ∪ EH and T2 ∪ EH′ all have Kr-

decompositions. Therefore, T ∪H = (H ∪EH ∪EZ)∪ (T2∪EH′) has a Kr-decomposition,

as does T ∪H ′ = (H ′ ∪ EH′ ∪ EZ) ∪ (T2 ∪ EH). Hence T is an (H,H ′)r-transformer.

Claim 2: G contains a graph T satisfying (a)–(n) such that V (T ) ∩B ⊆ V (H ∪H ′).

Proof of Claim 2. We begin by finding a copy of T1 in G. It will be useful to note that,

for any graph T which satisfies (a)–(n), T1 is r-partite with vertex classes (V (H ∪H ′) ∩

Vj)∪{zxyj : xy ∈ E(H) and x, y /∈ Vj} where 1 ≤ j ≤ r. Also, T [V (H ∪H ′)] is empty and

every vertex z ∈ V (T1) \ V (H ∪H ′) satisfies

dT1(z) = 2 + (r − 3) + 2 = r + 1. (4.3)

So T1 has degeneracy r+1 rooted at V (H∪H ′). Since δ̂(G) ≥ (1−1/(r+1)+ε/2)n+ |B|,

we can find a copy of T1 in G such that V (T1) ∩B ⊆ V (H ∪H ′).

We now show that, after fixing T1, we can extend T1 to T by finding a copy of T2.

Consider any ordering x1, . . . , x|H| on the vertices of H. Suppose we have already chosen

Sx1 , . . . , Sxq−1 , F x1
1 , . . . , F

xq−1

1 and F x1
2 , . . . , F

xq−1

2 and we are currently embedding Sxq .

Let B′ := B ∪ V (T1) ∪⋃q−1
i=1 S

xi ; that is, B′ is the set of vertices that are unavailable for

Sxq , either because they have been used previously or they lie in B. Note that |B′| ≤

|T | + |B| ≤ 2ηn. We will choose suitable vertices for Sxq in the common neighbourhood

of xq and φ(xq).

To simplify notation, we write x := xq and assume that x ∈ V1 (the argument is
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identical in the other cases). Choose a set V ′ ⊆ (NG(x)∩NG(φ(x)))\B′ which is maximal

subject to |V ′2 | = · · · = |V ′r | (recall that V ′j = V ′ ∩ Vj). Note that for each 2 ≤ j ≤ r, we

have

|V ′j | ≥ (1− 1/(r + 1) + ε)n− (1/(r + 1)− ε)n− |B′| ≥ (1− 2/(r + 1))n.

Let n′ := |V ′2 |. For every 2 ≤ j ≤ r and every v ∈ V (G) \ Vj, we have

dG(v, V ′j ) ≥ n′ − (1/(r + 1)− ε)n ≥ (1− 1/(r − 1) + ε)n′. (4.4)

Roughly speaking, we will choose Sx as a random subset of V ′. For each 2 ≤ j ≤ r,

choose each vertex of V ′j independently with probability p := (1 + ε/8)s/n′ and let S ′j be

the set of chosen vertices. Note that, for each j, E(|S ′j|) = n′p = (1+ε/8)s. We can apply

Lemma 4.2.2 to see that

P(||S ′j| − (1 + ε/8)s| ≥ εs/8) ≤ P(||S ′j| − (1 + ε/8)s| ≥ εE(|S ′j|)/10)

≤ 2e−ε
2s/300 ≤ 1/4(r − 1). (4.5)

Given a vertex v ∈ V (G) and 2 ≤ j ≤ r such that v /∈ Vj, note that

E(dG(v, S ′j))
(4.4)

≥ (1− 1/(r − 1) + ε)n′p > (1− 1/(r − 1) + ε)s.

We will say that a vertex v ∈ V (G) is bad if there exists 2 ≤ j ≤ r such that v /∈ Vj and

dG(v, S ′j) < (1− 1/(r − 1) + 3ε/4)s, that is, the degree of v in S ′j is lower than expected.

We can again apply Lemma 4.2.2 to see that

P(dG(v, S ′j) ≤ (1− 1/(r − 1) + 3ε/4)s) ≤ P(|dG(v, S ′j)− E(dG(v, S ′j))| ≥ εs/4)

≤ P(|dG(v, S ′j)− E(dG(v, S ′j))| ≥ εE(dG(v, S ′j))/10)

≤ 2e−ε
2s/600.
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So P(v is bad) ≤ 2(r − 1)e−ε
2s/600 ≤ e−s

1/2
. Let S ′ :=

⋃r
j=2 S

′
j. We say that the set S ′ is

bad if S ′ ∪ Zx contains a bad vertex. We have

P(S ′ is bad) ≤
∑
v∈V ′

P(v ∈ S ′ and v is bad) +
∑
v∈Zx

P(v is bad)

=
∑
v∈V ′

P(v ∈ S ′)P(v is bad) +
∑
v∈Zx

P(v is bad)

≤ (n′p+ (b− 1)(r − 2))e−s
1/2 ≤ 2se−s

1/2 ≤ 1/4. (4.6)

We apply (4.5) and (4.6) to see that with probability at least 1/2, the set S ′ chosen

in this way is not bad and, for each 2 ≤ j ≤ r, we have s ≤ |S ′j| ≤ (1 + ε/4)s. Choose

one such set S ′. Delete at most εs/4 vertices from each S ′j to obtain sets Sxj satisfying

|Sx2 | = · · · = |Sxr | = s. Let Sx :=
⋃r
j=2 S

x
j . Since S ′ was not bad, for each 2 ≤ j ≤ r and

each vertex v ∈ (Sx ∪ Zx) \ Vj,

dG(v, Sxj ) ≥ (1− 1/(r − 1) + 3ε/4)s− εs/4 = (1− 1/(r − 1) + ε/2)s. (4.7)

We now show that we can find F x
1 and F x

2 satisfying (j)–(m). Let Gx := G[Zx ∪Sx]−

G[Zx]. Note that Gx is a balanced (r − 1)-partite graph with vertex classes of size nx

where s ≤ nx ≤ s+ (r − 2)(b− 1)/(r − 1) < s+ b. Using (4.7), we see that

δ̂(Gx) ≥ (1− 1/(r − 1) + ε/2)s ≥ (1− 1/(r − 1) + ε/3)nx.

So, using Theorem 4.6.2, we can find a perfect Kr−1-matching F x
1 in Gx. Finally, let

G′ := G− F x
1 and use (4.7) to see that

δ̂(G′[Sx]) ≥ (1− 1/(r − 1) + ε/3)s.

So we can again apply Theorem 4.6.2, to find a perfect Kr−1-matching F x
2 in G′[Sx]. In

this way, we find a copy of T satisfying (a)–(n) such that V (T ) ∩B ⊆ V (H ∪H ′). �

99



We now construct our absorber by combining several suitable transformers.

Let H be an r-partite multigraph on V = (V1, . . . , Vr) and let xy ∈ E(H). A Kr-

expansion of xy is defined as follows. Consider a copy Fxy of Kr on vertex set {u1, . . . , ur}

such that uj ∈ Vj \ V (H) for all 1 ≤ j ≤ r. Let j1, j2 be such that x ∈ Vj1 and y ∈ Vj2 .

Delete xy from H and uj1uj2 from Fxy and add edges joining x to uj2 and joining y to

uj1 . Let Hexp be the graph obtained by Kr-expanding every edge of H, where the Fxy are

chosen to be vertex-disjoint for different edges xy ∈ E(H).

Fact 4.6.3. Suppose that the graph H ′ is obtained from a graph H by Kr-expanding the

edge xy ∈ E(H) as above. Then the graph obtained from H ′ by identifying x and uj1 is

H with a copy of Kr attached to x.

Let h ∈ N. We define a graph Mh as follows. Take a copy of Kr on V (consisting of

one vertex in each Vj) and replace each edge by h multiedges. Let M denote the resulting

multigraph. Let Mh := Mexp be the graph obtained by Kr-expanding every edge of M .

We have |Mh| = r+hr
(
r
2

)
. Note that Mh has degeneracy r−1. To see this, list all vertices

in V (M) (in any order) followed by the vertices in V (Mh \M) (in any order).

We will now apply Lemma 4.6.1 twice in order to find an (H,Mh)r-transformer in G.

Lemma 4.6.4. Let r ≥ 3 and 1/n � η � 1/s � ε, 1/b, 1/r ≤ 1. Let G be an r-

partite graph on V = (V1, . . . , Vr) with |V1| = · · · = |Vr| = n. Suppose that δ̂(G) ≥

(1−1/(r+1)+ε)n. Let H be a Kr-divisible graph on V with |H| ≤ b. Let h := e(H)/
(
r
2

)
.

Let M ′
h be a partition-respecting copy of Mh on V which is vertex-disjoint from H. Let

B ⊆ V be a set of at most ηn vertices. Then G contains an (H,M ′
h)r-transformer T such

that V (T ) ∩B ⊆ V (H ∪M ′
h) and |T | ≤ 3s2.

Proof. We construct a graph Hatt as follows. Start with the graph H. For each

edge of H, arbitrarily choose one of it endpoints x and attach a copy of Kr (found in

G\((V (H∪M ′
h)∪B)\{x})) to x. The copies of Kr should be chosen to be vertex-disjoint

outside V (H). Write Hatt for the resulting graph. Let H ′exp be a partition-respecting copy

of Hexp in G \ (V (Hatt ∪M ′
h)∪B). Note that we are able to find these graphs since both
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have degeneracy r − 1 and δ̂(G) ≥ (1− 1/(r + 1) + ε)n.

By Fact 4.6.3, Hatt is a partition-respecting copy of a graph obtained from H ′exp by

identifying vertices, and this is also the case for M ′
h. To see the latter, for each 1 ≤ j ≤ r,

identify all vertices of H ′exp lying in Vj. (We are able to do this since these vertices are

non-adjacent with disjoint neighbourhoods.)

Apply Lemma 4.6.1 to find an (H ′exp, Hatt)r-transformer T ′ in G − M ′
h such that

V (T ′)∩B ⊆ V (H) and |T ′| ≤ s2. Then apply Lemma 4.6.1 again to find an (H ′exp,M
′
h)r-

transformer T ′′ in G− (Hatt ∪ T ′) such that V (T ′′) ∩B ⊆ V (M ′
h) and |T ′′| ≤ s2.

Let T := T ′∪T ′′∪H ′exp∪ (Hatt−H). Then T is edge-disjoint from H ∪M ′
h. Note that

T ∪H = (T ′ ∪Hatt) ∪ (T ′′ ∪H ′exp) and

T ∪M ′
h = (T ′ ∪H ′exp) ∪ (T ′′ ∪M ′

h) ∪ (Hatt −H),

both of which have Kr-decompositions. Therefore T is an (H,M ′
h)r-transformer. More-

over, |T | ≤ 3s2. Finally, observe that V (T ) ∩B = V (T ′ ∪ T ′′ ∪Hatt) ∩B ⊆ V (H ∪M ′
h).

�

We now have all of the necessary tools to find an absorber for H in G.

Lemma 4.6.5. Let r ≥ 3 and let 1/n � η � 1/s � ε, 1/b, 1/r ≤ 1. Let G be an

r-partite graph on V = (V1, . . . , Vr) with |V1| = · · · = |Vr| = n. Suppose that δ̂(G) ≥

(1−1/(r+1)+ε)n. Let H be a Kr-divisible graph on V with |H| ≤ b. Let B ⊆ V be a set

of at most ηn vertices. Then G contains an absorber A for H such that V (A)∩B ⊆ V (H)

and |A| ≤ s3.

Proof. Let h := e(H)/
(
r
2

)
. Let G′ := G \ (V (H) ∪ B). Write hKr for the graph

consisting of h vertex-disjoint copies of Kr. Since δ̂(G′) ≥ (1− 1/(r + 1) + ε/2)n, we can

choose vertex-disjoint (partition-respecting) copies of Mh and hKr in G′ (and call these

Mh and hKr again). Use Lemma 4.6.4 to find an (H,Mh)r-transformer T ′ in G − hKr

such that V (T ′) ∩ B ⊆ V (H) and |T ′| ≤ 3s2. Apply Lemma 4.6.4 again to find an
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(hKr,Mh)r-transformer T ′′ in G− (H ∪ T ′) which avoids B and satisfies |T ′′| ≤ 3s2. It is

easy to see that T := T ′ ∪ T ′′ ∪Mh is an (H, hKr)r-transformer.

Let A := T ∪ hKr. Note that both A and A ∪ H = (T ∪ H) ∪ hKr have Kr-

decompositions. So A is an absorber for H. Moreover, V (A) ∩ B ⊆ V (T ′) ∩ B ⊆ V (H)

and |A| ≤ s3. �

4.6.1 Absorbing sets

Let H be a collection of graphs on the vertex set V = (V1, . . . , Vr). We say that A is

an absorbing set for H if A is a collection of edge-disjoint graphs and, for every H ∈ H

and every Kr-divisible subgraph H ′ ⊆ H, there is a distinct AH′ ∈ A such that AH′ is an

absorber for H ′.

Lemma 4.6.6. Let r ≥ 3 and 1/n� η � ε, 1/b, 1/r ≤ 1. Let G be an r-partite graph on

V = (V1, . . . , Vr) with |V1| = · · · = |Vr| = n. Suppose that δ̂(G) ≥ (1 − 1/(r + 1) + ε)n.

Let m ≤ ηn2 and let H be a collection of m edge-disjoint graphs on V = (V1, . . . , Vr) such

that each vertex v ∈ V appears in at most ηn of the elements of H and |H| ≤ b for each

H ∈ H. Then G contains an absorbing set A for H such that ∆(
⋃A) ≤ εn.

We repeatedly use Lemma 4.6.5 and aim to avoid any vertices which have been used

too often.

Proof. Enumerate the Kr-divisible subgraphs of all H ∈ H as H1, . . . , Hm′ . Note that

each H ∈ H can have at most 2e(H) ≤ 2(b2) Kr-divisible subgraphs so m′ ≤ 2(b2)ηn2. For

each v ∈ V (G) and each 0 ≤ j ≤ m, let s(v, j) be the number of indices 1 ≤ i ≤ j such

that v ∈ V (Hi). Note that s(v, j) ≤ 2(b2)ηn.

Let s ∈ N be such that η � 1/s � ε, 1/b, 1/r. Suppose that we have already

found absorbers A1, . . . , Aj−1 for H1, . . . , Hj−1 respectively such that |Ai| ≤ s3, for all

1 ≤ i ≤ j − 1, and, for every v ∈ V (G),

dGj−1
(v) ≤ η1/2n+ (s(v, j − 1) + 1)s3, (4.8)
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where Gj−1 :=
⋃

1≤i≤j−1Ai. We show that we can find an absorber Aj for Hj in G−Gj−1

which satisfies (4.8) with j replacing j − 1.

Let B := {v ∈ V (G) : dGj−1
(v) ≥ η1/2n}. We have

|B| ≤ 2e(Gj−1)

η1/2n
≤ 2m′

(
s3

2

)
η1/2n

≤ 2(b2)+1ηn2s6

η1/2n
≤ η1/3n.

We have

δ̂(G−Gj−1)
(4.8)

≥ (1− 1/(r + 1) + ε)n− η1/2n− (s(v, j − 1) + 1)s3

≥ (1− 1/(r + 1) + ε)n− η1/2n− (2(b2)ηn+ 1)s3 > (1− 1/(r + 1) + ε/2)n.

So we can apply Lemma 4.6.5 (with ε/2, η1/3, G−Gj−1 and Hj playing the roles of ε, η,

G and H) to find an absorber Aj for Hj in G−Gj−1 such that V (Aj) ∩ B ⊆ V (Hj) and

|Aj| ≤ s3.

We now check that (4.8) holds with j replacing j − 1. If v ∈ V (G) \ B, this is clear.

Suppose then that v ∈ B. If v ∈ V (Aj), then v ∈ V (Hj) and s(v, j) = s(v, j − 1) + 1. So

in all cases,

dGj(v) ≤ η1/2n+ (s(v, j) + 1)s3.

Continue in this way until we have found an absorber Ai for each Hi. Then A := {Ai :

1 ≤ i ≤ m′} is an absorbing set. Using (4.8),

∆
(⋃
A
)

= ∆(Gm′) ≤ η1/2n+ (2(b2)ηn+ 1)s3 ≤ εn,

as required. �
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4.7 Partitions and random subgraphs

In this section we consider a sequence P1, . . . ,P` of successively finer partitions which will

underlie our iterative absorption process. We will also construct corresponding sparse

quasirandom subgraphs Ri which will be used to ‘smooth out’ the leftover from the ap-

proximate decomposition in each step of the process.

Let G be an r-partite graph on (V1, . . . , Vr). An (α, k, δ)-partition for G on (V1, . . . , Vr)

is a partition P = {U1, . . . , Uk} of V (G) such that the following hold:

(Pa1) for each 1 ≤ j ≤ r, {U i
j : 1 ≤ i ≤ k} is an equitable partition of Vj (recall that

U i
j = U i ∩ Vj);

(Pa2) for each 1 ≤ i ≤ k, |U i
1| = · · · = |U i

r|;

(Pa3) for each v ∈ V (G), each 1 ≤ i ≤ k and each 1 ≤ j ≤ r,

|dG(v, U i
j)− dG(v, Vj)/k| < α|U i

j |;

(Pa4) for each 1 ≤ i ≤ k, each 1 ≤ j ≤ r and each v /∈ Vj, dG(v, U i
j) ≥ δ|U i

j |.

We say that P = {U1, . . . , Uk} is a k-partition if it satisfies (Pa1) and (Pa2).

The following proposition guarantees a (n−1/3/2, k, δ− n−1/3/2)-partition of any suffi-

ciently large balanced r-partite graph G with δ̂(G) ≥ δn. To prove this result, it suffices

to consider an equitable partition U1
j , U

2
j , . . . , U

k
j of Vj chosen uniformly at random (with

|U1
j | ≤ · · · ≤ |Uk

j |).

Proposition 4.7.1. Let k, r ∈ N. There exists n0 such that if n ≥ n0 and G is any

r-partite graph on (V1, . . . , Vr) with |V1| = · · · = |Vr| = n and δ̂(G) ≥ δn, then G has a

(ν, k, δ − ν)-partition, where ν := n−1/3/2.

We say that P1,P2, . . . ,P` is an (α, k, δ,m)-partition sequence for G on (V1, . . . , Vr) if,

writing P0 := {V (G)},
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(S1) for each 1 ≤ i ≤ `, Pi refines Pi−1;

(S2) for each 1 ≤ i ≤ ` and each W ∈ Pi−1, Pi[W ] is an (α, k, δ)-partition for G[W ];

(S3) for each 1 ≤ i ≤ `, all 1 ≤ j1, j2, j3 ≤ r with j1 6= j2, j3, each W ∈ Pi−1, each

U ∈ Pi[W ] and each v ∈ Wj1 ,

|dG(v, Uj2)− dG(v, Uj3)| < α|Uj1|;

(S4) for each U ∈ P` and each 1 ≤ j ≤ r, |Uj| = m or m− 1.

Note that (S2) and (Pa2) together imply that |Uj1| = |Uj2| for each 1 ≤ i ≤ `, each U ∈ Pi
and all 1 ≤ j1, j2 ≤ r.

By successive applications of Proposition 4.7.1, we immediately obtain the following

result which guarantees the existence of a suitable partition sequence (for details see

Appendix A).

Lemma 4.7.2. Let k, r ∈ N with k ≥ 2 and let 0 < α < 1. There exists m0 such that, for

all m′ ≥ m0, any Kr-divisible graph G on (V1, . . . , Vr) with |V1| = · · · = |Vr| = n ≥ km′

and δ̂(G) ≥ δn has an (α, k, δ − α,m)-partition sequence for some m′ ≤ m ≤ km′.

Suppose that we are given a k-partition P of G. The following proposition finds a

quasirandom spanning subgraph R of G so that each vertex in R has roughly the expected

number of neighbours in each set U ∈ P . The proof is an easy application of Lemma 4.2.1.

Proposition 4.7.3. Let 1/n � α, ρ, 1/k, 1/r ≤ 1. Let G be an r-partite graph on

(V1, . . . , Vr) with |V1| = · · · = |Vr| = n. Suppose that P is a k-partition for G. Let

S be a collection of at most n2 subsets of V (G). Then there exists R ⊆ G[P ] such that

for all 1 ≤ j ≤ r, all distinct x, y ∈ V (G), all U ∈ P and all S ∈ S:

• |dR(x, Uj)− ρdG[P](x, Uj)| < α|Uj|;
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• |dR({x, y}, Uj)− ρ2dG[P]({x, y}, Uj)| < α|Uj|;

• |dG(y,NR(x, Uj))− ρdG(y,NG[P](x, Uj))| < α|Uj|;

• |dR(y, Sj)− ρdG[P](y, Sj)| < αn.

We need to reserve some quasirandom subgraphs Ri of G at the start of our proof,

whilst the graph G is still almost balanced with respect to the partition sequence. We will

add the edges of Ri back after finding an approximate decomposition of G[Pi] in order

to assume the leftover from this approximate decomposition is quasirandom. The next

lemma gives us suitable subgraphs for Ri.

Lemma 4.7.4. Let 1/m � α � ρ, 1/k, 1/r ≤ 1. Let G be an r-partite graph on

(V1, . . . , Vr) with |V1| = · · · = |Vr|. Suppose that P1, . . . ,P` is a (1, k, 0,m)-partition

sequence for G. Let P0 := {V (G)} and, for each 0 ≤ q ≤ `, let Gq := G[Pq]. Then

there exists a sequence of graphs R1, . . . , R` such that Rq ⊆ Gq −Gq−1 for each q and the

following holds. For all 1 ≤ q ≤ `, all 1 ≤ j ≤ r, all W ∈ Pq−1, all distinct x, y ∈ W and

all U ∈ Pq[W ]:

(i) |dRq(x, Uj)− ρdGq(x, Uj)| < α|Uj|;

(ii) |dRq({x, y}, Uj)− ρ2dGq({x, y}, Uj)| < α|Uj|;

(iii) dG′q+1
(y,NRq(x, Uj)) ≥ ρdGq+1(y,NGq(x, Uj)) − 3ρ2|Uj|, where G′q+1 := Gq+1 − Rq+1

if q ≤ `− 1, G′`+1 := G and G`+1 := G.

Proof. For 1 ≤ q ≤ `, we say that the sequence of graphs R1, . . . , Rq is good if

Ri ⊆ Gi − Gi−1 and for all 1 ≤ i ≤ q, all 1 ≤ j ≤ r, all W ∈ Pi−1, all distinct x, y ∈ W

and all U ∈ Pi[W ]:

(a) (i) and (ii) hold (with q replaced by i);

(b) |dGi+1
(y,NRi(x, Uj))− ρdGi+1

(y,NGi(x, Uj))| < α|Uj|;

(c) if i ≤ q − 1, dRi+1
(y,NRi(x, Uj)) < ρdGi+1

(y,NRi(x, Uj)) + α|Uj|.
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Suppose 1 ≤ q ≤ ` and we have found a good sequence of graphs R1, . . . , Rq−1. We

will find Rq such that R1, . . . , Rq is good. Let W ∈ Pq−1, let S1 be the empty set and, if

q ≥ 2, let W ′ ∈ Pq−2 be such that W ⊆ W ′ and let Sq := {NRq−1(x,W ) : x ∈ W ′}. Apply

Proposition 4.7.3 (with |W |/r, Gq+1[W ], Pq[W ] and Sq playing the roles of n, G, P and

S) to find RW ⊆ Gq+1[W ][Pq[W ]] = Gq[W ] such that:

|dRW (x, Uj)− ρdGq(x, Uj)| < α|Uj|,

|dRW ({x, y}, Uj)− ρ2dGq({x, y}, Uj)| < α|Uj|,

|dGq+1(y,NRW (x, Uj))− ρdGq+1(y,NGq(x, Uj))| < α|Uj|,

|dRW (y, Sj)− ρdGq(y, Sj)| < α|Wj|, (4.9)

for all 1 ≤ j ≤ r, all distinct x, y ∈ W , all U ∈ Pq[W ] and all S ∈ Sq. Set Rq :=⋃
W∈Pq−1

RW . It is clear that R1, . . . , Rq satisfy (a) and (b). We now check that (c)

holds when 1 ≤ i = q − 1. Let 1 ≤ j ≤ r, W ∈ Pq−2, x, y ∈ W be distinct and

U ∈ Pq−1[W ]. If y /∈ U , then dRq(y, Uj) = 0 and so (c) holds. If y ∈ U , then

dRq(y,NRq−1(x, U)) = dRU (y,NRq−1(x, U)) and (c) follows by replacing W and S by U

and NRq−1(x, U) in property (4.9). So R1, . . . , Rq is good.

So G contains a good sequence of graphs R1, . . . , R`. We will now check that this

sequence also satisfies (iii). If q = `, this follows immediately from (b). Let 1 ≤ q < `,

1 ≤ j ≤ r, W ∈ Pq−1, x, y ∈ W be distinct and U ∈ Pq[W ]. We have

dRq+1(y,NRq(x, Uj))
(c)
< ρdGq+1(y,NRq(x, Uj)) + α|Uj|
(b)
< ρ2dGq+1(y,NGq(x, Uj)) + (αρ+ α)|Uj| ≤ 2ρ2|Uj|.

Therefore,

dG′q+1
(y,NRq(x, Uj)) = dGq+1(y,NRq(x, Uj))− dRq+1(y,NRq(x, Uj))

(b)

≥ ρdGq+1(y,NGq(x, Uj))− 3ρ2|Uj|.
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So R1, . . . , R` satisfy (i)–(iii). �

We apply Lemma 4.7.4 when P1, . . . ,P` is an (α, k, 1− 1/r+ ε,m)-partition sequence

for G to obtain the following result. For details of the proof, see Appendix A.

Corollary 4.7.5. Let 1/m� α� ρ, 1/k � ε, 1/r ≤ 1. Let G be a Kr-divisible graph on

(V1, . . . , Vr) with |V1| = · · · = |Vr|. Suppose that P1, . . . ,P` is an (α, k, 1 − 1/r + ε,m)-

partition sequence for G. Let P0 := {V (G)} and Gq := G[Pq] for 0 ≤ q ≤ `. There exists

a sequence of graphs R1, . . . , R` such that Rq ⊆ Gq − Gq−1 for each 1 ≤ q ≤ ` and the

following holds. For all 1 ≤ q ≤ `, all 1 ≤ j, j′ ≤ r, all W ∈ Pq−1, all distinct x, y ∈ W

and all U,U ′ ∈ Pq[W ]:

(i) dRq(x, Uj) < ρdGq(x, Uj) + α|Uj|;

(ii) dRq({x, y}, Uj) < (ρ2 + α)|Uj|;

(iii) if x /∈ U ∪ U ′ ∪ Vj ∪ Vj′, |dRq(x, Uj)− dRq(x, U ′j′)| < 3α|Uj|;

(iv) if x /∈ U , y ∈ U and x, y /∈ Vj, then

dG′q+1
(y,NRq(x, Uj)) ≥ ρ(1− 1/(r − 1))dGq(x, Uj) + ρ5/4|Uj|,

where G′q+1 := Gq+1 −Rq+1 if q ≤ `− 1 and G′`+1 := G.

4.8 A remainder of low maximum degree

The aim of this section is to prove the following lemma which lets us assume that the

remainder of G after finding an η-approximate decomposition has small maximum degree.

Lemma 4.8.1. Let 1/n � α � η � γ � ε < 1/r < 1. Let G be an r-partite graph on

(V1, . . . , Vr) with |V1| = · · · = |Vr| = n and δ̂(G) ≥ (δ̂ηKr + ε)n. Suppose also that, for all

1 ≤ j1, j2 ≤ r and every v /∈ Vj1 ∪ Vj2,

|dG(v, Vj1)− dG(v, Vj2)| < αn. (4.10)
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Then there exists H ⊆ G such that G−H has a Kr-decomposition and ∆(H) ≤ γn.

Our strategy for the proof of Lemma 4.8.1 is as follows. We first remove a sparse

random subgraph H of G and then choose an η-approximate Kr-decomposition of G−H.

Now consider the remainder R obtained from G by deleting all edges in the copies of Kr

in this decomposition. Suppose that v is a vertex whose degree in R is too high. Our

aim will be to find a Kr−1-matching in a sparse random subgraph whose vertex set is

the neighbourhood of v in G. Each vertex in this random subgraph sees, on average, at

most ρdG(v)/(r − 1) � (1 − 1/(r − 1) + ε)dG(v)/(r − 1) vertices in each other part, so

Theorem 4.6.2 alone is of no use. But Theorem 4.6.2 can be combined with the Regularity

lemma in order to find the desired Kr-matching.

4.8.1 Regularity

In this section, we introduce a version of the Regularity lemma which we will use to prove

Lemma 4.8.1.

Let G be a bipartite graph on (A,B). For non-empty sets X ⊆ A, Y ⊆ B, we define

the density of G[X, Y ] to be dG(X, Y ) := eG(X, Y )/|X||Y |. Let ε > 0. We say that G is

ε-regular if for all sets X ⊆ A and Y ⊆ B with |X| ≥ ε|A| and |Y | ≥ ε|B| we have

|dG(A,B)− dG(X, Y )| < ε.

The following simple result follows immediately from this definition.

Proposition 4.8.2. Suppose that 0 < ε ≤ α ≤ 1/2. Let G be a bipartite graph on (A,B).

Suppose that G is ε-regular with density d. If A′ ⊆ A,B′ ⊆ B with |A′| ≥ α|A| and

|B′| ≥ α|B| then G[A′, B′] is ε/α-regular and has density greater than d− ε.

Proposition 4.8.2 shows that regularity is robust, that is, it is not destroyed by deleting

a small number of vertices. The next observation allows us to delete a small number of
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edges at each vertex and still maintain regularity. The proof again follows from the

definition.

Proposition 4.8.3. Let n ∈ N and let 0 < γ � ε ≤ 1. Let G be a bipartite graph on

(A,B) with |A| = |B| = n. Suppose that G is ε-regular with density d. Let H ⊆ G with

∆(H) ≤ γn and let G′ := G − H. Then G′ is 2ε-regular and has density greater than

d− ε/2.

The following proposition takes a graph G on (V1, . . . , Vr) where each pair of vertex

classes induces an ε-regular pair and allows us to find a Kr-matching covering most of the

vertices in G. Part (i) follows from Proposition 4.8.2 and the definition of regularity. For

(ii), apply (i) repeatedly until only dε1/rne vertices remain uncovered in each Vj.

Proposition 4.8.4. Let 1/n � ε � d, 1/r ≤ 1. Let G be an r-partite graph on

(V1, . . . , Vr) with |V1| = · · · = |Vr| = n. Suppose that, for all 1 ≤ j1 < j2 ≤ r, the

graph G[Vj1 , Vj2 ] is ε-regular with density at least d.

(i) For each 1 ≤ j ≤ r, let Wj ⊆ Vj with |Wj| = dε1/rne. Then G[W1, . . . ,Wr] contains

a copy of Kr.

(ii) The graph G contains a Kr-matching which covers all but at most 2rε1/rn vertices

of G.

We will use a version of Szemerédi’s Regularity lemma [73] stated for r-partite graphs.

It is proved in the same way as the non-partite degree version.

Lemma 4.8.5 (Degree form of the r-partite Regularity lemma). Let 0 < ε < 1 and

k0, r ∈ N. Then there is an N = N(ε, k0, r) such that the following holds for every

0 ≤ d < 1 and for every r-partite graph G on (V1, . . . , Vr) with |V1| = · · · = |Vr| = n ≥ N .

There exists a partition P = {U0, . . . , Uk} of V (G), m ∈ N and a spanning subgraph G′

of G satisfying the following:

(i) k0 ≤ k ≤ N ;
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(ii) for each 1 ≤ j ≤ r, |U0
j | ≤ εn;

(iii) for each 1 ≤ i ≤ k and each 1 ≤ j ≤ r, |U i
j | = m;

(iv) for each 1 ≤ j ≤ r and each v ∈ V (G), dG′(v, Vj) > dG(v, Vj)− (d+ ε)n;

(v) for all but at most εk2 pairs U i1
j1
, U i2

j2
where 1 ≤ i1, i2 ≤ k and 1 ≤ j1 < j2 ≤ r, the

graph G′[U i1
j1
, U i2

j2
] is ε-regular and has density either 0 or > d.

We define the reduced graph R as follows. The vertex set of R is the set of clusters

{U i
j : 1 ≤ i ≤ k and 1 ≤ j ≤ r}. For each U,U ′ ∈ V (R), UU ′ is an edge of R if the

subgraph G′[U,U ′] is ε-regular and has density greater than d. Note that R is a balanced

r-partite graph with vertex classes Wj := {U i
j : 1 ≤ i ≤ k} for 1 ≤ j ≤ r. The following

simple proposition relates the minimum degree of G and the minimum degree of R.

Proposition 4.8.6. Suppose that 0 < 2ε ≤ d ≤ c/2. Let G be an r-partite graph on

(V1, . . . , Vr) with |V1| = · · · = |Vr| = n and δ̂(G) ≥ cn. Suppose that G has a partition

P = {U0, . . . , Uk} and a subgraph G′ ⊆ G as given by Lemma 4.8.5. Let R be the reduced

graph of G. Then δ̂(R) ≥ (c− 2d)k.

Proof. Let Wj := {U i
j : 1 ≤ i ≤ k}, where 1 ≤ j ≤ r, be the vertex classes of R. Let

1 ≤ j1, j2 ≤ r be such that j1 6= j2. Consider any U ∈ Wj1 and let x ∈ U . We observe

that x has neighbours in at least (dG′(x, Vj2) − |U0
j2
|)/m different clusters in Wj2 in G′.

By Lemma 4.8.5(v) and the definition of R, U is a neighbour of each of these clusters in

R. So we have

dR(U,Wj2) ≥ (dG′(x, Vj2)− |U0
j2
|)/m ≥ (dG′(x, Vj2)− εn)/m.

From Lemma 4.8.5(iv), we also have that

dG′(x, Vj2) > dG(x, Vj2)− (d+ ε)n ≥ (c− (d+ ε))n.
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Combining these inequalities, we obtain that

dR(U,Wj2) ≥ (c− (d+ 2ε))n/m ≥ (c− 2d)k

and hence δ̂(R) ≥ (c− 2d)k. �

4.8.2 Degree reduction

At the beginning of our proof of Lemma 4.8.1, we will reserve a random subgraph H of G.

Proposition 4.8.8 below ensures that we can partition the neighbourhood of each vertex

so that H induces ε-regular graphs between these parts. In our proof of Proposition 4.8.8,

we will use the following well-known result for which we omit the proof.

Proposition 4.8.7. Let 1/n � ε � d, ρ ≤ 1. Let G be a bipartite graph on (A,B) with

|A| = |B| = n. Suppose that G is ε-regular with density at least d. Let H be a graph

formed by taking each edge of G independently with probability ρ. Then, with probability

at least 1− 1/n2, H is 4ε-regular with density at least ρd/2.

Proposition 4.8.8. Let 1/n� α � 1/N � 1/k0 ≤ ε∗ � d� ρ < ε, 1/r < 1. Let G be

an r-partite graph on (V1, . . . , Vr) with |V1| = · · · = |Vr| = n and δ̂(G) ≥ (1 − 1/r + ε)n.

Suppose that for all 1 ≤ j1, j2 ≤ r and every v /∈ Vj1 ∪ Vj2, |dG(v, Vj1)− dG(v, Vj2)| < αn.

Then there exists H ⊆ G satisfying the following properties:

(i) For each 1 ≤ j ≤ r and each v ∈ V (G), |dH(v, Vj)−ρdG(v, Vj)| < αn. In particular,

for any 1 ≤ j1, j2 ≤ r such that v /∈ Vj1 ∪ Vj2, |dH(v, Vj1)− dH(v, Vj2)| < 3αn.

(ii) For each vertex v ∈ V (G), there exists a partition P(v) = {U0(v), . . . , Ukv(v)} of

NG(v) and mv ∈ N such that:

• k0 ≤ kv ≤ N ;

• for each 1 ≤ j ≤ r, |U0
j (v)| ≤ ε∗n;
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• for each 1 ≤ i ≤ kv and each 1 ≤ j ≤ r such that v /∈ Vj, |U i
j(v)| = mv;

• for each 1 ≤ i ≤ kv and all 1 ≤ j1 < j2 ≤ r such that v /∈ Vj1 ∪ Vj2, the graph

H[U i
j1

(v), U i
j2

(v)] is ε∗-regular with density greater than d.

Roughly speaking, (ii) says that for each v ∈ V (G) the reduced graph of H[NG(v)]

has a perfect Kr−1-matching.

Proof. Let H be the graph formed by taking each edge of G independently with

probability ρ. For each 1 ≤ j ≤ r and each v ∈ V (G), Lemma 4.2.1 gives

P(|dH(v, Vj)− ρdH(v, Vj)| ≥ αn) ≤ 2e−2α2n < 1/rn2.

So the probability that there exist 1 ≤ j ≤ r and v ∈ V (G) such that |dH(v, Vj) −

ρdG(v, Vj)| ≥ αn is at most rn/rn2 = 1/n. Let 1 ≤ j1, j2 ≤ r. Note that if v /∈ Vj1 ∪ Vj2
and |dH(v, Vj)− ρdG(v, Vj)| < αn for j = j1, j2, then

|dH(v, Vj1)− dH(v, Vj2)| < |ρdG(v, Vj1)− ρdG(v, Vj2)|+ 2αn < 3αn.

So H satisfies (i) with probability at least 1− 1/n.

We will now show that H satisfies (ii) with probability at least 1/2. We find partitions

of the neighbourhood of each vertex v ∈ V (G) as follows. To simplify notation, we will

assume that v ∈ V1 (the argument is identical for the other cases). For all 2 ≤ j1, j2 ≤ r,

we have |dG(v, Vj1) − dG(v, Vj2)| < αn. So, there exists nv and, for each 2 ≤ j ≤ r, a

subset Vj(v) ⊆ NG(v, Vj) such that |Vj(v)| > dG(v, Vj)− αn and

|Vj(v)| = nv ≥ δ̂(G) ≥ (1− 1/r)n.

Let Gv denote the balanced (r − 1)-partite graph G[V2(v), . . . , Vr(v)]. Note that

δ̂(Gv) ≥ nv −
n

r
+ εn ≥

(
1− 1

r − 1
+ ε

)
nv. (4.11)
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Apply Lemma 4.8.5 (with ε∗/4, 2d/ρ, k0 and Gv playing the roles of ε, d, k0 and G)

to find a partition Q(v) = {W 0(v), . . . ,W kv(v)} of V (Gv) satisfying properties (i)–(v) of

Lemma 4.8.5. Let mv := |W 1
2 (v)|. Let Rv denote the reduced graph corresponding to this

partition. Proposition 4.8.6 together with (4.11) implies that

δ̂(Rv) ≥ (1− 1/(r − 1) + ε/2)kv.

So we can use Theorem 4.6.2 to find a perfect Kr−1-matching Mv in Rv. Let U0(v) :=

W 0(v) ∪ (NG(v) \ V (Gv)). Note that for each 2 ≤ j ≤ r, |U0
j | < |W 0

j | + αn ≤ ε∗n. Let

P(v) := {U0(v), . . . , Ukv(v)} be a partition of NG(v) which is chosen such that, for each

1 ≤ i ≤ kv, {U i
j(v) : 2 ≤ j ≤ r} induces a copy of Kr−1 in Mv. By the definition of Rv,

for each 1 ≤ i ≤ kv and all 2 ≤ j1 < j2 ≤ r, the graph G[U i
j1

(v), U i
j2

(v)] is ε∗/4-regular

with density greater than 2d/ρ.

Fix 1 ≤ i ≤ kv and 2 ≤ j1 < j2 ≤ r. Proposition 4.8.7 (with mv, ε
∗/4, 2d/ρ,

G[U i
j1

(v), U i
j2

(v)] and H[U i
j1

(v), U i
j2

(v)] playing the roles of n, ε, d, G and H) gives that

H[U i
j1

(v), U i
j2

(v)] is ε∗-regular and has density greater than d with probability at least

1− 1/m2
v.

We require the graph H[U i
j1

(v), U i
j2

(v)] to be ε∗-regular with density greater than d

for every edge U i
j1

(v)U i
j2

(v) ∈ E(Mv). There are kv choices for i and, for each i, there are(
r−1

2

)
choices for j1 and j2. So the probability that, for fixed v ∈ V (G), there exists an

edge U i
j1

(v)U i
j2

(v) ∈ E(Mv) which fails to be ε∗-regular with density greater than d is at

most

kvr
2 1

m2
v

<
1

2rn
.

We multiply this probability by rn for each of the rn choices of v to see that H satisfies

property (ii) with probability at least 1 − rn/2rn = 1/2. Hence, the graph H satisfies

both (i) and (ii) with probability at least 1/2− 1/n > 0. So we can choose such a graph

H. �

In order to find an η-approximate Kr-decomposition in a graph G, we would like to
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use the definition of δ̂ηKr which requires G to be Kr-divisible. The next proposition shows

that, provided that dG(v, Vj1) is close to dG(v, Vj2) for all 1 ≤ j1, j2 ≤ r and v /∈ Vj1 ∪ Vj2 ,

G can be made Kr-divisible by removing only a small number of edges.

Proposition 4.8.9. Let 1/n � α � γ � 1/r < 1. Let G be an r-partite graph on

(V1, . . . , Vr) with |V1| = · · · = |Vr| = n and δ̂(G) ≥ (1/2 + 2γ/r)n. Suppose that, for all

1 ≤ j1, j2 ≤ r and every v ∈ V (G) \ (Vj1 ∪ Vj2), |dG(v, Vj1)− dG(v, Vj2)| < αn. Then there

exists H ⊆ G such that G−H is Kr-divisible and ∆(H) ≤ γn.

To prove Proposition 4.8.9, we require the following result whose proof is based on the

Max-Flow-Min-Cut theorem.

Proposition 4.8.10. Suppose that 1/n � α � ξ � 1. Let G be a bipartite graph on

(A,B) with |A| = |B| = n. Suppose that δ(G) ≥ (1/2 + 4ξ)n. For every vertex v ∈ V (G),

let nv ∈ N be such that (ξ − α)n ≤ nv ≤ (ξ + α)n and such that
∑

a∈A na =
∑

b∈B nb.

Then G contains a spanning graph G′ such that dG′(v) = nv for every v ∈ V (G).

Proof. We will use the Max-Flow-Min-Cut theorem. Orient every edge of G towards

B and give each edge capacity one. Add a source vertex s∗ which is attached to every

vertex a ∈ A by an edge of capacity na. Add a sink vertex t∗ which is attached to every

vertex in b ∈ B by an edge of capacity nb. Let c0 :=
∑

a∈A na =
∑

b∈B nb. Note that

an integer-valued c0-flow corresponds to the desired spanning graph G′ in G. So, by the

Max-Flow-Min-Cut theorem, it suffices to show that every cut has capacity at least c0.

Consider a minimal cut C. Let S ⊆ A be the set of all vertices a ∈ A for which

s∗a /∈ C and let T ⊆ B be the set of all b ∈ B for which bt∗ /∈ C. Let S ′ := A \ S and

T ′ := B \ T . Then C has capacity

c :=
∑
s∈S′

ns + eG(S, T ) +
∑
t∈T ′

nt.

First suppose that |S| ≥ (1/2 − 2ξ)n. In this case, since δ(G) ≥ (1/2 + 4ξ)n, each
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vertex in T receives at least 2ξn edges from S. So

c ≥
∑
t∈T ′

nt + 2|T |ξn ≥
∑
t∈T ′

nt + |T |(ξ + α)n ≥ c0.

A similar argument works if |T | ≥ (1/2− 2ξ)n. Suppose then that |S|, |T | < (1/2− 2ξ)n.

Then |S ′|, |T ′| > (1/2 + 2ξ)n and

c ≥
∑
s∈S′

ns +
∑
t∈T ′

nt ≥ (|S ′|+ |T ′|)(ξ − α)n > (n+ 4ξn)(ξ − α)n ≥ (ξ + α)n2 ≥ c0,

as required. �

We now use Proposition 4.8.10 to prove Proposition 4.8.9.

Proof of Proposition 4.8.9. For each v ∈ V (G), let

mv := min{dG(v, Vj) : 1 ≤ j ≤ r with v /∈ Vj}.

For each 1 ≤ j ≤ r and each v /∈ Vj, let av,j := dG(v, Vj)−mv. Note that,

0 ≤ av,j < αn. (4.12)

For each 1 ≤ j ≤ r, let Nj :=
∑

v∈Vj mv. We have, for any 1 ≤ j1, j2 ≤ r,

|Nj1 −Nj2 | =

∣∣∣∣∣∣
∑
v∈Vj1

(dG(v, Vj2)− av,j2)−
∑
v∈Vj2

(dG(v, Vj1)− av,j1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
v∈Vj1

av,j2 −
∑
v∈Vj2

av,j1

∣∣∣∣∣∣ (4.12)
< αn2. (4.13)

Let N := min{Nj : 1 ≤ j ≤ r} and, for each 1 ≤ j ≤ r, let Mj := Nj − N . Note that

(4.13) implies 0 ≤ Mj < αn2. For each 1 ≤ j ≤ r and each v ∈ Vj, choose pv ∈ N to be
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as equal as possible such that
∑

v∈Vj pv = Mj. Then

0 ≤ pv < αn+ 1. (4.14)

Let ξ := γ/2r. For each 1 ≤ j ≤ r and each v /∈ Vj, let

nv,j := dξne+ av,j + pv.

Using (4.12) and (4.14), we see that,

ξn ≤ nv,j ≤ (ξ + 3α)n. (4.15)

We will consider each pair 1 ≤ j1 < j2 ≤ r separately and choose Hj1,j2 = H[Vj1 , Vj2 ].

Fix 1 ≤ j1 < j2 ≤ r and observe that,

∑
v∈Vj1

nv,j2 =
∑
v∈Vj1

(dξne+ av,j2 + pv) = dξnen+
∑
v∈Vj1

av,j2 +Mj1

= dξnen+Mj1 +
∑
v∈Vj1

(dG(v, Vj2)−mv) = dξnen+Mj1 + eG(Vj1 , Vj2)−Nj1

= dξnen−N + eG(Vj1 , Vj2) =
∑
v∈Vj2

nv,j1 .

Let Gj1,j2 := G[Vj1 , Vj2 ] and note that δ(Gj1,j2) ≥ (1/2 + 4ξ)n. Apply Proposition 4.8.10

(with 3α, ξ, Gj1,j2 , Vj1 and Vj2 playing the roles of α, ξ, G, A and B) to find Hj1,j2 ⊆ Gj1,j2

such that dHj1,j2 (v) = nv,j2 for every v ∈ Vj1 and dHj1,j2 (v) = nv,j1 for every v ∈ Vj2 .

Let H :=
⋃

1≤j1<j2≤rHj1,j2 . By (4.15), we have ∆(H) ≤ 2rξn = γn. For any 1 ≤ j ≤ r

and any v /∈ Vj, we have

dG−H(v, Vj) = dG(v, Vj)− dH(v, Vj) = dG(v, Vj)− nv,j

= dG(v, Vj)− dξne − dG(v, Vj) +mv − pv = mv − pv − dξne.
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So G−H is Kr-divisible. �

We now have all the necessary tools to prove Lemma 4.8.1. This lemma finds an

approximate Kr-decomposition which covers all but at most γn edges at any vertex.

Proof of Lemma 4.8.1. The lemma trivially holds if r = 2, so we may assume that

r ≥ 3. In particular, by Proposition 4.3.1, δ̂(G) ≥ (1−1/(r+1)+ε/2)n. Choose constants

N , k0, ε∗, d and ρ satisfying

η � 1/N � 1/k0 ≤ ε∗ � d� ρ� γ.

Apply Proposition 4.8.8 to find a subgraph H1 ⊆ G satisfying properties (i)–(ii).

Let G1 := G − H1. Using (4.10) and that H1 satisfies Proposition 4.8.8(i), for all

1 ≤ j1, j2 ≤ r and each v /∈ Vj1 ∪ Vj2 ,

|dG1(v, Vj1)− dG1(v, Vj2)| ≤ |dG(v, Vj1)− dG(v, Vj2)|+ |dH1(v, Vj1)− dH1(v, Vj2)|

< αn+ 3αn = 4αn.

Note also that δ̂(G1) ≥ 3n/4. So we can apply Proposition 4.8.9 (with G1, 4α and γ/2

playing the roles of G, α and γ) to obtain H2 ⊆ G1 such that G1 − H2 is Kr-divisible

and ∆(H2) ≤ γn/2. Then δ̂(G1 −H2) ≥ (δ̂ηKr + ε/2)n, so we can find an η-approximate

Kr-decomposition F of G1 −H2.

Let G2 := G1−H2−
⋃F be the graph consisting of all the remaining edges in G1−H2.

Let

B := {v ∈ V (G) : dG2(v) > η1/2n}.

Note that

|B| ≤ 2e(G2)/η1/2n ≤ 2η1/2n. (4.16)

Let F1 := {F ∈ F : F ∩B = ∅} and let G3 := G−⋃F1. If v ∈ B, then NG3(v) = NG(v).

Suppose that v /∈ B. For any u ∈ B, at most one copy of Kr in F \ F1 can contain both
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u and v. So there can be at most (r − 1)|B| edges in
⋃

(F \ F1) that are incident to v

and so

dG3(v) ≤ dH1(v) + dH2(v) + dG2(v) + (r − 1)|B|

≤ (r − 1)(ρ+ α)n+ γn/2 + η1/2n+ 2(r − 1)η1/2n ≤ γn. (4.17)

Label the vertices of B = {v1, v2, . . . , v|B|}. We will use copies of Kr to cover most

of the edges at each vertex vi in turn. We do this by finding a Kr−1-matching Mi in

H1[NG3(vi)] = H1[NG(vi)] in turn for each i. Suppose that we are currently considering

v := vi and let M :=
⋃

1≤j<iMj. To simplify notation, we will assume that v ∈ V1 (the

proof in the other cases is identical).

Let P(v) = {U0(v), . . . , Ukv(v)} be a partition ofNG(v) satisfying Proposition 4.8.8(ii).

We can choose a partition Q(v) = {W 0(v), . . . ,W kv(v)} of NG(v) and m′v ≥ mv − |B|

such that, for each 1 ≤ i ≤ kv:

• W i(v) ⊆ U i(v);

• W i(v) ∩B = ∅;

• for each 2 ≤ j ≤ r, |W i
j (v)| = m′v.

Note that, using (4.16), |W 0(v)| ≤ |U0(v)|+ |B|kvr ≤ r(ε∗n+ 2η1/2nkv) ≤ 2ε∗rn.

By Proposition 4.8.8(ii), for each 1 ≤ i ≤ kv and all 2 ≤ j1 < j2 ≤ r, the graph

H1[U i
j1

(v), U i
j2

(v)] is ε∗-regular with density greater than d. So Proposition 4.8.2 implies

that H1[W i
j1

(v),W i
j2

(v)] is 2ε∗-regular with density greater than d/2. Let H ′1 := H1 −

M. Using (4.16), we have ∆(M[W i
j1

(v),W i
j2

(v)]) ≤ |B| ≤ η1/3m′v. So we can apply

Proposition 4.8.3 (with m′v, η
1/3 and 2ε∗ playing the roles of n, γ and ε) to see that

H ′1[W i
j1

(v),W i
j2

(v)] is 4ε∗-regular with density greater than d/3.

We use Proposition 4.8.4 (with m′v, 4ε∗, d/3 and r − 1 playing the roles of n, ε, d

and r) to find a Kr−1-matching covering all but at most 2(r − 1)(4ε∗)1/(r−1)m′v vertices

in H ′1[W i(v)] for each 1 ≤ i ≤ kv. Write Mi for the union of these Kr−1-matchings over
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1 ≤ i ≤ kv. Note that Mi covers all but at most

|W 0(v)|+ 2(r − 1)(4ε∗)1/(r−1)m′vkv ≤ 2ε∗rn+ 2(r − 1)(4ε∗)1/(r−1)n ≤ γn (4.18)

vertices in NG(v).

Continue to find edge-disjoint M1, . . . ,M|B|. For each 1 ≤ i ≤ |B|, M ′
i := {vi ∪ K :

K ∈ Mi} is an edge-disjoint collection of copies of Kr in G3 covering all but at most γn

edges at vi in G. Write M′ :=
⋃

1≤i≤|B|M
′
i and let H := G3 −

⋃M′ = G−⋃(F1 ∪M′).

Then G − H =
⋃

(F1 ∪ M′) has a Kr-decomposition and ∆(H) ≤ γn, by (4.17) and

(4.18). �

4.9 Covering a pseudorandom remainder between

vertex classes

After applying Lemma 4.8.1, we are left with a graph H such that H[P ] has low maximum

degree. We will add a suitable quasirandom graph R to H to be able to assume that the

remainder H ′ = R∪H is actually quasirandom. The results in this section will allow us to

cover any remaining edges in H ′[P ] using only a small number of edges from H ′−H ′[P ].

This is done by finding, for each x ∈ V (G), suitable vertex-disjoint copies of Kr−1 inside

H ′ − H ′[P ] such that each copy of Kr−1 forms a copy of Kr together with the edges

incident to x in H ′[P ].

Lemma 4.9.1. Let r ≥ 2 and 1/n � 1/k, 1/r, ρ ≤ 1. Let G be an r-partite graph on

(V1, . . . , Vr) with |V1| = · · · = |Vr| = n. Let q ≤ krn and let W 1, . . . ,W q ⊆ V (G). Suppose

that:

(i) for each 1 ≤ i ≤ q, there exists 1 ≤ ji ≤ r and ni ∈ N such that, for each 1 ≤ j ≤ r,

|W i
j | = 0 if j = ji and |W i

j | = ni otherwise;

(ii) for each 1 ≤ i ≤ q, δ̂(G[W i]) ≥ (1− 1/(r − 1))ni + 9kr2ρ3/2n;
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(iii) for all 1 ≤ i1 < i2 ≤ q, |W i1 ∩W i2| ≤ 2rρ2n;

(iv) each v ∈ V (G) is contained in at most 2kρn of the W i.

Then there exist edge-disjoint T1, . . . , Tq in G such that each Ti is a perfect Kr−1-matching

in G[W i].

The W i in Lemma 4.9.1 will play the role of vertex neighbourhoods later on. The proof

of Lemma 4.9.1 is similar to that of Lemma 10.7 in [7], we include it here for completeness.

We will use the following result.

Proposition 4.9.2 (Jain, see [68, Lemma 8]). Let X1, . . . , Xn be Bernoulli random vari-

ables such that, for any 1 ≤ s ≤ n and any x1, . . . , xs−1 ∈ {0, 1},

P(Xs = 1 | X1 = x1, . . . , Xs−1 = xs−1) ≤ p.

Let X =
∑n

s=1Xi and let B ∼ B(n, p). Then P(X ≥ a) ≤ P(B ≥ a) for any a ≥ 0.

Proof of Lemma 4.9.1. Set t := d8krρ3/2ne. Let Gi := G[W i] for 1 ≤ i ≤ q. Suppose

we have already found T1, . . . Ts−1 for some 1 ≤ s ≤ q. We find Ts as follows.

Let Hs−1 :=
⋃s−1
i=1 Ti and G′s := Gs − Hs−1[W s]. If ∆(Hs−1[W s]) > (r − 2)ρ3/2n, let

T ′1, . . . , T
′
t be empty graphs on W s. Otherwise, (ii) implies

δ̂(G′s) ≥
(
1− 1

r − 1

)
ns + 8kr2ρ3/2n ≥

(
1− 1

r − 1
+ ρ3/2

)
ns + (r − 2)(t− 1)

and we can greedily find t edge-disjoint perfect Kr−1-matchings T ′1, . . . , T
′
t in G′s using

Theorem 4.6.2. In either case, pick 1 ≤ i ≤ t uniformly at random and set Ts := T ′i . It

suffices to show that, with positive probability,

∆(Hs−1[W s]) ≤ (r − 2)ρ3/2n for all 1 ≤ s ≤ q.

Consider any 1 ≤ i ≤ q and any w ∈ W i. For 1 ≤ s ≤ q, let Y i,w
s be the indicator

function of the event that Ts contains an edge incident to w in Gi. Let X i,w :=
∑q

s=1 Y
i,w
s .
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Note dHq(w,W
i) ≤ (r − 2)X i,w. So it suffices to show that, with positive probability,

X i,w ≤ ρ3/2n for all 1 ≤ i ≤ q and all w ∈ W i.

Fix 1 ≤ i ≤ q and w ∈ W i. Let J i,w be the set of indices s 6= i such that w ∈ W s; (iv)

implies |J i,w| < 2kρn. If s /∈ J i,w ∪ {i}, then w /∈ W s and Y i,w
s = 0. So

X i,w ≤ 1 +
∑
s∈Ji,w

Y i,w
s . (4.19)

Let s1 < · · · < s|Ji,w| be an enumeration of J i,w. For any b ≤ |J i,w|, note that

dGsb (w,W
i) ≤ |W i ∩W sb|

(iii)

≤ 2rρ2n.

So at most 2rρ2n of the subgraphs T ′j that we picked in G′sb contain an edge incident to

w in Gi. Thus

P(Y i,w
sb

= 1 | Y i,w
s1

= y1, . . . , Y
i,w
sb−1

= yb−1) ≤ 2rρ2n/t ≤ ρ1/2/4k

for all y1, . . . , yb−1 ∈ {0, 1} and 1 ≤ b ≤ |J i,w|. Let B ∼ B(|J i,w|, ρ1/2/4k). Using Propo-

sition 4.9.2, Lemma 4.2.1 and that |J i,w| ≤ 2kρn, we see that

P(X i,w > ρ3/2n)
(4.19)

≤ P(
∑
s∈Ji,w

Y i,w
s > 3ρ3/2n/4) ≤ P(B > 3ρ3/2n/4)

≤ P(|B − E(B)| > ρ3/2n/4) ≤ 2e−ρ
2n/16k.

There are at most qrn ≤ kr2n2 pairs (i, w), so there is a choice of T1, . . . , Tq such that

X i,w ≤ ρ3/2n for all 1 ≤ i ≤ q and all w ∈ W i. �

The following is an immediate consequence of Lemma 4.9.1.

Corollary 4.9.3. Let r ≥ 2 and 1/n � 1/k, 1/r, ρ ≤ 1. Let G be an r-partite graph on

(V1, . . . , Vr) with |V1| = · · · = |Vr| = n. Let U,W ⊆ V (G) be disjoint with |W1| = · · · =

|Wr| ≥ bn/kc. Suppose the following hold:
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(i) for all 1 ≤ j1, j2 ≤ r and all x ∈ U \ (Vj1 ∪ Vj2), dG(x,Wj1) = dG(x,Wj2);

(ii) for all 1 ≤ j ≤ r and all x ∈ U \ Uj, δ̂(G[NG(x,W )]) ≥ (1− 1/(r − 1))dG(x,Wj) +

9krρ3/2|W |;

(iii) for all distinct x, x′ ∈ U , |NG(x,W ) ∩NG(x′,W )| ≤ 2ρ2|W |;

(iv) for all y ∈ W , dG(y, U) ≤ 2kρ|W1|.

Then there exists GW ⊆ G[W ] such that G[U,W ] ∪ GW has a Kr-decomposition and

∆(GW ) ≤ 2krρ|W1|.

Proof. Let q := |U | and let u1, . . . , uq be an enumeration of U . For each 1 ≤ i ≤ q,

let W i := NG(ui,W ). Note that q ≤ kr|W1|. Apply Lemma 4.9.1 (with G[W ] and |W1|

playing the roles of G and n) to obtain edge-disjoint perfect Kr−1-matchings Ti in each

G[W i]. Let GW :=
⋃q
i=1 Ti. Then G[U,W ] ∪ GW has a Kr-decomposition. For each

y ∈ W , we use (iv) to see that dGW (y) ≤ (r − 1)dG(y, U) < 2krρ|W1|. �

If we are given a k-partition P of the r-partite graph G, we can apply Corollary 4.9.3

repeatedly with each U ∈ P playing the role of W to obtain the following result.

Corollary 4.9.4. Let r ≥ 2 and 1/n � ρ � 1/k, 1/r ≤ 1. Let G be an r-partite graph

on (V1, . . . , Vr) with |V1| = · · · = |Vr| = n. Let P = {U1, . . . , Uk} be a k-partition for G.

Suppose that the following hold for all 2 ≤ i ≤ k:

(i) for all 1 ≤ j1, j2 ≤ r and all x ∈ U<i \ (Vj1 ∪ Vj2), dG(x, U i
j1

) = dG(x, U i
j2

);

(ii) for all 1 ≤ j ≤ r and all x ∈ U<i \ Vj, δ̂(G[NG(x, U i)] ≥ (1− 1/(r − 1))dG(x, U i
j) +

9krρ3/2|U i|;

(iii) for all distinct x, x′ ∈ U<i, |NG(x, U i) ∩NG(x′, U i)| ≤ 2ρ2|U i|;

(iv) for all y ∈ U i, dG(y, U<i) ≤ 2kρ|U i
1|.

Then there exists G0 ⊆ G − G[P ] such that G[P ] ∪ G0 has a Kr-decomposition and

∆(G0) ≤ 3rρn.
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Proof. For each 2 ≤ i ≤ k, let Gi := G[U<i, U i] ∪G[U i]. Apply Corollary 4.9.3 to each

Gi with U<i, U i playing the roles of U , W to obtain G′i ⊆ G[U i] such that G[U<i, U i]∪G′i
has a Kr-decomposition and ∆(G′i) ≤ 2krρdn/ke ≤ 3rρn. Let G0 :=

⋃k
i=2G

′
i . Then

G[P ] ∪G0 has a Kr-decomposition and ∆(G0) ≤ 3rρn. �

4.10 Balancing graph

In our proof we will consider a sequence of successively finer partitions P1, . . . ,P` in turn.

When considering Pi, we will assume the leftover is a subgraph of G − G[Pi−1] and aim

to use Lemma 4.8.1 and then Corollary 4.9.4 to find copies of Kr such that the leftover is

now contained in G−G[Pi] (i.e. inside the smaller partition classes). However, to apply

Corollary 4.9.4 we need the leftover to be balanced with respect to the partition classes.

In this section we show how this can be achieved.

Let P = {U1, . . . , Uk} be a k-partition of the vertex set V = (V1, . . . , Vr) with |V1| =

· · · = |Vr| = n. We say that a graph H on (V1, . . . , Vr) is locally P-balanced if

dH(v, U i
j1

) = dH(v, U i
j2

)

for all 1 ≤ i ≤ k, all 1 ≤ j1, j2 ≤ r and all v ∈ U i \ (Vj1 ∪ Vj2). Note that a graph which

is locally P-balanced is not necessarily Kr-divisible but that H[U i] is Kr-divisible for all

1 ≤ i ≤ k.

Let γ > 0. A (γ,P)-balancing graph is a Kr-decomposable graph B on V such that

the following holds. Let H be any Kr-divisible graph on V with:

(P1) e(H ∩B) = 0;

(P2) |dH(v, U i
j1

)−dH(v, U i
j2

)| < γn for all 1 ≤ i ≤ k, all 1 ≤ j1, j2 ≤ r and all v /∈ Vj1∪Vj2 .

Then there exists B′ ⊆ B such that B −B′ has a Kr-decomposition and

dH∪B′(v, U
i
j1

) = dH∪B′(v, U
i
j2

)
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for all 2 ≤ i ≤ k, all 1 ≤ j1, j2 ≤ r and all v ∈ U<i \ (Vj1 ∪ Vj2).

Our aim in this section will be to prove Lemma 4.10.1 which finds a (γ,P)-balancing

graph in a suitable graph G.

Lemma 4.10.1. Let 1/n � γ � γ′ � 1/k � ε � 1/r ≤ 1/3. Let G be an r-partite

graph on (V1, . . . , Vr) with |V1| = · · · = |Vr| = n. Let P = {U1, . . . , Uk} be a k-partition

for G. Suppose dG(v, U i
j) ≥ (1− 1/(r+ 1) + ε)|U i

j | for all 1 ≤ i ≤ k, all 1 ≤ j ≤ r and all

v /∈ Vj. Then there exists B ⊆ G which is a (γ,P)-balancing graph such that B is locally

P-balanced and ∆(B) < γ′n.

The balancing graph B will be made up of two graphs: Bedge, an edge balancing

graph (which balances the total number of edges between appropriate classes), and Bdeg,

a degree balancing graph (which balances individual vertex degrees). These are described

in Sections 4.10.1 and 4.10.2 respectively.

4.10.1 Edge balancing

Let P = {U1, . . . , Uk} be a k-partition of the vertex set V = (V1, . . . , Vr) with |V1| =

· · · = |Vr| = n. Let γ > 0. A (γ,P)-edge balancing graph is a Kr-decomposable graph

Bedge on V such that the following holds. Let H be any Kr-divisible graph on V which

is edge-disjoint from Bedge and satisfies (P2). Then there exists B′edge ⊆ Bedge such that

Bedge −B′edge has a Kr-decomposition and

eH∪B′edge
(U i1

j1
, U i2

j2
) = eH∪B′edge

(U i1
j1
, U i2

j3
)

for all 1 ≤ i1 < i2 ≤ k and all 1 ≤ j1, j2, j3 ≤ r with j1 6= j2, j3.

In this section, we first construct and then find a (γ,P)-edge balancing graph in G.

For any multigraph G on W and any e ∈ W (2), let mG(e) be the multiplicity of the edge

e in G. We say that a Kr-divisible multigraph G on W = (W1, . . . ,Wr) is irreducible if G

has no non-trivial Kr-divisible proper subgraphs; that is, for every H ( G with e(H) > 0,
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H is not Kr-divisible. It is easy to see that there are only finitely many irreducible

Kr-divisible multigraphs on W . In particular, this implies the following proposition.

Proposition 4.10.2. Let r ∈ N and let W = (W1, . . . ,Wr). Then there exists N = N(W )

such that every irreducible Kr-divisible multigraph on W has edge multiplicity at most N .

Let P = {U1, . . . , Uk} be a partition of V = (V1, . . . , Vr). Take a copy K of Kr(k)

with vertex set (W1, . . . ,Wr) where Wj = {w1
j , . . . , w

k
j } for each 1 ≤ j ≤ r. For each

1 ≤ i ≤ k, let W i := {wij : 1 ≤ j ≤ r}. Given a graph H on V , we define an excess

multigraph EM(H) on the vertex set V (K) as follows. Between each pair of vertices wi1j1 ,

wi2j2 such that wi1j1w
i2
j2
∈ E(K) there are exactly

eH(U i1
j1
, U i2

j2
)−min{eH(U i1

j , U
i2
j′ ) : 1 ≤ j, j′ ≤ r, j 6= j′}

multiedges in EM(H).

Proposition 4.10.3. Let r ∈ N with r ≥ 3. Let P = {U1, . . . , Uk} be a k-partition of the

vertex set V = (V1, . . . , Vr) with |V1| = · · · = |Vr| = n. Let H be any Kr-divisible graph on

V satisfying (P2). Then the excess multigraph EM(H) has a decomposition into at most

3γk2r2n2 irreducible Kr-divisible multigraphs.

Proof. First, note that for any 1 ≤ i1, i2 ≤ k, any 1 ≤ j1, j2, j3 ≤ r with j1 6= j2, j3 and

any v ∈ U i1
j1

, we have |dH(v, U i2
j2

)− dH(v, U i2
j3

)| < γn by (P2). Therefore,

|eH(U i1
j1
, U i2

j2
)− eH(U i1

j1
, U i2

j3
)| < γn|U i1

j1
| < γn2. (4.20)

We claim that, for all wi1j1w
i2
j2
∈ E(K),

mEM(H)(w
i1
j1
wi2j2) < 3γn2. (4.21)
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Let 1 ≤ j′1, j
′
2 ≤ r with j′1 6= j′2. Let 1 ≤ j ≤ r with j 6= j1, j

′
1. Then

|eH(U i1
j1
, U i2

j2
)− eH(U i1

j′1
, U i2

j′2
)| ≤ |eH(U i1

j1
, U i2

j2
)− eH(U i1

j1
, U i2

j )|

+ |eH(U i1
j1
, U i2

j )− eH(U i1
j′1
, U i2

j )|

+ |eH(U i1
j′1
, U i2

j )− eH(U i1
j′1
, U i2

j′2
)|

(4.20)
< 3γn2.

So (4.21) holds.

We will now show that EM(H) is Kr-divisible. Consider any vertex wi1j1 ∈ V (EM(H))

and any 1 ≤ j2, j3 ≤ r such that j1 6= j2, j3. Note that, since H is Kr-divisible,

dEM(H)(w
i1
j1
,Wj2) =

k∑
i=1

mEM(H)(w
i1
j1
, wij2)

= eH(U i1
j1
, Vj2)−

k∑
i=1

min{eH(U i1
j , U

i
j′) : 1 ≤ j, j′ ≤ r, j 6= j′}

= eH(U i1
j1
, Vj3)−

k∑
i=1

min{eH(U i1
j , U

i
j′) : 1 ≤ j, j′ ≤ r, j 6= j′}

=
k∑
i=1

mEM(H)(w
i1
j1
, wij3) = dEM(H)(w

i1
j1
,Wj3).

So EM(H) is Kr-divisible and therefore has a decomposition F into irreducible Kr-

divisible multigraphs. By (4.21), there are at most 3γn2 edges between any pair of vertices

in EM(H), so |F| ≤ (3γn2)e(K) < 3γk2r2n2. �

Let N = N(V (K)) be the maximum multiplicity of an edge in any irreducible Kr-

divisible multigraph on V (K) = (W1, . . . ,Wr) (N exists by Proposition 4.10.2). Label

each vertex wij of K by U i
j . Let K(N) be the labelled multigraph obtained from K by

replacing each edge of K by N multiedges.

We now construct a P-labelled graph which resembles the multigraph K(N) (when

we compare relative differences in the numbers of edges between vertices) and has lower

degeneracy. Consider any edge e = wi1j1w
i2
j2
∈ E(K(N)). Let θ(e) be the graph obtained by
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the following procedure. Take a copy Ke of K[W i1 ,W i2 ]−wi1j1w
i2
j2

(Ke inherits the labelling

of K[W i1 ,W i2 ]). Note that K[W i1 ,W i2 ] is a copy of Kr if i1 = i2 and a copy of the graph

obtained from Kr,r by deleting a perfect matching otherwise. Join wi1j1 to the copy of

wi2j2 in Ke and join wi2j2 to the copy of wi1j1 in Ke. Write θ(e) for the resulting P-labelled

graph (so the vertex set of θ(e) consists of wi1j1 , wi2j2 as well as all the vertices in Ke).

Choose the graphs Ke to be vertex-disjoint for all e ∈ E(K(N)). For any K ′ ⊆ K(N),

let θ(K ′) :=
⋃{θ(e) : e ∈ E(K ′)}.

To see that the labelling of θ(K(N)) is actually a P-labelling, note that for any U i
j ,

the set of vertices labelled U i
j forms an independent set in θ(K(N)). Moreover, note that

θ(K(N)) has degeneracy r − 1. To see this, list its vertices in the following order. First

list all the original vertices of V (K). These form an independent set in θ(K(N)). Then

list the remaining vertices of θ(K(N)) in any order. Each of these vertices has degree

r − 1 in θ(K(N)), so the degeneracy of θ(K(N)) can be at most r − 1.

Proposition 4.10.4. Let P = {U1, . . . , Uk} be a k-partition of the vertex set V =

(V1, . . . , Vr) with |V1| = · · · = |Vr| = n. Let J = φ(θ(K(N))) be a copy of θ(K(N))

on V which is compatible with its P-labelling. Then the following hold:

(i) J is Kr-divisible and locally P-balanced;

(ii) for any multigraph H ⊆ K(N), any 1 ≤ i1, i2 ≤ k and any 1 ≤ j1 < j2 ≤ r,

eφ(θ(H))(U
i1
j1
, U i2

j2
) = eH(W i1 ,W i2) +mH(wi1j1w

i2
j2

).

Proof. We first prove that J is Kr-divisible. Consider any x ∈ V (θ(K(N))). If

x = wij ∈ V (K), then dJ(φ(x), Vj1) = Nk for all 1 ≤ j1 ≤ r with j1 6= j (since for

each edge wijw
i1
j1
∈ E(K), x has exactly N neighbours labelled U i1

j1
in θ(K(N))). If

x /∈ V (K), x must appear in a copy of Ke in θ(e) for some edge e ∈ E(K(N)). In this

case, dJ(φ(x), Vj) = 1 for all 1 ≤ j ≤ r such that φ(x) /∈ Vj. So J is Kr-divisible.

To see that J is locally P-balanced, consider any x ∈ V (θ(K(N))). If x = wij ∈ V (K),

then φ(x) ∈ U i
j and dJ(φ(x), U i

j1
) = N for all 1 ≤ j1 ≤ r with j1 6= j. Otherwise, x must
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appear in a copy of Ke in θ(e) for some edge e = wi1j1w
i2
j2
∈ E(K(N)). Let i, j be such

that φ(x) ∈ U i
j (so i ∈ {i1, i2}). If i1 6= i2, then dJ(φ(x), U i

j′) = 0 for all 1 ≤ j′ ≤ r. If

i1 = i2, then dJ(φ(x), U i
j′) = 1 for all 1 ≤ j′ ≤ r with j′ 6= j. So J is locally P-balanced.

Thus (i) holds.

We now prove (ii). Let 1 ≤ i1, i2 ≤ k and 1 ≤ j1 < j2 ≤ r. Consider any edge

wijw
i′

j′ ∈ E(K(N)). The P-labelling of θ(K(N)) gives

eφ(θ(wijw
i′
j′ ))

(U i1
j1
, U i2

j2
) =


0 if {i, i′} 6= {i1, i2},

2 if {(i, j), (i′, j′)} = {(i1, j1), (i2, j2)},

1 otherwise.

(4.22)

Let H ⊆ K(N). Then (ii) follows from applying (4.22) to each edge in H. �

The following proposition allows us to use a copy of θ(K(N)) to correct imbalances in

the number of edges between parts U i1
j1

and U i2
j2

when EM(H) is an irreducible Kr-divisible

multigraph.

Proposition 4.10.5. Let P = {U1, . . . , Uk} be a k-partition of the vertex set V =

(V1, . . . , Vr) with |V1| = · · · = |Vr| = n. Let H be a graph on V such that EM(H) = I

is an irreducible Kr-divisible multigraph. Let J = φ(θ(K(N))) be a copy of θ(K(N)) on

V which is compatible with its P-labelling and edge-disjoint from H. Then there exists

J ′ ⊆ J such that J − J ′ is Kr-divisible and H ′ := H ∪ J ′ satisfies

eH′(U
i1
j1
, U i2

j2
) = eH′(U

i1
j1
, U i2

j3
) (4.23)

for all 1 ≤ i1 < i2 ≤ k and all 1 ≤ j1, j2, j3 ≤ r with j1 6= j2, j3.

Proof. Recall that N denotes the maximum multiplicity of an edge in an irreducible

Kr-divisible multigraph on V (K). So we may view I as a subgraph of K(N). Let
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J ′ := J − φ(θ(I)). For all 1 ≤ i1 < i2 ≤ k, let

pi1,i2 := min{eH(U i1
j1
, U i2

j2
) : 1 ≤ j1, j2,≤ r, j1 6= j2}.

Proposition 4.10.4 gives, for all 1 ≤ i1 < i2 ≤ k and all 1 ≤ j1, j2 ≤ r with j1 6= j2,

eJ ′(U
i1
j1
, U i2

j2
) = eφ(θ(K(N)))(U

i1
j1
, U i2

j2
)− eφ(θ(I))(U

i1
j1
, U i2

j2
)

= eK(N)(W
i1 ,W i2) +N − (eI(W

i1 ,W i2) +mI(w
i1
j1
wi2j2))

= eK(N)−I(W
i1 ,W i2) +N −mI(w

i1
j1
wi2j2).

Recall that I = EM(H), so eH(U i1
j1
, U i2

j2
) = mI(w

i1
j1
wi2j2) + pi1,i2 and

eH′(U
i1
j1
, U i2

j2
) = eH(U i1

j1
, U i2

j2
) + eJ ′(U

i1
j1
, U i2

j2
) = eK(N)−I(W

i1 ,W i2) +N + pi1,i2 .

Note that the right hand side is independent of j1, j2. Thus (4.23) holds. �

The following proposition describes a (γ,P)-edge balancing graph based on the con-

struction in Propositions 4.10.4 and 4.10.5

Proposition 4.10.6. Let k, r ∈ N with r ≥ 3. Let P = {U1, . . . , Uk} be a k-partition of

the vertex set V = (V1, . . . , Vr) with |V1| = · · · = |Vr| = n. Let J1, . . . , J` be a collection

of ` ≥ 3γk2r2n2 copies of θ(K(N)) on V which are compatible with their labellings. Let

{A1, . . . , Am} be an absorbing set for J1, . . . , J` on V . Suppose that J1, . . . , J`, A1, . . . , Am

are edge-disjoint. Then Bedge :=
⋃`
i=1 Ji ∪

⋃m
i=1Ai is a (γ,P)-edge balancing graph.

Proof. Let H be any Kr-divisible graph on V which is edge-disjoint from Bedge and

satisfies (P2). Apply Proposition 4.10.3 to find a decomposition of EM(H) into a collection

I = {I1, . . . , I`′} of irreducible Kr-divisible multigraphs, where `′ ≤ 3γk2r2n2 ≤ `. If

`′ = 0, let B′edge ⊆ Bedge be the empty graph. If `′ > 0, we proceed as follows to find

B′edge. Let H1, . . . , H`′ be graphs on V which partition the edge set of H and satisfy

EM(Hs) = Is for each 1 ≤ s ≤ `′. (To find such a partition, for each 1 ≤ s < `′ form Hs
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by taking one U i1
j1
U i2
j2

-edge from H for each edge wi1j1w
i2
j2

in Is. Let H`′ consist of all the

remaining edges.)

Apply Proposition 4.10.5 for each 1 ≤ s ≤ `′ with Hs and Js playing the roles of H

and J to find J ′s ⊆ Js such that Js − J ′s is Kr-divisible and H ′s := Hs ∪ J ′s satisfies

eH′s(U
i1
j1
, U i2

j2
) = eH′s(U

i1
j1
, U i2

j3
) (4.24)

for all 1 ≤ i1 < i2 ≤ k and all 1 ≤ j1, j2, j3 ≤ r with j1 6= j2, j3. Let B′edge :=
⋃`′

s=1 J
′
s.

Then (4.24) implies that the graph H ′ := H ∪B′edge =
⋃`′

s=1H
′
s satisfies

eH′(U
i1
j1
, U i2

j2
) = eH′(U

i1
j1
, U i2

j3
)

for all 1 ≤ i1 < i2 ≤ k and all 1 ≤ j1, j2, j3 ≤ r with j1 6= j2, j3.

We now check that Bedge and Bedge − B′edge are Kr-decomposable. Recall that every

absorber Ai is Kr-decomposable. Also recall that, for every 1 ≤ s ≤ `, Js is Kr-divisible,

by Proposition 4.10.4(i). Since {A1, . . . , Am} is an absorbing set, it contains a distinct

absorber for each Js. So for each 1 ≤ s ≤ `, there exists a distinct 1 ≤ is ≤ m such

that Ais ∪ Js has a Kr-decomposition. Therefore Bedge is Kr-decomposable. To see that

Bedge − B′edge is Kr-decomposable, recall that for each 1 ≤ s ≤ `′, Js − J ′s is a Kr-

divisible subgraph of Js. So for each 1 ≤ s ≤ `, there exists a distinct 1 ≤ js ≤ m such

that, if s ≤ `′, Ajs ∪ (Js − J ′s) has a Kr-decomposition and, if s > `′, Ajs ∪ Js has a

Kr-decomposition. So we can find a Kr-decomposition of

Bedge −B′edge =
`′⋃
s=1

(Js − J ′s) ∪
⋃̀

s=`′+1

Js ∪
m⋃
s=1

Am.

Therefore, Bedge is a (γ,P)-edge balancing graph. �

The next proposition finds a copy of this (γ,P)-edge balancing graph in G.

Proposition 4.10.7. Let 1/n� γ � γ′ � 1/k � ε� 1/r ≤ 1/3. Let G be an r-partite
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graph on (V1, . . . , Vr) with |V1| = · · · = |Vr| = n. Let P = {U1, . . . , Uk} be a k-partition

for G. Suppose that dG(v, U i
j) ≥ (1 − 1/(r + 1) + ε)|U i

j | for all 1 ≤ i ≤ k, all 1 ≤ j ≤ r

and all v /∈ Vj. Then there exists a (γ,P)-edge balancing graph Bedge ⊆ G such that Bedge

is locally P-balanced and ∆(Bedge) < γ′n.

Proof. Let γ1 be such that γ � γ1 � γ′. Recall that θ(K(N)) is a P-labelled graph

with degeneracy r − 1 and all vertices of θ(K(N)) are free vertices. Also,

|θ(K(N))| ≤ |K|+ 2re(K)N = kr + 2rk2

(
r

2

)
N ≤ k2r3N.

Let ` := d3γk2r2n2e ≤ γ1/2n2. We can apply Lemma 4.5.2 (with γ1/2, γ1, r − 1, k2r3N

and θ(K(N)) playing the roles of η, ε, d, b and Hi) to find edge-disjoint copies J1, . . . , J`

of θ(K(N)) in G which are compatible with their labellings and satisfy ∆(
⋃`
i=1 Ji) ≤ γ1n.

Let G′ := G[P ]−⋃`
i=1 Ji and note that

δ̂(G′) ≥ (1− 1/(r + 1) + ε)n− dn/ke − γ1n ≥ (1− 1/(r + 1) + γ′)n.

Apply Lemma 4.6.6 (with γ1, γ′/2, k2r3N and G′ playing the roles of η, ε, b and G) to

find an absorbing set A for J1, . . . , J` in G′ such that ∆(
⋃A) ≤ γ′n/2.

Let Bedge :=
⋃`
i=1 Ji ∪

⋃A. Then Bedge is a (γ,P)-edge balancing graph by Proposi-

tion 4.10.6. Also, ∆(Bedge) < γ′n. Note that for each 1 ≤ i ≤ k, Bedge[U
i] =

⋃`
s=1 Js[U

i]

(this is the reason for finding A in G[P ]). Moreover, each Js is locally P-balanced by

Proposition 4.10.4(i). Therefore Bedge is also locally P-balanced. �

4.10.2 Degree balancing

Let P = {U1, . . . , Uk} be a k-partition of the vertex set V = (V1, . . . , Vr) with |V1| =

· · · = |Vr| = n. Let γ > 0. A (γ,P)-degree balancing graph is a Kr-decomposable graph

Bdeg on V such that the following holds. Let H be any Kr-divisible graph on V satisfying:

(Q1) e(H ∩Bdeg) = 0;
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(Q2) eH(U i1
j1
, U i2

j2
) = eH(U i1

j1
, U i2

j3
) for all 1 ≤ i1 < i2 ≤ k and all 1 ≤ j1, j2, j3 ≤ r with

j1 6= j2, j3;

(Q3) |dH(v, U i
j2

) − dH(v, U i
j3

)| < γ|U i
j1
| for all 2 ≤ i ≤ k, all 1 ≤ j1, j2, j3 ≤ r with

j1 6= j2, j3 and all v ∈ U<i
j1

.

Then there exists B′deg ⊆ Bdeg such that Bdeg −B′deg has a Kr-decomposition and

dH∪B′deg
(v, U i

j1
) = dH∪B′deg

(v, U i
j2

)

for all 2 ≤ i ≤ k, all 1 ≤ j1, j2 ≤ r and all v ∈ U<i \ (Vj1 ∪ Vj2).

We will build a degree balancing graph by combining smaller graphs which correct the

degrees between two parts of the partition at a time. So, let us assume that the partition

has only two parts, i.e., let P = {U1, U2} partition the vertex set V = (V1, . . . , Vr). We

begin by defining those graphs which will form the basic gadgets of the degree balancing

graph. Let D0 be a copy of Kr(3) with vertex classes {wij : 1 ≤ i ≤ 3} for 1 ≤ j ≤ r. For

each 1 ≤ i ≤ 3, let W i := {wij : 1 ≤ j ≤ r}. We define a labelling L : V (D0)→ {U1
j , U

2
j :

1 ≤ j ≤ r} as follows:

L(wij) =


U1
j if i = 1, 2,

U2
j if i = 3.

Suppose that x, y are distinct vertices in U1
j1

where 1 ≤ j1 ≤ r. Obtain the P-labelled

graph Dx,y by taking the labelled copy of D0 and changing the label of w1
j1

to {x} and

w2
j1

to {y}. Let 1 ≤ j2 ≤ r be such that j2 6= j1. Let Dj2
x→y be the P-labelled subgraph of

Dx,y which has as its vertex set

W 1 ∪ {w2
j1
} ∪ (W 3 \ {w3

j1
}),

contains all possible edges in W 1 \ {w1
j1
}, all possible edges in W 3 \ {w3

j1
}, all edges of the

form w1
j1
w3
j and w1

jw
2
j1

where 1 ≤ j ≤ r and j 6= j1, j2, as well as the edges w1
j1
w1
j2

and

w2
j1
w3
j2

. (Note that if we were to identify the vertices w1
j1

and w2
j1

we would obtain two
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copies of Kr which have only one vertex in common.)

{x}

{y}

U 2
1

U 1
1 U 1

3 U 1
4

U 2
3 U 2

4

Figure 4.2: A copy of D1
x→y when r = 4 and x, y ∈ U1

2 .

As in Section 4.10.1, we would like to reduce the degeneracy of Dx,y. The operation

θ (which will be familiar from Section 4.10.1) replaces each edge of Dx,y by a P-labelled

graph as follows. Consider any edge e = wi1j3w
i2
j4
∈ E(Dx,y). Take a labelled copy De of

D0[W i1 ,W i2 ]−wi1j3w
i2
j4

(De inherits the labelling of D0[W i1 ,W i2 ]). Note that D0[W i1 ,W i2 ]

is a copy of Kr if i1 = i2 and a copy of the graph obtained from Kr,r by deleting a perfect

matching otherwise. Join wi1j3 to the copy of wi2j4 in De and join wi2j4 to the copy of wi1j3 in

De (so the vertex set of θ(e) consists of wi1j3 , wi2j4 as well as all the vertices in De). Write

θ(e) for the resulting P-labelled graph. Choose the graphs De to be vertex-disjoint for all

e ∈ E(Dx,y). For any D′ ⊆ Dx,y, let θ(D′) :=
⋃{θ(e) : e ∈ E(D′)}. The graph θ(Dx,y)

has the following properties:

(θ1) |θ(Dx,y)| ≤ 3r + 2r32
(
r
2

)
≤ 10r3 (since we add at most 2re(Kr(3)) new vertices to

obtain θ(Dx,y) from Dx,y);

(θ2) θ(Dx,y) has degeneracy r − 1 (to see this, take the original vertices of Dx,y first,

followed by the remaining vertices in any order).

Suppose that H is a graph on V and x, y ∈ U1
j1

. Suppose that dH(x, U2
j2

) is currently

too large and dH(y, U2
j2

) is too small. The next proposition allows us to use copies of

θ(Dj2
x→y) to ‘transfer’ some of this surplus from x to y.

Proposition 4.10.8. Let P = {U1, U2} be a partition of the vertex set V = (V1, . . . , Vr).

Let 1 ≤ j1, j2 ≤ r with j1 6= j2 and suppose x, y ∈ U1
j1

. Suppose that D1 = φ(θ(Dx,y)) is a
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copy of θ(Dx,y) on V which is compatible with its labelling. Let D2 := φ(θ(Dj2
x→y)) ⊆ D1.

Then the following hold:

(i) both D1 and D2 are Kr-divisible;

(ii) D1 is locally P-balanced;

(iii) for any 1 ≤ j3, j4 ≤ r with j4 6= j2 and any v ∈ U1 \ (Vj3 ∪ Vj4),

dD2(v, U2
j3

)− dD2(v, U2
j4

) =


−1 if v = x and j3 = j2,

1 if v = y and j3 = j2,

0 otherwise.

Proof. First we show that (i) holds. Consider any v ∈ V (θ(Dx,y)). If v ∈ V (Dx,y),

then dD1(φ(v), Vj) = 3 for all 1 ≤ j ≤ r such that φ(v) /∈ Vj. Otherwise, v appears in a

copy of De for some edge e ∈ E(Dx,y) and dD1(φ(v), Vj) = 1 for all 1 ≤ j ≤ r such that

φ(v) /∈ Vj. So D1 is Kr-divisible. For D2, consider any v ∈ V (θ(Dj2
x→y)). If v ∈ V (Dj2

x→y),

then dD2(φ(v), Vj) = 1 for all 1 ≤ j ≤ r with φ(v) /∈ Vj. Otherwise, v appears in a copy

of De for some edge e ∈ E(Dj2
x→y) and dD2(φ(v), Vj) = 1 for all 1 ≤ j ≤ r such that

φ(v) /∈ Vj. So D2 is Kr-divisible.

For (ii), consider any v ∈ V (θ(Dx,y)). First suppose v = wij ∈ V (Dx,y). If i = 1, 2,

then φ(v) ∈ U1
j and dD1(φ(v), U1

j′) = 2 for all 1 ≤ j′ ≤ r with j′ 6= j. If i = 3, then

φ(v) ∈ U2
j and dD1(φ(v), U2

j′) = 1 for all 1 ≤ j′ ≤ r with j′ 6= j. Otherwise, v must

appear in a copy of De in θ(e) for some edge e = wi1j1w
i2
j2
∈ E(Dx,y). Let i, j be such that

φ(v) ∈ U i
j . If i1, i2 ∈ {1, 2} or if i1 = i2 = 3, then dD1(φ(v), U i

j′) = 1 for all 1 ≤ j′ ≤ r

with j′ 6= j. Otherwise, dD1(φ(v), U i
j′) = 0 for all 1 ≤ j′ ≤ r. So D1 is locally P-balanced.

Property (iii) will follow from the P-labelling of θ(Dj2
x→y). Note that

dD2(x, U2
j′) =


0 if j′ ∈ {j1, j2},

1 otherwise

and dD2(y, U2
j′) =


1 if j′ = j2,

0 otherwise.
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The only other edges ab in D2 of the form U1U2 are those which appear in the image of

De for some e = wijw
3
j′ ∈ E(Dj2

x→y) with i = 1, 2. Note that such e must be incident to x

or y and that a and b are new vertices, i.e., a, b /∈ V (Dj2
x→y). But for any v ∈ φ(De)∩ U1,

we have dD2(v, U2
j′) = 1 for every 1 ≤ j′ ≤ r such that φ(v) /∈ Vj′ . It follows that (iii)

holds. �

In what follows, given a collection D of graphs and an embedding φ(D) for each D ∈ D,

we write φ(D) := {φ(D) : D ∈ D}.

Lemma 4.10.9. Let 1/n� γ � γ′ ≤ 1/r ≤ 1/3. Let V = (V1, . . . , Vr) with |V1| = · · · =

|Vr| = n. Let P = {U1, U2} be a 2-partition of V . Let 1 ≤ j1 ≤ r. Then there exists

D ⊆ {θ(Dj
x→y) : x, y ∈ U1

j1
, x 6= y, 1 ≤ j ≤ r, j 6= j1} such that the following hold.

(i) |D| ≤ γ′n2.

(ii) Each vertex v ∈ V is a root vertex in at most γ′n elements of D.

(iii) Suppose that, for each D ∈ D, φ(D) is a copy of D on V which is compatible with

its labelling. Suppose further that φ(D) and φ(D′) are edge-disjoint for all distinct

D,D′ ∈ D. Let H be any r-partite graph on V which is edge-disjoint from
⋃
φ(D)

and satisfies (Q2) and (Q3). Then there exists D′ ⊆ D such that H ′ := H ∪⋃φ(D′)

satisfies the following. For all v ∈ U1
j1

, and all 1 ≤ j2, j3 ≤ r such that j1 6= j2, j3,

dH′(v, U
2
j2

) = dH′(v, U
2
j3

)

and for all 1 ≤ j2, j3 ≤ r and all v ∈ U1 \ (Vj1 ∪ Vj2 ∪ Vj3),

dH′(v, U
2
j2

)− dH′(v, U2
j3

) = dH(v, U2
j2

)− dH(v, U2
j3

).

In particular, H ′ satisfies (Q2) and (Q3).

Proof. Let p := γ′/4(r − 1) and m := |U1
j1
|. Define an auxiliary graph R on U1

j1
such
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that ∆(R) < 2pm and

|NR(S)| ≥ p2m/2 (4.25)

for all S ⊆ U1
j1

with |S| ≤ 2. It is easy to find such a graph R; indeed, a random graph

with edge probability p has these properties with high probability.

Let

D := {θ(Dj
x→y), θ(D

j
y→x) : xy ∈ E(R), 1 ≤ j ≤ r, j 6= j1}.

Each vertex of V appears as x or y in some θ(Dj
x→y) in D at most 2(r − 1)∆(R) <

4(r − 1)pm = γ′m times. In particular, this implies |D| ≤ γ′m2. So D satisfies (i) and

(ii).

We now show that D satisfies (iii). Suppose that, for each D ∈ D, φ(D) is a copy

of D on V which is compatible with its labelling. Suppose further that φ(D) and φ(D′)

are edge-disjoint for all distinct D,D′ ∈ D. Let H be any r-partite graph on V which is

edge-disjoint from
⋃
φ(D) and satisfies (Q2) and (Q3).

Let jmin := min{j : 1 ≤ j ≤ r, j 6= j1}. For each v ∈ U1
j1

and each jmin < j ≤ r such

that j 6= j1, let

f(v, j) := dH(v, U2
j )− dH(v, U2

jmin
). (4.26)

By (Q3),

|f(v, j)| < γ(m+ 1) < 2γm. (4.27)

Let U+(j) be a multiset such that each v ∈ U1
j1

appears precisely max{f(v, j), 0} times.

Let U−(j) be a multiset such that each v ∈ U1
j1

appears precisely max{−f(v, j), 0} times.

Property (Q2) implies that |U+(j)| = |U−(j)|, so there is a bijection gj : U+(j)→ U−(j).

For each copy u′ of u in U+(j), let Pu′ be a path of length two whose vertices are

labelled, in order,

{u}, U1
j1
, {gj(u′)}.

So Pu′ has degeneracy two. Let Sj := {Pu′ : u′ ∈ U+(j)}. It follows from (4.27) that

each vertex is used as a root vertex at most 2γm times in Sj and |Sj| ≤ 2γm2. Using
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(4.25), we can apply Lemma 4.5.1 (with m, 2, 3, 2γ, p2/2 and R playing the roles of n,

d, b, η, ε and G) to find a set of edge-disjoint copies Tj of the paths in Sj in R which

are compatible with their labellings. (Note that we do not require the paths in Tj to be

edge-disjoint from the paths in Tj′ for j 6= j′.) We will view the paths in Tj as directed

paths whose initial vertex lies in U+(j) and whose final vertex lies in U−(j).

For each jmin < j ≤ r such that j 6= j1, let Dj := {θ(Dj
x→y) : −→xy ∈ E(

⋃ Tj)}. Let

D′ :=
⋃

jmin<j≤r
j 6=j1

Dj ⊆ D.

It remains to show that H ′ := H ∪⋃φ(D′) satisfies (iii). For each jmin < j ≤ r such

that j 6= j1, let Hj :=
⋃
φ(Dj). Consider any vertex v ∈ U1

j1
and let jmin < j2 ≤ r be such

that j2 6= j1. Now v will be the initial vertex in exactly a := max{f(v, j2), 0} paths and

the final vertex in exactly b := max{−f(v, j2), 0} = a− f(v, j2) paths in Tj2 . Let c be the

number of paths in Tj2 for which v is an internal vertex. By definition, Hj2 contains a+ c

graphs φ(D) where D is of the form θ(Dj2
v→y) for some y ∈ U1

j1
. Also, Hj2 contains b + c

graphs φ(D) where D of the form θ(Dj2
x→v) for some x ∈ U1

j1
. Proposition 4.10.8(iii) then

implies that

dHj2 (v, U2
j2

)− dHj2 (v, U2
jmin

) = (b+ c)− (a+ c) = −f(v, j2). (4.28)

For any jmin < j3 ≤ r such that j3 6= j1, j2, Proposition 4.10.8(iii) implies that

dHj3 (v, U2
j2

)− dHj3 (v, U2
jmin

) = 0. (4.29)

Equations (4.28) and (4.29) imply that

d⋃φ(D′)(v, U
2
j2

)− d⋃φ(D′)(v, U
2
jmin

) = dHj2 (v, U2
j2

)− dHj2 (v, U2
jmin

) = −f(v, j2),
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which together with (4.26) gives

dH′(v, U
2
j2

)− dH′(v, U2
jmin

) = dH(v, U2
j2

)− dH(v, U2
jmin

)− f(v, j2) = 0. (4.30)

Thus, for all v ∈ U1
j1

and all 1 ≤ j2, j3 ≤ r such that j1 6= j2, j3,

dH′(v, U
2
j2

) = dH′(v, U
2
jmin

) = dH′(v, U
2
j3

).

Finally, consider any 1 ≤ j2, j3 ≤ r and any v ∈ U1 \ (Vj1 ∪ Vj2 ∪ Vj3). Proposi-

tion 4.10.8(iii) implies that

d⋃φ(D′)(v, U
2
j2

)− d⋃φ(D′)(v, U
2
j3

) = 0,

so

dH′(v, U
2
j2

)− dH′(v, U2
j3

) = dH(v, U2
j2

)− dH(v, U2
j3

). (4.31)

That H ′ satisfies (Q2) and (Q3) follows immediately from (4.30) and (4.31). �

Let P = {U1, U2} partition the vertex set V = (V1, . . . , Vr) with |V1| = · · · = |Vr| = n.

We say that a collection D of P-labelled graphs is a (γ, γ′)-degree balancing set for the

pair (U1, U2) if the following properties hold. Suppose that, for each D ∈ D, φ(D) is a

copy of D on V which is compatible with its labelling. Suppose further that φ(D) and

φ(D′) are edge-disjoint for all distinct D,D′ ∈ D.

(a) Each D ∈ D has degeneracy at most r − 1 and |D| ≤ 10r3.

(b) |D| ≤ γ′n2.

(c) Each vertex v ∈ V is a root vertex in at most γ′n elements of D.

(d) For each D ∈ D, φ(D) is Kr-divisible and locally P-balanced.
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(e) Let H be any r-partite graph on V which is edge-disjoint from
⋃
φ(D) and satisfies

(Q2) and (Q3). Then, for each D ∈ D, there exists D′ ⊆ D such that φ(D′) is

Kr-divisible and, if D′ := {D′ : D ∈ D} and H ′ := H ∪⋃φ(D′), then

dH′(v, U
2
j1

) = dH′(v, U
2
j2

)

for all 1 ≤ j1, j2 ≤ r and all v ∈ U1 \ (Vj1 ∪ Vj2).

The following result describes a (γ, γ′)-degree balancing set based on the gadgets

constructed so far.

Proposition 4.10.10. Let 1/n � γ � γ′ ≤ 1/r ≤ 1/3. Let V = (V1, . . . , Vr) with

|V1| = · · · = |Vr| = n. Let P = {U1, U2} be a 2-partition for V . Then (U1, U2) has a

(γ, γ′)-degree balancing set.

Proof. Apply Lemma 4.10.9 for each 1 ≤ j1 ≤ r with γ′/r playing the role of γ′ to

find sets Dj1 ⊆ {θ(Dj
x→y) : x, y ∈ U1

j1
, x 6= y, 1 ≤ j ≤ r, j 6= j1} satisfying the properties

(i)–(iii). Let D consist of one copy of θ(Dx,y) for each θ(Dj
x→y) in

⋃r
j=1Dj. We claim

that D is a (γ, γ′)-degree balancing set. Note that each θ(Dx,y) satisfies |θ(Dx,y)| ≤ 10r3

and has degeneracy at most r − 1 by (θ1) and (θ2), so (a) holds. For each 1 ≤ j ≤ r,

|Dj| ≤ γ′n2/r, so (b) holds. Also, each vertex v ∈ V is used as a root vertex in at most

γ′n/r elements of each Dj. Since θ(Dx,y) and θ(Dj
x→y) have the same set of root vertices,

(c) holds. Property (d) follows from Proposition 4.10.8(i) and (ii).

It remains to show that (e) is satisfied. Suppose that, for each D ∈ D, φ(D) is a copy

of D on V which is compatible with its labelling. Suppose further that φ(D) and φ(D′)

are edge-disjoint for all distinct D,D′ ∈ D. Let H be any r-partite graph on V which

is edge-disjoint from
⋃
φ(D) and satisfies (Q2) and (Q3). Using property (iii) of D1 in

Lemma 4.10.9, we can find D′1 ⊆ D1 such that H1 := H ∪ ⋃φ(D′1) satisfies (Q2), (Q3)

and

dH1(v, U2
j1

) = dH1(v, U2
j2

)
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for all v ∈ U1
1 and all 2 ≤ j1, j2 ≤ r. We can then find D′2 ⊆ D2 such that H2 :=

H1 ∪
⋃
φ(D′2) satisfies (Q2), (Q3) and

dH2(v, U2
j1

) = dH2(v, U2
j2

)

for all v ∈ U1
j where j = 1, 2 and all 1 ≤ j1, j2 ≤ r with j 6= j1, j2. Continuing in this way,

we eventually find D′r ⊆ Dr such that Hr := Hr−1 ∪
⋃
φ(D′r−1) satisfies

dHr(v, U
2
j1

) = dHr(v, U
2
j2

) (4.32)

for all 1 ≤ j1, j2 ≤ r and all v ∈ U1 \ (Vj1 ∪ Vj2).

For each D ∈ Dj, if D ∈ D′j, then let D′ := D; otherwise let D′ be the empty graph.

Let D′ := {D′ : D ∈ ⋃r
j=1Dj}. For each D′ ∈ D′, D′ is either empty or of the form

θ(Dj
x→y), so φ(D′) is Kr-divisible by Proposition 4.10.8(i). By (4.32), D′ satisfies (e). So

D satisfies (a)–(e) and is a (γ, γ′)-degree balancing set for (U1, U2). �

The following result finds copies of the degree balancing sets described in the previous

proposition.

Proposition 4.10.11. Let 1/n � γ � γ′ � 1/k � ε � 1/r ≤ 1/3. Let G be an

r-partite graph on (V1, . . . , Vr) with |V1| = · · · = |Vr| = n. Let P = {U1, . . . , Uk} be a

k-partition for G. Suppose that dG(v, U i
j) ≥ (1− 1/(r + 1) + ε)|U i

j | for all 1 ≤ i ≤ k, all

1 ≤ j ≤ r and all v /∈ Vj. Then there exists a (γ,P)-degree balancing graph Bdeg ⊆ G

such that Bdeg is locally P-balanced and ∆(Bdeg) < γ′n.

Proof. Choose γ1, γ2 such that γ � γ1 � γ2 � γ′. Proposition 4.10.10 describes

a (γ, γ2
1)-degree balancing set Di1,i2 for each pair (U i1 , U i2) with 1 ≤ i1 < i2 ≤ k. Let

D :=
⋃

1≤i1<i2≤kDi1,i2 . We have |D| ≤ k2γ2
1n

2 ≤ γ1n
2 and each vertex is used as a root

vertex in at most k2γ2
1n ≤ γ1n elements of D. By (a), we can apply Lemma 4.5.2 (with

γ1, γ2, r−1 and 10r3 playing the roles of η, ε, d and b) to find edge-disjoint copies φ(D) of

each D ∈ D in G which are compatible with their labellings and satisfy ∆(
⋃
φ(D)) ≤ γ2n.
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Let G′ := G[P ]−⋃φ(D) and note that

δ̂(G′) ≥ (1− 1/(r + 1) + ε)n− dn/ke − γ2n ≥ (1− 1/(r + 1) + γ′)n.

Apply Lemma 4.6.6 (with γ2, γ′/2, 10r3 and G′ playing the roles of η, ε, b and G) to find

an absorbing set A for φ(D) in G′ such that ∆(
⋃A) ≤ γ′n/2.

Let Bdeg :=
⋃
φ(D) ∪ ⋃A. Then, ∆(Bdeg) < γ′n. For all 1 ≤ i1 < i2 ≤ k, Di1,i2

is a degree balancing set so
⋃
φ(Di1,i2) is locally P-balanced by (d). Since Bdeg[U i] =⋃

φ(D)[U i] for each 1 ≤ i ≤ k, the graph Bdeg must also be locally P-balanced.

We now check that Bdeg is a (γ,P)-degree balancing graph. Let H be any Kr-divisible

graph on V satisfying (Q1)–(Q3). Consider any 1 ≤ i1 < i2 ≤ k. Note that H[U i1 ∪ U i2 ]

satisfies (Q1)–(Q3). Since Di1,i2 is a (γ, γ′)-degree balancing set for (U i1 , U i2), there exist

D′ ⊆ D for each D ∈ Di1,i2 such that φ(D′) is Kr-divisible and, if D′i1,i2 := {D′ : D ∈

Di1,i2} and H ′i1,i2 := H ∪⋃φ(D′i1,i2), then

dH′i1,i2
(v, U i2

j1
) = dH′i1,i2

(v, U i2
j2

)

for all 1 ≤ j1, j2 ≤ r and all v ∈ U i1 \ (Vj1 ∪ Vj2). Let B′deg :=
⋃

1≤i1<i2≤k φ(D′i1,i2) and let

H ′ := H ∪B′deg. Note that V (
⋃
φ(D′i1,i2)) ⊆ U i1 ∪U i2 for all 1 ≤ i1 < i2 ≤ k. So we have

dH′(v, U
i
j1

) = dH′(v, U
i
j2

) for all 2 ≤ i ≤ k, all 1 ≤ j1, j2 ≤ r and all v ∈ U<i \ (Vj1 ∪ Vj2).

It remains to show that Bdeg and Bdeg − B′deg both have Kr-decompositions. Recall

that A is an absorbing set for φ(D). So, for any Kr-divisible subgraph D∗ of any graph in

φ(D), A contains an absorber for D∗. Also, A is Kr-decomposable for each A ∈ A. Since

φ(D) is Kr-divisible for each D ∈ D by (d), we see that Bdeg has a Kr-decomposition.

Note that, for each D ∈ Di1,i2 , φ(D′) is Kr-divisible by (e) and hence φ(D)−φ(D′) is also

Kr-divisible. So

Bdeg −B′deg =
⋃
A ∪

⋃
D∈D

(φ(D)− φ(D′))

has a Kr-decomposition. Therefore, Bdeg is a (γ,P)-degree balancing graph. �
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4.10.3 Finding the balancing graph

Finally, we combine the edge balancing graph and degree balancing graph from Proposi-

tions 4.10.7 and 4.10.11 respectively to find a (γ,P)-balancing graph in G.

Proof of Lemma 4.10.1. Choose constants γ1 and γ2 such that γ � γ1 � γ2 � γ′.

First apply Proposition 4.10.7 to find a (γ,P)-edge balancing graph Bedge ⊆ G such

that Bedge is locally P-balanced and ∆(Bedge) < γ1n. Now G′ := G − Bedge satisfies

dG′(v, U
i
j) ≥ (1−1/(r+1)+ε/2)|U i

j | for all v /∈ Vj, so we can apply Proposition 4.10.11 to

find a (γ2,P)-degree balancing graph Bdeg ⊆ G′ such that Bdeg is locally P-balanced and

∆(Bdeg) < γ′n/2. Let B := Bedge ∪Bdeg. Then ∆(B) < γ′n and B is locally P-balanced.

Also, since both Bedge and Bdeg are Kr-decomposable, B is Kr-decomposable.

We now show that B is a (γ,P)-balancing graph. Let H be any Kr-divisible graph

on V satisfying (P1) and (P2). Since Bedge is a (γ,P)-edge balancing graph, there exists

B′edge ⊆ Bedge such that Bedge−B′edge has a Kr-decomposition and H1 := H∪B′edge satisfies

eH1(U i1
j1
, U i2

j2
) = eH1(U i1

j1
, U i2

j3
)

for all 1 ≤ i1 < i2 ≤ k and all 1 ≤ j1, j2, j3 ≤ r with j1 6= j2, j3.

Note that H1 is Kr-divisible. Also

|dH1(v, U i
j2

)− dH1(v, U i
j3

)| ≤ |dH(v, U i
j2

)− dH(v, U i
j3

)|+ ∆(Bedge) < γn+ γ1n ≤ γ2|U i
j1
|

for all 2 ≤ i ≤ k, all 1 ≤ j1, j2, j3 ≤ r with j1 6= j2, j3 and all v ∈ U<i
j1

. So H1 satisfies

(Q1)–(Q3) with H1 and γ2 replacing H and γ. Now, Bdeg is a (γ2,P)-degree balancing

graph so there exists B′deg ⊆ Bdeg such that Bdeg − B′deg has a Kr-decomposition and

H2 := H1 ∪B′deg satisfies

dH2(v, U i
j1

) = dH2(v, U i
j2

)

for all 2 ≤ i ≤ k, all 1 ≤ j1, j2 ≤ r and all v ∈ U<i \ (Vj1 ∪ Vj2).

Let B′ := B′edge ∪ B′deg. Then B − B′ = (Bedge − B′edge) ∪ (Bdeg − B′deg) has a Kr-
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decomposition. Note that H ∪B′ = H2. So B is a (γ,P)-balancing graph. �

4.11 Proof of Theorem 4.1.1

In this section, we prove our main result, Theorem 4.1.1. The idea is to take a suitable

partition P of V (G), cover all edges in G[P ] by edge-disjoint copies of Kr and then absorb

all remaining edges using an absorber which we set aside at the start of the process.

However, for the final step to work, we need that the classes of P have bounded size.

A key step towards this is the following lemma which, for a partition P into a bounded

number of parts, finds an approximate Kr-decomposition which covers all edges of G[P ].

We then iterate this lemma inductively to get a similar lemma where the parts have

bounded size (see Lemma 4.11.2).

Lemma 4.11.1. Let 1/n � α � η � ρ � 1/k � ε � 1/r ≤ 1/3. Let G be a

Kr-divisible graph on (V1, . . . , Vr) with |V1| = · · · = |Vr| = n. Let P be a k-partition

for G. For each x ∈ V (G), each U ∈ P and each 1 ≤ j ≤ r, let 0 ≤ dx,Uj ≤ |Uj|. Let

G0 ⊆ G−G[P ], G1 := G−G0 and R ⊆ G[P ]. Suppose the following hold for all U,U ′ ∈ P

and all 1 ≤ j, j1, j2 ≤ r such that j 6= j1, j2:

(a) for all x ∈ Uj, |dG(x, Uj1)− dG(x, Uj2)| < α|Uj|;

(b) for all x /∈ Vj, dG1(x, Uj) ≥ (δ̂ηKr + ε)|Uj|;

(c) for all x ∈ V (G), dR(x, Uj) < ρdx,Uj + α|Uj|;

(d) for all distinct x, y ∈ V (G), dR({x, y}, Uj) < (ρ2 + α)|Uj|;

(e) for all x /∈ U ∪ U ′ ∪ Vj1 ∪ Vj2, |dR(x, Uj1)− dR(x, U ′j2)| < 3α|Uj1|;

(f) for all x /∈ U and all y ∈ U such that x, y /∈ Vj,

dG1(y,NR(x, Uj)) ≥ ρ(1− 1/(r − 1))dx,Uj + ρ5/4|Uj|.
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G6 − (G6[P ] ∪H2)
= G1 − (G[P ] ∪H)

G0

Figure 4.3: Outline for the proof of Lemma 4.11.1.

Then there is a subgraph H ⊆ G1−G[P ] such that G[P ]∪H has a Kr-decomposition and

∆(H) ≤ 4rρn.

To prove Lemma 4.11.1, we apply Lemma 4.8.1 to cover almost all the edges of G[P ].

We then balance the leftover using Lemma 4.10.1. The remaining edges in G[P ] can then

be covered using Corollary 4.9.4. The graph R in Lemma 4.11.1 forms the main part of

the graph G in Corollary 4.9.4. Conditions (c)–(f) ensure that R is ‘quasirandom’.

Proof. Write P = {U1, . . . , Uk}. Let G2 := G1 − R = G − G0 − R. Note that

Proposition 4.3.1 together with (b) and (c) implies that for any 1 ≤ i ≤ k, any 1 ≤ j ≤ r

and any x /∈ Vj,

dG2(x, U i
j) ≥ (δ̂ηKr + ε− 2ρ)|U i

j | ≥ (1− 1/(r + 1) + ε/2)|U i
j |.

Choose constants γ1, γ2 such that η � γ1 � γ2 � ρ. Apply Lemma 4.10.1 (with γ1, γ2,

ε/2, k, G2, P playing the roles of γ, γ′, ε, k, G, P) to find a (γ1,P)-balancing graph

B ⊆ G2 such that

∆(B) < γ2n (4.33)

and B is locally P-balanced. As B is also Kr-decomposable, for all 1 ≤ j1, j2 ≤ r and all

x /∈ Vj1 ∪ Vj2 ,

dB[P](x, Vj1) = dB[P](x, Vj2). (4.34)
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Let G3 := G2[P ]−B = G[P ]−R−B. Then (b), (c) and (4.33) give

δ̂(G3) ≥ (δ̂ηKr + ε)n− dn/ke − 2ρn− γ2n ≥ (δ̂ηKr + ε/2)n.

Consider any 1 ≤ j1, j2 ≤ r and any x /∈ Vj1 ∪ Vj2 . Using (a), (e) and (4.34), we have

|dG3(x, Vj1)− dG3(x, Vj2)| ≤ |dG[P](x, Vj1)− dG[P](x, Vj2)|+ |dR(x, Vj1)− dR(x, Vj2)|

< αn+ 3αn = 4αn.

So we can apply Lemma 4.8.1 (with 4α, η, γ1/2, ε/2, G3 playing the roles of α, η, γ, ε,

G) to find G4 ⊆ G3 such that G3 −G4 has a Kr-decomposition F1 and

∆(G4) ≤ γ1n/2. (4.35)

The graphs G, G3−G4 and B are all Kr-divisible (and G3−G4 and B are edge-disjoint),

so

G5 := G− (G3 −G4)−B = (G−G[P ]−B) ∪G4 ∪R

must also be Kr-divisible. Note that e(G5 ∩ B) = 0 and G5[P ] = G4 ∪ R. Consider any

1 ≤ i ≤ k, any 1 ≤ j1, j2 ≤ r and any x /∈ Vj1 ∪ Vj2 . If x /∈ U i, (4.35) and (e) give

|dG5(x, U i
j1

)− dG5(x, U i
j2

)| = |dG4∪R(x, U i
j1

)− dG4∪R(x, U i
j2

)|

≤ ∆(G4) + |dR(x, U i
j1

)− dR(x, U i
j2

)| < (γ1/2 + 3α)n < γ1n.

If x ∈ U i, then we use (a), that B is locally P-balanced and that G4, R ⊆ G[P ] to see

that

|dG5(x, U i
j1

)− dG5(x, U i
j2

)| ≤ |dG(x, U i
j1

)− dG(x, U i
j2

)|+ |dB(x, U i
j1

)− dB(x, U i
j2

)|

< αn ≤ γ1n.
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So (P1) and (P2) in Section 4.10 hold with G5 and γ1 replacing H and γ. Since B is a

(γ1,P)-balancing graph, there exists B′ ⊆ B such that B − B′ has a Kr-decomposition

F2 and, for all 2 ≤ i ≤ k, all 1 ≤ j1, j2 ≤ r and all x ∈ U<i \ (Vj1 ∪ Vj2),

dG5∪B′(x, U
i
j1

) = dG5∪B′(x, U
i
j2

). (4.36)

Write H1 :=
⋃k
i=1(B −B′)[U i] and let

G6 := G5 ∪B′ −G0 = (G−G[P ]−G0 −B) ∪R ∪G4 ∪B′.

Note that

G6[P ] = R ∪G4 ∪B′[P ] = G5[P ] ∪B′[P ]. (4.37)

We now check conditions (i)–(iv) of Corollary 4.9.4 (with G6 playing the role of G). Since

G0 ⊆ G−G[P ], (i) follows immediately from (4.36). For (ii), suppose that 2 ≤ i ≤ k and

x ∈ U<i. For any 1 ≤ j ≤ r, using (c), (4.35) and (4.33), we have

dG6(x, U i
j)

(4.37)

≤ dR(x, U i
j) + ∆(G4) + ∆(B) < ρdx,U ij + α|U i

j |+ γ1n/2 + γ2n

≤ ρdx,U ij + 2γ2n. (4.38)

Consider any y ∈ NG6(x, U i). Note that G6[U i] = G1[U i] − (B − B′)[U i]. So, for any

1 ≤ j ≤ r such that x, y /∈ Vj, we have

dG6(y,NG6(x, U i
j)) ≥ dG6(y,NR(x, U i

j)) ≥ dG1(y,NR(x, U i
j))−∆(B)

(f),(4.33)

≥ (1− 1/(r − 1))ρdx,U ij + ρ5/4|U i
j | − γ2n

(4.38)

≥ (1− 1/(r − 1))dG6(x, U i
j) + ρ5/4|U i

j | − 3γ2n

> (1− 1/(r − 1))dG6(x, U i
j) + 9krρ3/2|U i|.

So (ii) holds.
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To see that G6 satisfies property (iii) of Corollary 4.9.4, note that for all 2 ≤ i ≤ k

and all distinct x, x′ ∈ U<i, (d), (4.33), (4.35) and (4.37) imply that

|NG6(x, U i) ∩NG6(x′, U i)| ≤ dR({x, x′}, U i) + ∆(G4) + ∆(B)

< (ρ2 + α)|U i|+ γ1n/2 + γ2n ≤ 2ρ2|U i|.

Finally, by (c), (4.33), (4.35) and (4.37), for any y ∈ U i, we have that

dG6(y, U<i) ≤ ∆(R) + ∆(G4) + ∆(B) ≤ 3ρn/2 ≤ 2kρ|U i
1|,

and (iv) holds. Hence we can apply Corollary 4.9.4 to G6 to find a subgraph H2 ⊆

G6 − G6[P ] such that G6[P ] ∪ H2 has a Kr-decomposition F3 and ∆(H2) ≤ 3rρn. Set

H := H1 ∪H2 ⊆ G1−G[P ]. We have ∆(H) ≤ ∆(H1) + ∆(H2) ≤ ∆(B) + ∆(H2) ≤ 4rρn.

Now,

G[P ] ∪H = G2[P ] ∪R ∪H = G3 ∪R ∪H ∪B[P ]

=
⋃
F1 ∪G4 ∪R ∪H ∪B[P ] =

⋃
F1 ∪G5[P ] ∪H1 ∪H2 ∪B[P ]

=
⋃

(F1 ∪ F2) ∪G5[P ] ∪H2 ∪B′[P ]
(4.37)
=
⋃

(F1 ∪ F2) ∪G6[P ] ∪H2

=
⋃

(F1 ∪ F2 ∪ F3).

So G[P ] ∪H has a Kr-decomposition F1 ∪ F2 ∪ F3. �

We now iterate Lemma 4.11.1, applying it to each partition Pi in a partition sequence

P1, . . . ,P` for G. This allows us to cover all of the edges in G[P`] by edge-disjoint copies

of Kr, leaving only a small remainder in
⋃
U∈P` G[U ].

Lemma 4.11.2. Let 1/m � α � η � ρ � 1/k � ε � 1/r ≤ 1/3. Let G be a Kr-

divisible graph on (V1, . . . , Vr) with |V1| = · · · = |Vr| = n. Let P1, . . . ,P` be a (1, k, δ̂ηKr +

ε/2,m)-partition sequence for G. For each 1 ≤ q ≤ `, each 1 ≤ j ≤ r, each U ∈ Pq and

each x ∈ V (G), let 0 ≤ dx,Uj ≤ |Uj| be given. Let P0 := {V (G)} and, for each 0 ≤ q ≤ `,
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let Gq := G[Pq]. Let R1, . . . , R` be a sequence of graphs such that Rq ⊆ Gq−Gq−1 for each

q. Suppose the following hold for all 1 ≤ q ≤ `, all 1 ≤ j, j1, j2 ≤ r such that j 6= j1, j2,

all W ∈ Pq−1, all distinct x, y ∈ W and all U,U ′ ∈ Pq[W ]:

(i) if q ≥ 2, Pq[W ] is a (1, k, δ̂ηKr + ε)-partition for G[W ];

(ii) if x ∈ Uj, |dG(x, Uj1)− dG(x, Uj2)| < α|Uj|;

(iii) dRq(x, Uj) < ρdx,Uj + α|Uj|;

(iv) dRq({x, y}, Uj) < (ρ2 + α)|Uj|;

(v) if x /∈ U ∪ U ′ ∪ Vj1 ∪ Vj2, |dRq(x, Uj1)− dRq(x, U ′j2)| < 3α|Uj1|;

(vi) if x /∈ U , y ∈ U and x, y /∈ Vj, then

dG′q+1
(y,NRq(x, Uj)) ≥ ρ(1− 1/(r − 1))dx,Uj + ρ5/4|Uj|

where G′q+1 := Gq+1 −Rq+1 if q ≤ `− 1 and G′`+1 := G.

Then there is a subgraph H ⊆ ⋃U∈P` G[U ] such that G−H has a Kr-decomposition.

Proof. We will use induction on `. If ` = 1, apply Lemma 4.11.1 (with ε/2, P1, R1 and

the empty graph playing the roles of ε, P , R and G0) to find H ′ ⊆ G− G[P1] such that

G[P1] ∪H ′ has a Kr-decomposition. Letting H := G−G[P1]−H ′ ⊆ ⋃U∈P` G[U ], shows

the result holds for ` = 1.

Suppose then that ` ≥ 2 and the result holds for all smaller `. Note that for each

1 ≤ j ≤ r, each x /∈ Vj and each U ∈ P1, dG[P2]−R2(x, Uj) ≥ (δ̂ηKr + ε/3)|Uj|, since

R2 satisfies (iii) and P1, . . . ,P` is a (1, k, δ̂ηKr + ε/2,m)-partition sequence for G. So we

may apply Lemma 4.11.1 (with ε/3, P1, R1, G and (G − G[P2]) ∪ R2 playing the roles

of ε, P , R, G and G0) to find H ′ ⊆ G[P2] − (G[P1] ∪ R2) such that G[P1] ∪ H ′ has a

Kr-decomposition F1 and ∆(H ′) ≤ 4rρn. Let G∗ := G−G[P1]−H ′ = G−⋃F1, so G∗ is

Kr-divisible. Observe that G∗ =
⋃
U∈P1

G∗[U ], so G∗[U ] is Kr-divisible for each U ∈ P1.
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Consider any U ∈ P1. We check that

G∗[U ],P2[U ], . . . ,P`[U ], R2[U ], . . . , R`[U ]

satisfy the conditions of Lemma 4.11.2. Since ∆(H ′) ≤ 4rρn ≤ εn/4k2, P2[U ] is a

(1, k, δ̂ηKr + ε/2)-partition for G∗[U ]. For any 3 ≤ q ≤ ` and any W ∈ Pq−1, G∗[W ] =

G[W ] since H ′ ⊆ G[P2]. So (i) holds and P2[U ], . . . ,P`[U ] is a (1, k, δ̂ηKr + ε/2,m)-

partition sequence for G∗[U ]. For (ii), note that for any 2 ≤ q ≤ `, any 1 ≤ j ≤

r, any U ′ ∈ Pq[U ] and any x ∈ U ′, dG∗(x, U
′
j) = dG(x, U ′j). Conditions (iii)–(v) are

automatically satisfied. To see that (vi) holds, note that for any 2 ≤ q ≤ ` and any U ′ ∈

Pq[U ], G∗q+1[U ′] = Gq+1[U ′] since H ′ ⊆ G[P2]. So we can apply the induction hypothesis

to G∗[U ],P2[U ], . . . ,P`[U ], R2[U ], . . . , R`[U ] to obtain a subgraph HU ⊆
⋃
U ′∈P`[U ] G

∗[U ′]

such that G∗[U ] − HU has a Kr-decomposition FU . Set H :=
⋃
U∈P1

HU . Then, H ⊆⋃
U∈P` G[U ] and G−H has a Kr-decomposition F1 ∪

⋃
U∈P1

FU . �

We are now ready to prove Theorem 4.1.1.

Proof of Theorem 4.1.1. Let n0 ∈ N and η > 0 be such that 1/n0 � η � ε and

choose additional constants η1, m′, α, ρ and k such that

1/n0 � η1 � 1/m′ � α� η � ρ� 1/k � ε.

Let G be any Kr-divisible graph on (V1, . . . , Vr) with |V1| = · · · = |Vr| = n ≥ n0 and

δ̂(G) ≥ (δ̂ηKr +ε)n. Apply Lemma 4.7.2 to find an (α, k, δ̂ηKr +ε−α,m)-partition sequence

P1, . . . ,P` for G where m′ ≤ m ≤ km′. So in particular, by (S3), for each 1 ≤ q ≤ `, all

1 ≤ j1, j2, j3 ≤ r with j1 6= j2, j3, each U ∈ Pq and each x ∈ Uj1 ,

|dG(x, Uj2)− dG(x, Uj3)| < α|Uj1|. (4.39)

Let P0 := {V (G)} and Gq := G[Pq] for 0 ≤ q ≤ `. Note that δ̂ηKr + ε − α ≥ 1 − 1/r + ε

(with room to spare) by Proposition 4.3.1. So we can apply Corollary 4.7.5 to find a
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sequence of graphs R1, . . . , R` such that Rq ⊆ Gq − Gq−1 for each 1 ≤ q ≤ ` and the

following holds. For all 1 ≤ q ≤ `, all 1 ≤ j, j′ ≤ r, all W ∈ Pq−1, all distinct x, y ∈ W

and all U,U ′ ∈ Pq[W ]:

(a) dRq(x, Uj) < ρdGq(x, Uj) + α|Uj|;

(b) dRq({x, y}, Uj) < (ρ2 + α)|Uj|;

(c) |dRq(x, Uj)− dRq(x, U ′j′)| < 3α|Uj| if x /∈ U ∪ U ′ ∪ Vj ∪ Vj′ ;

(d) dG′q+1
(y,NRq(x, Uj)) ≥ ρ(1 − 1/(r − 1))dGq(x, Uj) + ρ5/4|Uj| if x /∈ U, y ∈ U and

x, y /∈ Vj, where G′q+1 := Gq+1 −Rq+1 if q ≤ `− 1 and G′`+1 := G.

Let H := {G[U ] : U ∈ P`}. Each H ∈ H satisfies |H| ≤ rm. Note that

δ̂(G[P1]−R1) ≥ (δ̂ηKr + ε)n− dn/ke − 2ρn > (1− 1/(r + 1) + ε/2)n.

So we can apply Lemma 4.6.6 (with η1, α, rm and G[P1]−R1 playing the roles of η, ε, b

and G) to find an absorbing set A for H inside G[P1]−R1 such that A∗ :=
⋃A satisfies

∆(A∗) ≤ αn.

Let G∗ := G − A∗. Note that both G and A∗ are Kr-divisible, so G∗ is Kr-divisible.

Since ∆(A∗) ≤ αn and A∗ ⊆ G[P1], P1, . . . ,P` is an (1, k, δ̂ηKr +ε/2,m)-partition sequence

for G∗. For each 1 ≤ q ≤ `, each 1 ≤ j ≤ r, each U ∈ Pq and each x ∈ V (G),

set dx,Uj := dGq(x, Uj). Using (4.39), (a)–(d) and that A∗ ⊆ G[P1], we see that G∗, the

partition sequence P1, . . . ,P` and the sequence of graphs R1, . . . , R` satisfy properties (i)–

(vi) of Lemma 4.11.2 (with ε− α playing the role of ε). So we may apply Lemma 4.11.2

to find H ⊆ ⋃U∈P` G
∗[U ] such that G∗ −H has a Kr-decomposition F1.

Note that H is a Kr-divisible subgraph of
⋃
U∈P` G[U ], so for each U ∈ P`, H[U ] ⊆

G[U ] is Kr-divisible. Since A is an absorbing set for H, it contains a distinct absorber for

each H[U ]. So H ∪ A∗ has a Kr-decomposition F2. Thus G = (G∗ −H) ∪ (H ∪ A∗) has

a Kr-decomposition F1 ∪ F2. �
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CHAPTER 5

ON THE EXACT DECOMPOSITION THRESHOLD
FOR EVEN CYCLES

5.1 Introduction

Let F and G be graphs. We say that G has an F -decomposition (or is F -decomposable)

if its edge set can be partitioned into copies of F . One of the first results in the study of

graph decompositions was due to Kirkman [51] who gave conditions for a clique to have a

K3-decomposition. His result was generalised by Wilson [82] who determined when large

cliques have F -decompositions for arbitrary F . When G is not a clique, the problem

becomes more challenging and the corresponding decision problem is NP-complete [27].

Clearly, every graph which has an F -decomposition must satisfy certain vertex degree

and edge divisibility conditions. There have been many recent developments bound-

ing the F -decomposition threshold, that is, the minimum degree which ensures an F -

decomposition in any large graph satisfying the necessary divisibility conditions. General

results on the F -decomposition threshold establishing a close connection to its fractional

counterpart are obtained in [7] and [38]. Moreover, [7] determines the asymptotic decom-

position threshold for even cycles and [38] generalises this to arbitrary bipartite graphs.

The results in [7] and [38] can be combined with bounds for the fractional version of this

problem in [6] and [28] to obtain good explicit bounds on the F -decomposition threshold.

Corresponding results for the multipartite setting (with applications to the completion of
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partially filled Latin squares) were considered in [8], [17] and [60]. The only known exact

minimum degree bound (prior to Theorem 5.1.2) was obtained by Yuster [85] who studied

the case when F is a tree.

From here on, we restrict our attention to the case when F is a cycle. We say that G

is Ck-divisible if e(G) is divisible by k and every vertex of G has even degree. Note that

any graph which has a Ck-decomposition is necessarily Ck-divisible. For each k ∈ N with

k ≥ 2, let us define

δk :=


2/3 if k = 2,

1/2 if k ≥ 3.

Barber, Kühn, Lo and Osthus [7] proved asymptotically best possible minimum degree

bounds for a graph to have a C2k-decomposition.

Theorem 5.1.1 ([7]). Let k ∈ N with k ≥ 2. For each ε > 0, there is an n0 such that every

C2k-divisible graph G on n ≥ n0 vertices with δ(G) ≥ (δk + ε)n has a C2k-decomposition.

In this thesis we remove the linear error term from Theorem 5.1.1 to obtain best

possible minimum degree bounds for cycles of all even lengths except length six. We

structure the proof into extremal cases where we construct the decompositions directly

and non-extremal cases where the iterative absorption approach of [7] and [38] remains

effective. In Proposition 5.1.4, we give constructions which show that our bounds are best

possible.

Theorem 5.1.2. Let k ∈ N with k = 2 or k ≥ 4. There is an n0 such that every

C2k-divisible graph G on n ≥ n0 vertices with

δ(G) ≥


2n/3− 1 if k = 2,

n/2 if k ≥ 4

has a C2k-decomposition.

It is an open problem to determine the exact minimum degree guaranteeing a C6-
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decomposition, this is discussed in more detail in Section 5.8.

Along the way to proving Theorem 5.1.2, we also obtain a bipartite version of Theo-

rem 5.1.1 which is stated as Theorem 5.1.3 below. If G is a bipartite graph with vertex

classes A and B, we introduce the following variant on the minimum degree. Given

0 ≤ δ ≤ 1, we will write δbip(G) ≥ δ if, for each v ∈ A, dG(v) ≥ δ|B| and for each v ∈ B,

dG(v) ≥ δ|A|. This definition is convenient when the bipartite graph is not balanced.

Cavenagh [19] already studied C4-decompositions and proved a bound of δbip(G) ≥ 95/96

ensures a C4-decomposition. Theorem 5.1.3 is asymptotically best possible, see Proposi-

tion 5.1.5.

Theorem 5.1.3. Let k ∈ N with k ≥ 2. For each ε > 0, there is an n0 such that every

C2k-divisible bipartite graph G = (A,B) with n0 ≤ |A| ≤ |B| ≤ 2|A| and δbip(G) ≥ δk + ε

has a C2k-decomposition.

5.1.1 Extremal graphs

In this section we provide extremal constructions which show that Theorem 5.1.2 is best

possible and Theorem 5.1.3 is asymptotically so.

Proposition 5.1.4. (i) There are infinitely many C4-divisible graphs G with δ(G) ≥

2|G|/3− 2 and no C4-decomposition.

(ii) Let k ∈ N, k ≥ 2. There are infinitely many C2k-divisible graphs G with δ(G) ≥

|G|/2− 1 and no C2k-decomposition.

A B C

4m + 2 4m + 3 4m− 2

Figure 5.1: The extremal graph for C4, Proposition 5.1.4(i). All possible edges are present
in the shaded regions.
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Proof. We begin with (i). Let m ∈ N and let A,B,C be disjoint sets of vertices of sizes

4m + 2, 4m + 3, 4m − 2 respectively. Form a graph G which has vertex set A ∪ B ∪ C.

The edge set of G is such that A and C form cliques and G contains all possible edges

between A∪C and B. For each v ∈ V (G), d(v) ∈ {8m+ 4, 8m}, so every vertex has even

degree and δ(G) = 8m = 2|G|/3− 2. We also have

e(G) =

(
4m+ 2

2

)
+ 8m(4m+ 3) +

(
4m− 2

2

)
= 4(12m2 + 5m+ 1).

So G is C4-divisible. Any copy of C4 in G must use an even number of edges from G[A].

But e(A) =
(

4m+2
2

)
= (2m+1)(4m+1) is odd. Hence, G does not have a C4-decomposition.

For (ii), let n be such that n ≡ 2k + 1 mod 4k and let G be the union of two vertex-

disjoint copies of Kn. Every vertex in G has degree n−1 = |G|/2−1 which is even and 2k

divides e(G) = n(n− 1). So G is C2k-divisible. But G does not have a C2k-decomposition

since 2k does not divide
(
n
2

)
. �

Proposition 5.1.5. (i) There are infinitely many C4-divisible bipartite graphs G =

(A,B) with |A| = |B|, δ(G) ≥ 2|A|/3− 2 and no C4-decomposition.

(ii) Let k ∈ N, k ≥ 2. There are infinitely many C2k-divisible bipartite graphs G = (A,B)

with |A| = |B|, δ(G) ≥ |A|/2− 1 and no C2k-decomposition.

Proof. First, we prove (i). Let m ∈ N. Start with independent sets V1, . . . , V6 each of

size 2m + 1 and add all edges between Vi and Vi+1 for each 1 ≤ i ≤ 6 (consider indices

modulo 6). Remove one copy of C6 between V5 and V6 and let G denote the resulting

graph. Then G is bipartite with vertex classes A := V1∪V3∪V5 and B := V2∪V4∪V6 of size

6m+3. The degree of each vertex in G is either 4m+2 or 4m, both of which are even, and

δ(G) = 4m = 2|A|/3−2. The number of edges in G is 6(2m+1)2−6 = 24m(m+1). So G

is C4-divisible. But G does not have a C4-decomposition. To see this, note that any copy

of C4 in G must use an even number of edges between V1 and V2 but eG(V1, V2) = (2m+1)2

is odd.
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Now we consider (ii). For each n ∈ N , let K−n,n denote the graph formed by removing

a perfect matching from Kn,n. Suppose first that k is even. Choose m ∈ N such that

m ≡ k + 1 mod 2k. Let G be the vertex-disjoint union of two copies of K−m,m. Then G

is a balanced bipartite graph with vertex classes of size 2m. Each vertex in G has degree

m− 1 ≡ k mod 2k which is even and

e(G) = 2(m− 1)m ≡ 2k(k + 1) ≡ 0 mod 2k.

So G is C2k-divisible. But G does not have a C2k-decomposition because

e(K−m,m) = (m− 1)m ≡ k(k + 1) ≡ k mod 2k.

Now we consider k odd. Choose m ∈ N such that 4m ≡ k − 1 mod 2k (i.e., choose

m ≡ (k − 1)/4 mod 2k if k ≡ 1 mod 4 and m ≡ (3k − 1)/4 mod 2k if k ≡ 3 mod 4).

Let G be the vertex-disjoint union of K−2m+1,2m+1 and K2m,2m, so that G is a balanced

bipartite graph with vertex classes of size 4m+ 1. Note that each vertex in G has degree

2m which is even and, since

e(G) = 2m(4m+ 1) ≡ 2mk ≡ 0 mod 2k,

G is C2k-divisible. However, 2k does not divide

e(K−2m+1,2m+1)− e(K2m,2m) = 2m,

so K−2m+1,2m+1 and K2m,2m (and hence also G) are not C2k-decomposable. �

5.1.2 Outline of the proof

Our argument is based on an iterative absorption approach. This method was introduced

in [53] and further developed in the context of F -decompositions in [7] and [38]. In our
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setting, the idea of iterative absorption is as follows. Let U be a subset of V (G) of

constant size and let U0 ⊇ U1 ⊇ · · · ⊇ U` be a decreasing sequence of sets of vertices with

U` := U . We use an iterative argument to cover almost all edges of G by copies of C2k.

Here, it is to our advantage that C2k is bipartite since we can always greedily find an

approximate decomposition of G using the Erdős-Stone theorem (this is not true for F -

decompositions in general). At the end of the ith iteration, we are left with a diminishing

subgraph Hi ⊆ G[Ui] until, eventually, all that remains is a small leftover H ⊆ G[U ]. But

we have prepared for H by removing an “absorber” at the start of the process, a subgraph

A of G with the property that A ∪ H has a C2k-decomposition. This absorber must be

able to deal with all possible leftover graphs in G[U ], but this is feasible since U only has

constant size. Thus we obtain a C2k-decomposition of G. So the proof of Theorem 5.1.1

using iterative absorption relies on two parts:

1. G contains an absorber and

2. we can cover all edges in G−G[U ].

When we relax the minimum degree condition on G to prove Theorem 5.1.2, one or both

of these properties can become considerably more challenging to attain.

When the cycle has length at least eight, we need to show that a minimum degree of

|G|/2 suffices to find a C2k-decomposition. If G satisfies a certain expansion property this

guarantees many disjoint paths between any pair of vertices, which enables us to show

that (1) and (2) still hold. If G is not an expander, then G has one of two well-defined

extremal structures. Either G resembles a complete bipartite graph or the disjoint union

of two cliques. In either case, we can construct C2k-decompositions directly. We first deal

with any edges or vertices which are unusual in some way to leave behind disjoint graphs

or bipartite graphs which have high minimum degree. These can be decomposed using

the existing Theorem 5.1.1 or the bipartite version, Theorem 5.1.3, (which is proved in

Section 5.6).

Cycles of length four are treated separately since in this case we require a higher
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minimum degree, namely δ(G) ≥ 2|G|/3 − 1. In fact, this minimum degree is sufficient

(with room to spare) for (2) and it is only finding an absorber which causes any difficulty.

We are able to show that any graph which does not contain an absorber will, as in the

previous case, have a well-defined structure and we find a C4-decomposition directly.

This chapter is organised as follows. In Section 5.2, we introduce the notation which

will be used throughout. We construct absorbers in Section 5.3. We prove Theorem 5.1.2

for k = 2 in Section 5.4 and for k ≥ 4 in Section 5.5 (see Table 5.1 for a guide). As

mentioned above, these proofs rely on decomposition results when the host graph G is

bipartite (see Theorem 5.1.3) and when G is an expander (see Theorem 5.5.2). These

results are proved in Sections 5.6 and 5.7 respectively.

C4 C8+

non-extremal Lemma 5.4.1 Theorem 5.5.2

extremal Lemma 5.4.2 Lemmas 5.5.3 and 5.5.7

Table 5.1: Components in the proof of Theorem 5.1.2.

5.2 Notation and tools

Let G be a graph and let P = {U1, . . . , Uk} be a partition of V (G). We write G[U1] for the

subgraph of G induced by U1 and G[U1, U2] for the bipartite subgraph of G induced by

the vertex classes U1 and U2. We write G[P ] := G[U1, . . . , Uk] for the k-partite subgraph

of G induced by the partition P . We say the partition P is equitable if its parts differ in

size by at most one.

Let U, V ⊆ V (G). We write EG(U) := E(G[U ]) and eG(U) := e(G[U ]). If U and

V are disjoint, we let EG(U, V ) := E(G[U, V ]) and eG(U, V ) := e(G[U, V ]). For any

v ∈ V (G), NG(v, U) := NG(v) ∩ U and dG(v, U) := |NG(v, U)|. Let H be a graph. We

write G − H for the graph with vertex set V (G) and edge set E(G) \ E(H). We write

G \ H for the subgraph of G induced by the vertex set V (G) \ V (H). (Note that, in
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general, G−H 6= G \H.)

Let F and G be graphs and let η > 0. We say that a collection F of edge-disjoint

copies of F in G is an η-approximate F -decomposition of G if e(G−⋃F) ≤ η|G|2. In this

chapter, the graph F will always be bipartite, so we can greedily apply the Erdős-Stone

theorem to find an η-approximate F -decomposition of any large graph G. We say that G

is 2-divisible if every vertex in G has even degree.

5.3 Absorbers

As described earlier, the main idea in the proof of the non-extremal cases of Theorem 5.1.2

is to cover as many edges of G as possible with copies of C2k using an iterative approach.

Then, as long as only a small number of edges remain, we can “absorb” these using a

special graph which was reserved at the start of the process. Let H and H ′ be vertex-

disjoint graphs. The graph A is an F -absorber for H if both A and A ∪ H have F -

decompositions. An (H,H ′)F -transformer is a graph T which is edge-disjoint from H

and H ′ and is such that both T ∪H and T ∪H ′ have F -decompositions. Note that if H ′

has an F -decomposition, then T ∪H ′ is an F -absorber for H. So we can use transformers

to build an absorber.

The following fact follows directly from H being Eulerian.

Fact 5.3.1. Let H be any connected 2-divisible graph and let C be a cycle of length e(H).

There is a graph homomorphism φ from C to H that is edge-bijective.

We will make use of the following graphs. For any i, k ∈ N, define L(i, k) to be the

graph consisting of i copies of C2k with exactly one common vertex. For any graph H,

we say that Hcon is a C2k-connector for H if:

• H ∪Hcon is connected and

• Hcon has a C2k-decomposition.
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The following simple procedure finds a C2k-connector for H. Suppose H is not connected

and choose vertices u and v which lie in separate components of H. Form a copy of C2k

containing these vertices by adding two edge-disjoint paths of length k between u and

v. If the resulting graph H1 is not connected, repeat this process on H1. Eventually, a

connected graph H ′ is obtained with |H ′| ≤ (2k − 1)|H|. The graph Hcon := H ′ −H is a

C2k-connector for H.

5.3.1 Absorbers for long cycles

The following simple transformer construction suits our purpose. Let H be a connected

2-divisible graph and let C = u1u2 . . . uh be a cycle of length h := e(H) which is vertex-

disjoint from H. Let φ be a graph homomorphism from C to H that is edge-bijective.

For each 1 ≤ i ≤ h, let Pi be a path of length k from ui to φ(ui) and let Qi be a path of

length k − 1 from ui+1 to φ(ui) (we consider indices modulo h). Suppose that the paths

Pi, Qi are internally disjoint and that they are edge-disjoint from H and C. Note that

for each 1 ≤ i ≤ h, uiui+1 ∪ Pi ∪ Qi and φ(uiui+1) ∪ Pi+1 ∪ Qi form copies of C2k. So

T :=
⋃h
i=1(Pi ∪Qi) is a (C,H)C2k

-transformer and |T | = 2ke(H).

Lemma 5.3.2. Let k ∈ N, k ≥ 4 and 1/n � 1/m′ � 1/m � 1/k. Let G be a graph

on n vertices and let U ⊆ V (G) with |U | = m. Suppose that between any pair of vertices

x, y ∈ V (G) there are at least m′ internally disjoint paths of length k−1. Then G contains

a C2k-divisible subgraph A∗ such that |A∗| ≤ 2m
2

and if H is any C2k-divisible graph on

U that is edge-disjoint from A∗ then A∗ ∪H has a C2k-decomposition.

Proof. Let H1, . . . , Hp be an enumeration of all possible C2k-divisible graphs on U

(note that p ≤ 2(m2 )). We will find an absorber for each Hi. For each 1 ≤ i ≤ p, find an

edge-disjoint C2k-connector Hcon
i ⊆ G − G[U ] using the procedure outlined above. Each

H ′i := Hi ∪Hcon
i is C2k-divisible and |H ′i| ≤ (2k − 1)m.

For each 1 ≤ i ≤ p, let hi := e(H ′i), let Ci be a cycle of length hi and let Ji be a

copy of the graph L(hi/2k, k), defined at the beginning of this section. Find copies of
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Ci and Ji in G which are vertex-disjoint from each other and from the graphs H ′i. Find

a (H ′i, C
i)C2k

-transformer Ti and a (Ci, Ji)C2k
-transformer T ′i in G (such that Ti and T ′i

are edge-disjoint and avoid all edges fixed so far). It is easy to find these transformers

using the construction described above since G contains many internally disjoint paths of

length k − 1 (and hence k also) between any pair of vertices. Then Ti ∪ Ci ∪ T ′i ∪ Ji is

an absorber for H ′i. Hence Ai := Hcon
i ∪ Ti ∪ Ci ∪ T ′i ∪ Ji is an absorber for Hi. Letting

A∗ :=
⋃p
i=1 Ai and noting |A∗| ≤ 4khip ≤ 2m

2
completes the proof. �

5.3.2 C4-absorbers

For cycles of length four, we will require the following alternative construction of a trans-

former. This is exactly the construction given in [7] and it is illustrated in Figure 5.2.

x y t

φ(x) φ(y) φ(t)

zx,y zy,x zy,t zt,y

wx wy wt

Figure 5.2: The transformer construction for cycles of length four (left) and a
(C8, L(2, 2))C4-transformer (right). The square/round vertices give a bipartition of the
transformer which is used by Lemma 5.3.3.

Let H be a connected, C4-divisible graph and let C be a cycle of length e(H). Suppose

H and C are vertex-disjoint. Let φ be an edge-bijective graph homomorphism from C

to H. For each xy ∈ E(C), choose a set of vertices Zxy := {zx,y, zy,x} and, for each

x ∈ V (C), choose a vertex wx. Choose the vertices so that V (H), V (C), Ze, Ze′ , {wx}

and {wx′} are disjoint for all distinct e, e′ ∈ E(C) and all distinct x, x′ ∈ V (C). Let

• E1 := {xzx,y, yzy,x : xy ∈ E(C)};
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• E2 := {zx,yzy,x : xy ∈ E(C)};

• E3 := {φ(x)zx,y, φ(y)zy,x : xy ∈ E(C)};

• E4 := {wxzx,y : xy ∈ E(C)}.

The transformer T has V (T ) := V (H) ∪ V (C) ∪⋃e∈E(C) Z
e ∪⋃x∈V (C){wx} and E(T ) :=⋃4

i=1 Ei. Note that |T | ≤ 5|C| = 5e(H). To see that T is a (C,H)C4-transformer, it

remains to verify that both C ∪ T and H ∪ T have C4-decompositions (the details are

given in Section 8 of [7]).

5.3.3 Finding absorbers in a bipartite setting

We must also be able to find absorbers when the host graph G is bipartite.

Lemma 5.3.3. Let k ∈ N, k ≥ 2 and 1/n � 1/m′ � 1/m � 1/k. Let G = (A,B) be a

bipartite graph with |A|, |B| ≥ n and let U ⊆ V (G) with |U | = m. Suppose that for each

v ∈ A, d(v) ≥ δk|B| + m′ and, for each v ∈ B, d(v) ≥ δk|A| + m′. Then G contains a

C2k-divisible subgraph A∗ such that |A∗| ≤ 2m
2

and if H is any C2k-divisible graph on U

that is edge-disjoint from A∗ then A∗ ∪H has a C2k-decomposition.

The proof is very similar to that of Lemma 5.3.2 so we omit the details and restrict

ourselves to the following outline. For k ≥ 3 we find transformers using the construction

given in Section 5.3.1 and for C4 we use the construction described in Section 5.3.2. The

following observations allow us to find absorbers:

• Given a connected, 2-divisible graph H and a vertex-disjoint cycle C of length e(H)

on (A,B), there is a bipartition of the (C,H)C2k
-transformer which respects the

bipartitions of V (H) and V (C) (with a suitable choice of the graph homomorphism

φ). An example for cycles of length four is given in Figure 5.2.

• For k ≥ 3, (C,H)C2k
-transformers are constructed from a collection of internally-

disjoint paths of length k or k−1 between vertices in C andH. Any pair of vertices in
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A has at least 2m′ common neighbours in B since, for any v ∈ A, dG(v) ≥ |B|/2+m′.

Similarly, any pair of vertices in B has at least 2m′ common neighbours in A. So

we can find the transformers greedily.

• List the vertices of the (C,H)C4-transformer described in Section 5.3.2 so that they

appear in the following order: V (C ∪H),
⋃
e∈E(C) Z

e,
⋃
x∈V (C){wx}. Each vertex in

the transformer has at most three of its neighbours appearing before itself in this

list. For any v ∈ A, dG(v) ≥ 2|B|/3 + m′, so any three vertices in A have at least

3m′ common neighbours in B. The same is true with the roles of A and B reversed.

So we can greedily embed the vertices of the transformer in this order.

5.4 Cycles of length four

5.4.1 Case distinction

For cycles of length four, the εn term in Theorem 5.1.1 is required only to find the absorber

in the proof. We show that a minimum degree of 2n/3− 1 suffices by observing that any

such graph either contains an absorber or has one of two extremal structures pictured in

Figure 5.3 (both of which have C4-decompositions).

A B C A

B

C

Figure 5.3: If G is extremal and δ(G) ≥ 2n/3− 1, then G resembles the graph on the left
(type 1) or the right (type 2). Here |A|, |B|, |C| ∼ n/3 and shaded areas are dense.

We say that a graph G on n vertices is m-extremal if there exist disjoint sets S, T ⊆

V (G) such that |S|, |T | ≥ n/3−m which satisfy one of the following:

• e(S, T ) = 0; (Type 1 )
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• e(S) = e(T ) = 0. (Type 2 )

If G is not close to being m-extremal, Lemma 5.4.1 finds a C4-decomposition.

Lemma 5.4.1. Let n,m1,m2 ∈ N with 1/n� 1/m1 � 1/m2 � 1. Let G be a C4-divisible

graph on n vertices with δ(G) ≥ 2n/3−1. Suppose that for every spanning subgraph G′ of

G such that δ(G′) ≥ 2n/3−m2, G′ is not m1-extremal. Then G has a C4-decomposition.

If Lemma 5.4.1 does not apply, then G has a subgraph G′ which is m1-extremal and

has δ(G′) ≥ 2n/3−m2 ≥ 2n/3−m1. In this case, we use the following result.

Lemma 5.4.2. Let n,m ∈ N with 1/n � 1/m � 1. Let G be a C4-divisible graph on

n vertices with δ(G) ≥ 2n/3 − 1. Suppose that there exists a spanning subgraph G′ of G

such that δ(G′) ≥ 2n/3−m and G′ is m-extremal of (i) type 1 or (ii) type 2. Then G has

a C4-decomposition.

So, together, Lemmas 5.4.1 and 5.4.2 imply Theorem 5.1.2 when k = 2.

5.4.2 G is not extremal

In this section we prove Lemma 5.4.1, which finds a C4-decomposition of G whenever G

is not extremal. Let G be a graph on n vertices. A (δ, µ,m)-vortex in G (as defined in

[38]) is a sequence U0 ⊇ U1 ⊇ · · · ⊇ U` such that:

• U0 = V (G);

• |Ui| = bµ|Ui−1|c, for all 1 ≤ i ≤ `, and |U`| = m;

• dG(x, Ui) ≥ δ|Ui|, for all 1 ≤ i ≤ ` and all x ∈ Ui−1.

We use Lemma 4.3 from [38] to find a vortex in G.

Lemma 5.4.3 ([38]). Let 0 ≤ δ ≤ 1. For all 0 < µ < 1, there exists an m0 = m0(µ) such

that for all m′ ≥ m0 the following holds. Whenever G is a graph on n ≥ m′ vertices with

δ(G) ≥ δn, then G has a (δ − µ, µ,m)-vortex for some bµm′c ≤ m ≤ m′.
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The following result (taken from the more general statement for F -decompositions,

Lemma 5.1 in [38]) finds an approximate C4-decomposition of G leaving only a very small

(and very restricted) leftover H.

Lemma 5.4.4 ([38]). Let 1/m � µ. Let G be a C4-divisible graph with δ(G) ≥ (1/2 +

3µ)|G| and let U0 ⊇ U1 ⊇ · · · ⊇ U` be a (1/2 + 4µ, µ,m)-vortex in G. Then there exists

H ⊆ G[U`] such that G−H is C4-decomposable.

We must prove the following lemma which reserves an absorber that can be used to

deal with this leftover graph H.

Lemma 5.4.5. Let n,m1,m2,m3 ∈ N with 1/n � 1/m1 � 1/m2 � 1/m3 � 1. Let G

be a graph on n vertices with δ(G) ≥ 2n/3−m2. Suppose that G is not m1-extremal. Let

U ⊆ V (G) with |U | = m3. Then G contains a C4-divisible subgraph A∗ with |A∗| ≤ 2m
2
3

such that for any C4-divisible graph H on U that is edge-disjoint from A∗, the graph A∗∪H

has a C4-decomposition.

Lemma 5.4.1 follows directly from these results.

Proof of Lemma 5.4.1. (Assuming Lemma 5.4.5.) Let m3 ∈ N and µ be such that

1/n� 1/m1 � 1/m2 � 1/m3 � µ� 1.

Apply Lemma 5.4.3 to G to find a (2/3 − 2µ, µ,m3)-vortex U0 ⊇ U1 ⊇ · · · ⊇ U` in G.

Define `0 := dlogµ(m2/n)e+ 1. We have

µ2m2 − 2 ≤ µ`0n− 2 ≤ |U`0| ≤ µ`0n ≤ µm2.

Let G′ := G − G[U`0 ]. We have δ(G′) ≥ 2n/3 − 1 − |U`0 | ≥ 2n/3 −m2, so G′ is not

m1-extremal. Apply Lemma 5.4.5 to the graph G′ with U` playing the role of U to find

A∗ ⊆ G′ as in the lemma. We have ∆(A∗) ≤ |A∗| ≤ 2m
2
3 ≤ |U`0|/10, so U0 ⊇ U1 ⊇ · · · ⊇ U`

is a (1/2 + 4µ, µ,m3)-vortex in G∗ := G − A∗. Then apply Lemma 5.4.4 to G∗ to find
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H ⊆ G∗[U`] such that G∗ − H has a C4-decomposition. Observing that A∗ ∪ H has a

C4-decomposition (by Lemma 5.4.5) completes the proof. �

To prove Lemma 5.4.5, we will find a C4-absorber for each possible C4-divisible graph

on U . We will use the transformer construction which was given in Section 5.3.2 and

embed the vertices of the transformer in the order: V (H ∪ C),
⋃
e∈E(C) Z

e,
⋃
x∈V (C){wx}.

The difficulty arises when we try to embed the vertices in
⋃
e∈E(C) Z

e since, unlike in [7],

we can no longer guarantee that any set of three vertices will have a common neighbour.

We will say that the edge vxvy transforms xy to φ(x)φ(y) if vx ∈ N(x) ∩ N(φ(x))

and vy ∈ N(y) ∩ N(φ(y)). Suppose we are transforming the edge xy to φ(x)φ(y). We

are able to do this if there is an edge between N(x) ∩ N(φ(x)) and N(y) ∩ N(φ(y)).

These “transforming” edges are related to the vertices in
⋃
e∈E(C) Z

e. That is, for each

xy ∈ E(C), the edge zx,yzy,x transforms xy to φ(x)φ(y). This suggests that we will be

able to find an absorber as long as there do not exist X, Y ⊆ V (G) with |X|, |Y | ∼ n/3

and e(X, Y ) = 0 (note that X and Y are not necessarily disjoint, unlike in the definition

of m-extremal).

Proof of Lemma 5.4.5. Let H1, . . . , Hp be an enumeration of all possible C4-divisible

graphs on U and note that p ≤ 2(m3
2 ). For each 1 ≤ i ≤ p, find an edge-disjoint C4-

connector Hcon
i ⊆ G − G[U ] (using the procedure given in Section 5.3). Each H ′i :=

Hi ∪Hcon
i is C4-divisible and |H ′i| ≤ 3m3. Let hi := e(H ′i), let Ci be a cycle of length hi

and let Ji be a copy of L(hi/4, 2). Our strategy is as follows. Suppose that G \⋃p
i=1 H

′
i

contains vertex-disjoint copies of Ci and Ji such that we are able to find edge-disjoint

(Ci, H ′i)C4- and (Ci, Ji)C4-transformers Ti and T ′i . Then we can combine these to obtain

a C4-absorber Ai for Hi as in the proof of Lemma 5.3.2 (more precisely, letting Ai :=

Hcon
i ∪ Ti ∪ Ci ∪ T ′i ∪ Ji). We use the following claim.

Claim: There exist vertex-disjoint copies of C1, . . . , Cp, J1, . . . , Jp in G \⋃p
i=1 H

′
i such

that the following holds. Let W ⊆ V (G) with |W | ≤ m2. For any 1 ≤ i ≤ p, any

xy ∈ E(Ci) and any φ(x)φ(y) ∈ E(G) there is an edge vxvy ∈ E(G\W ) which transforms
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xy to φ(x)φ(y).

We consider two cases.

Case 1: For all sets X, Y ⊆ V (G) with |X|, |Y | ≥ n/3− 3m2, eG(X, Y ) > 0.

Find vertex-disjoint copies of C1, . . . , Cp, J1, . . . , Jp (anywhere) in G \⋃p
i=1 H

′
i. Con-

sider any W ⊆ V (G) with |W | ≤ m2, any xy, φ(x)φ(y) ∈ E(G). Let X := (NG(x) ∩

NG(φ(x))) \W and Y := (NG(y) ∩NG(φ(y))) \W . Note that

|X|, |Y | ≥ 2δ(G)− n− |W | ≥ n/3− 3m2,

so eG(X, Y ) > 0. Any edge vxvy ∈ EG(X, Y ) transforms xy to φ(x)φ(y).

Case 2: There exist X, Y ⊆ V (G) with |X|, |Y | ≥ n/3− 3m2 such that eG(X, Y ) = 0.

Since G is not m1-extremal, X ∩ Y 6= ∅. Let v ∈ X ∩ Y and note that NG(v) ⊆

V (G) \ (X ∪ Y ). So |X ∪ Y | ≤ n/3 +m2 and

|X ∩ Y | ≥ 2(n/3− 3m2)− (n/3 +m2) = n/3− 7m2.

Let X ′ ⊆ X ∩ Y of size bn/3c − 7m2. Note that eG(X ′) = 0.

Letm := m1/10. For each i ∈ {m,n/3−√m}, let Ui := {v : v ∈ V (G)\X ′, dG(v,X ′) ≤

i}. We have

|X ′|(2n/3−m2) ≤ eG(X ′, V (G) \X ′) ≤ |Ui|i+ (n− |X ′| − |Ui|)|X ′|

which yields

|Ui| ≤
|X ′|(n/3− |X ′|+m2)

|X ′| − i ≤ |X
′|(8m2 + 1)

|X ′| − i .

Thus, we have |Um| ≤ 9m2 and |Un/3−√m| ≤ n/100. Set X ′′ := X ′ ∪Um, Y ′ := V (G) \X ′′

and Y ′′ := Y ′ \ Un/3−√m. Note that:

(i) for every v ∈ X ′′, dG(v, Y ′) ≥ 2n/3− 2m;

(ii) for every v ∈ Y ′, dG(v,X ′′) ≥ m and dG(v, Y ′) ≥ 2n/3−m2 − |X ′′|;
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(iii) for every v ∈ Y ′′, dG(v,X ′′) ≥ n/3−√m;

(iv) n/3− 8m2 ≤ |X ′′| ≤ n/3 + 2m2 and 2n/3− 2m2 ≤ |Y ′| ≤ 2n/3 + 8m2.

Find vertex-disjoint copies of C1, . . . , Cp, J1, . . . , Jp in G \ ⋃p
i=1H

′
i such that each cycle

Ci ⊆ G[X ′′, Y ′′]. Consider any W ⊆ V (G) with |W | ≤ m2, any 1 ≤ i ≤ p, any xy ∈ E(Ci)

and any φ(x)φ(y) ∈ E(G). We will assume, without loss of generality, that x ∈ X ′′ and

y ∈ Y ′′.

Suppose first that φ(x), φ(y) ∈ X ′′. Note that (i) and (ii) imply

|NG(y, Y ′) ∩NG(φ(y), Y ′)| ≥ (2n/3−m2 − |X ′′|) + (2n/3− 2m)− |Y ′|

= n/3− 2m−m2 ≥ n/3− 3m.

Choose vy to be any vertex in (NG(y, Y ′)∩NG(φ(y), Y ′)) \W . By (ii) and (iv), vy has at

least 2n/3−m2 − |X ′′| > n/4 neighbours in Y ′. Since

|NG(x, Y ′) ∩NG(φ(x), Y ′)|
(i)

≥ 2(2n/3− 2m)− |Y ′|
(iv)

≥ |Y ′| − 5m,

vy has many neighbours in (NG(x, Y ′) ∩ NG(φ(x), Y ′)) \W , choose any one of these for

vx.

Now suppose that φ(x), φ(y) ∈ Y ′. It follows from (ii)–(iv) that

|NG(y,X ′′) ∩NG(φ(y), X ′′)| ≥ (n/3−√m) +m− (n/3 + 2m2)

= m−√m− 2m2 ≥ m/2.

Choose any vertex from (NG(y,X ′′) ∩ NG(φ(y), X ′′)) \ W for vy. This vertex is adja-

cent to all but at most 3m vertices in Y ′, by (i) and (iv). Use (i) and (ii) to see

that |NG(x, Y ′) ∩ NG(φ(x), Y ′)| ≥ n/3 − 3m. Thus vy must have many neighbours in

(NG(x, Y ′) ∩NG(φ(x), Y ′)) \W . Choose any suitable vertex for vx.
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A similar argument deals with the case when φ(x) ∈ X ′′ and φ(y) ∈ Y ′. We use that

|NG(y,X ′′) ∩NG(φ(y), X ′′)| ≥ m/2 and |NG(x, Y ′) ∩NG(φ(x), Y ′)| ≥ |Y ′| − 5m

to find suitable vertices vy ∈ (NG(y,X ′′) ∩ NG(φ(y), X ′′)) \ W and vx ∈ (NG(x, Y ′) ∩

NG(φ(x), Y ′)) \W .

Finally, suppose that φ(x) ∈ Y ′ and φ(y) ∈ X ′′. We again use (i) and (ii) to see that

|NG(x, Y ′) ∩NG(φ(x), Y ′)|, |NG(y, Y ′) ∩NG(φ(y), Y ′)| ≥ n/3− 3m.

Let

Yx := (NG(x, Y ′) ∩NG(φ(x), Y ′)) \W and

Yy := (NG(y, Y ′) ∩NG(φ(y), Y ′)) \W,

so |Yx|, |Yy| ≥ n/3 − 4m. If eG(Yx, Yy) > 0 choose any vxvy ∈ EG(Yx, Yy). Suppose

then that eG(Yx, Yy) = 0. Note that Yx ∩ Yy 6= ∅, else G is m1-extremal of type 1. So,

as previously, we can let v ∈ Yx ∩ Yy and note that NG(v) ⊆ V (G) \ (Yx ∪ Yy). So

|Yx ∪ Yy| ≤ n/3 +m2 and

|Yx ∩ Yy| ≥ 2(n/3− 4m)− (n/3 +m2) ≥ n/3− 9m.

But then G is m1-extremal of type 2 (take S := X ′ and T := Yx ∩ Yy) which is a

contradiction. This completes the proof of the claim.

We now explain how to use the claim to find, for each 1 ≤ i ≤ p, a (Ci, H ′i)C4-

transformer (and (Ci, Ji)C4-transformers are found in exactly the same way). We will use

the construction described in Section 5.3.2. Let φ be an edge-bijective graph homomor-

phism from Ci to Hi. For each edge xy ∈ E(Ci), use the claim (with W set to be all

vertices which have been used at any point previously in the construction) to find an edge
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which transforms xy ∈ E(Ci) to φ(x)φ(y) and thus obtain suitable embeddings for the

vertices in
⋃
e∈E(Ci) Z

e. It is then an easy task to greedily embed remaining vertices of

the transformer (the vertices of the form wx for some x ∈ V (Ci)), since each vertex of

this type has at most two neighbours previously embedded. Continuing in this way, we

find edge-disjoint absorbers Ai for each Hi such that |Ai| ≤ m3
3. Let A∗ :=

⋃p
i=1Ai and

note that |A∗| ≤ pm3
3 ≤ 2m

2
3 . �

5.4.3 Type 1 extremal

In this section, we will prove Lemma 5.4.2 for graphs which are type 1 extremal. The

next result takes any graph G which is type 1 extremal and partitions its vertices into

sets A, B and C so that each vertex has many neighbours in two of the parts.

Proposition 5.4.6. Let n,m ∈ N such that 1/n � 1/m � 1. Let G be a graph on n

vertices with δ(G) ≥ 2n/3 −m. Suppose G is m-extremal of type 1. Then there exists a

partition A,B,C of V (G) satisfying:

(P1) for all v ∈ A, dG(v, A), dG(v,B) ≥ 5n/18;

(P2) for all v ∈ C, dG(v,B), dG(v, C) ≥ 5n/18;

(P3) for all but at most 3m vertices v ∈ A, dG(v,A), dG(v,B) ≥ n/3− 6m;

(P4) for all but at most 3m vertices v ∈ C, dG(v,B), dG(v, C) ≥ n/3− 6m;

(P5) for all v ∈ B, dG(v, A), dG(v, C) ≥ n/50;

(P6) for all but at most 50m vertices v ∈ B, dG(v,A), dG(v, C) ≥ 5n/18;

(P7) n/3− 5m ≤ |A|, |B|, |C| ≤ n/3 + 3m.

Proof. Since G is m-extremal of type 1, there exist disjoint sets A1, C1 ⊆ V (G) such

that |A1|, |C1| = dn/3e − m and eG(A1, C1) = 0. Let B1 := V (G) \ (A1 ∪ C1). Since
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δ(G) ≥ 2n/3 −m, for all v ∈ A1, dG(v,A1) ≥ n/3 − 3m and dG(v,B1) ≥ n/3. Likewise,

for all v ∈ C1, dG(v, C1) ≥ n/3− 3m and dG(v,B1) ≥ n/3.

Let BC consist of all vertices v in B1 such that dG(v, A1) < n/50. By considering

eG(A1, B1), we obtain the following bound.

|A1|n/3 ≤ |BC |n/50 + (n/3 + 2m− |BC |)|A1|

which gives

|BC | ≤
2m|A1|
|A1| − n/50

≤ 2m|A1|
9|A1|/10

≤ 3m.

Similarly, defining BA to consist of all vertices v in B1 such that dG(v, C1) < n/50, we get

|BA| ≤ 3m. Note that BA ∩ BC = ∅. In exactly the same way, we can show that for all

but at most

2 · 2m|A1|
|A1| − 5n/18

≤ 50m

vertices v ∈ B, dG(v,A), dG(v, C) ≥ 5n/18. Set A := A1 ∪ BA, C := C1 ∪ BC and

B := B1 \ (BA ∪BC). Properties (P1)–(P7) are satisfied. �

The next result refines this partition and covers all atypical edges by copies of C4 to

leave a dense graph with a well-defined structure.

Proposition 5.4.7. Let n,m ∈ N such that 1/n � 1/m � 1. Let G be a C4-divisible

graph on n vertices with δ(G) ≥ 2n/3− 1. Suppose that there exists a spanning subgraph

G′ of G such that δ(G′) ≥ 2n/3 −m and G′ is m-extremal of type 1. Then there exists

G′′ ⊆ G and a partition A,B,C of V (G′′) satisfying:

(Q1) eG′′(A) and eG′′(C) are even;

(Q2) G′′ ⊆ G[A] ∪G[C] ∪G[B,A ∪ C] and G−G′′ has a C4-decomposition;

(Q3) for all v ∈ A, dG′′(v, A), dG′′(v,B) ≥ n/4;

(Q4) for all v ∈ B, dG′′(v, A), dG′′(v, C) ≥ n/4;
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(Q5) for all v ∈ C, dG′′(v,B), dG′′(v, C) ≥ n/4;

(Q6) n/3− 55m ≤ |A|, |B|, |C| ≤ n/3 + 3m.

Note that we do not require G′′ to be spanning.

Proof. First apply Proposition 5.4.6 to G′ to find a partition A,B,C of V (G) satisfying

(P1)–(P7). Suppose that eG(A,C) + eG(B) = 0. It is clear that taking G′′ as G with the

partition A,B,C will satisfy (Q2)–(Q6). We must check (Q1). Since NG(x) ⊆ A ∪ B for

all x ∈ A and so on,

|A|+ |B| − 1, |A|+ |C|, |B|+ |C| − 1 ≥ δ(G) (5.1)

which implies that 2n = 2(|A|+ |B|+ |C|) ≥ 3δ(G) + 2 and δ(G) ≤ (2n− 2)/3. Note that

n 6≡ 0 mod 3, otherwise δ(G) ≥ 2n/3 since 2n/3− 1 is odd and G is 2-divisible. We can

show that n 6≡ 2 mod 3 either, else δ(G) ≥ d2n/3e − 1 = (2n− 1)/3. Thus n = 3N + 1

for some N ∈ N and δ(G) = 2N . The inequalities in (5.1) must be satisfied with equality,

else |A| + |B| + |C| > n. Hence |A| = |C| = N and |B| = N + 1; the graphs G[A],

G[B,A∪C] and G[C] are complete and G is 2N -regular. If eG(A) = eG(C) =
(
N
2

)
is odd,

it is easy to check that N ≡ 2, 3 mod 4. But then e(G) = N(3N + 1) is not divisible by

four which contradicts G being C4-divisible. Hence (Q1) is also satisfied.

Let us assume then that eG(A,C)+eG(B) > 0. Our first step will be to cover all edges

inside B and between A and C using copies of C4. We begin by reducing the maximum

degree in G[A,C] ∪G[B]. Choose any edge xy ∈ EG(A,C) ∪EG(B), we will protect this

edge for the time being since we might need it later on. Let G0 := (G[A,C]∪G[B])−{xy}.

Let η be chosen such that 1/m� η � 1. The Erdős-Stone theorem allows us to greedily

remove copies of C4 from G0 until at most ηn2 edges remain. Let F0 denote this collection

of edge-disjoint copies of C4 and let G1 := G0 −
⋃F0 with e(G1) ≤ ηn2.

We say that a vertex v is bad if dG1(v) ≥ η1/2n. Note that G contains at most

2ηn2/(η1/2n) = 2η1/2n bad vertices. Let B′ ⊆ B consist of all the vertices v ∈ B such

that dG(v,A) < 5n/18 or dG(v, C) < 5n/18. Then |B′| ≤ 50m by (P6). For each bad
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vertex v, let Sv ⊆ NG1(v) be a set of vertices of maximal size such that |Sv| is even, no

vertex in Sv is bad and Sv ∩B′ = ∅. Note that each vertex appears in at most 2η1/2n sets

Sv. Pair up the vertices in each Sv arbitrarily. Our aim is to find a path of length two

between each pair in G2 := G− (G[A,C]∪G[B]∪{xy}). In total we have to find at most

ηn2/2 paths. Note that each pair in Sv has at least n/9 common neighbours in G2 (for

Sv where v ∈ B, it is important that Sv ⊆ B \B′). This allows us to greedily embed the

paths so that each vertex is used at most η1/3n/3 times. Write F1 for the edge-disjoint

collection of copies of C4 formed by taking
⋃
G[v ∪ Sv] together with these paths. Let

G3 := G−⋃(F0 ∪ F1). We have:

(a) for all v ∈ V (G3), dG3(v) ≥ dG2(v)− η1/3n;

(b) ∆(G3[B]),∆(G3[A,C]) ≤ η1/3n;

(c) 1 = |{xy}| ≤ eG3(A,C) + eG3(B) ≤ ηn2 + 1.

We make the following observation

eG3(A,C) + eG3(B) ≡ eG3(A) + eG3(C) mod 2. (5.2)

To see (5.2), note that G3 is C4-divisible since it was obtained by removing edge-disjoint

copies of C4 from G. In particular, this means that G3 is 2-divisible and so eG3(A∪C,B)

is even. Since e(G3) is also even, the result follows.

We use (5.2) to cover all remaining edges in EG3(A,C) ∪ EG3(B), at the same time

ensuring we leave an even number of edges behind in each of A and C. If eG3(C) is odd,

then assign one edge from EG3(A,C) ∪EG3(B) to C (we use (c) to ensure that this edge

exists) and the remainder to A. Otherwise, assign all edges from EG3(A,C) ∪ EG3(B) to

A. Find a copy of C4 covering each e ∈ EG3(A,C) ∪ EG3(B) of the following form (here

we say that a cycle has the form X1X2X3X4 to indicate that the cycle visits vertices in

X1, X2, X3 and X4 in this order):

• BBXX, if e ∈ EG(B) and e is assigned to X ∈ {A,C};
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• CAAB, if e ∈ EG(A,C) and e is assigned to A;

• ACCB, if e ∈ EG(A,C) and e is assigned to C.

We first check that it is possible to find cycles of these forms without using any vertex

too often. The ordering of each cycle above is suggestive of the order in which its vertices

should be embedded (for cycles of the form BBXX, choose the first vertex in X to

satisfy (P3) or (P4) in G, i.e., not one of the exceptional 3m vertices). Properties (P1)–

(P7) together with (a) ensure that there are at least n/100 suitable candidates in G3 for

each vertex which is not an endpoint of the fixed edge e. In total we must find at most

ηn2 +1 cycles and each vertex appears in the fixed edge e for at most η1/3n of these cycles,

by (b) and (c). So it is possible to embed cycles of the required forms so that each vertex

is used at most 2η1/3n times. Let F2 denote the collection of cycles thus obtained and let

G4 := G3 −
⋃F2. For each v ∈ V (G4), we have

dG4(v) ≥ dG2(v)− 5η1/3n. (5.3)

We now check that removing these cycles has the desired effect. Observe that any edge

which is assigned to A forms a C4 which uses one edge from EG3(A) and no edges from

EG3(C). The same statement holds with A and C swapped. If eG3(C) is odd, deleting the

cycles in F3 will remove one edge from EG3(C) leaving eG4(C) even. If eG3(C) is even, no

edges were assigned to C so eG4(C) remains even. To see that eG4(A) will also be even, we

note that (5.2) implies that the number of edges assigned to A was congruent to eG3(A)

mod 2.

Lastly, we cover all edges incident to vertices in B′ (so that we can ignore B′). Take

each vertex v ∈ B′ and pair its neighbours up arbitrarily. Find a path of length two

between each pair in G4[A ∪ C,B] (each such path will form a copy of C4 which covers

two edges incident at v). By (P1), (P2) and (5.3), any pair of vertices in A ∪ C has

at least n/10 common neighbours in B and, in total, we are required to find at most

|B′|n/2 ≤ 25mn paths. So we can find a collection F3 of edge-disjoint copies of C4 which
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covers all edges incident at B′ and uses each vertex in V (G) \ B′ at most ηn times. Let

B′′ := B \B′ and let G′′ := (G4−
⋃F3)\B′. It is easy to check that G′′ with the partition

A,B′′, C satisfies (Q1)–(Q6). �

Proposition 5.4.7 takes us most of the way towards proving Lemma 5.4.2 for graphs

of type 1. All that remains is to show that the graphs G′′[A], G′′[C], G′′[A,B] and

G′′[B,C] can be made to be C4-divisible and then to decompose these using Theo-

rems 5.1.1 and 5.1.3.

Proof of Lemma 5.4.2(i). Apply Proposition 5.4.7 to G to find G′′ ⊆ G and a partition

A,B,C of V (G′′) satisfying properties (Q1)–(Q6). We begin by making the graphs G′′[A]

and G′′[C] C4-divisible. Towards this aim, let A′ ⊆ A consist of all vertices v ∈ A such

that dG′′(v, A) is odd. Clearly, |A′| is even. Pair up the vertices in A′ arbitrarily. For

each pair a1, a2, find a copy of C4 of the form a1Aa2B in G′′. Note that on removing a

copy of C4 of this form, a1 and a2 will both have even degree in A and the degree of the

third vertex in A is reduced by two so its parity will not be changed. Do the same for

the vertices in C (finding cycles of the form c1Cc2B). Note that in total we must find at

most n/2 copies of C4. Properties (Q3), (Q5) and (Q6) imply that each pair has at least

n/10 common neighbours in the required vertex classes, so we can avoid using any vertex

more than 20 times. Write F1 for this collection of copies of C4 and let G1 := G′′−⋃F1.

Now every vertex in G1[A] and G1[C] has even degree.

We also require the number of edges in G1[A] and in G1[C] to be divisible by four. We

know already that the number of edges will be even (from (Q1) and the fact that F1 uses

an even number of edges from both G′′[A] and G′′[C]). Say that eG1(A) ≡ 2 mod 4. We

can fix this by removing a graph F consisting of three edge-disjoint copies of C4 which

take the following form: a1Aa2B, a2Aa3B, a1Aa3B where a1, a2, a3 ∈ A. Note that F [A]

is a copy of C6, so removing F does not cause the degree of any vertex in G1[A] to become

odd. We can remove a similar graph if eG1(C) not divisible by four. We obtain a graph
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G2 such that G2[A] and G2[C] are C4-divisible. It follows from (Q3), (Q5) and (Q6) that

δ(G2[A]), δ(G2[C]) ≥ n/4− 50 ≥ (2/3 + 1/100)|A|, (2/3 + 1/100)|C|.

So we can apply Theorem 5.1.1 to find C4-decompositions FA and FC of G2[A] and G2[C],

respectively. Let G3 := G2 −
⋃

(FA ∪ FC).

We will now make the bipartite graphs G3[A,B] and G3[B,C] C4-divisible. Note that

for any v ∈ A ∪C, dG3(v,B) is necessarily even. Let B′ ⊆ B consist of all vertices v ∈ B

such that dG3(v, A) (and hence dG3(v, C)) is odd. Since eG3(A,B) is even, |B′| must also

be even. Pair up the vertices in B′ arbitrarily. For each pair b1, b2, find a copy of C4 of

the form Ab1Cb2. On removing these copies from G3, we see that b1 and b2 now have

even degree in A and in C. Properties (Q4) and (Q6) ensure that there are at least n/10

suitable candidates at each step of the embedding. Since there are fewer than n/2 pairs,

we can choose these copies of C4 so that no vertex is used more than 10 times. If, after

removing these copies, the number of edges between A and B is not divisible by four

then it must be congruent to 2 mod 4. We can correct this by removing three further

edge-disjoint copies of C4 of the form: b1Ab2C, b2Ab3C, b1Ab3C where b1, b2, b3 are distinct

vertices in B. Note that removing these copies of C4 removes 6 ≡ 2 mod 4 edges between

A and B but will not change the parity of d(bi, A) for any i ∈ {1, 2, 3}. Write F2 for the

copies of C4 removed in this step and let G4 := G3 −
⋃F2. We now have C4-divisible

bipartite graphs G4[A,B] and G4[B,C] and dG4(v,B) ≥ n/4 − 100 for all v ∈ A ∪ C.

Recall (Q6), which implies

δbip(G4[A,B]), δbip(G4[B,C]) ≥ 2/3 + 1/100.

So we can use Theorem 5.1.3 to find a C4-decomposition of G4. Thus we have found a

C4-decomposition of G. �
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5.4.4 Type 2 extremal

In this section, we prove Lemma 5.4.2 for graphs which are type 2 extremal. We begin by

showing that graphs of this type closely resemble a balanced tripartite graph with high

minimum degree.

Proposition 5.4.8. Let n,m ∈ N such that 1/n � 1/m � 1. Let G be a C4-divisible

graph on n vertices. Suppose that there exists a spanning subgraph G′ of G such that

δ(G′) ≥ 2n/3 − m and G′ is m-extremal of type 2. Then there exists G′′ ⊆ G and a

partition A,B,C of V (G′′) satisfying:

(R1) |A|, |B| and |C| are even;

(R2) n/3− 50m ≤ |A|, |B|, |C| ≤ n/3 + 2m;

(R3) G−G′′ has a C4-decomposition;

(R4) for each X ∈ {A,B,C} and each v ∈ V (G′′) \X, we have dG′′(v,X) ≥ n/4.

Again, G′′ is not necessarily spanning.

Proof. Since G′ is m-extremal of type 2, there exist disjoint sets A1, B1 ⊆ V (G) such

that |A1|, |B1| = dn/3e − m and eG′(A1) = eG′(B1) = 0. Let C1 := V (G) \ (A1 ∪ B1).

For all v ∈ A1, dG(v,B1) ≥ n/3 − 3m and dG(v, C1) ≥ n/3 − 1 since δ(G′) ≥ 2n/3 −m.

Likewise, for all v ∈ B1, dG(v, A1) ≥ n/3− 3m and dG(v, C1) ≥ n/3− 1.

Let C1,A consist of all vertices v ∈ C1 such that dG(v,A1) < 5n/18. By considering

eG′(A1, C1), we obtain the following bound.

|A1|(n/3− 1) ≤ |C1,A|5n/18 + (n/3 + 2m− |C1,A|)|A1|

which gives

|C1,A| ≤
(2m+ 1)|A1|
|A1| − 5n/18

≤ (2m+ 1)|A1|
|A1|/12

≤ 25m.

Similarly, defining C1,B to consist of all vertices v in C1 such that dG(v,B1) < 5n/18,

we get |C1,B| ≤ 25m. Choose at most one further vertex from each of A1, B1 and

178



C1 \ (C1,A ∪ C1,B) so that |A1|, |B1| and |C1 \ (C1,A ∪ C1,B)| are made even by their

removal. Let U be the set which is formed by adding these vertices to C1,A ∪C1,B. Then

|U | ≤ 50m+ 3.

Since any pair of vertices in G has at least n/4 common neighbours, we can easily find

a collection of edge-disjoint copies of C4 which covers all edges incident at U and uses

each vertex in V (G) \ U at most m2 times. Write F for this collection of copies of C4.

Let G′′ := (G − ⋃F) \ U . Together with the partition A := A1 \ U , B := B1 \ U and

C := C1 \ U , this graph satisfies (R1)–(R4). �

We now complete the proof of Lemma 5.4.2. The idea is to cover all atypical edges

to leave behind a tripartite graph with vertex classes A,B,C and high minimum degree.

A little more work produces a graph such that each pair of vertex classes induces a C4-

divisible bipartite graph which we can decompose using Theorem 5.1.3.

Proof of Lemma 5.4.2(ii). Apply Proposition 5.4.8 to find G1 ⊆ G and a partition

A,B,C of V (G1) satisfying (R1)–(R4). The next step is to cover the edges in G′1 :=

G1[A] ∪ G1[B] ∪ G1[C] using copies of C4. Let ε be such that 1/m � ε � 1. Using the

Erdős-Stone theorem, we may assume that e(G′1) ≤ εn2 (by greedily removing copies of

C4 if necessary). Let U ⊆ V (G′1) consist of all vertices v such that dG′1(v) ≥ ε1/2n. It

is clear that |U | ≤ 2ε1/2n. For each v ∈ U , let Sv ⊆ NG′(v) \ U be as large as possible

such that |Sv| is even. For each v ∈ U , arbitrarily pair up the vertices in Sv and find

edge-disjoint paths of length two in G1 − G′1 which join the pairs (to form copies of C4

together with v). Properties (R2) and (R4) allow us to do this in such a way that each

vertex is used at most 3ε1/2n times. Denote the set of edge-disjoint copies of C4 found in

this step by F1. Let G2 := G1 −
⋃F1. For each X ∈ {A,B,C} and each v /∈ X,

dG2(v,X) ≥ n/4− 6ε1/2n and (5.4)

∆(G2[A]),∆(G2[B]),∆(G2[C]) ≤ max{ε1/2n, |U |+ 1} ≤ 3ε1/2n. (5.5)

Now cover each remaining edge in G′2 := G2[A]∪G2[B]∪G2[C] by a copy of C4 using
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a path of length three in G2 − G′2 between its endvertices. We require at most εn2 such

paths and each vertex is an endvertex of at most 3ε1/2n paths, by (5.5). There are at

least n/10 possibilities to embed each vertex by (5.4) and (R2), so we are able to find

these paths so that each vertex is used at most ε1/3n/3 times. Remove these copies of C4

and write G3 for the resulting graph. Note that A, B, C are independent sets in G3 and,

for each X ∈ {A,B,C} and each v /∈ X,

dG3(v,X) ≥ n/4− ε1/3n. (5.6)

In this final step, we ensure that each pair of vertex classes induces a C4-divisible

graph. Since G3 is 2-divisible, eG3(A,B) must be even. So there is an even number of

vertices v ∈ A such that dG3(v,B) is odd (note that such v will necessarily also have

dG3(v, C) odd since G3 is 2-divisible). Pair these odd vertices up arbitrarily and, for

each pair a1, a2, remove one copy of C4 of the form a1Ba2C (this changes the parities

of dG3(a1, B) and dG3(a2, B)). Each pair has many common neighbours in B and C by

(5.6), so we can do this in such a way that each vertex is used at most ten times. Do the

same for the vertices in B and C to obtain a graph G4 such that each bipartite graph

induced by a pair from {A,B,C} is C4-divisible (that the number of edges in these graphs

is divisible by four follows from 2-divisibility and (R1)). Each of these bipartite graphs

has minimum degree at least n/4− 2ε1/3n and (R4) implies

δbip(G4[A,B]), δbip(G4[A,C]), δbip(G4[B,C]) ≥ 2/3 + ε.

So we may apply Theorem 5.1.3 to find C4-decompositions of G4[A,B], G4[A,C] and

G4[B,C]. This completes our C4-decomposition of G. �
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5.5 Even cycles of length at least eight

The aim of this section is to prove Theorem 5.1.2 for even cycles of length at least eight.

We will again split our argument into extremal and non-extremal cases. When G is not

extremal, it will satisfy an expansion property which we now describe. Let G be a graph

on n vertices. We define the robust neighbourhood of a set S ⊆ V (G) to be the set of

vertices Rν,G(S) := {v ∈ V (G) : dG(v, S) ≥ νn}. We say that a set S ⊆ V (G) is ν-

expanding in G if |Rν,G(S)| ≥ n/2 + νn. We say that G is a ν-expander if for every

x ∈ V (G), NG(x) is ν-expanding. Note that every ν-expander G satisfies δ(G) ≥ νn.

Any graph which is not a ν-expander falls into one of two classes of extremal graph.

We say that a graph G on n vertices is ε-close to Kn/2 ∪Kn/2 if there exists S ⊆ V (G)

such that |S| = bn/2c and e(S, S) ≤ εn2. We say that G is ε-close to bipartite if there

exists S ⊆ V (G) such that |S| = bn/2c and e(S) ≤ εn2. The following is a weak form of

Lemma 26 in [54].

Proposition 5.5.1 ([54]). Let 1/n � ν � ε < 1. Let G be a graph on n vertices with

δ(G) ≥ n/2. Then one of the following holds:

(i) G is a ν-expander;

(ii) G is ε-close to Kn/2 ∪Kn/2;

(iii) G is ε-close to bipartite.

The following result, which will be proved in Section 5.7, is a version of Theorem 5.1.1

which relies on ν-expansion (instead of solely the minimum degree). This result finds a

C2k-decomposition of G when G is a ν-expander and k ≥ 4.

Theorem 5.5.2. Let k ∈ N, k ≥ 4 and 1/n� ν, 1/k. Let G be a C2k-divisible ν-expander

on n vertices. If k = 4, assume further that δ(G) ≥ n/2. Then G has a C2k-decomposition.

Given Theorem 5.5.2, it remains to find decompositions of graphs which are close to

Kn/2 ∪Kn/2 or close to bipartite. This is achieved in the current section. Theorem 5.1.2
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for k ≥ 4 will then follow directly from Proposition 5.5.1, Theorem 5.5.2, Lemma 5.5.3

and Lemma 5.5.7.

5.5.1 G is close to Kn/2 ∪Kn/2

The next result finds a C2k-decomposition when G is close to Kn/2 ∪Kn/2. The idea of

the proof is to exploit the fact that G resembles two disjoint cliques: first dealing with

any unusual edges or exceptional vertices and then using Theorem 5.1.1 to decompose the

(almost) cliques.

Lemma 5.5.3. Let k ∈ N, k ≥ 4 and 1/n � ε � 1. Suppose that G is a C2k-divisible

graph on n-vertices and δ(G) ≥ n/2. Suppose further that G is ε-close to Kn/2 ∪ Kn/2.

Then G has a C2k-decomposition.

We will prove Lemma 5.5.3 in stages.

Proposition 5.5.4. Let 1/n � ε � 1. Suppose that G is a graph on n vertices with

δ(G) ≥ n/2 which is ε-close to Kn/2 ∪Kn/2. Then there exists a partition A,B of V (G)

such that:

(S1) δ(G[A]), δ(G[B]) ≥ n/5;

(S2) for all but at most 2
√
εn vertices v ∈ A, dG(v, A) ≥ n/2− 2

√
εn;

(S3) for all but at most 2
√
εn vertices v ∈ B, dG(v,B) ≥ n/2− 2

√
εn;

(S4) n/2− 4εn ≤ |A| ≤ |B| ≤ n/2 + 4εn.

Proof. Let S ⊆ V (G) such that |S| = bn/2c and e(S, S) ≤ εn2. Let T := S. For each

p ∈ {11n/50, n/2 − √εn}, let Sp := {v ∈ S : dG(v, S) ≤ p} and define Tp similarly. We

have |Sp|, |Tp| ≤ εn2

n/2−p , so that

|S11n/50|, |T11n/50| ≤ 25εn/7 and |Sn/2−√εn|, |Tn/2−√εn| ≤
√
εn.
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Let S ′ := (S \ S11n/50) ∪ T11n/50. Setting A to be the smallest of S ′ and S ′ and setting

B := A gives the desired partition. �

Before we begin decomposing G, we must reserve some edges between A and B using

the following simple proposition. These edges will be used at a later stage to ensure that

the graphs on A and B are C2k-divisible.

Proposition 5.5.5. Let k ∈ N and 1/n � ε � 1/k. Suppose that G is a graph on n

vertices with δ(G) ≥ n/2 and A,B is a partition of V (G) satisfying (S1)–(S4). Then there

exist 4k distinct edges e1, . . . e2k, f1, . . . f2k ∈ EG(A,B) such that, for each 1 ≤ i ≤ 2k, ei

and fi are vertex-disjoint and dG(ai, A) ≥ n/2− 2
√
εn where ai := V (ei) ∩ A.

Proof. If |A| < n/2, each vertex in A has at least two neighbours in B so the result

is clear. So we assume that |A| = |B| = n/2, in which case δ(G[A,B]) ≥ 1. Suppose

that the proposition is false and let ` < 2k be maximal such that G contains edges

e1, . . . e`, f1, . . . f` ∈ EG(A,B) such that, for each 1 ≤ i ≤ `, ei and fi are vertex-disjoint

and dG(ai, A) ≥ n/2− 2
√
εn where ai := V (ei) ∩ A.

Let U :=
⋃`
i=1 V (ei∪fi), A′ := A\U and B′ := B \U . Choose any vertex a ∈ A′ such

that dG(a,A) ≥ n/2− 2
√
εn and let b ∈ NG(a,B). Let a′ ∈ A′ \ {a} and b′ ∈ B′ \ {b}. If

a′b′′ ∈ E(G) for some b′′ 6= b, we can take e`+1 := ab and f`+1 = a′b′′, contradicting the

maximality of `. Since dG(a′, B) ≥ 1, we must have a′b ∈ E(G). Similarly, ab′ ∈ E(G).

But then taking e`+1 := ab′ and f`+1 = a′b gives a contradiction. �

The next result covers the remaining edges between A and B.

Proposition 5.5.6. Let k ∈ N, k ≥ 4 and 1/n � η � ε � 1/k. Suppose that G

is a graph on n vertices and A,B is a partition of V (G) satisfying (S1)–(S4). Suppose

that eG(A,B) is even. Then there exists a C2k-decomposable graph H ⊆ G such that

G[A,B] ⊆ H and ∆(H[A]),∆(H[B]) ≤ ηn.

Proof. Let G′ := G[A,B]. Use the Erdős-Stone theorem to greedily find an η4-

approximate C2k-decomposition F of G′ and let H0 :=
⋃F . Let XA := {v ∈ A :
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dG′−H0(v) ≥ η2n} and note that |XA| ≤ η4n2/(η2n) = η2n. For each vertex x ∈ XA,

pair up the vertices in NG′−H0(x) arbitrarily, leaving at most one vertex unpaired. Find

edge-disjoint paths of length 2k− 2 in G[B] between each of the pairs (to obtain copies of

C2k which cover all but at most one of the edges incident at x in G′−H0). Properties (S1),

(S3) and (S4) allow us to find these paths so that each vertex appears as an interior vertex

on at most η3n of the paths. Let HA denote the C2k-decomposable graph thus obtained

and repeat the process for the set of vertices XB := {v ∈ B : dG′−H0−HB(v) ≥ η2n},

obtaining a C2k-decomposable graph HB which covers all but at most one edge incident

at each x ∈ XB. Now H ′ := H0 ∪HA ∪HB is C2k-decomposable, ∆(G[A,B]−H ′) ≤ η2n

and

∆(H ′[A]),∆(H ′[B]) ≤ 2η3n+ η2n ≤ 2η2n.

Since eG(A,B) and eH′(A,B) are even, so is eG−H′(A,B). Pair up the edges in

EG−H′(A,B) arbitrarily and complete each to a copy of C2k as follows. If the two edges

share an endvertex, in A say, find a path of length 2k − 2 between their endpoints in B

as above. If the edges are disjoint, find paths of length k− 1 ≥ 3 between their endpoints

in A and in B. Again, properties (S1)–(S4) allow us to find these paths so that they are

edge-disjoint and each vertex appears as an interior vertex on at most η3n of the paths.

Let H ′′ denote the C2k-decomposable graph obtained in this way. We have ensured that

∆(H ′′[A]),∆(H ′′[B]) ≤ ∆(G[A,B]−H ′) + 2η3n ≤ 2η2n.

Finally, let H := H ′ ∪H ′′. This graph is C2k-decomposable,

∆(H[A]),∆(H[B]) ≤ 4η2n ≤ ηn

and G[A,B] ⊆ H. �

We combine the previous results to find a C2k-decomposition when G is ε-close to

Kn/2 ∪Kn/2.
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Proof of Lemma 5.5.3. Choose a constant η such that 1/n � η � ε. Apply

Proposition 5.5.4 to obtain a partition A,B of G satisfying (S1)–(S4). Then apply Propo-

sition 5.5.5 to reserve edges E := {e1, . . . , e2k, f1, . . . , f2k}. Let G′ := G − ⋃ E and note

that G′ with the partition A,B still satisfies (S1)–(S4) of Proposition 5.5.4. Since G

is 2-divisible, eG(A,B) is even, so eG′(A,B) = eG(A,B) − 4k is also even. So we can

apply Proposition 5.5.6 to find H ⊆ G′ which has a C2k-decomposition F1 such that

G′[A,B] ⊆ H and ∆(H[A]),∆(H[B]) ≤ ηn.

We have covered all edges in G[A,B] apart from those in E , which we will use to ensure

that (G − H)[A] and (G − H)[B] are C2k-divisible. To this end, let 0 ≤ r ≤ 2k − 1 be

chosen such that eG−H(A) ≡ r mod 2k. We will find 2k copies of C2k, each containing

a pair ei, fi, as follows. For each 1 ≤ i ≤ 2k − r, find a path of length 2 between the

endpoints of ei and fi in (G−H)[A] and a path of length 2k − 4 between the endpoints

of ei and fi in (G−H)[B]. For each 2k− r < i ≤ 2k, find a path of length 3 between the

endpoints of ei and fi in (G−H)[A] and a path of length 2k − 5 between the endpoints

of ei and fi in (G−H)[B]. (The property dG(ai, A) ≥ n/2− 2
√
εn where ai := ei ∩ A is

needed for finding the paths of length 2.) We can choose these paths to be edge-disjoint.

Let F2 denote the copies of C2k thus obtained and let G′′ := G−H−⋃F2. We make the

following important observation: G′′[A] and G′′[B] are C2k-divisible. That these graphs

are 2-divisible is clear (they were obtained by removing edge-disjoint copies of C2k from

a 2-divisible graph G). To see that eG′′(A) is divisible by 2k, note that

eG′′(A) = eG−H(A)− 2(2k − r)− 3r ≡ r − 4k + 2r − 3r ≡ 0 mod 2k

(and eG′′(B) is also divisible by 2k).

Finally, note that

∆((G−G′′)[A]),∆((G−G′′)[B]) ≤ 2ηn

and recall (S1)–(S4). Let X := {x : dG′′(x) < n/2 − 3
√
εn}. Then |X| ≤ 4

√
εn and we
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can easily cover all edges incident at vertices in X using a collection F3 of edge-disjoint

copies of C2k such that no vertex in V (G′′) \ X is used more than ε1/3n times. Let

G′′′ := (G′′ −⋃F3) \X. Now

δ(G′′′) ≥ n/2− 3ε1/3n ≥ (2/3 + ε) ·max{|A \X|, |B \X|}.

We then find C2k-decompositions F4 and F5 of G′′′[A] and G′′′[B] respectively, using

Theorem 5.1.1. Then
⋃5
i=1Fi gives a C2k-decomposition of G. �

5.5.2 G is close to bipartite

We now consider the case when G is close to bipartite. We will process the graph, covering

any unusual edges or exceptional vertices with copies of C2k until we really are left with

a dense bipartite graph. This we can decompose using Theorem 5.1.3.

Lemma 5.5.7. Let k ∈ N, k ≥ 4 and 1/n � ε � 1. Suppose that G is a C2k-divisible

graph on n-vertices and δ(G) ≥ n/2. Suppose further that G is ε-close to bipartite. Then

G has a C2k-decomposition.

The following proposition partitions the vertices of G into an “almost bipartite” graph

with high minimum degree.

Proposition 5.5.8. Let k ∈ N, k ≥ 4 and 1/n� ε� 1. Suppose that G is a C2k-divisible

graph on n-vertices and δ(G) ≥ n/2. Suppose further that G is ε-close to bipartite. Then

there exists G′ ⊆ G and a partition A,B of V (G′) such that the following hold:

(T1) δ(G′[A,B]) ≥ n/3;

(T2) G−G′ has a C2k-decomposition;

(T3) |A|, |B| = n/2± 6
√
εn;

(T4) e(G′[A]) + e(G′[B]) < εn2.
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Note that G′ is not necessarily spanning.

Proof. Let S ⊆ V (G) be such that |S| = bn/2c and eG(S) ≤ εn2. Let T := S and

consider the bipartite graph G0 := G[S, T ]. We want to transform G0 into a bipartite

graph whose minimum degree is as high as possible. We first modify the bipartition S, T

to obtain a new bipartition S ′, T ′. Let

X := {x : dG0(x) < n/2−√εn}.

It is easy to see that |X| ≤ 5
√
εn. Let

XS := {x ∈ X : dG(x, S) < 5n/12} and let XT := X \XS.

Let S ′ := (S \X) ∪XS and let T ′ := S ′ = (T \X) ∪XT . It is useful to note that:

(i) for any x ∈ S ′, dG(x, T ′) ≥ n/13 and, if x ∈ S ′ \X, dG(x, T ′) ≥ n/2− 6
√
εn;

(ii) for any x ∈ T ′, dG(x, S ′) ≥ 5n/13 and, if x ∈ T ′ \X, dG(x, S ′) ≥ n/2− 6
√
εn.

Let X0 := {x ∈ X : dG(x, S) and dG(x, T ) < 5n/12}. Since X0 ⊆ XS, the vertices in

X0 have all been assigned to S ′ but they do not naturally belong to either side of the

partition so we will cover all edges incident at these vertices in the next step.

Choose any vertex x ∈ X0. Suppose that dG(x, S ′) is odd. Note that eG(S ′, T ′)

is even (since G is 2-divisible). This means that eG(S ′) + eG(T ′) is also even (recall

that the number of edges in G is divisible by 2k). In particular, there must be an edge

uv ∈ E(S ′)∪E(T ′) which is not incident at x. Let y ∈ NG(x, S ′)\(X∪{u, v}). We now find

a copy of C2k which uses both xy and uv. If u, v ∈ S ′, note that |NG(y)∩NG(u)| ≥ n/15

by (i), so we can find a path of length two from u to y. We also find a path of length

2k−4 ≥ 4 between x and v. At each stage, we can choose from at least n/20 vertices. This

gives a copy of C2k. We proceed in a similar way when u, v ∈ T ′. We may now assume

that dG(x, S ′) is even. Pair up the neighbours of x arbitrarily and find edge-disjoint

paths of length 2k − 2 between each pair in G[S ′, T ′] (to obtain edge-disjoint copies of
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C2k). Remove all copies of C2k obtained in this way from G. Repeat this process for the

remaining vertices in X0 and write F1 for the collection of copies of C2k thus obtained.

Let G1 := G − ⋃F1. At the end of this process, we may assume that each vertex in

V (G) \X0 has been used in at most ε1/3n/2 copies of C2k.

Let A := S ′ \X0, B := T ′. Observe that |A|, |B| = n/2± 6
√
εn and

δ(G1[A,B]) ≥ 5n/13− ε1/3n ≥ n/3.

Using the Erdős-Stone theorem, we greedily find an ε-approximate C2k-decomposition F2

of G1[A] ∪G1[B]. Letting G′ := G−⋃(F1 ∪ F2) completes the proof. �

We use this proposition to prove Lemma 5.5.7.

Proof of Lemma 5.5.7. Apply Proposition 5.5.8 to find G′, A,B satisfying (T1)–(T4).

Let F1 be a C2k-decomposition of G − G′. Let A′ := {x ∈ A : dG′(x,A) ≥ √εn} and

define B′ similarly. Note that |A′ ∪B′| ≤ 2
√
εn by (T4). Take each vertex x ∈ A′ in turn

and split NG′(x,A) into pairs (leaving at most one vertex). Use (T1) and (T3) to find a

path of length 2k− 2 between each pair in G′[A,B] to obtain a copy of C2k together with

x. Carry out this process for the remaining edges at each remaining vertex in A′. Do the

same for the vertices in B′. We may carry out this process so that each vertex appears in

at most ε1/3n of the paths. Write F2 for the collection of copies of C2k obtained in this

way and let G1 := G′ −⋃F2. We have ∆(G1[A]),∆(G1[B]) < ε1/3n and

δ(G1[A,B]) ≥ n/3− 2ε1/3n. (5.7)

We now cover the remaining edges in EG1(A) ∪ EG1(B). There are an even number

of these so we can pair them up arbitrarily. We use (5.7) to find paths of even length

at least two between any two vertices in the same class and paths of odd length at least

three between any two vertices in different classes. At each step we have a choice of at

least n/10 vertices so we are able to find edge-disjoint copies of C2k (by finding paths of
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suitable length between the endpoints of each pair of edges) so that each pair of edges

is covered and no vertex appears in more than 2ε1/3n of the cycles. Write F3 for the

collection of copies of C2k obtained in this step. The graph G2 := G1 −
⋃F3 is C2k-

divisible and bipartite with vertex classes A and B of size n/2 ± 6
√
εn. Furthermore,

δ(G2) ≥ n/3 − 6ε1/3n so δbip(G2) ≥ 1/2 + ε. Thus G2 has a C2k-decomposition F4 by

Theorem 5.1.3. Together,
⋃4
i=1Fi gives a C2k-decomposition of G. �

5.6 Decompositions of bipartite graphs

In this section we prove Theorem 5.1.3, the bipartite version of Theorem 5.1.1. Theo-

rem 5.1.3 finds a C2k-decomposition of G when G is bipartite and has high minimum

degree. We used this result to prove Theorem 5.1.2 earlier on. The proof closely follows

the iterative absorption argument of [38], thus we omit some of the details.

We require the following definition, a bipartite version of the vortices considered in

Section 5.4. Let G = (A,B) be a bipartite graph. A (δ, µ,m)-vortex respecting (A,B) in

G is a sequence U0 ⊇ U1 ⊇ · · · ⊇ U` such that

• U0 = V (G);

• |Ui ∩X| = bµ|Ui−1 ∩X|c for all 1 ≤ i ≤ ` and each X ∈ {A,B}, and |U`| = m;

• dG(x, Ui ∩X) ≥ δ|Ui ∩X|, for all 1 ≤ i ≤ `, each X ∈ {A,B} and all x ∈ Ui−1 \X.

The following observation guarantees a vortex in G. It is proved by repeatedly applying

the Chernoff bound given by Lemma 4.2.1 (for more details, see Appendix B.1).

Lemma 5.6.1. Let 0 ≤ δ ≤ 1 and 1/m′ � µ < 1. Suppose that G = (A,B) is a bipartite

graph with m′ ≤ |A| ≤ |B| ≤ 2|A| and δbip ≥ δ. Then G has a (δ − µ, µ,m)-vortex

respecting (A,B) for some 2bµm′c ≤ m ≤ m′.
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The idea is to use the following result to cover almost all of the edges in G leaving only

a small (very restricted) remainder which can be dealt with using the absorbers given by

Lemma 5.3.3.

Lemma 5.6.2. Let k ∈ N, k ≥ 2 and let 1/m� µ� 1/k. Let G = (A,B) be a bipartite

2-divisible graph with n ≤ |A|, |B| ≤ 2n and δbip ≥ 1/2 + 3µ. Let U0 ⊇ U1 ⊇ · · · ⊇ U` be

a (1/2 + 4µ, µ,m)-vortex respecting (A,B) in G. Then there exists H` ⊆ G[U`] such that

G−H` is C2k-decomposable.

We will prove Lemma 5.6.2 in Section 5.6.1. Theorem 5.1.3 then follows directly from

these results.

Proof of Theorem 5.1.3. (Assuming Lemma 5.6.2.) Let m,n0 ∈ N and µ be such that

1/n0 � 1/m� µ� ε, 1/k.

Apply Lemma 5.6.1 to find U0 ⊇ U1 ⊇ · · · ⊇ U`, a (δk + ε/2, µ,m)-vortex respecting

(A,B) in G.

Let G1 := G − G[U1]. We have δbip(G1) ≥ δk + ε/2. Apply Lemma 5.3.3 to G1

with U` playing the role of U to find an absorber A∗ ⊆ G1 as in the lemma. We have

∆(A∗) ≤ |A∗| ≤ 2m
2
, so U0 ⊇ U1 ⊇ · · · ⊇ U` is a (δk + 4µ, µ,m)-vortex respecting (A,B)

in G∗ := G − A∗ and δbip(G∗) ≥ 1/2 + 3µ. Then apply Lemma 5.6.2 to G∗ to find

H` ⊆ G∗[U`] such that G∗ −H` has a C2k-decomposition. Observing that A∗ ∪H` has a

C2k-decomposition (by Lemma 5.3.3) completes the proof. �

5.6.1 Proving Lemma 5.6.2

First, we state some useful results. We require the following simple proposition on de-

compositions of cliques. It is a special case of Wilson’s Theorem and is proved very easily

(see [38], for example).

Proposition 5.6.3. Let p be prime. Then for every k ∈ N, Kpk has a Kp-decomposition.
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We use the next result to find an approximate C2k-decomposition of G and maintain

some control over the number of edges incident at any vertex in a given set X.

Lemma 5.6.4. Let k ∈ N, k ≥ 2 and 1/n � η � ε, 1/k. Suppose that G = (A,B)

is a bipartite graph with n ≤ |A|, |B| ≤ 4n and δbip(G) ≥ 1/2 + ε. Let X ⊆ V (G)

of size at most η1/2n. Then there exists H ⊆ G such that G − H is C2k-decomposable,

Y := {x ∈ V (G) : dH(x) > ηn} has size at most ηn and X ∩ Y = ∅.

Proof. The first step is to cover the edges in G[X] by edge-disjoint copies of C2k.

That is, for each edge xy ∈ EG(X), find a path of length 2k − 1 between the x and y in

G−G[X] (x and y lie in different vertex classes so any path between them is necessarily

odd). In total we must find at most ηn2 paths. Since δbip(G − G[X]) ≥ 1/2 + 3ε/4,

we may choose these paths to be edge-disjoint and use each vertex at most η1/3n times.

These paths, together with EG(X) give an edge-disjoint collection FX of copies of C2k

with ∆(
⋃FX) ≤ 2η1/3n.

Consider the graph G′ := G \⋃FX . Our next step is to cover all but at most one of

the remaining edges incident at each vertex in X. For each x ∈ X, pair up the vertices

in NG′(x), leaving at most one vertex. Note that both vertices in any pair lie in the same

vertex class. Since δbip(G′ \ X) ≥ 1/2 + ε/2, we can find edge-disjoint paths of (even)

length 2k − 2 between each pair in G′ \X. Each path combines with two edges incident

at X to form a copy of C2k. Thus we obtain a collection F ′X of edge-disjoint copies of C2k

which, together with FX , cover all but at most one edge incident at each x ∈ X.

Let H ′ := G −⋃(FX ∪ F ′X) and note that dH′(x) ≤ 1 for all x ∈ X. Use the Erdős-

Stone theorem to greedily find an η3-approximate C2k-decomposition of H ′ which we will

denote by F . Let H := H ′ −⋃F and note that G − H has a C2k-decomposition given

by FX ∪ F ′X ∪ F . If Y := {x ∈ V (G) : dH(x) > ηn}, then |Y | ≤ 2e(H)/(ηn) ≤ ηn and

X ∩ Y = ∅. �

We use Lemma 5.6.4 to prove the following result which finds a C2k-decomposition of

G so that every vertex has low degree in the remainder.
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Lemma 5.6.5. Let k ∈ N, k ≥ 2 and 1/n � ε, 1/k. Let G = (A,B) be a bipartite

graph with n ≤ |A|, |B| ≤ 3n and δbip(G) ≥ 1/2 + ε. Then G has an approximate C2k-

decomposition F such that ∆(G−⋃F) ≤ εn.

Proof. Choose s, t ∈ N and η > 0 such that

1/n� η � 1/s� 1/t� ε, 1/k

and Ks has a Kt-decomposition (s and t exist by Proposition 5.6.3). Let P = {V1, . . . , Vs}

be a partition of V (G) satisfying the following for all 1 ≤ i ≤ s and each X ∈ {A,B}:

(i) |Vi ∩X| = b|X|/sc or d|X|/se;

(ii) dG(x, Vi ∩X) ≥ (1/2 + 2ε/3)|Vi ∩X| for all x ∈ V (G) \X.

To see P exists, consider random equitable partitions V A
1 , . . . , V

A
s of A and V B

1 , . . . , V
B
s

of B and let Vi := V A
i ∪ V B

i . Lemma 4.2.1 implies that this partition satisfies (ii) with

probability at least 3/4.

Since |Vi| ≤ εn/2 for all 1 ≤ i ≤ s, it suffices to show that G[P ] has an approximate

C2k-decomposition F such that ∆(G[P ] − ⋃F) ≤ εn/2 . Let {T1, . . . , T`} be a Kt-

decomposition of Ks, where V (Ks) = {1, . . . , s}. For each 1 ≤ i ≤ `, define Gi :=⋃
jk∈E(Ti)

G[Vj, Vk], so the Gi decompose G[P ]. For each 1 ≤ i ≤ `, each X ∈ {A,B} and

all x ∈ V (Gi) \X, we have

dGi(x) ≥ (t− 1)(1/2 + 2ε/3)b|X|/sc ≥ (1/2 + ε/2)td|X|/se ≥ (1/2 + ε/2)|V (Gi) ∩X|,

by (i) and (ii). So δbip(Gi) ≥ 1/2 + ε/2. We also note that

n′ := tbn/sc ≤ |V (Gi) ∩ A|, |V (Gi) ∩B| ≤ td3n/se ≤ 4n′.

Let X1 := ∅. For each 1 ≤ i ≤ ` in turn, apply Lemma 5.6.4 (with Gi, ε/2 and

Xi ∩ V (Gi) playing the roles of G, ε and X) to find Hi ⊆ Gi such that Gi − Hi is C2k-
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decomposable, dHi(x) ≤ ηn′ for all x ∈ Xi and |Yi| ≤ ηn′, where Yi := {x ∈ V (Gi) :

dHi(x) > ηn′}. Let Xi+1 := Xi ∪ Yi. Note that, for all 1 ≤ i ≤ `, |Xi| ≤ s2ηn′ ≤ η1/2n′

so we can indeed use Lemma 5.6.4. Let H :=
⋃`
i=1 Hi and consider any x ∈ V (G). We

know that

dH(x) ≤ `ηn′ + 4n′ ≤ (s2η + 4)tn/s ≤ εn/2,

since dHi(x) ≤ ηn′ for all but at most one 1 ≤ i ≤ `. �

The following proposition takes a subset R of V (G) and covers all the edges in a sparse

subgraph H of G[R] using copies of C2k without using any vertex too many times. It is

an analogue of Proposition 5.10 in [38] and the proof is identical, so we omit the details.

Proposition 5.6.6. Let k ∈ N, k ≥ 2 and 1/n � γ � µ, 1/k. Let G = (A,B) be a

bipartite graph with n ≤ |A|, |B| ≤ 5n. Let V (G) = L ·∪ R such that |R ∩ X| ≥ µn and

dG(x,R ∩X) ≥ (1/2 + µ)|R ∩X| for each X ∈ {A,B} and all x ∈ V (G) \X. Let H be

any subgraph of G[L] such that ∆(H) ≤ γn. Then there exists J ⊆ G such that J [L] is

empty, J ∪H is C2k-decomposable and ∆(J) ≤ µ2n.

We now use each of the results obtained so far to prove Lemma 5.6.7. This lemma

forms the basis of the induction proof of Lemma 5.6.2.

Lemma 5.6.7. Let k ∈ N, k ≥ 2 and 1/n � µ � 1/k. Let G = (A,B) be a bipartite

graph with n ≤ |A|, |B| ≤ 3n. Let U ⊆ V (G) with |U ∩A| = bµ|A|c and |U ∩B| = bµ|B|c.

Suppose δbip(G) ≥ 1/2+2µ and dG(x, U∩X) ≥ (1/2+µ)|U∩X| for each X ∈ {A,B} and

all x ∈ V (G) \X. Then, if 2 | dG(x) for all x ∈ V (G) \ U , there exists a collection F of

edge-disjoint copies of C2k such that every edge in G−G[U ] is covered and ∆(
⋃F [U ]) ≤

µ3|U |.

Proof. Choose constants γ, ξ such that 1/n� γ � ξ � µ� 1/k. Let W := V (G) \U ,

m := dξ−1e and M :=
(
m+1

2

)
. Let V1, . . . , VM be a partition of U such that for all

1 ≤ i ≤M , each X ∈ {A,B} and all x ∈ V (G) \X:

1. dG(x, Vi ∩X) ≥ (1/2 + µ/2)|Vi ∩X|;
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2. |Vi ∩X| = b|U ∩X|/Mc or d|U ∩X|/Me.

To see that such a partition exists, consider random equipartitions V A
1 , . . . , V

A
M of U ∩ A

and V B
1 , . . . , V

B
M of U ∩ B. Let Vi := V A

i ∩ V B
i . Lemma 4.2.1 implies that this partition

satisfies (1) with probability at least 3/4.

LetW1, . . . ,Wm be a partition ofW such thatW1∩A, . . . ,Wm∩A andW1∩B, . . . ,Wm∩

B are equipartitions of W∩A and W∩B respectively. Let G1
W , . . . , G

M
W be an enumeration

of the M graphs of the form G[Wi] or G[Wi,Wj]. Note G[W ] =
⋃M
i=1G

i
W and, for all

1 ≤ i ≤M ,

|V (Gi
W ) ∩ A|, |V (Gi

W ) ∩B| ≤ 2(3n/m+ 1) ≤ 7ξn (5.8)

For each 1 ≤ i ≤ M , let Ri := G[Vi, V (Gi
W )]. Let R :=

⋃M
i=1Ri. For each v ∈ Vi we see

that dR(v) ≤ 7ξn by (5.8) and for each v ∈ W , we have dR(v) ≤ m((3nµ/M) + 1) ≤ 7ξn.

Thus ∆(R) ≤ 7ξn.

Let G′ := G− (G[U ]∪R). Since |U ∩A| = bµ|A|c, |U ∩B| = bµ|B|c and ∆(R) ≤ 7ξn,

we note that δbip(G′) ≥ 1/2 + µ/2. So, by Lemma 5.6.5 (with γ playing the role of ε), G′

has an approximate C2k-decomposition F1 such that H := G′−⋃F1 satisfies ∆(H) ≤ γn.

We now use R and Proposition 5.6.6 to cover the edges in H[W ]. For each 1 ≤ i ≤M ,

let Hi := H[W ] ∩ Gi
W (so H[W ] =

⋃
Hi) and Gi := G[Vi] ∪ Ri ∪Hi. Observe that Gi is

a bipartite graph and V (Gi) = Vi ∪ V (Gi
W ). Let us check that Gi satisfies the conditions

of Proposition 5.6.6 (with Gi,
√
γ, ξ2 and Vi playing the roles of G, γ, µ and R). Let

ni := min{|V (Gi) ∩ A|, |V (Gi) ∩B|}, then

ni ≤ |V (Gi) ∩ A|, |V (Gi) ∩B| ≤ 4ni.

Note that

ni ≤ |V (Gi) ∩ A| = |Vi ∩ A|+ |V (Gi
W ) ∩ A|

(5.8)

≤ 3µn/M + 7ξn ≤ 8ξn
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which gives n ≥ ni/8ξ. We use this to see that

|Vi ∩ A|, |Vi ∩B| ≥ µn/2M ≥ µξ2n/2 ≥ ξ2ni.

Also ∆(Hi) ≤ γn ≤ √γni and (1) implies that dGi(x, Vi∩X) ≥ (1/2+ξ2)|Vi∩X| for each

X ∈ {A,B} and all x ∈ V (Gi) \X. So we may apply Proposition 5.6.6 to find Ji ⊆ Gi

such that Ji[V (Gi) \ Vi] is empty, Ji ∪ Hi is C2k-decomposable and ∆(Ji) ≤ ξ4ni. Let

J :=
⋃M
i=1 Ji. Then J ∪H[W ] has a C2k-decomposition F2 and ∆(J) ≤ ξn.

We must now cover the remaining edges in H[U,W ] ∪R. Let G′′ := G−⋃(F1 ∪ F2).

Note that G′′[W ] is empty and

∆(G′′) ≤ ∆(H) + ∆(R) ≤ γn+ 7ξn ≤ 8ξn.

Since ∆(J) ≤ ξn, δbip(G′′[U ]) ≥ 1/2+µ/2. For each w ∈ W , dG′′(w) is even, so we can pair

up the vertices in NG′′(w) arbitrarily and let P denote the list of pairs of all neighbours

of W . Each vertex in U appears in at most ∆(G′′) ≤ √ξ|U | of the pairs in P and

|P | ≤ ∆(G′′)3n ≤ √ξ|U |2. The vertices in each pair lie in the same vertex class so we can

find paths of (even) length 2k− 2 between each pair so that these paths are edge-disjoint

and no vertex is used more than µ3|U |/4 times. We obtain a collection F3 of edge-disjoint

copies of C2k which cover the edges of G′′ − G′′[W ] such that ∆(
⋃F3) ≤ µ3|U |/2. Let

F := F1 ∪ F2 ∪ F3. Then

∆
(⋃
F [U ]

)
≤ ∆(J) + ∆

(⋃
F3

)
≤ µ3|U |

and F covers every edge of G−G[U ]. �

Finally, we use Lemma 5.6.7 and induction to prove Lemma 5.6.2.

Proof of Lemma 5.6.2. If ` = 0, we can set H` := G, so we assume ` ≥ 1. We begin by

observing that for any 0 ≤ i ≤ `, we have 2µin/3 ≤ µin− 1/(1−µ) ≤ |Ui ∩A|, |Ui ∩B| ≤

2µin. The lemma will follow from the following statement which we will prove by induction
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on `.

Let G = (A,B) be a 2-divisible bipartite graph with δbip ≥ 1/2 + 3µ and |A| ≤
|B| ≤ 3|A|. Let U1 ⊆ V (G) with |U1 ∩ A| = bµ|A|c and |U1 ∩ B| = bµ|B|c.
Suppose that dG(x, U1 ∩X) ≥ (1/2 + 7µ/2)|U1 ∩X| for each X ∈ {A,B} and
all x ∈ V (G) \ X. Let U1 ⊇ · · · ⊇ U` be a (1/2 + 4µ, µ,m)-vortex respecting
(U1 ∩ A,U1 ∩ B) in G[U1] such that |Ui ∩ B| ≤ 3|Ui ∩ A|, for each 1 ≤ i ≤ `.
Then there exists H` ⊆ G[U`] such that G−H` is C2k-decomposable.

If ` = 1, the statement follows directly from Lemma 5.6.7 applied to G and U1. Assume

then that ` ≥ 2 and the statement holds for ` − 1. Let G′ := G − G[U2] and note that

δbip(G′) ≥ 1/2 + 2µ and dG′(x, U1 ∩X) ≥ (1/2 + µ)|U1 ∩X| for each X ∈ {A,B} and all

x ∈ V (G) \X. Furthermore, for all x ∈ V (G′) \ U1, dG′(x) = dG(x) so 2 | dG′(x). Apply

Lemma 5.6.7 to find an edge-disjoint collection F of copies of C2k covering all edges in

G′ −G[U1] such that

∆
(⋃
F [U1]

)
≤ µ3|U1| ≤ 5µ2|U2 ∩ A|.

Let G′′ := G[U1]−⋃F . Then G′′ is a 2-divisible bipartite graph with δbip(G′′) ≥ 1/2+3µ.

For each X ∈ {A,B}, |U2 ∩X| = bµ|U1 ∩X|c and, for any x ∈ V (G′′) \X,

dG′′(x, U2 ∩X) ≥ (1/2 + 4µ)|U2 ∩X| −∆
(⋃
F [U1]

)
≥ (1/2 + 7µ/2)|U2 ∩X|.

Since G′′[U2] = G[U2], U2 ⊇ · · · ⊇ U` is a (1/2+4µ, µ,m)-vortex respecting (U2∩A,U2∩B)

in G′′[U2]. Hence, by induction, there exists a subgraph H` of G[U`] such that G′′ − H`

has a C2k-decomposition F ′. Together F ∪ F ′ is a C2k-decomposition of G−H`. �

5.7 Decompositions of expanders

The purpose of this section is to prove Theorem 5.5.2 which finds a C2k-decomposition of

any C2k-divisible ν-expander G when k ≥ 4. The significance of G being a ν-expander

(defined in Section 5.5) is that there are many internally disjoint paths between any pair

of vertices in G. We can use these paths to construct copies of C2k and to find absorbers
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and this allows us to use the arguments of [38] with only slight modification. We will

make use of the fact that ν-expansion is a robust property in the sense that the graph

remains a ν/2-expander when we remove a sparse subgraph.

5.7.1 Finding paths

The next result can be used to find many internally disjoint paths with predetermined

endpoints without using any vertex too often.

Proposition 5.7.1. Let k ∈ N, k ≥ 4 and 1/n� γ � ν, 1/k. Let G be a ν-expander on

n vertices and let P = {(x1, y1), . . . , (xm, ym)} be a collection of m ≤ γn2 pairs of distinct

vertices of G. Suppose that each vertex appears in at most γn pairs in P . Then G contains

a collection of edge-disjoint paths P = {P 1, . . . , Pm} such that, for each 1 ≤ i ≤ m, P i is

a path of length k from xi to yi. Furthermore, ∆(
⋃P) ≤ γ1/3n.

Proof. Let 1 ≤ j ≤ m and suppose we have already found paths P 1, . . . , P j−1 such

that each vertex in V (G) appears as an internal vertex in at most 2
√
γn of the paths. Let

B be the set of all vertices which appear as an internal vertex in at least
√
γn paths in

P 1, . . . , P j−1. Note that

|B| ≤ m(k − 1)/(
√
γn) ≤ ν2n.

Let Gj := G − ⋃j−1
i=1 P

i. Note that ∆(
⋃j−1
i=1 P

i) ≤ 4
√
γn + γn so Gj is a ν/2-expander

(which implies δ(Gj) ≥ νn/2). We find a path P j between xj and yj in Gj whose interior

vertices avoid B as follows. Since νn/2 ≥ |B| + k, we can embed a path of length k − 4

starting at xj greedily. Let x′j denote its endpoint. In order to find a path of length four

between x′j and yj it suffices to note that

|Rν/2,Gj(NGj(x
′
j)) ∩Rν/2,Gj(NGj(yj))| ≥ νn ≥ |B|+ k.

Continuing in this way, we obtain edge-disjoint paths P 1, . . . , Pm of length k such that no

vertex is used as an internal vertex more than 2
√
γn times. Thus ∆(

⋃P) ≤ 4
√
γn+γn ≤
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γ1/3n. �

5.7.2 Expander vortices

We now introduce a further variant of the vortex, this time for expanders, where we

replace the minimum degree condition with an expansion property instead. Let G be a

graph on n vertices. A (ν, µ,m)-expander vortex in G is a sequence U0 ⊇ U1 ⊇ · · · ⊇ U`

such that

• U0 = V (G);

• |Ui| = bµ|Ui−1|c, for all 1 ≤ i ≤ `, and |U`| = m;

• NG(x, Ui) is ν-expanding in G[Ui], for all 1 ≤ i ≤ ` and all x ∈ Ui−1.

Proposition 5.7.2. Let 0 ≤ ν ≤ 1 and 1/n � µ < 1. Suppose that G is a ν-expander

on n vertices. Then there exists U ⊆ V (G) of size bµnc such that, for every x ∈ V (G),

NG(x, U) is (ν − n−1/3)-expanding in G[U ].

Proof. Let U be a random subset of V (G) of size bµnc. Fix x ∈ V (G). Lemma 4.2.1

gives

P(|Rν,G(NG(x)) ∩ U | < (1/2 + ν − n−1/3)|U |) ≤ 2e−2n−2/3|U |2/n ≤ 2e−µ
2n1/3 ≤ 1/n3.

Consider any y ∈ Rν,G(NG(x)). Again by Lemma 4.2.1,

P(dG(y,NG(x, U)) < (ν − n−1/3)|U |) ≤ 2e−2n−2/3|U |2/n ≤ 2e−µ
2n1/3 ≤ 1/n3.

By summing over all choices of x and y, we see that with probability at least 1− 2/n

the set U chosen in this way satisfies:

1. |Rν,G(NG(x)) ∩ U | ≥ (1/2 + ν − n−1/3)|U |, for all x ∈ V (G) and

2. dG(y,NG(x, U)) ≥ (ν − n−1/3)|U |, for all x ∈ V (G) and all y ∈ Rν,G(NG(x)).
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For any x ∈ V (G), we have

|Rν−n−1/3,G[U ](NG(x, U))|
(2)

≥ |Rν,G(NG(x)) ∩ U |
(1)

≥ (1/2 + ν − n−1/3)|U |

so U is the required set. �

We use the following result to find an expander vortex in G.

Lemma 5.7.3. Let 0 ≤ ν ≤ 1 and 1/m′ � µ < 1. Suppose that G is a ν-expander on

n ≥ m′ vertices. Then G has a (ν − µ, µ,m)-expander vortex for some bµm′c ≤ m ≤ m′.

This result follows from repeated applications of Proposition 5.7.2 (see Appendix B.2 for

more details).

5.7.3 Covering most of the edges

In this section we decompose almost all of the graph G into cycles except for a very

restricted remainder using the following result. This is exactly the technique we used in

Section 5.6, so again we omit some details.

Lemma 5.7.4. Let k ∈ N, k ≥ 3 and 1/m� ν, 1/k. Let G be a 2-divisible 4ν-expander

and let U0 ⊇ U1 ⊇ · · · ⊇ U` be a (5ν, ν,m)-expander vortex in G. Then there exists

H` ⊆ G[U`] such that G−H` is C2k-decomposable.

We require some preliminary results. The first of which finds an approximate C2k-

decomposition of G whilst maintaining control over the number of edges incident at all

vertices in a given set X.

Lemma 5.7.5. Let k ∈ N, k ≥ 3 and 1/n� η � ν, 1/k. Suppose that G is a ν-expander

on n vertices and that X ⊆ V (G) of size at most η1/2n. Then there exists H ⊆ G such

that G−H is C2k-decomposable, Y := {x ∈ V (G) : dH(x) > ηn} has size at most ηn and

X ∩ Y = ∅.
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Proof. We begin by finding edge-disjoint copies of C2k which cover all the edges in

G[X]. To this end, let PX := {(x, y) : xy ∈ EG(X)}. Since |X| ≤ η1/2n, G − G[X] is a

3ν/4-expander and we may apply Proposition 5.7.1 (with PX , η1/2, G−G[X], 2k− 1 and

3ν/4 playing the roles of P , γ, G, k and ν) to find a collection PX of edge-disjoint paths of

length 2k − 1 between the endpoints of each edge in EG(X) such that ∆(
⋃PX) ≤ η1/6n.

Thus we obtain a collection FX of edge-disjoint copies of C2k which cover all of the edges

in G[X] such that ∆(
⋃FX) ≤ 2η1/6n. Let G′ := G \⋃FX .

Our next step is to cover all but at most one of the remaining edges incident at each

vertex in X. For each x ∈ X, pair up the vertices in NG′(x), leaving at most one vertex.

Let P ′X denote the list of pairs for all x ∈ X. Note that G′ \X is a ν/2-expander. Then,

as previously, apply Proposition 5.7.1 (with P ′X , η1/2, G′ \X, 2k− 2 and ν/2 playing the

roles of P , γ, G, k and ν) to find a collection P ′X of edge-disjoint paths of length 2k−2 in

G′ \X between each pair in P ′X . These paths combine with edges incident at X to form

a collection F ′X of edge-disjoint copies of C2k which, together with FX , cover all but at

most one edge incident at each x ∈ X.

Finally, let H ′ := G−⋃(FX ∪F ′X). Use the Erdős-Stone theorem to greedily find an

η3-approximate C2k-decomposition of H ′ which we will denote by F . Let H := H ′−⋃F
and note that G − H has a C2k-decomposition given by FX ∪ F ′X ∪ F . If Y := {x ∈

V (G) : dH(x) > ηn}, then |Y | ≤ 2e(H)/(ηn) ≤ ηn. Since dH(x) ≤ 1 for all x ∈ X,

X ∩ Y = ∅. �

We use Lemma 5.7.5 to prove the following result which finds a C2k-decomposition of

G so that every vertex has low degree in the remainder.

Lemma 5.7.6. Let k ∈ N, k ≥ 3 and 1/n� ν, 1/k. Let G be a ν-expander on n vertices.

Then G has an approximate C2k-decomposition F such that ∆(G−⋃F) ≤ νn.

Proof. Choose s, t ∈ N and η > 0 such that

1/n� η � 1/s� 1/t� ν, 1/k
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and Ks has a Kt-decomposition (s and t exist by Proposition 5.6.3). Let P = {V1, . . . , Vs}

be an equipartition of V (G) satisfying the following for all 1 ≤ i ≤ s:

(i) dG(y,NG(x, Vi)) ≥ (ν − η)|Vi| for all x ∈ V (G) and all y ∈ Rν,G(NG(x));

(ii) |Rν,G(NG(x)) ∩ Vi| ≥ (1/2 + ν − η)|Vi| for all x ∈ V (G).

To see that such a partition exists, consider a random equipartition of V (G) into s parts

and apply Lemma 4.2.1 to see that this partition satisfies (i)–(ii) with probability at least

3/4. It will suffice to show that G[P ] has an approximate C2k-decomposition F such that

∆(G[P ]−⋃F) ≤ νn/2 (since |Vi| ≤ νn/2 for all 1 ≤ i ≤ s).

Consider {T1, . . . , T`}, a Kt-decomposition of Ks, where V (Ks) = {1, . . . , s}. For each

1 ≤ i ≤ `, define Gi :=
⋃
jk∈E(Ti)

G[Vj, Vk], so the Gi decompose G[P ]. Consider any

x ∈ V (Gi) and any y ∈ Rν,G(NG(x)) ∩ V (Gi). We have

dGi(y,NGi(x)) =
∑

Vj⊆V (Gi)
x,y 6∈Vj

dG(y,NG(x, Vj))
(i)

≥ (t− 2)(v − η)bn/sc (5.9)

≥ (ν/2)tdn/se ≥ (ν/2)|Gi|.

So

|Rν/2,Gi(NGi(x))|
(5.9)

≥ |Rν,G(NG(x)) ∩ V (Gi)|
(ii)

≥ t(1/2 + ν − η)bn/sc

≥ (1/2 + ν/2)tdn/se ≥ (1/2 + ν/2)|Gi|.

Thus Gi is a ν/2-expander for each 1 ≤ i ≤ `.

Let X1 := ∅. For each 1 ≤ i ≤ ` in turn, apply Lemma 5.7.5 (with Gi, ν/2 and

Xi ∩ V (Gi) playing the roles of G, ν and X) to find Hi ⊆ Gi such that Gi − Hi is C2k-

decomposable, dHi(x) ≤ η|Gi| for all x ∈ Xi and |Yi| ≤ η|Gi|, where Yi := {x ∈ V (Gi) :

dHi(x) > η|Gi|}. Let Xi+1 := Xi ∪ Yi. Note that, for all 1 ≤ i ≤ `, |Xi| ≤ s2ηtdn/se ≤

η1/2tbn/sc, so we can indeed use Lemma 5.7.5. Let H :=
⋃`
i=1 Hi and consider any
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x ∈ V (G). We know that

dH(x) ≤ `ηtdn/se+ tdn/se ≤ 2sηtn+ 2tn/s ≤ νn/2,

since dHi(x) ≤ ηtdn/se for all but at most one 1 ≤ i ≤ `. �

The following proposition, an analogue of Proposition 5.6.6, takes a subset R of G

and covers all the edges in a sparse subgraph H which have no endpoint in this set R. It

is proved by mimicking the proof of Proposition 5.10 in [38] (see Appendix B.2 for more

details).

Proposition 5.7.7. Let k ∈ N, k ≥ 3 and 1/n � γ � µ, 1/k. Let G be a graph on

n vertices and let V (G) = L ·∪ R such that |R| ≥ µn and NG(x,R) is µ-expanding in

G[R] for all x ∈ V (G). Let H be any subgraph of G[L] such that ∆(H) ≤ γn. Then

there exists a subgraph A of G such that A[L] is empty, A ∪H is C2k-decomposable and

∆(A) ≤ γ1/3|R|.

We will obtain Lemma 5.7.4 from the following result by induction. The proof of

Lemma 5.7.8 very closely resembles that of Lemma 5.6.7 (and uses Lemma 5.7.6, Propo-

sition 5.7.7 and Proposition 5.7.1, in this order). We omit the details here and refer the

reader instead to Appendix B.2.

Lemma 5.7.8. Let k ∈ N, k ≥ 3 and 1/n � ν, 1/k. Let G be a 3ν-expander on n

vertices and U ⊆ V (G) with |U | = bνnc. Suppose that NG(x, U) is ν-expanding in G[U ]

for all x ∈ V (G). Then, if 2 | dG(x) for all x ∈ V (G) \ U , there exists a collection F of

edge-disjoint copies of C2k such that every edge in G−G[U ] is covered and ∆(
⋃F [U ]) ≤

ν2|U |/4.

Finally, we use Lemma 5.7.8 and induction to prove Lemma 5.7.4.

Proof of Lemma 5.7.4. If ` = 0, we can set H` := G, so we assume ` ≥ 1. We will

prove the following statement (which implies Lemma 5.7.4) by induction on `.
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Let G be a 2-divisible 4ν-expander and let U1 ⊆ V (G) of size bν|G|c such that
NG(x) is 9ν/2-expanding in G[U1] for all x ∈ V (G). Let U1 ⊇ · · · ⊇ U` be a
(5ν, ν,m)-expander vortex in G[U1]. Then there exists H` ⊆ G[U`] such that
G−H` is C2k-decomposable.

If ` = 1, the statement follows directly from Lemma 5.7.8 applied to G and U1. Assume

then that ` ≥ 2 and the claim holds for ` − 1. Let G′ := G − G[U2] and note that G′

is a 3ν-expander and NG′(x) is ν-expanding in G′[U1] for all x ∈ V (G). Furthermore,

for all x ∈ V (G′) \ U1, dG′(x) = dG(x) so 2 | dG′(x). Apply Lemma 5.7.8 to find a

collection F of edge-disjoint copies of C2k covering all edges in G′ − G[U1] such that

∆(
⋃F [U1]) ≤ ν2|U1|/4. Let G′′ := G[U1] − ⋃F . Then G′′ is 2-divisible and G′′ is a

4ν-expander and U2 ⊆ V (G′′) with |U2| = bν|G′′|c. Moreover, for any x ∈ V (G′′), NG′′(x)

is 9ν/2-expanding in G[U2]. Since G′′[U2] = G[U2], U2 ⊇ · · · ⊇ U` is a (5ν, ν,m)-expander

vortex in G[U2]. Hence, by induction, there exists H` ⊆ G[U`] such that G′′ − H` has a

C2k-decomposition F ′. Together F ∪ F ′ is a C2k-decomposition of G−H`. �

Finally, we prove the main result in this section, Theorem 5.5.2.

Proof of Theorem 5.5.2. Let m,m′ ∈ N and µ be such that

1/n� 1/m′ � 1/m� µ� ν, 1/k.

Let ν ′ := ν/7. Apply Lemma 5.7.3 to G to find a (6ν ′, ν ′,m)-expander vortex U0 ⊇ U1 ⊇

· · · ⊇ U` in G. Let G1 := G − G[U1]. Since |U1| ≤ ν ′n, G1 is a ν/2-expander (and if

k = 4, δ(G1) ≥ n/2 − ν ′n) which implies that between any two vertices in G1, there are

at least m′ internally disjoint paths of length k − 1. Apply Lemma 5.3.2 to the graph G1

with U` playing the role of U to find A∗ ⊆ G1 as in the lemma. Let G∗ := G − A∗ and

note that G∗ is C2k-divisible. We have ∆(A∗) ≤ |A∗| ≤ 2m
2
, so G∗ is a 4ν ′-expander and

U0 ⊇ U1 ⊇ · · · ⊇ U` is a (5ν ′, ν ′,m)-vortex in G∗. Then apply Lemma 5.7.4 to G∗ to find

H` ⊆ G∗[U`] such that G∗ −H` has a C2k-decomposition. Observing that A∗ ∪H` has a

C2k-decomposition (by Lemma 5.3.2) completes the proof. �
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5.8 Concluding remarks

In Theorem 5.1.2, we have found exact minimum degree bounds for a graph to have a

decomposition into cycles of all even lengths apart from six. For cycles of length six, the

best bound is given by Theorem 5.1.1 and remains at (1/2+ε)|G| which is asymptotically

best possible. We conjecture that the bound should also be |G|/2 in this case but were

unable to prove this using the methods of Section 5.5. The primary reason for this was

that we were unable to construct a C6-absorber which could be found in a ν-expander.

The transformer construction given in Section 5.3.1 works well for longer cycles since

these transformers can be constructed using paths of length at least three between the

fixed vertices. But, when the cycle is shorter, we do not have enough flexibility when

choosing the intermediate vertices. This means that we were only able to prove the

expander decomposition result, Theorem 5.5.2, for cycles of length at least eight. There

are also places in the proofs of Lemmas 5.5.3 and 5.5.7 where we require the cycle to

have length at least eight, though it is likely that these arguments could be adapted for

C6-decompositions if required.
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APPENDIX A

SUPPLEMENTARY DETAILS FOR CHAPTER 4

Some results in Chapter 4 were very similar to existing results in [7] and their proofs

follow in a similar manner, requiring only minor adaptations. For this reason, we omitted

the details in the main body of this thesis but we include proofs here for completeness.

First we prove Lemma 4.5.2 which finds copies of P-labelled graphs in an r-partite

graph G.

Proof of Lemma 4.5.2. For each v ∈ V (G) and each 0 ≤ j ≤ m, let s(v, j) be the

number of indices 1 ≤ i ≤ j such that some vertex of Hi is labelled {v}. Note that (iv)

implies that s(v, j) ≤ ηn.

Suppose that we have already found copies φ(H1), . . . φ(Hj−1) of H1, . . . , Hj−1 such

that, for every v ∈ V (G),

dGj−1
(v) ≤ η1/2n+ (s(v, j − 1) + 1)b, (A.1)

where Gj−1 :=
⋃

1≤i≤j−1 φ(Hi). We show that we can find a copy of Hj in G−Gj−1 which

satisfies (A.1) with j replacing j − 1.

Let B := {v ∈ V (G) : dGj−1
(v) ≥ η1/2n}. We have

|B| ≤ 2e(Gj−1)

η1/2n
≤ 2mdb

η1/2n
≤ 2ηdbn2

η1/2n
≤ 2η1/2dbn.

By (iii), we can order the vertices of Hj so that root vertices precede free vertices and
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each free vertex is preceded by at most d of its neighbours. We will embed the vertices in

this order. Suppose that we are currently embedding the vertex x. If x is a root vertex,

embed it at its assigned vertex. This is possible since we have not yet embedded any

neighbour of x.

Suppose that x is a free vertex labelled V ⊆ Vi. Let U denote the image of the

neighbours of x in Hj which have already been embedded. Note that |U | ≤ d and, by the

definition of a P-labelling, U ∩ Vi = ∅. Then (i) implies that dG(U, V ) ≥ ε|V |. We have

dG−Gj−1
(U, V ) ≥ dG(U, V )−

∑
u∈U

dGj−1
(u, V )

(A.1)

≥ ε|V | − d(η1/2n+ (ηn+ 1)b)

> |B|+ |Hj|.

So we can map x to a suitable vertex in V \B.

Suppose that we have embedded all vertices of Hj. We now check that (A.1) holds with

j replacing j − 1. If v ∈ V (G) \ B, this is clear. Suppose then that v ∈ B. If v was used

in the embedding of Hj, v must be the image of a root vertex and s(v, j) = s(v, j−1)+1.

So in all cases,

dGj(v) ≤ η1/2n+ (s(v, j) + 1)b.

Continue in this way until all the Hi have been embedded. Using (A.1),

∆(H) = ∆(Gm) ≤ η1/2n+ (ηn+ 1)b ≤ εn,

as required. �

Next we find a partition sequence in G, proving Lemma 4.7.2. This result follows from

repeated applications of Proposition 4.7.1.

Proof of Lemma 4.7.2. Choose m0 such that 1/m0 � 1/k, 1/r, α and let m′ ≥ m0.

Let ` := blogk(n/m
′)c. Define P0, . . . ,P` as follows. Let P0 := {V (G)}. For each j ∈ N,
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let

aj := n−1/3 + (n/k)−1/3 + · · ·+ (n/kj−1)−1/3.

Suppose that, for some 1 ≤ p ≤ `, we have already chosen P0, . . . ,Pp−1 such that, for

each 1 ≤ i ≤ p− 1 and each W ∈ Pi−1, Pi[W ] is an (ai, k, δ − ai)-partition for G[W ] and

for all 1 ≤ j1, j2, j3 ≤ r with j1 6= j2, j3, each U ∈ Pi[W ] and each v ∈ Wj1 ,

|dG(v, Uj2)− dG(v, Uj3)| < 2ai|Uj1|. (A.2)

Let β := bn/kp−1c−1/3/2. For each W ∈ Pp−1, |W1| = · · · = |Wr| ≥ n/kp−1 − 1 ≥

n/k`−1−1 ≥ m0. Also, δ̂(G[W ]) ≥ (δ−ap−1)|W1|. So we can choose a (β, k, δ−β−ap−1)-

partition PW for G[W ], using Proposition 4.7.1. Note that β + ap−1 < ap so PW is an

(ap, k, δ − ap)-partition. Let Pp :=
⋃
W∈Pp−1

PW .

Consider any W ∈ Pp−1, any U ∈ Pp[W ], any 1 ≤ j1, j2, j3 ≤ r with j1 6= j2, j3 and

any v ∈ Wj1 . We use that PW is a (β, k, 0)-partition for G[W ] together with (A.2) to see

that

|dG(v, Uj2)− dG(v, Uj3)| < |dG(v, Uj2)− dG(v,Wj2)/k|+ |dG(v, Uj3)− dG(v,Wj3)/k|

+ |dG(v,Wj2)/k − dG(v,Wj3)/k|

< β|Uj2|+ β|Uj3|+ 2ap−1|Wj1|/k

≤ 2(β + ap−1)|Uj1|+ 2ap−1 ≤ 2ap|Uj1|.

Finally, we note that

a` = (n/k`−1)−1/3

`−1∑
i=0

k−i/3 ≤ (n/k`−1)−1/3

1− k−1/3
≤ m

−1/3
0

1− 2−1/3
≤ α

2
.

This completes the proof with m = dn/k`e. �

Finally, we prove Corollary 4.7.5. The proof is simply a case of verifying that the

sequence of graphs R1, . . . , R` obtained by Lemma 4.7.4 have the required properties.
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Proof of Corollary 4.7.5. Apply Lemma 4.7.4 to G to find a sequence of graphs

R1, . . . , R`, such that Rq ⊆ Gq − Gq−1 for each 1 ≤ q ≤ `, which satisfies the following.

For all 1 ≤ q ≤ `, all 1 ≤ j ≤ r, all W ∈ Pq−1, all distinct x, y ∈ W and all U ∈ Pq[W ],

|dRq(x, Uj)− ρdGq(x, Uj)| < α|Uj| (A.3)

|dRq({x, y}, Uj)− ρ2dGq({x, y}, Uj)| < α|Uj| (A.4)

dG′q+1
(y,NRq(x, Uj)) ≥ ρdGq+1(y,NGq(x, Uj))− 3ρ2|Uj| (A.5)

where G`+1 := G. So properties (i) and (ii) hold.

We now show that (iii) is satisfied. Fix 1 ≤ q ≤ `, 1 ≤ j, j′ ≤ r, W ∈ Pq−1,

U,U ′ ∈ Pq[W ] and x ∈ W \ (U ∪ U ′ ∪ Vj ∪ Vj′). Since Pq[W ] is an (α, k, 1 − 1/r + ε)-

partition for G[W ],

|dGq(x, Uj)− dGq(x, U ′j)| < α|Uj|+ α|U ′j|.

We use that P1, . . . ,P` is a partition sequence to see that

|dGq(x, U ′j)− dGq(x, U ′j′)| < α|U ′j|.

Together these give

|dGq(x, Uj)− dGq(x, U ′j′)| < 3α(|Uj|+ 1). (A.6)

We use (A.6) together with (A.3) to see that

|dRq(x, Uj)− dRq(x, U ′j′)| ≤ |dRq(x, Uj)− ρdGq(x, Uj)|+ |dRq(x, U ′j′)− ρdGq(x, U ′j′)|

+ ρ|dGq(x, Uj)− dGq(x, U ′j′)|

< α|Uj|+ α|U ′j′ |+ 3αρ(|Uj|+ 1) ≤ 3α|Uj|.

So (iii) holds.

For (iv), fix 1 ≤ q ≤ `, 1 ≤ j ≤ r, W ∈ Pq−1, U ∈ Pq[W ], x ∈ W \ U and y ∈ U .
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Suppose x, y /∈ Vj. Since Pq[W ] is an (α, k, 1− 1/r + ε)-partition for G[W ],

dGq+1(y, Uj) ≥ dG(y, Uj)− |Uj|/k − 1 ≥ (1− 1/r + ε/2)|Uj| and (A.7)

dGq(x, Uj) ≥ (1− 1/r)|Uj|. (A.8)

So

dGq+1(y,NGq(x, Uj)) ≥ dGq(x, Uj) + dGq+1(y, Uj)− |Uj|
(A.7)

≥ dGq(x, Uj)− |Uj|/r + ε|Uj|/2
(A.8)

≥ (1− 1/(r − 1))dGq(x, Uj) + ε|Uj|/2. (A.9)

Thus

dG′q+1
(y,NRq(x, Uj))

(A.5)

≥ ρdGq+1(y,NGq(x, Uj))− 3ρ2|Uj|
(A.9)

≥ ρ
[
(1− 1/(r − 1))dGq(x, Uj) + ε|Uj|/2

]
− 3ρ2|Uj|

≥ ρ(1− 1/(r − 1))dGq(x, Uj) + ρ5/4|Uj|

and (iv) holds. �
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APPENDIX B

SUPPLEMENTARY DETAILS FOR CHAPTER 5

We omitted some proofs from Chapter 5 in order to make the argument more concise and

draw attention to new results. These proofs are obtained by slight modifications to proofs

of similar results in [38] and we provide full details here for completeness.

B.1 Decompositions of bipartite graphs

This section supports Section 5.6. We will prove Lemma 5.6.1 which finds a vortex in

a bipartite graph G. We use the following proposition which is a simple application of

Lemma 4.2.1.

Proposition B.1.1. Let 0 ≤ δ ≤ 1 and 1/n � µ < 1. Suppose that G = (A,B) is a

bipartite graph with n = |A| ≤ |B| ≤ 3n and δbip(G) ≥ δ. Then there exists U ⊆ V (G)

such that |U ∩X| = bµ|X|c and dG(x, U ∩X) ≥ (δ − n−1/3)bµ|X|c for each X ∈ {A,B}

and every x ∈ V (G) \X.

Proof of Lemma 5.6.1. For each X ∈ {A,B} and each i ∈ N, define n0(X) := |X|

and ni(X) := bµni−1(X)c. Let a0 := 0 and ai := |A|−1/3
∑i

j=1 µ
−(j−1)/3. Let ni :=

ni(A) + ni(B). Observe that

µi|X| − 1/(1− µ) ≤ ni(X) ≤ µi|X| (B.1)
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and so

ni(A) ≤ ni(B) ≤ 3(µi|B|/2− 2) ≤ 3(µi|A| − 2) ≤ 3ni(A).

Define ` := 1 + max{i ≥ 0 : ni ≥ m′}, m := n` and note that 2bµm′c ≤ m ≤ m′.

Let 1 ≤ i ≤ `. Suppose that we have already found U0, . . . , Ui−1, a (δ−2ai−1, µ, ni−1)-

vortex respecting (A,B) in G. By Proposition B.1.1, there exists Ui ⊆ Ui−1 such that, for

each X ∈ {A,B}, |Ui ∩X| = ni(X) and dG(x, Ui ∩X) ≥ (δ − 2ai−1 − ni−1(A)−1/3)ni(X)

for every x ∈ Ui−1 \X. Since

2(ai − ai−1) = 2(|A|µi−1)−1/3
(B.1)

≥ 2(ni−1(A) + 2)−1/3 ≥ ni−1(A)−1/3,

U0, . . . , Ui is a (δ−2ai, µ, ni)-vortex respecting (A,B) in G. Eventually we find U0, . . . , U`,

a (δ − 2a`, µ,m)-vortex respecting (A,B) in G.

Finally, observe that µ`−1|A| ≥ n`−1(A) ≥ n`−1/4 ≥ m′/4. So

a` = |A|−1/3µ
−`/3 − 1

µ−1/3 − 1
≤ (µ`−1|A|)−1/3

1− µ1/3
≤ (m′/4)−1/3

1− µ1/3
≤ µ/2

and the result follows. �

B.2 Decompositions of expanders

In Section 5.7 we found C2k-decompositions of expanders. This section contains some

additional details. We begin by proving Lemma 5.7.3 which finds an expander vortex in

G.

Proof of Lemma 5.7.3. Define n0 := n and, for each i ∈ N, ni := bµni−1c. Then

µin− 1/(1− µ) ≤ ni ≤ µin.

If we let ` := 1 + max{i ≥ 0 : ni ≥ m′} and m := n`, then bµm′c ≤ m ≤ m′. Let a0 := 0
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and, for each i ∈ N, let ai := n−1/3
∑i

j=1 µ
−(j−1)/3.

Fix 1 ≤ i ≤ ` and suppose that we have already found a (ν − 2ai−1, µ, ni−1)-expander

vortex U0, . . . , Ui−1 in G. By Proposition 5.7.2, there exists Ui ⊆ Ui−1 of size ni such that

NG(x, Ui) is (ν − 2ai−1 − n−1/3
i−1 )-expanding in G[Ui] for every x ∈ Ui−1. Thus, U0, . . . , Ui

is a (ν − 2ai, µ, ni)-expander vortex in G. All that remains is to note that U0, . . . , U` is a

(ν − 2a`, µ,m)-expander vortex in G and

a` = n−1/3µ
−`/3 − 1

µ−1/3 − 1
≤ (µ`−1n)−1/3

1− µ1/3
≤ m′−1/3

1− µ1/3
≤ µ/2

since µ`−1n ≥ n`−1 ≥ m′. Thus U0, . . . , U` is a (ν − µ, µ,m)-expander vortex as required.

�

We now prove Proposition 5.7.7 which is used to cover all edges in a sparse subgraph H

ofG which have no endvertex in a setR. Its proof is very similar to that of Proposition 5.10

in [38].

Proof of Proposition 5.7.7. Enumerate the edges of E(H): e1, . . . , em. For each edge

ei in turn, we will find a copy Fi of C2k which contains ei such that V (Fi) ∩ L = V (ei).

The graphs F1, . . . , Fm must be edge-disjoint.

Fix 1 ≤ j ≤ m and suppose that we have already found F1, . . . , Fj−1. Let Gj−1 :=⋃j−1
i=1 Fi and suppose that ∆(Gj−1) ≤ √γn + 2. Let X := {x ∈ V (G) : dGj−1

(x) >
√
γn}

and note that X ∩ L = ∅, since dGj−1
(x) ≤ 2∆(H) ≤ √γn for all x ∈ L. We have

|X|√γn ≤ 2e(Gj−1) ≤ 4ke(H) ≤ 2kγn2,

giving |X| ≤ 2k
√
γn ≤ γ1/3|R|. Let G′ := (G − Gj−1)[(R \X) ∪ V (ej)]. Recall that, for

any x ∈ V (G′), NG(x,R) is µ-expanding in G[R], i.e., |Rµ,G[R](NG(x,R))| ≥ (1/2 +µ)|R|.

Since ∆(Gj−1), |X| ≤ γ1/3|R|, we have

|Rµ/2,G′(NG′(x))| ≥ (1/2 + µ/2)(|R|+ 2) ≥ (1/2 + µ/2)|G′|.
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Thus G′ is a µ/2-expander. This allows us to find a copy Fj of C2k in G′ that contains

ej. Moreover, Fj avoids X so ∆(Gj) ≤ √γn + 2. Letting A :=
⋃m
i=1(Fi − ei) completes

the proof. �

Finally, we prove Lemma 5.7.8 (the proof uses the same ideas as the corresponding

bipartite result Lemma 5.6.7).

Proof of Lemma 5.7.8. Choose constants γ, ξ such that 1/n� γ � ξ � ν, 1/k. Let

W := V (G) \ U , m := dξ−1e and M :=
(
m+1

2

)
. Let V1, . . . , VM be an equipartition of U

such that for all x ∈ V (G) and all 1 ≤ i ≤M ,

NG(x, Vi) is ν/2-expanding in G[Vi]. (B.2)

To see that such a partition exists, consider a random equipartition of U into M parts.

Apply Lemma 4.2.1 to see that such a partition satisfies (B.2) with probability at least

3/4.

Let W1, . . . ,Wm be an equipartition of W and let G1
W , . . . , G

M
W be an enumeration of

the M graphs of the form G[Wi] or G[Wi,Wj]. Note G[W ] =
⋃M
i=1G

i
W and

|Gi
W | ≤ 2(|W |/m+ 1) ≤ 2ξn

for all 1 ≤ i ≤ M . For each 1 ≤ i ≤ M , let Ri := G[Vi, V (Gi
W )]. Let R :=

⋃M
i=1Ri. Note

that ∆(R) ≤ max{2ξn, 2|U |m/M} ≤ 4ξn.

Let G′ := G − (G[U ] ∪ R). Since |U | = bνnc and ∆(R) ≤ 2ξn, we note that G′ is a

ν-expander. So, by Lemma 5.7.6, G′ has an approximate C2k-decomposition F1 such that

H := G′ −⋃F1 satisfies ∆(H) ≤ γn.

We now use R and Proposition 5.7.7 to cover the edges in H[W ]. For each 1 ≤ i ≤

M , let Hi := H[W ] ∩ Gi
W (so H[W ] =

⋃
Hi) and Gi := G[Vi] ∪ Ri ∪ Hi. Note that

V (Gi) = Vi ∪ V (Gi
W ) and thus νξ2n/10 ≤ |Vi| ≤ |Gi| ≤ 3ξn, implying that |Vi| ≥ ξ2|Gi|.

Also ∆(Hi) ≤ γn ≤ √γ|Gi| and (B.2) implies that NGi(x, Vi) is ξ2-expanding in G[Vi]
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for all x ∈ V (Gi). So we may apply Proposition 5.7.7 (with Gi,
√
γ, ξ2 and Vi playing

the roles of G, γ, µ and R) to find Ai ⊆ Gi such that Ai[V (Gi) \ Vi] is empty, Ai ∪ Hi

is C2k-decomposable and ∆(Ai) ≤ ξ4|Vi|. Let A :=
⋃M
i=1Ai. So A ∪ H[W ] has a C2k-

decomposition F2 and ∆(A) ≤ ξn.

We must now cover the remaining edges in H[U,W ]∪R′. Let G′′ := G−⋃(F1 ∪F2).

Note that G′′[W ] is empty and ∆(G′′) ≤ ∆(H) + ∆(R) ≤ γn + 4ξn ≤ 5ξn. Since

∆(A) ≤ ξn, G′′[U ] is a ν/2-expander. For each w ∈ W , dG′′(w) is even, so we can pair up

the vertices in NG′′(w) arbitrarily and let P denote the list of pairs of all neighbours of

W . Each vertex in U appears in at most ∆(G′′) ≤ 5ξn ≤ √ξ|U | of the pairs in P and

|P | ≤ ∆(G′′)n ≤ 5ξn2 ≤
√
ξ|U |2.

Then we can apply Proposition 5.7.1 to G′′[U ] (with |U |, √ξ, ν/2, 2k−2 playing the roles

of n, γ, ν and k) to find a collection F3 of edge-disjoint copies of C2k which cover the

edges of G′′ − G′′[W ] such that ∆(F3) ≤ ν3|U |. Let F := F1 ∪ F2 ∪ F3. Then F covers

every edge of G−G[U ] and ∆(F [U ]) ≤ ∆(A) +
⋃F [U ] ≤ ν2|U |/4. �
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robust neighbourhood, 181

root vertices, 91

sink vertex, 15

sink/source/sink sets, 42

source vertex, 15

transformer, 93

transforms, edge, 167

type 1 extremal, 164

type 2 extremal, 165

useful AB-path, 55

useful tripartition of P , 42

vortex, 165

expander, 198

respecting (A,B), 189
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