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1 Introduction

In the mid-1990s, the pioneering work of Seiberg and Witten [1] led to a revolution in the

study of N = 2 supersymmetric gauge theories in (3 + 1) dimensions. Their work, which

has come to be known as Seiberg-Witten theory, deals with the construction of the non-

perturbative dynamics of N = 2 theories in the limit of low energy and momenta. The jewel

in the crown of Seiberg-Witten theory is the Seiberg-Witten curve: a (hyper)elliptic curve,

the periods of which completely specify the spectra, coupling, and low-energy effective

Lagrangian, as well as non-perturbative information of the gauge theory.
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Figure 1. (a) Skeleton diagram and (b) BPS quiver for the Gaiotto theory with a single SU (2)

factor and Nf = 4.

In this paper, we undertake a study of a class of N = 2 theories known as Gaiotto

theories. These theories have interesting duality behaviour amongst themselves under

S-duality and possess a systematic string-theoretic construction for their Seiberg-Witten

curves [2]: take a Riemann surface C of genus g with n punctures, dubbed the Gaiotto

curve, and wrap N coincident parallel M5-branes over it. The world-volume theory on the

M5-brane is one with a product SU (N) group, the Seiberg-Witten curve for which is an

N -fold cover over C.
Let us henceforth take N = 2. Each such Gaiotto theory has a product SU (2)3g−3+n

gauge group [3], and all can be encoded into a skeleton diagram, also known as a generalised

quiver diagram [3]. This is a trivalent graph with internal edges corresponding to SU (2)

groups and external legs corresponding to flavours. Hence we have a graph with g closed

circuits, 3g−3+n edges, 2g−2+n nodes, and n external lines. The diagram constitutes the

spine of the amœba projection of the Gaiotto curve [4], and hence captures the genus and

number of punctures on C. Each skeleton diagram determines a unique (3 + 1) dimensional

N = 2 gauge theory [2].

To illustrate, the skeleton diagram for the Gaiotto theory with a single SU (2) factor

and Nf = 4 flavours (which, in virtue of its simplicity, we shall use as a running example)

is shown in figure 1(a). Note that in this paper, Nf always denotes the number of SU (2)

factors in the flavour symmetry group, rather than the number of so-called fundamental

flavours which appear in the linear quivers drawn in e.g. [5, 6]. The corresponding BPS

quiver, to be discussed below, is drawn in figure 1(b).

In a parallel vein, the Seiberg-Witten curves for SU (2) Gaiotto theories can be written

in the form y2 = φ (x), where q = φ (x) dx2 is a quadratic differential on C with only second

order poles [5, 7]. The functional form of q is specified by the topology 〈g, n〉 of the skeleton;
varying individual parameters in q amounts to changing the point in the moduli space of

the theory under consideration. With this in mind, an obvious question now arises: given

a specific skeleton diagram, how do we extract the relevant Seiberg-Witten curve for that

Gaiotto theory, as well as other information about the theory, such as that relating to its

BPS spectrum?

Though the answer to this question turns out to be simple, consideration as to how

to respond leads us to an intricate web of recently-discovered structures important in the

study of SU (2) Gaiotto theories. In addition to the structures introduced above, this web

includes the so-called BPS quivers which arise in the BPS spectroscopy of the theory, in
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addition to several important graphs drawn on C. Many of the structures in this web

have already been carefully elaborated in the recent work on BPS quivers in the context

of Gaiotto theories (see [7–9]), and in other work on Gaiotto theories ([2, 3, 5], etc.). By

presenting this web, we are able to precisely identify where dessins d’enfants, i.e. bipartite

graphs drawn on Riemann surfaces, arise in the context of these Gaiotto theories, thereby

in turn allowing us to connect the study of SU (2) Gaiotto theories to previous work on

dessins in the context of N = 2 theories [2, 10, 11].

Specifically, it turns out that dessins arise in the context of these theories as so-called

ribbon graphs on C, at isolated points in the Coulomb branch of the moduli space where

the quadratic differential on C satisfies the definition of a so-called Strebel differential, and

further where n additional real numbers associated to the punctures are tuned such that the

edges of the ribbon graphs have equal lengths [12]. Recognising this yields many results.

First, by Belyi’s theorem, we find that Gaiotto curves at such points have the structure

of algebraic curves defined over Q. Next, results from [12] yield an efficient means of

computing the explicit Strebel differentials, and therefore Seiberg-Witten curves, at these

points in the moduli space, via the dessin’s associated Belyi map. In addition, we are led to

connections with the dessins in [13], which correspond to certain subgroups of the modular

group, and to conjectures on further connections to the work of [10, 11] on dessins and

N = 2, U (N) gauge theories.

With an understanding of all these structures and connections, in particular of the

role of dessins in the study of these Gaiotto theories, we proceed in the final part of this

paper to study an alternative proposal for the role of dessins in SU (2) Gaiotto theories.

Specifically, it has recently been suggested in [2] that the skeleton diagrams themselves can

be interpreted as dessins d’enfants, from which one can extract the relevant Seiberg-Witten

curve by manipulating the associated Belyi map. We shall show that such a suggestion

needs to be modified in general, and shall provide a number of examples to highlight this.

The structure of this paper is as follows. In section 2, we introduce all the key structures

which arise in the study of SU (2) Gaiotto theories. In section 3, we elaborate the con-

nections between these structures, providing an extended discussion of the role of dessins

d’enfants in the context of these theories. Finally, in section 4 we evaluate the above-

mentioned alternative proposals for how dessins arise in the context of these theories.

2 Dramatis personæ

In this section, we present a pedagogical summary of all the important mathematical

structures which arise in the study of SU (2) Gaiotto theories; the web of interrelations

between these structures shall then be elaborated in the following section. In section 2.1,

we present some more technical details on skeleton diagrams. In section 2.2, we recall the

essential details of the vacuum moduli spaces of N = 2 theories. Next, in section 2.3, we

remind ourselves of the role of BPS quivers in these theories. In section 2.4, we consider

many of the important graphs which can be drawn on the Gaiotto curve C. In section 2.5,

we introduced a technical definition of dessins d’enfants and the associated Belyi maps.

Finally, in section 2.6 we introduce the modular group and some important subgroups.

– 3 –
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Figure 2. A roadmap to the major connections between the objects of importance in the study of

SU (2) Gaiotto theories. Each of the major constructions of importance to SU (2) Gaiotto theories is

shown. Arrows represent connections between these entities. The section in which each connection

is discussed is indicated in red. Correspondences marked with a blue star hold only when the

quadratic differential on C is a Strebel differential; this shall be explained in section 3.

As a prelude to our discussion in section 3 of the connections between all these objects,

we provide in figure 2 a roadmap of these connections, to aid orientation in the ensuing

discussion. The first half of section 3 will focus on the horizontal chain of correspondences

shown in figure 2. Though most of these links have been detailed in the literature previously,

it should be useful to present a codified story in one place, with the focus on going from a

skeleton diagram to the BPS spectrum and Seiberg-Witten curve of that theory. Doing so

will allow us to provide an extended discussion of the role of dessins in these theories; this

we shall do in the second half of section 3.

2.1 Skeleton diagrams

In [5], Gaiotto found a new and interesting class of N = 2 supersymmetric gauge theories

in (3 + 1) dimensions, obtainable from the wrapping of M5 branes over Riemann surfaces.

Following [3], let us focus on the case where the gauge group is a product of only SU (2)

factors. In this case, we can unambiguously represent the relevant gauge theories as so-

called skeleton diagrams, consisting of lines and trivalent nodes, where a line represents an

SU (2) gauge group and a trivalent node represents a matter field in the tri-fundamental

representation SU (2)3. Hence, these diagrams can be seen as generalisations of the more

familiar quiver diagrams, which have arisen both in representation theoretic [14] and gauge

theoretic contexts [15]. Indeed, whereas fields charged under two SU-factors, being the

fundamental under one and the anti-fundamental of another, readily afford description in

terms of arrows in a quiver, fields charged under more than two factors, as in our present

case, require encoding beyond a quiver diagram.

Our skeleton diagrams are straightforward: they give rise to an infinite class of N =

2 gauge theories, having each line representing an SU (2) gauge group with its length

inversely proportional to its gauge coupling g2YM and each trivalent node representing a

half-hypermultiplet Qαβγ transforming under the tri-fundamental (�,�,�) representation
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of SU (2)×SU (2)×SU (2) with α, β, γ = 1, 2 indexing each of the SU (2) factors. Any line of

infinite length gives zero coupling and the associated SU (2) factor becomes a global flavour

symmetry. Because N = 2 supersymmetry is large enough to have its matter content

determine the interactions completely, each skeleton diagram thus defines a unique (3 + 1)-

dimensional N = 2 gauge theory. Any legitimate skeleton diagram can be constructed

simply through gluing together trivalent vertices.

The string-theoretic realisation of N = 2 Gaiotto theories is in terms of a stack of

M5 branes (for our SU (2) Gaiotto theories, we have two M5 branes) wrapping a Riemann

surface C of genus g with n punctures. More precisely, consider M-theory in eleven di-

mensions with coordinates x0,...,10 with x7,8,9 = 0 fixed and x0,1,2,3 the coordinates of our

four-dimensional world R4
x0,1,2,3 . Of the remaining four directions, Qx4,5,6,10 ≃ R3 × R,

define a complex structure v = x4 + ix5 and t = exp
(

−
(

x6 + ix10
)

/RIIA

)

(so that the

x10 direction indeed becomes periodic when compactifying to type IIA string theory on a

circle of radius RIIA), and define a Riemann surface C = {F (v, t) = 0} ⊂ Q over which

the M5 brane can wrap. In the type IIA perspective, this corresponds to n+1 NS5-branes

occupying x0,1,...,5 and placed in parallel at fixed values of x6; moreover, between adjacent

pairs of NS5-branes are stretched stacks of D4-branes. The variable names are chosen judi-

ciously: the skeleton diagram of the theory to which C corresponds is one whose topology,

graphically, consists of g independent closed circuits and n external (semi-infinite) legs.

We can easily check [3] that given a skeleton diagram specified by the pair 〈g, n〉,
the number of internal (finite) lines, hence the number of SU (2) gauge group factors, is

3g − 3 + n, while the number of nodes, hence the number of matter fields, is the Euler

characteristic 2g − 2 + n. The Coulomb branch of the moduli space of the Gaiotto theory

in question (to be discussed in more depth below) is specified by the topology 〈g, n〉 of the
skeleton diagram [2, 3]. Finally, it is worth noting that the only features of the skeleton

diagrams of these theories relevant to the physics they encode are the parameters g and n:

this is sometimes referred to as Gaiotto duality [9].

2.2 Moduli spaces

For N = 2 theories, the space of vacuum expectation values of the theory is known as

the vacuum moduli space of the theory. One can think of this as the space of minima of

an effective potential, governed by the zero loci of a set of algebraic equations. Thus the

moduli space is an affine algebraic variety on a complex space Ck, whose coordinates are

the vacuum expectation values. As a variety, the moduli space of an N = 2 theory typically

decomposes into two branches, known as the Higgs branch B and Coulomb branch U . The
former is parameterised by the massless gauge singlets of the hypermultiplets, occurring

where the gauge group is completely broken and the vector multiplet becomes massive via

the Higgs mechanism. The latter is parameterised by the complex scalars in the vector

multiplet, occurring when the gauge group is broken to some Abelian subgroup and the

hypermultiplets generically become massive.

Though our focus in this paper will mostly be on the Coulomb branch U , it is worth not-

ing at this point that for g > 0, where there is more than a single SU (N) factor, the gauge

group may not be completely broken on the Higgs branch of each factor and thus to avoid
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confusion, the authors of [3] dub this quasi-Higgs branch the Kibble branch K. A beautiful

result of [3] is that the Kibble branch of the moduli space is an algebraic variety such that

dimH (K) = n+ 1, (2.1)

where dimH means the quaternionic dimension, i.e. four times the real dimension or twice

the complex dimension. It is interesting to see that this result is independent of g. A

quick argument would proceed as follows: each trivalent node consists of 4 quaternionic

degrees of freedom and there are χ = 2g−2+n thereof; generically on K, the SU (2)3g−3+n

gauge group breaks to U (1)g, hence 3 (3g − 3 + n)− g broken generators. Thus, there are

effectively 4χ− (3 (3g − 3 + n)− g) = n+ 1 quaternonic degrees of freedom.

2.3 BPS quivers

N = 2 Gaiotto theories admit BPS quivers [9]. Let us briefly recall the details of these

diagrams, following the discussion in [8]. We begin with a (3 + 1) dimensional N = 2

theory with Coulomb moduli space U . At a generic point u ∈ U , the theory has U (1)r

gauge symmetry, and a low-energy solution defined by:

• A lattice Γ of electric, magnetic and flavour charges.

• An antisymmetric inner product on the charge lattice ◦ : Γ× Γ → C.

• A linear function Zu : Γ → C, the central charge function of the theory.

The central charge function Zu naturally appears in the N = 2 algebra, and provides a

lower bound on the masses of charged particles. The mass of a particle with γ ∈ Γ satisfies

M ≥ |Zu (γ)|. The lightest charged particles are those that saturate this bound — these

are termed BPS states.

The BPS quiver allows computation of the full BPS spectrum of the theory at some

fixed point u in the Coulomb branch, supposing that the occupancy of the BPS states at

that point is known [7]. This dramatically simplifies the problem of finding BPS states,

since in place of some tedious weak coupling physics or prohibitively difficult strong coupling

dynamics, the BPS spectrum is governed by a quantum mechanics problem encoded in the

BPS quiver [7].

To construct a BPS quiver, first choose a half-plane H in the complex Zu plane. All

states with central charge in H will be considered particles, while the states in the opposite

half-plane will be considered anti-particles. Suppose there exists a set of hypermultiplet

states {γi} in the chosen half-plane that forms a positive integral basis for all particles.

Given this basis {γi}, we can construct a BPS quiver as follows: for every charge γi, draw

a node associated to it. For every pair of charges γi, γj with γi ◦γj > 0, draw γi ◦γj arrows
from γi to γj . The importance of the BPS quiver is that it can be used to check whether a

particular site of the charge lattice γ =
∑

i niγi ∈ Γ is occupied by a BPS state, and if so,

to determine the spin and degeneracy of the associated particles. If we do this for every γ,

we will have computed the full BPS spectrum of the theory at u ∈ U (for the details here,

the reader is referred to [7, 8]).

– 6 –
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Importantly, Zu varies from point to point in U , hence its subscript u. A consequence

of this is that the above procedure can yield different BPS quivers at different points

u ∈ U , thereby partitioning U into domains, each corresponding to a different BPS quiver

for the theory. For an N = 2 Gaiotto theory, there is always a finite number of such BPS

quivers [9]. Together, they are said to form a finite mutation class, and there exists an

algorithm, known as the mutation method, to enumerate all BPS quivers in a mutation

class, once one has been specified.

Roughly, the principle on which the mutation method is based is as follows. Up to this

point, we have arbitrarily chosen a half-plane H in the complex Zu plane when constructing

the BPS quiver. This choice of half-plane yields a unique basis of BPS states {γi} and

corresponding BPS quiver. Now consider rotating the half-plane clockwise by an angle θ, so

that H → Hθ = e−iθH. As we tune θ from zero, nothing happens while all the {γi} remain

in the half-plane Hθ. However, for some value of θ, the left-most state γ1 will exit Hθ on the

left, while simultaneously the antiparticle state −γ1 will enter on the right. Thus we will

have a new basis of elementary BPS states {γ̃i} and a corresponding new BPS quiver. There

is a simple algorithm for constructing this new basis of BPS states and corresponding BPS

quiver from the old [7–9]. One full rotation of the half plane will enumerate the full mutation

class of BPS quivers for the theory. It is important to remember that all the BPS quivers

in a mutation class for a specific Gaiotto theory encode exactly the same physics [7–9].

2.4 Quadratic differentials and graphs on Gaiotto curves

A quadratic differential on a Riemann surface S is a map

φ : TS → C (2.2)

satisfying φ (λv) = λ2φ (v) for all v ∈ TS and all λ ∈ C. If z : U → C is a chart defined on

some open set U ⊂ S, then φ is equal on U to

φU (z) dz2 (2.3)

for some function φU defined on z (U). Now suppose that two charts z : U → C and

w : V → C on S overlap, with transition function h := w ◦ z−1; then if φ is represented

both as φU (z) dz2 and φV (w) dw2 on U ∩ V , we have [16]

φV (h (z))
(

h′ (z)
)2

= φU (z) . (2.4)

With these basic facts in mind, let us return to the SU (2) Gaiotto theories of inter-

est. Here, the Seiberg-Witten curves for these theories have the form y2 = φ (x), where

q = φ (x) dx2 is a quadratic differential on C with only second order poles [5, 7]. (A sub-

tlety: double poles in the quadratic differential only emerge for a mass-deformed theory. For

vanishing mass deformation, the poles of the differential are single poles.) The functional

form of q is specified by the topology 〈g, n〉 of the skeleton (we shall elaborate the exact

details of this specification in the following section), and varying individual parameters in q

amounts to changing the point in the moduli space under consideration. Since the Gaiotto

theory in question is specified by 〈g, n〉, the Coulomb branch for each theory is determined
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by these two parameters; for this reason, we shall sometimes write Ug,n for the Coulomb

branch of the Gaiotto theory with 〈g, n〉. In addition, q depends on n further positive real

parameters associated to the n punctures of C (which correspond to masses, couplings and

moduli not fixed by moving in the Coulomb branch); the details of this dependence shall

again be spelt out in the following section. To completely fix q requires us to fix a point in

Ug,n × Rn
+.

As we shall demonstrate in section 3, the BPS quiver for a specific N = 2 theory at a

point u ∈ U can be constructed from a specific quadratic differential q on C [7], by using

the quadratic differential to construct a graph on C known as its ideal triangulation, which

has marked points as nodes and zeroes as faces. There is also a translation between BPS

quivers and skeleton diagrams, which we shall again elaborate in section 3 of this paper.

2.5 Dessins d’enfants and Belyi maps

There is a connection between the quadratic differentials on C and Grothendieck’s dessins

d’enfants [17–20]. Such a dessin is an ordered pair 〈X,D〉 where X is an oriented compact

topological surface (here the Gaiotto curve C) and D ⊂ X is a finite graph satisfying the

following conditions [17]:

1. D is connected.

2. D is bipartite, i.e. consists of only black and white nodes, such that vertices connected

by an edge have different colours.

3. X \ D is the union of finitely many topological discs, which we call the faces of D.

As we shall show in section 3, at certain points in the Coulomb branch (and fixing in

addition parameters associated to masses and couplings of the global flavour symmetries)

we can use the quadratic differential to construct a graph on C known as a ribbon graph [12],

with marked points as faces and zeroes as nodes. At these points in the moduli space,

the quadratic differential satisfies the conditions to be a so-called Strebel differential. As

we shall see, we can interpret the ribbon graphs (with edge lengths set to be equal —

corresponding to a specific fixing of the parameters associated to the flavour symmetries)

as dessins by inserting a coloured node into every edge and colouring every vertex white;

doing so leads to a number of interesting mathematical ramifications which cement dessins

as important objects of study in the context of these N = 2 theories (all of which shall be

discussed in depth in the following section). In addition, we note here that if all the nodes

of one of the two possible colours have valency two, then the dessin in question is referred

to as clean [17].

Now recall that there is a one-to-one correspondence between dessins d’enfants and

Belyi maps [17, 21]. A Belyi map is a holomorphic map to P1 ramified at only {0, 1,∞},
i.e. for which the only points x̃ where d

dxβ (x) |x̃ = 0 are such that β (x̃) ∈ {0, 1,∞}. We can

associate a Belyi map β (x) to a dessin via its ramification indices : the order of vanishing

of the Taylor series for β (x) at x̃ is the ramification index rβ(x̃)∈{0,1,∞} (i) at that ith

ramification point [2, 13]. To draw the dessin from the map, we mark one white node for the
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ith pre-image of 0, with r0 (i) edges emanating therefrom; similarly, we mark one black node

for the jth pre-image of 1, with r1 (j) edges. We connect the nodes with the edges, joining

only black with white, such that each face is a polygon with 2r∞ (k) sides (see e.g. [13, 20]).

2.6 The modular group and congruence subgroups

Finally, we should very briefly recall some essential details regarding the modular group Γ ≡
Γ (1) = PSL (2,Z) = SL (2,Z) / {±I}. This is the group of linear fractional transformations

Z ∋ z → az+b
cz+d , with a, b, c, d ∈ Z and ad − bc = 1. It is generated by the transformations

T and S defined by:

T (z) = z + 1 , S(z) = −1/z . (2.5)

The presentation of Γ is
〈

S, T |S2 = (ST )3 = I
〉

.

The most important subgroups of Γ are the so-called congruence subgroups, defined by

having the the entries in the generating matrices S and T obeying some modular arithmetic.

Some conjugacy classes of congruence subgroups of particular note are the following:

• Principal congruence subgroups:

Γ (m) := {A ∈ SL(2;Z) ; A ≡ ±I mod m} / {±I} ;

• Congruence subgroups of level m: subgroups of Γ containing Γ (m) but not any Γ (n)

for n < m;

• Unipotent matrices:

Γ1 (m) :=

{

A ∈ SL(2;Z) ; A ≡ ±
(

1 b

0 1

)

mod m

}

/ {±I} ;

• Upper triangular matrices:

Γ0 (m) :=

{(

a b

c d

)

∈ Γ ; c ≡ 0 mod m

}

/ {±I} .

In [2], our attention is drawn to the conjugacy classes of a particular family of sub-

groups of Γ: the so-called genus zero, torsion-free congruence subgroups. By torsion-free

we mean that the subgroup contains no element of finite order other than the identity.

To explain genus zero, first recall that the modular group acts on the upper half-plane

H := {τ ∈ C , Im (τ) > 0} by linear fractional transformations z → az+b
cz+d . H gives rise

to a compactification H∗ when adjoining cusps, which are points on R ∪ ∞ fixed under

some parabolic element (i.e. an element A ∈ Γ not equal to the identity and for which

Tr (A) = 2). The quotient H∗/Γ is a compact Riemann surface of genus 0, i.e. a sphere.

It turns out that with the addition of appropriate cusp points, the extended upper half

plane H∗ factored by various congruence subgroups will also be compact Riemann sur-

faces, possibly of higher genus. Such a Riemann surface, as a complex algebraic variety, is

called a modular curve. The genus of a subgroup of the modular group is the genus of the
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modular curve produced in this way. The conjugacy classes of the genus zero torsion-free

congruence subgroups of the modular group are very rare: there are only 33 of them, with

index I ∈ {6, 12, 24, 36, 48, 60}. [22]

3 A web of correspondences

In this section, we elaborate the chain of connections between skeleton diagrams, BPS quiv-

ers, ideal triangulations, ribbon graphs, quadratic differentials and Seiberg-Witten curves

for SU (2) Gaiotto theories. In section 3.1, we present the connection between the quadratic

differential q = φ (x) dx2 and Seiberg-Witten curve y2 = φ (x) for these theories [5]. In

section 3.2, we show how the quadratic differential on C encodes the special Lagrangian flow

on this Riemann surface. We then describe how the ideal triangulation on C is obtained. In

section 3.3, we recall how to construct a BPS quiver from a certain ideal triangulation [7].

Next, in section 3.4 we show how to translate between skeleton diagrams and BPS quiv-

ers. In section 3.5, we show how the special Lagrangian flow on C can be used, at certain

special points in the Coulomb branch where the quadratic differential becomes Strebel, to

construct a ribbon graph on C, and from this describe in detail how dessins d’enfants arise

in the context of these theories, and the important roles they play in their study.

3.1 Quadratic differentials and Seiberg-Witten curves

The physics of an SU (2) Gaiotto theory is determined by a Riemann surface C of genus g

with n punctures, one at each marked point pi ∈ C [5]. We select a particular meromorphic

quadratic differential q = φ (x) dx2 on C. Fixing the behaviour of q at the points pi by

admitting a pole of finite order amounts to imposing that near pi:

q (x) ∼ 1

xki+2
dx2 (3.1)

The integer ki ≥ 0 associated to each puncture is invariant under changes of coordi-

nates. For the SU (2) Gaiotto theories in question, we always choose ki = 0 [5, 7]. The

Seiberg-Witten curve Σ of the theory is given by a double cover of C, and we obtain the

Seiberg-Witten differential λ as follows [7]:

Σ =
{

(x, y) |y2 = φ (x)
}

, λ = ydx =
√
q (3.2)

Note that by varying the quadratic differential we obtain a family of Seiberg-Witten curves,

and in this way the Coulomb branch Ug,n of the theory is naturally identified with the

space of quadratic differentials obeying the boundary conditions from equation (3.1), up

to a dependence on n further positive real parameters associated to the n punctures of C
(these numbers will turn out to be related to masses, couplings and moduli of the global

flavour symmetries of the theory, not fixed by moving in the Coulomb branch). Thus, to

completely fix q, we must fix a point in Ug,n × Rn
+ [7, 12].
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3.2 Trajectories on Riemann surfaces and ideal triangulations

Consider a Riemann surface C with a meromorphic quadratic differential q. Locally, we can

write q = φ (x) dx2 for the appropriate local coordinate x on C. Using this quadratic dif-

ferential, we can classify parametric curves γ (t) on C according to the sign of q. Horizontal

trajectories are defined as those for which φ (γ (t)) γ̇ (t)2 > 0, while vertical trajectories are

defined as those for which φ (γ (t)) γ̇ (t)2 < 0 [12, 16]. There are three cases of importance

in the study of these trajectories: a generic point on C, a zero of q on C, and a pole of q on C.
Let us first consider a generic point on C. To begin, suppose that q = dx2. Then

the horizontal trajectories are given by the horizontal lines α (t) = t + ci and the vertical

trajectories are given by the vertical lines β (t) = it+c [16]. Now, if a quadratic differential

q = φ (x) dx2 is holomorphic and non-zero at x = x0, then on a neighbourhood of x0
we can introduce the canonical coordinate w (x) =

∫ x
x0

√

φ (x)dx. It follows from the

transformation rule (2.4) that in terms of the canonical coordinate the quadratic differential

is given by q = dw2, so at a generic point on C the horizontal and vertical trajectories are

horizontal and vertical lines, as shown in figure 3(a) [12].

The situation is different where q either vanishes or has a pole. Let us consider what

the horizontal and vertical trajectories look like in the vicinity of such points, which without

loss of generality we shall take to be at zero. First, suppose that q vanishes here, so that

q = xmdx2. Then, with t ∈ R+, the horizontal trajectories are given by (m+ 2) half-rays

that have x = 0 on the boundary [12]:

αk (t) = t · exp
(

2πik

m+ 2

)

, k = 0, 1, . . . ,m+ 1. (3.3)

The vertical trajectories are given by another set of (m+ 2) half-rays that have x = 0 on

the boundary [12]:

βk (t) = t · exp
(

πi+ 2πik

m+ 2

)

, k = 0, 1, . . . ,m+ 1. (3.4)

Thus we see that in the neighbourhood of zero both types of trajectory look like rays

emanating from zero at some discrete angles, as shown in figure 3(b). For a so-called

simple zero, we have m = 1, and these trajectories make angles of 2π/3 with each other [7].

Now consider the case where q has a second order pole. We take q = −x−2dx2. Then,

horizontal trajectories are concentric circles centered at zero [12]:

α (t) = reit, t ∈ R, r > 0. (3.5)

Vertical trajectories are given by half-rays emanating from zero [12]:

β (t) = teiθ, t > 0, 0 ≤ θ < 2π. (3.6)

These trajectories in the vicinity of a second order pole are hence as shown in figure 3(c).

Note that we have only discussed second order poles. In [7], the analysis of the punc-

tures is split into two cases depending on the order ki + 2 of the pole in q. The regular

punctures in C are those for which ki = 0. By Gaiotto’s prescription, these are associated
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(a) (b) (c)

Figure 3. Horizontal (red) and vertical (blue) trajectories in the neighbourhood of (a) a generic

point (marked in grey), (b) a zero of q (marked in red), and (c) a second order pole of q (marked

in black) on C.

with flavour symmetries [5]. The irregular punctures in C are those for which ki > 0. For

our purposes, we need consider only regular punctures: irregular punctures are associated

with boundaries of C, and none of the Gaiotto curves for the SU (2) theories of interest

have boundaries [5, 9].

The trajectories described define the special Lagrangian flow lines on C [7]. Suppose

that we have a surface C with n marked points where q develops a second order pole. As we

just saw, the horizontal trajectories are concentric rings around the marked points. This

defines domains for each point. These domains are separated by the radial lines going

between different zeros of q. Only at very special points in the Coulomb branch Ug,n will

these trajectories be such that they define a graph drawn on C, where the marked points

can be identified with the faces. Such a graph is known as a ribbon graph [12]; an extended

discussion of such graphs and the circumstances in which they can be drawn is postponed

to section 3.5. It turns out that there are six topologically distinct possible ribbon graphs

for a Gaiotto theory with one SU (2) factor and Nf = 4 flavours; one example is drawn

in figure 4(a) (in this case, we know from [5] that the quadratic differential has the form

φ = P4 (x) /∆
2
4 (x), where P and ∆ are polynomials in x and subscripts indicate polynomial

degrees); the rest are drawn (as dessins) in figure 6.

A convenient way to encode the topological structure of the special Lagrangian flow is

in an ideal triangulation of C. To construct such a triangulation, we consider one generic

flow line which has its endpoints at two marked points on C, and connect those two marked

points by that trajectory. We repeat this for all pairs of marked points which are connected

by such generic trajectories [7]. The structure of the flow on C is such that each face of

the resulting graph will have three edges and contain exactly one zero of q (in general we

assume that these zeroes are simple, and thus have three radially outgoing trajectories, as

discussed above) [7]. To illustrate, an ideal triangulation for a Gaiotto theory with one

SU (2) factor and Nf = 4 flavours is drawn in figure 4(b).

In a sense, the ideal triangulation can be considered “dual” to the ribbon graph, as

while an ideal triangulation has marked points as vertices and zeroes of the quadratic dif-

ferential as faces, the opposite is true for a ribbon graph. However, caution is needed here,

as while it is generically true at any point in the Coulomb branch U that one can construct
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(a) (b)

Figure 4. Ribbon graph (a) and corresponding ideal triangulation (b) for the SU (2), Nf = 4

theory. Black nodes denote punctures of C; red nodes denote zeroes of q. The ideal triangulation

has four faces, for the four zeroes of q.

an ideal triangulation on C, one can only construct ribbon graphs, via the prescription

involving horizontal and vertical trajectories above, at the specific points in U (which will

turn out to be the points where the quadratic differential on C satisfies the stricter defini-

tion of being a Strebel differential, as discussed in section 3.5). The picture that emerges is

therefore as follows. At any point in U , one can construct an ideal triangulation. To each

such ideal triangulation it is possible to associate a BPS quiver (see section 3.3). There

are finitely many BPS quivers, so U is partitioned into domains corresponding to each

such BPS quiver. In addition, there are finitely many specific points in U where one can

construct a ribbon graph.

3.3 Constructing BPS quivers

From the structure of an ideal triangulation on C, there is a simple algorithm to extract the

corresponding BPS quiver. We refer to an edge in the triangulation as a diagonal δ if the

edge does not lie on a boundary of C. (For the SU (2) Gaiotto theories under consideration

this makes no difference, since all the Gaiotto curves in this case are without boundary, as

discussed.) The algorithm to construct a theory’s BPS quiver from its ideal triangulation

on C is then as follows [7]:

• For each diagonal δ in the triangulation, draw one node of the BPS quiver.

• For each pair of diagonals δ1 and δ2 in the triangulation, find all the triangles for

which both specified diagonals are edges. For each such triangle, draw one arrow

connecting the nodes defined by δ1 and δ2. Determine the direction of the arrow

by looking at the triangle shared by δ1 and δ2. If δ1 immediately precedes δ2 going

anti-clockwise around the triangle, the arrow points from δ1 to δ2.

For the derivation of this algorithm, the reader is referred to the original source [7]. It

is straightforward to confirm that the BPS quiver for the Gaiotto theory with one SU (2)

factor and Nf = 4 flavours shown in figure 1(b) can be constructed from the corresponding

triangulation shown in figure 4(b).
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3.4 Skeleton diagrams and BPS quivers

With these connections between BPS quivers, ideal triangulations, flow diagrams, quadratic

differentials on C, and Seiberg-Witten curves established (following the details given in [7–

9]), it remains to see how the skeleton diagrams for the corresponding SU (2) Gaiotto

theories enter the picture. To do this, first recall that each puncture of C corresponds to a

global SU (2) flavour symmetry. Any two Gaiotto curves can be glued together by opening

a hole at a puncture and gluing the two together with a tube; this results in gauging the

SU (2) groups corresponding to the two punctures [8]. By following this procedure, any

Gaiotto curve can be constructed by gluing together three-punctured spheres; at the level

of the skeleton, this simply amounts to joining trivalent vertices [3].

In [8] it is shown that this gluing procedure for the Gaiotto curves/skeleton diagrams

can be translated into a gauging rule for the BPS quivers. To gauge a symmetry, we add

gauge degrees of freedom and couple them to the matter already present in the theory. At

the level of the quiver, this amounts to adding two nodes of a pure SU (2) subquiver to add

the gauge degrees of freedom, then coupling the existing pairs of identical nodes correspond-

ing to the SU (2) flavour symmetries to this subquiver. To do this, we delete one of the two

identical nodes in each case and connect the other to the SU (2) subquiver in an oriented tri-

angle; the deleted state will then be generated by a bound state within the SU (2) nodes [8].

Suppose that we are now given the skeleton diagram for the four-punctured sphere, as

shown in figure 1(a). This is the most basic legitimate skeleton diagram (one internal edge

corresponding to one SU (2) factor, formed by joining two trivalent vertices together); the

corresponding BPS quiver was found in [7, 9], and is drawn in figure 1(b). One can now

construct any other legitimate skeleton diagram by appending more trivalent vertices onto

any of the external legs; using the above procedure, one can construct a corresponding BPS

quiver in every case. In this way, we obtain a precise translation between skeleton diagrams

and BPS quivers for the SU (2) Gaiotto theory in question, completing the backbone of

correspondences in figure 2. Once we have obtained one such BPS quiver, the rest in its

finite mutation class can be computed using the mutation method [7–9]. An example of

this gauging procedure for the case of gauging two SU (2), Nf = 4 Gaiotto theories is

provided in figure 5.

From this, one might be tempted to conclude that all SU (2) Gaiotto theories are sus-

ceptible to such a translation between their skeleton diagrams and BPS quivers. However,

there are exceptions, specifically for the case of SU (2) theories with g > 2 and n = 0. Such

theories admit no mass deformations (for g < 2, one can see from the gluing procedure

for skeleton diagrams that we must always have at least one external leg, and thus must

have mass deformations), and hence do not admit BPS quivers [8, 9] — a point to which

we shall return shortly in a different context. The case of g = 2 with no punctures is an

exception: in one duality frame, that theory corresponds to an SU (2)3 theory with two

half-hypermultiplets; these two half-hypermultiplets form one full hypermultiplet and that

can receive mass [9].

Using these results, we can now write down a skeleton diagram (all of which can be

constructed by joining trivalent vertices) and immediately compute a wealth of information
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(b)

Figure 5. (a): the BPS quiver gauging procedure for joining the Gaiotto curves for two SU (2)

Gaiotto theories with Nf = 4. On the right and left we have the BPS quivers for these Gaiotto theo-

ries. In the centre we have introduced a pure SU (2) subquiver to add the gauge degrees of freedom.

(b): the resulting BPS quiver. The corresponding Gaiotto curve is a sphere with six punctures; this

corresponds to an SU (2)
3
theory with Nf = 6. This is constructed from the components in (a) by

deleting the nodes g and q and coupling f and p to the SU (2) subquiver in oriented triangles.

about the associated SU (2) Gaiotto theory: the mutation class of BPS quivers, the BPS

spectrum, the ideal triangulations on the Gaiotto curve C corresponding to each BPS

quiver, and the associated quadratic differentials on C and Seiberg-Witten curves.

3.5 Strebel differentials and ribbon graphs

3.5.1 Ribbon graphs from Strebel differentials

At a special point in the Coulomb branch Ug,n of the SU (2) Gaiotto theory in question,

the coefficients of the quadratic differential will be such that it satisfies the definition of

a so-called Strebel differential. Choose an ordered n-tuple (a1, . . . , an) ∈ Rn
+ of positive

real numbers. Then, a Strebel differential is a meromorphic quadratic differential q on a

Riemann surface C of genus g with n marked points {p1, . . . , pn} (subject to the conditions

g ≥ 0, n ≥ 1, and 2− 2g − n < 0) satisfying [12]:

1. q is holomorphic on C \ {p1, . . . , pn}.

2. q has a second order pole at each pj , j = 1, . . . , n.

3. The union of all non-compact horizontal trajectories forms a closed subset of C of

measure zero.

4. Every compact horizontal trajectory α is a simple loop circling around one of the

poles, say pj , satisfying aj =
∮

α

√
q, where the branch of the square root is chosen

so that the integral has a positive value with respect to the positive orientation of α

that is determined by the complex structure of C.

Strebel differentials arise at specific points in Ug,n. However, even at such points, the

ai are unfixed; such numbers are naturally associated with the residues of the n poles

(physically, they can be associated with masses, couplings and moduli of the global flavour

symmetries of the theory). Thus, to completely fix a Strebel differential, we must fix a

point in Ug,n × Rn
+. Note that the condition n ≥ 1 ensures that no Strebel differential

can be defined on g ≥ 2, n = 0 Gaiotto curves. At the particular point in the Coulomb
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branch Ug,n of the theory where the quadratic differential is Strebel, the graph resulting

from joining the zeroes of q via the horizontal trajectories, with one marked point for each

face, is known as a ribbon graph [12].

3.5.2 Ribbon graphs as dessins

Now, it is at this point that Grothendieck’s dessins d’enfants, i.e. bipartite graphs drawn

on Riemann surfaces, enter the story. First, fix the point u ∈ Ug,n to be a point where

the quadratic differential becomes Strebel. At such a point, one can construct a ribbon

graph on C. Then, fix the ai to be such that the lengths of the edges of the ribbon graph

are all equal. To do this, recall from [12] that the lengths L (Ei) of the m edges of a

ribbon graph enclosing its kth marked point are related to the associated number ak by

ak =
∑m

i=1 L (Ei); writing down such an equation for all marked points, one can solve

the system of simultaneous equations to determine the lengths of the edges of the ribbon

graph. By convention, choose all these lengths to equal unity.

As discussed in [12], at such a point in Ug,n × Rn
+, the ribbon graph on C for each

Gaiotto theory can be can be interpreted as a clean dessin d’enfant, by colouring every

vertex white and inserting a black node into every edge. In turn, we can associate a unique

Belyi map to every such dessin by following the procedure detailed in section 2.5. The

Belyi map β (x) determined by the ribbon graph in this way then possesses an interest-

ing property [12]: the Strebel differential φ (x) dx2 on C, fixing the ai so that all ribbon

graph edges are equal to unity, can be constructed as the pullback by β (x) of a quadratic

differential on P1 with coordinates ζ with three punctures:

q = φ (x) dx2 = β∗

(

1

4π2

dζ2

ζ (1− ζ)

)

. (3.7)

In other words, the map β (x) from C to P1 is precisely the Belyi map corresponding to

the ribbon graph interpreted as a dessin [12]. Clearly, it follows immediately from the

definition of the pullback that we can write:

q =
1

4π2

dβ2

β (1− β)
. (3.8)

In itself, this is an extremely intriguing result. However, we can go further, by now recalling

Belyi’s theorem. This states that a non-singular Riemann surface C has the structure of an

algebraic curve defined on Q if and only if there is a Belyi map from C onto P1 [12, 17]. By

this theorem, our Gaiotto curves (save the exceptional g ≥ 2, n = 0 cases discussed, where

we cannot drawn a ribbon graph on C) have the structure of algebraic curves defined on

Q, at these particular points in Ug,n × Rn
+.

3.5.3 Strebel differentials from Belyi maps

Suppose we are given one possible ribbon graph on C. With this in hand, (3.8) provides a

means of directly computing the associated Strebel differential (for the point in Rn
+ where

all edges are equal): we simply substitute the associated Belyi map into this formula. For
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example, consider the ribbon graph given in figure 4(a), for the SU (2), Nf = 4 theory.

The Belyi map associated to this tetrahedral ribbon graph, as a dessin, is given in [23]:

βtetra (z) = −64
z3
(

z3 − 1
)3

(1 + 8z3)3
. (3.9)

The pre-images of {0, 1,∞} for this Belyi map are, respectively,
{

34, 26, 34
}

[13]. Substi-

tuting βtetra (z) into (3.8) gives:

q = − 576z
(

z3 − 1
)

4π2 (1 + 8z3)2
. (3.10)

This quadratic differential has poles at
{

−1
2 ,

1
2 (−1)1/3 ,−1

2 (−1)2/3 ,∞
}

. This is the

Strebel differential on C associated to the tetrahedral ribbon graph (with equal length

edges) for the SU (2), Nf = 4 Gaiotto theory. Note that this correctly matches the generic

expected form of the quadratic differential for the SU (2), Nf = 4 theory, as presented

in [5, 26] and discussed in the following section of this paper. Clearly, the above method

provides an efficient means of computing explicit Strebel differentials on C.

3.5.4 Enumerating ribbon graphs

At this point, a further question naturally arises: for a given SU (2) Gaiotto theory, how

do we enumerate all topologically distinct possible ribbon graphs? In order to answer

this question, we first need to know, for a given SU (2) Gaiotto theory, the most general

possible form of the quadratic differential on C. This can be computed in the following

way. First, suppose we have a Gaiotto theory with n punctures on C, so that the associated

ribbon graphs have n faces. Given this, the number of vertices of the ribbon graphs can

be computed using Euler’s formula, which relates the number of vertices V , edges E and

faces F of a graph drawn on a surface of genus g:

V − E + F = 2− 2g. (3.11)

Since we assume all our ribbon graphs have simple zeroes and are thus trivalent and

connected, we have E = 3
2V . From the above reasoning, F = n. Thus:

V = 2n− 4 + 4g. (3.12)

Thus we can construct the quadratic differential for the theory in question given only the

topology 〈g, n〉 of the skeleton: generically, this will have n second-order poles and 2n−4+4g

faces. Note, however, that we can only apply this method for the class of SU (2) Gaiotto

theories which admit such a differential; for g ≥ 2, n = 0, this is not possible, since in this

case one cannot construct a quadratic differential on C with only second order poles [12],

as we have already observed. Setting aside the exceptional case of g = 2, n = 0 already

discussed, this result is reassuring. This is because we have already found that for g ≥ 2,

n = 0, the theory in question does not admit a BPS quiver. But since we can translate

between the quadratic differential and the BPS quiver as described, we would expect to
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Figure 6. The six possible ribbon graph topologies for the SU (2), Nf = 4 theory, drawn as dessins

d’enfants. These are precisely the six index 12 dessins in [13].

find that in these cases we cannot write down a quadratic differential of the generic form

described above. Indeed we now see this to be the case.

So, the generic form of a ribbon graph on C will have n faces (corresponding to second-

order poles of q), and 2n−4+4g vertices (corresponding to zeroes of q). Any ribbon graph

which fulfils these topological criteria is a possible ribbon graph for the Gaiotto theory in

question, and its associated Strebel differential, for the case of equal length edges, can be

computed via the ribbon graph’s corresponding Belyi map in the manner detailed above.

For details on algorithmic procedures for enumerating all possible trivalent graphs with a

given number of vertices and edges, the reader is referred to the classic works [27–29], as

well as the discussion in [2].

3.5.5 Connections to modularity

It is interesting to note that the six topologically distinct possible ribbon graphs for the

SU (2), Nf = 4 theory correspond to the dessins for the index 12 modular subgroups

presented in [2, 13, 22]. For ease of reference, these are presented in figure 6. With this in

mind, the question arises as to which SU (2) Gaiotto theories the remaining dessins in [13]

correspond, insofar as they are possible ribbon graphs on C. To answer this question, first

recall that all the dessins in question are drawn on the sphere, so we must have g = 0. In

addition, each dessin must have n faces, where n is the number of punctures on C for the

theory in question. From the work in the previous section, the dessin must therefore have

V = 2n− 4 vertices.

The number of faces and vertices for important values of n are tabulated in table 1.

The reader can note that the number of faces and vertices of a ribbon graph drawn on a
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Number of faces (n) Number of vertices (2n− 4) Index of dessin Gaiotto theory

4 4 12 SU (2), Nf =4

6 8 24 SU (2)3, Nf =6

8 12 36 SU (2)5, Nf =8

10 16 48 SU (2)7, Nf =10

12 20 60 SU (2)9, Nf =12

Table 1. The number of faces and vertices of a ribbon graph drawn on a genus zero Gaiotto curve,

as well as the index of the dessins from [13] which match those numbers of faces and vertices.

genus zero Gaiotto curve precisely match those of the various index dessins in [13], as given

in the third column of table 1. Hence, one can see that the dessins in [13] do correspond

to ribbon graphs of certain Gaiotto theories.

Which Gaiotto theories are these? Since the skeleton diagrams for an SU (2) Gaiotto

theory can all be constructed by joining trivalent vertices, for a genus zero Gaiotto curve,

we simply need to join repeated trivalent vertices, without loops, until the right number of

punctures is reached. (Recall that each internal leg of a skeleton diagram corresponds to

an SU (2) gauge group factor; each external leg corresponds to a puncture, and thereby to

an external flavour symmetry.) The resulting skeleton diagram with n external legs gives

the Gaiotto theory to which the dessin in question — with n vertices and 2n − 4 faces

— corresponds. The results of undertaking this process are given in the fourth and final

column of table 1.

3.5.6 Location of the Strebel points in the Coulomb branch

What, then, is the physical significance of these ribbon graphs, which arise where the

quadratic differential on C satisfies the definition of a Strebel differential? As stated in

section 6 of [6], flow lines form closed orbits around marked points precisely where a BPS

state appears and the topology of the triangulation (and thus BPS quiver) jumps. Hence,

if the Coulomb branch is partitioned into domains for each BPS quiver of the theory, these

Strebel points in the moduli space must arise at the walls separating these domains.

3.5.7 Dessins at other points in the moduli space

It is worth making a further comment on the form (3.8) of the quadratic differential q in

terms of a Belyi map β. Though at a Strebel point q can be written in this form, with

the Belyi map then being that associated to the ribbon graph (with equal length edges)

interpreted as a dessin, this does not preclude us from being able to write q in the form (3.8)

at some other isolated points in the moduli space.1 The reason for this is that Theorem 6.5

of [12] is an ‘if’ rather than an ‘if and only if’ statement in this respect. Indeed, we can find

such a point in the moduli space as in the following example. Consider again the SU (2),

1We thank Diego Rodriguez-Gomez for pointing out this possibility, and for the calculations which follow

in this subsection.
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(N times)

Figure 7. Dessin for the Belyi map βN (x). For N = 4, we have a 4-valent white node joined to a

4-valent black node on P1.

Nf = 4 theory, but this time begin with the generic form of the quadratic differential, with

four simple zeroes and four second-order poles. We parameterise this generic form as

φ (x) =

(

u1x
2 +m1x+ l1

)2 − 4
(

u0x
2 +m0x+ l0

) (

u2x
2 +m2x+ l2

)

4x2 (u2x2 +m2x+ l2)
2 , (3.13)

with q = φ (x) dx2. Now, choosing

u2 = −
(

4 + 3
√
2
)

π u1 = i
(

4 + 3
√
2
)

−
√
2

3
m1 u0 =

6i
√
2 +

(

4− 3
√
2
)

m1

36π
m1

l2 = −
(

4 + 3
√
2
)

π l1 =
3i
√
2 +

(

3
√
2− 4

)

6
√
2− 9

m1 l0 = −6i
√
2 +

(

3
√
2− 4

)

m1

36π
m1

m2 = 3
(

3 + 2
√
2
)

π m0 =
36+24

√
2+
(

3−2
√
2
)

m2
1

12π
(3.14)

we have, upon doing the transformation

x →
x− 1

2

(

1− i
√

3− 2
√
2
)

x− 1
2

(

1 + i
√

3− 2
√
2
) (3.15)

a differential in our “canonical” Strebel form (3.8), this time with Belyi map

β (x) =
x4

x4 + (x− 1)4
. (3.16)

What is the dessin corresponding to this Belyi map? In fact, it is known from [23, 30] that

a Belyi map of the form

βN (x) =
xN

xN + (x− 1)N
(3.17)

has an associated dessin of the form shown in figure 8.

The first thing to notice about this dessin is that it is not clean. But since all the dessins

associated to ribbon graphs are by construction clean, this means that this dessin cannot

correspond to a ribbon graph. In turn, this means that this specific point in the moduli

space cannot be Strebel — i.e. q is not a Strebel differential at this point. Hence we see that,
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starting from the generic expression for the quadratic differential for a certain theory and

tuning parameters in the way describe above, one does not necessarily arrive at a form (3.8)

which corresponds to a Strebel point (note, though, that all the Strebel points can be found

simply by fixing parameters in q, whereas in the above we also needed to transform x).

Whether these non-Strebel dessins have any significance is an open question. One must

approach such results with a certain degree of caution, since it is not clear what significance

the form of the quadratic differential (3.8) has away from the Strebel points. Nevertheless,

these auxiliary dessins which arise at other points in the moduli space in this way present

an interesting opportunity for future investigation.

3.5.8 Further conjectures

Based on the above work, one might attempt to link previous work on the connections

between dessins d’enfants and N = 2 U (N) gauge theories presented in [10, 11] to the

SU (2) Gaiotto case. In this section we will see, however, that the analogy is at least not

a direct one, and several aspects of it fail.

To begin, first recall that in [10] the authors demonstrate how the problem of finding

Argyles-Douglas singularities in the Coulomb branch U of an N = 2 theory with U (N)

gauge group can be mapped to the problem of finding when an abstractly defined quadratic

differential on a Riemann surface becomes Strebel. Moreover, at these special Argyres-

Douglas points, the Belyi map associated to the ribbon graph (interpreted as a dessin) for

that Strebel differential can be used to construct the Seiberg-Witten curve of the theory.

This is a purely formal correspondence, but the work above suggests that these quadratic

differentials and dessins have a nice interpretation for SU (2) Gaiotto theories: the quadratic

differentials are precisely the quadratic differentials on the Gaiotto curves which appear

in the Seiberg-Witten curves, while the dessins d’enfants are precisely the ribbon graphs

drawn on the Gaiotto curves.

Is this conjecture correct? To evaluate it, we must recall some further details from [10].

In that paper, the authors consider the ribbon graph associated to the abstractly defined

quadratic differentials. If we take such a ribbon graph and interpret as a dessin, we can

find the associated Belyi map, which can generically be expressed as

β (z) =
A (z)

B (z)
, (3.18)

where A (z) and B (z) are polynomials of some degree. In turn, this Belyi map can be

used to construct the Seiberg-Witten curve for the U (N) gauge theory in question via the

identification

y2 = P 2 (z) +B (z) , (3.19)

where

P 2 (z) = A (z)−B (z) . (3.20)

Given this identification of the polynomials of the Belyi map with the right hand side

of the Seiberg-Witten curve in hyperelliptic form, it is clear that if the quadratic differential

discussed in [10] can indeed be interpreted as the quadric differential on the Gaiotto curve
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Figure 8. Braneweb and grid diagrams for the SU (2), Nf = 4 theory.

in the case of SU (2) Gaiotto theories, it must be the case that at the points in the moduli

space of the theory where this becomes Strebel, the associated Belyi map yields a Seiberg-

Witten curve in hyperelliptic form of the correct degree for the theory in question. This is

a proposition which can be easily tested in a concrete example; we will choose for simplicity

the SU (2), Nf = 4 theory.

The Belyi map for the tetrahedral ribbon graph for this theory is given in (3.10). From

this, we can see that the numerator is a degree 9 polynomial in z. Hence, on the above

prescription, the Seiberg-Witten curve for this theory has the form y2 = A9 (z). However,

the Seiberg-Witten curve for this theory is in fact of degree four. We can reason to this

answer in the following way.

First, this theory can be seen as the dimensional reduction of the five dimensional

theory living on the braneweb shown in figure 8. The Seiberg-Witten curve corresponding

to the 5D theory living on the sphere is [31]

L̃2 + ỹM̃2 + ỹ2Ũ2 = 0, (3.21)

where L̃2, M̃2 and Ũ2 are degree two polynomials in x̃ whose coefficients are associated to

the dots in the grid diagram. In this curve, the holomorphic two-form is dλ = d log x ∧
d log y. The standard reduction to 4D amounts to taking ỹ = y and x̃ = e2ǫx. In the

appropriate ǫ → 0 limit [33, 34], the curve becomes

L2 + yM2 + y2U2 = 0, (3.22)

with the expected holomorphic two-form dx ∧ d log y. Note that the polynomials L2, M2

and U2 are not the same as L̃2, M̃2 and Ũ2. Indeed, the first terms in the ǫ expansion of the

coefficients of the latter reshuffle in some way to construct the former. Now, upon doing

y =
1

U2

(

t− M2

2

)

, (3.23)

we find:

t2 =
M2

2

4
− L2U2. (3.24)

Clearly, the hyperelliptic curve for this theory is degree four in the right hand side, not

degree nine. The upshot of this is that we cannot use the Belyi map associated to a given

Strebel differential on C to construct the appropriate Seiberg-Witten curve, as for the
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abstractly defined quadratic differentials in [10, 11]. Of course, it is still possible that the

points in the Coulomb branch at which the quadratic differential on C becomes Strebel

give interesting factorisations of the Seiberg-Witten curves as in [10, 11], but more work

needs to be done to establish this point. At the very least, the connections to the work of

the cited papers is not as straightforward as one might hope.

3.6 Taking stock

Let us briefly recap the results gathered up to this point. Take a Gaiotto curve C of genus g

with n punctures. The Seiberg-Witten curve for this theory has the form y2 = φ (x), where

q = φ (x) dx2 is a meromorphic quadratic differential on C. The precise number of zeroes

and second-order poles which this quadratic differential possesses was computed in section

3.5.4. From the quadratic differential one can construct an ideal triangulation, and in turn

the mutation class of BPS quivers for the theory in question, as detailed in sections 3.2–3.4.

The parameters of the quadratic differential vary as one varies the point in the Coulomb

branch Ug,n under consideration. At certain very special points, q will satisfy the definition

of a Strebel differential; at these points we can draw a ribbon graph on C. To completely fix

q, we must fix n further positive real parameters, associated to the lengths of the edges of

the ribbon graph. Fixing these parameters such that the edge lengths are unity (and thus

completely fixing q by fixing a point in Ug,n × Rn
+), this ribbon graph can be interpreted

as a trivalent dessin d’enfant, with an associated Belyi map. The Belyi map relates q

at this point to a meromorphic quadratic differential on P1 by pullback, as detailed in

sections 3.5.1–3.5.2. In this way, as detailed in section 3.5.3, we can reconstruct Strebel

differentials at such points just given possible ribbon graph topologies on C.
In section 3.5.5, we identified the Gaiotto theories to which the dessins in [13] corre-

spond, insofar as they are possible ribbon graphs for those theories; in section 3.5.6 we

identified the location of the Strebel points in the Coulomb branch of these theories. In

section 3.5.7 we investigated the possibility of the form (3.8) of the quadratic differential

arising at non-Strebel points. Finally, in section 3.5.8, we demonstrated that one can-

not straightforwardly identify the quadratic differential on C with the abstractly defined

quadratic differentials in [10, 11], as doing so yields inconsistent results.

4 Skeleton diagrams to Seiberg-Witten curves: an alternative route?

In [2], it is stated that the skeleton diagrams should be interpreted directly as dessins

d’enfants; from there it is claimed that we can construct the corresponding Seiberg-Witten

curve by manipulating the Belyi map associated to this dessin. In this section we show that

this deployment of dessins cannot work in general, as the method cannot guarantee that

the Seiberg-Witten curve will have the correct form. To do this, we follow the methodology

of [2], where the authors consider the specific class of dessins corresponding to the 33 genus

zero, torsion-free congruence subgroups of the modular group Γ (introduced in section 2.6),

all of which have g > 0 and n = 0, interpreting these as skeleton diagrams.

The general setup is as follows: we suppose that we have a skeleton diagram with g

loops and n external legs, topologically identical to one of dessins in [2]. We interpret this as
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a dessin: exactly the corresponding dessin in [2]. We then attempt to follow the prescription

in [2] to construct the Seiberg-Witten curve corresponding to the original skeleton diagram

from the Belyi map for the associated dessin. We do this for a wide class of skeletons (all of

which are topologically identical to dessins in [2]), showing that the proposed method fails

for some of these skeleton diagrams. Therefore, the proposed route from skeleton diagrams

to Seiberg-Witten curves needs to be modified, in the manner presented below.

With the above in mind, let us begin our investigations. First recall from [9] that the

genus of the Seiberg-Witten curve g (Σ) is related to the genus of the Gaiotto curve g (C)
by the following formula, where pi denotes a puncture on C, and we consider separately

punctures of odd and even order:

g (Σ) = 4g (C)− 3 +
1

2

∑

pi even

pi +
1

2

∑

pi odd

(pi + 1) . (4.1)

The genus of the Gaiotto curve g (C) is determined by the number of loops of the skeleton

diagram, so we find, by considering the number of loops of each of these dessins in [13], that

for a skeleton diagram (interpreted as a dessin) corresponding to a genus zero, torsion-free,

congruence subgroup of index I, the genus of the Gaiotto curve is given by

g (C) = I

6
+ 1. (4.2)

Thus we have from (4.2) and (4.3) (noting that in our case all pi are even, since they are

of order 2):

g (Σ) =
2I

3
+ 1. (4.3)

Now, any hyperelliptic curve has the equation y2 = QN (x), where QN (x) is a degree N

polynomial in x. A genus g (Σ) hyperelliptic curve has the equation y2 = Q2g(Σ)+1 (x) (for

an imaginary hyperelliptic curve) or y2 = Q2g(Σ)+2 (x) (for a real hyperelliptic curve). Using

our above result for g (C), we therefore find that the Seiberg-Witten curves corresponding

to our index I dessins can be written in the form y2 = Q4I/3+3 (x) in the imaginary case,

and y2 = Q4(I/3+1) (x) in the real case. Thus the degrees of the polynomials in the Seiberg-

Witten curves for the indices I of interest from [2] (i.e. I ∈ {6, 12, 24, 36, 48, 60}) are as

shown in table 2.

For a dessin corresponding to an index I subgroup, the corresponding Belyi map β (x)

is a quotient of two polynomials A (x) and B (x), the difference of which is equal to the

square of a polynomial of degree I/2 [2, 11]:

A (x)−B (x) = P 2
I/2 (x) . (4.4)

It is at this point that the conjecture in this approach begins. We need some procedure

taking us from PI/2 (x) on the dessin side to Q4(I/3+1) (x) on the Seiberg-Witten side

(focussing on the case of real hyperelliptic curves — the situation for imaginary hyperelliptic

curves is analogous). As a matter of simply matching degrees, we have:

a · deg
(

PI/2 (x)
)

= deg
(

Q4(I/3+1) (x)
)

. (4.5)
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Index I deg
(

Q4I/3+3 (x)
)

deg
(

Q4(I/3+1) (x)
)

6 11 12

12 19 20

24 35 36

36 51 52

48 67 68

60 83 84

Table 2. The degrees of the Seiberg-Witten curves for an N = 2 SU (2) Gaiotto theory where

the skeleton diagram is a dessin d’enfant corresponding to a genus zero, torsion-free, congruence

subgroup of index I. The second column corresponds to the imaginary hyperelliptic case; the third

to the real hyperelliptic case.

Index I Exponent a in (4.6)

6 4

12 10/3

24 3

36 26/9

48 17/6

60 14/5

Table 3. The power a to which a polynomial of degree I/2 must be raised to produce a function

(possibly polynomial) of degree 4 (I/3 + 1). This procedure allows us to match the degree of PI/2 (x)

from the Belyi map corresponding to the skeleton diagram interpreted as a dessin d’enfant to the

expected degree of the Seiberg-Witten curve for the Gaiotto theory in question.

Solving for a, we find:

a = 8

(

1

3
+

1

I

)

. (4.6)

For the indices of interest in [2] (I ∈ {6, 12, 24, 36, 48, 60}), we have the results shown in

table 3.

The thought at this point is that we can then simply identify P a
I/2 (x) from the Be-

lyi map associated to the skeleton diagram interpreted as a dessin with Q4(I/3+1) (x): the

Seiberg-Witten curve for that gauge theory in hyperelliptic form. Clearly, there is some-

thing special about index 6 and index 24, if this procedure for going from PI/2 (x) to

Q4(I/3+1) (x) is correct. This is because only index 6 and index 24 give integer a, and

therefore guarantee polynomial Q, as required when constructing a Seiberg-Witten curve.

But for every SU (2) gauge theory of Gaiotto type, there is a Seiberg-Witten curve which

can be associated with the skeleton diagram. Therefore, we see that, when dessins for which

I /∈ {6, 24} are considered, the fact that this method cannot guarantee that Q (x) is a poly-

nomial demonstrates that it is in general not correct. Thus, in such cases, and hence in
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general, interpreting the skeleton diagram as a dessin d’enfant and attempting to construct

the corresponding Seiberg-Witten curve from the Belyi map in this way will not work.

Indeed, there is no reason to suspect any direct connection between skeleton diagrams

and Seiberg-Witten curves via the theory of dessins d’enfants (although, as, we have seen,

dessins do arise in the context of the ribbon graphs). Moreover, this method clearly only

works when we consider skeleton diagrams without external legs, since it is unclear what

external legs of a dessin would mean. To conclude then: the correct method for matching the

skeleton diagrams to the corresponding quadratic differentials and Seiberg-Witten curves

is outlined in section 2 and section 3 of this paper; the work there supersedes the work

presented in this section.

5 Conclusions and outlook

In this paper, we have first recapitulated several significant results from [2, 3, 7–9] in

order to present an explicit web of connections relating important mathematical structures

in the study of SU (2) Gaiotto theories. This is the backbone of connections in figure

2. Undertaking this task has allowed us to pinpoint the precise manner in which dessins

d’enfants arise in the context of these theories. Our conclusions are as follows:

• At a certain point in the Coulomb branch Ug,n, the quadratic differential on C for the

Gaiotto theory in question is Strebel. At such a point, the horizontal trajectories join

to form a graph on C known as a ribbon graph [12]. When the edges of this ribbon

graph are of equal length (found by fixing a particular point in Ug,n×Rn
+), this graph

can be interpreted as a clean dessin.

• The ribbon graph, interpreted as a dessin, has a unique corresponding Belyi map

β : C → P1. This Belyi map relates the Strebel differential on C at this point in

Ug,n × Rn
+ and a meromorphic quadratic differential on P1 by pullback.

• By Belyi’s theorem, the fact that this is possible for almost all Gaiotto theories means

that almost all Gaiotto curves have the structure of algebraic curves defined over Q,

at these particular points in Ug,n × Rn
+.

• Consideration as to the topology of the ribbon graphs yields a means of computing the

essential features of the quadratic differential in question: it must have n second order

poles and 2n− 4 + 4g zeroes. Possible ribbon graph topologies for a Gaiotto theory

with C having n punctures and genus g therefore have n faces and 2n−4+4g vertices.

• This yields an efficient means of computing the explicit Strebel differentials, and

hence Seiberg-Witten curves, at these points in Ug,n × Rn
+: for the 〈g, n〉 Gaiotto

theory in question, we compute all possible trivalent connected graphs with n faces

and 2n − 4 + 4g vertices, interpret as dessins, compute the associated Belyi maps,

and substitute into (3.8).

• The dessins in [13] correspond to possible ribbon graphs of specific SU (2) Gaiotto

theories, which have been identified.
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• Ribbon graphs appear at points in the Coulomb branch where the triangulation

(and hence BPS quiver) jumps.

• In [10, 11], it was found that the problem of finding Argyres-Douglas singularities

for U (N) N = 2 gauge theories can be mapped to the problem of finding points

where an abstractly defined quadratic differential becomes Strebel; and therefore

mapped to the problem of constructing dessins. We have found that there are

difficulties in straightforwardly extending this story to the SU (2) Gaiotto theories

under consideration in this paper.

These conclusions establish the “lower loop” of connections in figure 2, as well as

fleshing out many more details. The means of immediately writing down the functional

form of the quadratic differential q given topology 〈g, n〉 of the skeleton diagram is the

“upper arc” of figure 2. Moreover, we have shown in section 4 that the method proposed

in [2] for writing down the Seiberg-Witten curve for such a theory by interpreting the

skeleton diagram as a dessin must be modified in general.

There are many possible extensions of this work. Most notably, it would be a valuable

task to understand better the physical significance of the points in the moduli space where

ribbon graphs can be constructed (i.e. the Strebel points), beyond the observation that

these points lie on boundaries separating BPS domains of the Coulomb branch. Indeed,

the authors are currently collaborating on a further paper investigating these Strebel points

from the point of view of Liouville conformal field theories via the AGT conjecture [32]; the

hope is that such investigations will shed further light on the significance of these points,

and the dessins that arise in these N = 2 theories.

In addition, it would be interesting to investigate whether the Seiberg-Witten curves

for these theories have any interesting factorisation properties at the points in the Coulomb

branch at which the quadratic differential becomes Strebel and the edge lengths of the

ribbon graph are fixed to be equal. Doing so would salvage some connections and parallels

with the work of [10, 11]. More generally, it would be an interesting and worthwhile task

to carry out these investigations into Gaiotto theories of higher rank; this is likely to be

a fertile and fascinating field for future research.
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and Lecture Notes 30, American Mathematical Society, New York U.S.A. (2001), pg. 119.

[23] E. Goins, Dessin explorer, Mathematica notebook,

http://www.math.purdue.edu/∼egoins/site//Dessins%20d%27Enfants.html, (2012).

[24] N. Magot and A. Zvonkin, Belyi functions for Archimedean solids, Discr. Math. 217 (2000)

249.

[25] M. Wood, Belyi-extending maps and the Galois action on dessins d’enfants, Publ. RIMS

Kyoto Univ. 42 (2006) 721 [math/0304489].

[26] Y. Tachikawa, N = 2 supersymmetric dynamics for pedestrians, Lect. Notes Phys. 890

(2015) 1 [arXiv:1312.2684].

[27] R.C. Read, Some enumeration problems in graph theory, Ph.D. dissertation, University of

London, London U.K. (1958).

[28] R.W. Robinson, Counting cubic graphs, J. Graph Theor. 1 (1977) 285.

[29] R.W. Robinson and N.C. Wormald, Numbers of cubic graphs, J. Graph Theor. 7 (1983) 463.

[30] V. Jejjala, S. Ramgoolam and D. Rodriguez-Gomez, Toric CFTs, permutation triples and

Belyi pairs, JHEP 03 (2011) 065 [arXiv:1012.2351] [INSPIRE].

[31] O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories

and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].

[32] L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from

four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219]

[INSPIRE].

[33] A. Brandhuber, N. Itzhaki, J. Sonnenschein, S. Theisen and S. Yankielowicz, On the

M-theory approach to (compactified) 5D field theories, Phys. Lett. B 415 (1997) 127

[hep-th/9709010] [INSPIRE].

[34] E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500

(1997) 3 [hep-th/9703166] [INSPIRE].

[35] F. Beukers and H. Montanus, Explicit calculation of elliptic fibrations of K3-surfaces and

their Belyi-maps, in Number theory and polynomials, Lond. Math. Soc. Lect. Note Ser. 352,

Cambridge University Press, Cambridge U.K. (2008), pg. 33.

– 29 –

http://dx.doi.org/10.1112/blms/28.6.561
http://dx.doi.org/10.1112/blms/28.6.561
http://www.math.purdue.edu/~egoins/site/Dessins d'Enfants.html
http://dx.doi.org/10.1016/S0012-365X(99)00266-6
http://dx.doi.org/10.1016/S0012-365X(99)00266-6
http://dx.doi.org/10.2977/prims/1166642157
http://dx.doi.org/10.2977/prims/1166642157
http://arxiv.org/abs/math/0304489
http://dx.doi.org/10.1007/978-3-319-08822-8
http://dx.doi.org/10.1007/978-3-319-08822-8
http://arxiv.org/abs/1312.2684
http://dx.doi.org/10.1002/jgt.3190010310
http://dx.doi.org/10.1002/jgt.3190070412
http://dx.doi.org/10.1007/JHEP03(2011)065
http://arxiv.org/abs/1012.2351
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.2351
http://dx.doi.org/10.1088/1126-6708/1998/01/002
http://arxiv.org/abs/hep-th/9710116
http://inspirehep.net/search?p=find+EPRINT+hep-th/9710116
http://dx.doi.org/10.1007/s11005-010-0369-5
http://arxiv.org/abs/0906.3219
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.3219
http://dx.doi.org/10.1016/S0370-2693(97)01249-5
http://arxiv.org/abs/hep-th/9709010
http://inspirehep.net/search?p=find+EPRINT+hep-th/9709010
http://dx.doi.org/10.1016/S0550-3213(97)00416-1
http://dx.doi.org/10.1016/S0550-3213(97)00416-1
http://arxiv.org/abs/hep-th/9703166
http://inspirehep.net/search?p=find+EPRINT+hep-th/9703166
http://dx.doi.org/10.1017/CBO9780511721274.005

	Introduction
	Dramatis personae
	Skeleton diagrams
	Moduli spaces
	BPS quivers
	Quadratic differentials and graphs on Gaiotto curves
	Dessins d'enfants and Belyi maps
	The modular group and congruence subgroups

	A web of correspondences
	Quadratic differentials and Seiberg-Witten curves
	Trajectories on Riemann surfaces and ideal triangulations
	Constructing BPS quivers
	Skeleton diagrams and BPS quivers
	Strebel differentials and ribbon graphs
	Ribbon graphs from Strebel differentials
	Ribbon graphs as dessins
	Strebel differentials from Belyi maps
	Enumerating ribbon graphs
	Connections to modularity
	Location of the Strebel points in the Coulomb branch
	Dessins at other points in the moduli space
	Further conjectures

	Taking stock

	Skeleton diagrams to Seiberg-Witten curves: an alternative route?
	Conclusions and outlook

