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ABSTRACT 

It will be shown how the retailer can use economic theory to exploit the sparse information available to him to set the 

price of each item he is selling close to its profit-maximizing level. The variability of the maximum price acceptable to 

each customer is modeled using a probability density for demand, which provides an alternative to the conventional 

demand curve often employed. This alternative way of interpreting retail demand data provides insights into the optimal 

price as a central measure of a demand distribution. Modeling individuals’ variability in their maximum acceptable 

price using a near-exhaustive set of “demand densities”, it will be established that the optimal price will be close both to 

the mean of the underlying demand density and to the mean of the Rectangular distribution fitted to the underlying dis- 

tribution. An algorithm will then be derived that produces a near-optimal price, whatever the market conditions prevail-

ing, monopoly, oligopoly, monopolistic competition or, in the limiting case, perfect competition, based on the minimum 

of market testing. The algorithm given for optimizing the retail price, even when demand data are sparse, is shown in 

worked examples to be accurate and thus of practical use to retail businesses. 

 

Keywords: Optimal Price; Monopoly; Monopolistic Competition; Oligopoly; Sparse Demand Data; Retail 

1. Introduction 

The markets faced by retailers in different sectors may 

span the range of market categories from perfect compe- 

tition, through oligopoly, monopolistic competition to 

monopoly. But the problem of setting the optimal price 

faces retailers in all market categories. Selling to multiple 

customers, they need to offer a price that is common to 

all. This study appeals to standard economic theory to 

help illuminate the position of the retailer as he uses 

whatever information is available to him in order to set 

the price of each product so as to maximize his profit. 

The end point will be an algorithm for setting the price of 

a product that will be close to the optimum, whatever the 

market conditions prevailing, based on the minimum of 

market testing.   

Finding the price to maximize profit would be rela- 

tively easy if the retailer knew the maximum price ac- 

ceptable to each of his customers interested in buying the 

product. Any given price would imply that the retailer 

would gain income from all those whose maximum ac- 

ceptable price (MAP) lay above this level. His turnover 

having now been decided, the retailer could then calcu- 

late first his costs and then, by subtraction, his profit. 

Applying the same procedure to all or a selection of 

prices would quickly show the retailer what price he 

should set to generate the highest profit.  

Obtaining the necessary information on the MAP for 

each customer could be attempted via a market survey. 

Normalizing the results by dividing by the number taking 

part would give a probability distribution for MAP, 

which may be called the “demand density” for compact- 

ness. A demand density found in this way would, of 

course, be subject not only to the inaccuracies associated 

with any sampling operation but also to those associated 

with a sample that might be less than perfectly represen- 

tative. Moreover the survey would need to be applied to 

each product and repeated at regular intervals. Such a 

large and ongoing data collection exercise, although fea- 

sible in principle, would be impractical to implement. 

The alternative, and the approach used here, is to pos- 

tulate a wide range of possible demand densities, h(p), 

and then use standard economic theory to investigate the 

relationship between the optimal price and other central 

measures of MAP, which may lend themselves to use in 

a price-optimization algorithm. The restriction on a 

probability distribution, namely that the area under the 

curve must be unity, viz. , aids in this  
0

1h u du
 
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process, allowing near-exhaustive testing of possible 

demand scenarios using a finite number of candidate 

demand densities.  

Two sets of candidate demand densities are used. The 

first assumes that the MAP is proportional to the ability 

to pay as measured by post-tax household annual income 

up to one of a set of percentile levels. The second set 

consists of the “Double Power” demand density defined 

in Section 7, with different coefficients locating its mode 

anywhere between 0 and the highest price that anyone is 

prepared to pay for the item (normalised to 10 units in 

the examples considered). 

A third, generalized demand density is also considered, 

namely the Rectangular demand density. It is the demand 

density assumed by default by economists when they 

draw a straight-line, downward-sloping demand curve, 

and it has particular significance because the optimal 

price and the mean price are the same. The Rectangular 

is, moreover, the simplest demand density able to fit the 

mental model of a retailer who knows 1) the lowest price 

at which he would countenance selling the product and 2) 

the highest price he could get from his customers before 

sales became negligible. 

The Rectangular demand density may be fitted with 

good accuracy to demand densities in both of the candi- 

date sets. The matched Rectangular demand density may 

then be regarded as a proxy for the underlying distribu- 

tion, a fact that will be exploited in the price optimization 

algorithm introduced later. 

2. The Demand Density Underlying the 
Conventional Demand Curve 

The conventional demand curve may be regarded as a 

plot of price, p, against the fraction, , of the target 

market prepared to pay that price or more [1-3]. It is 

usual for the marginal revenue and the variable cost to be 

plotted also, resulting in a diagram similar to Figure 1, in 

which it is assumed that the variable component of cost 

is linear. While the conventional demand curve uses the 

cumulative probability, , as one of its axes, there 

are advantages in recasting  in terms of its fun- 

 S p
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Figure 1. Conventional demand curve. 

damental demand density, , since this fraction is 

the integral of probability density above price, p: 
 h p

     
0

1

p

p

S p h u du h u du
           (1) 

where the second development follows from the fact that  
0

1h u du
  . 

Although the same information is carried by S(p) as by 

h(p), the fact that the former is based on an integration of 

the latter means that it is a filtered version, so that the 

detail is more difficult to pick out. Thus the “demand 

density curve” of h(p) vs. p offers finer discrimination 

than the conventional “demand curve” of p vs. S(p). A 

further advantage of the demand density curve is that, as 

explained in the next Section, it allows the optimal price 

to be found naturally. 

The lesser discrimination inherent in the cumulative 

probability, S(p), explains why a straight-line approxima- 

tion to the curve of p vs. S(p) can be used routinely in 

economics text books, even though such a straight-line 

demand curve will hold true only when the demand den- 

sity is Rectangular. For what shows up as a major dis- 

crepancy from uniformity in the graph of h(p) vs. p re- 

duces to a minor deviation in the graph of S(p) vs. p. For 

example, in the case where a symmetrical underlying 

demand density is approximated by a Rectangular de- 

mand density, it is clear from comparing Figures 2(a) 

and (b) that the difference between the two distributions 

becomes much less marked when the conventional de- 

mand curve is used. 

Monopoly is the simplest of the selling situations 

where multiple customers are involved, since the retailer 

need be concerned only with the reactions of customers 

and not of other suppliers. While results as derived in 

Sections 3 to 9 may be understood in this light, it will be 

shown in Section 10 that the results will apply equally to 

all the basic forms of interaction between the retailer and 

his customers:  monopoly  oligopoly  monopolistic competition 

as well as, in their limiting form, to perfect competi-

tion. 

3. Mathematico-Economic Model of Profit 
Maximization 

A retailer will, in general, face a differentiated market, 

with different people being prepared to pay a different 

maximum price for the same good, as illustrated in the 

demand density curve. The term, “uniconsumer”, might 

be used to denote a consumer prepared to buy one but 

only one item if the price is right. Then a person, a “mul-  
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Figure 2. Approximating a symmetrical probability density 

for demand by a Rectangular distribution. (a) Comparison 

of demand density curves; (b) Comparison of demand cur- 

ves. 
 

ticonsumer”, who will buy more than one item if the 

price is right may be represented, as far as his economic 

behaviour is concerned, as multiple, identical unicon- 

sumers. Suppose that the retailer sets the price at some 

value, p. The good will be bought by the fraction of uni- 

consumers, S(p), with a MAP at or above p, as given by 

Equation (1). 

In the rest of the paper we shall use the word, “con- 

sumer”, in place of the more exact “uniconsumer”, sim- 

ply to make it less cumbersome to read. The total number 

of sales will be NS(p), where N is the size of the popula- 

tion of consumers under consideration. Given a common 

price, p, the retailer’s income will be NpS(p). Following 

a standard economic model widely used in business, it 

will be assumed that the retailer’s costs comprise a linear 

variable cost, v  (£ per item), and a fixed cost inde- 

pendent of the number of items sold, F  (£). His profit, 

c

C , will be the difference between income and costs:   

    vNS p p NS p c CF            (2) 

The retailer will seek to maximize this profit, which, 

for a constant size of target population, N, is equivalent 

to maximizing the average profit per consumer,  : 

    F
v

p

C
p c h u du

N N
            (3) 

where use has been made of Equation (1) in the second 

step. Since no-one has infinite resources, everyone must 

have a MAP that lies beneath some maximum conceiv- 

able value, m , implying that . Hence, 

we may rewrite Equation (3) as 

p   0
mp

duuh

   mp

F
v

p

C
p c h u du

N
             (4) 

We may find the maximum value of profit,  , by 

differentiating Equation (4) with respect to price, p, and 

then setting 0dpd . At this point, *pp  , the 

optimal selling price, which it the price that will generate 

the retailer the greatest profit. Applying the rules of cal- 

culus: 

   
       

0 0

m

m m

p

F
v

p

p p p

v

p

Cd d
p c h u du

dp dp N

d
h u du p c h u du h u du

dp

       
       


  

 (5) 

Differentiating the contents of the final bracket and 

setting the whole to zero gives the optimal price as the 

solution, p, of 

      0
mp

v

p

h u du p c h p         (6) 

4. The Retailer’s Estimate of Demand 
Density: Sparse Data 

The mathematics given in the previous Section provide a 

way of calculating the optimal price that may be slightly 

more sophisticated than the method explained in the 2nd 

paragraph of the Introduction, but they do not get around 

the fact that solving Equation (6) still requires a knowl- 

edge of the demand density, h(p). But in the absence of 

repeated market surveys, the data available to the retailer 

are likely to be sparse and fragmentary, in which case he 

will need to rely on a largely intuitive feel for the de- 

mand density characterizing his target market.   

Consider now the likely minimum information avail- 

able to the retailer. We may assume that he will know his 

variable cost per item, v . He will have no interest in 

selling the item at a price below this level, since sales at a 

lower price will not make a contribution to offsetting his 

fixed costs but will, on the contrary, increase his loss. 

Hence he will regard his target population of consumers 

as one containing only a negligible fraction for whom the 

MAP is less than v . The variable cost per item may 

then be regarded as defining the lowest price in the re- 

tailer’s mental model, : . (It may be noted 

c

ap

c

va cp 
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that the variable cost, v , is not a wholly exogeneous 

cost imposed on the retailer. Its value will reflect choices 

made by the retailer and those in his supply chain, all of 

whom will be influenced by perceptions of what the 

market will bear.)   

c

There are cases where the cost of the good is domi- 

nated by fixed costs, and the variable cost per item is 

essentially zero. Hence the retailer’s mental model may 

include  as a limiting case. Meanwhile, a 

knowledgeable retailer should have an idea of the highest 

MAP, b , above which his total sales will be negligible: 

almost nobody will pay more than .   

0ap

p

bp

pThese two price levels, a  and b , are sufficient on 

their own to generate for the retailer a simple mental 

model, g(p), of the true demand density, h(p). The ap- 

proximating probability density, g(p), will be uniform 

between a  and b  and zero elsewhere—a Rectangu- 

lar distribution. The simple mental model just ascribed to 

the retailer working with sparse data will generate a 

straight-line demand curve, as noted in Section 2. Thus it 

coincides with the default model frequently used by 

economists when considering the problem of demand.  

p

p p

5. Properties of the Rectangular Demand 
Density 

5.1. Mean, Median and Mode 

The Rectangular demand density, , has the form:  pg

 
0           f

     

        f

or  

1
for  

0   or  

a

a b

b a

b

p p

g p p p p
p p

p p

     
       (7) 

The mean value of the MAP, p , is then the weighted 

average: 

 
0

1

2

b

a

p

a b
p

b a p

p p
pg p dp 

ap

pdp
p p

      (8) 

Because the Rectangular distribution is symmetrical, 

the mean and median are equal.  

By mathematical convention regarded as unimodal, the 

Rectangular distribution may be seen as having a mode 

anywhere in the range, ( ). bp,

5.2. The Optimal Price, p* 

Applying Equation (6) with the Rectangular probability 

density, , replacing  and using the equality 

of the variable cost per unit and the retailer’s lowest 

MAP of interest, : 

 pg  ph

ap

1
0

bp

a b a

b a b a b a b ap

p p p p p pd

dp p p p p p p p p
dp

            

(9) 

So that, denoting the optimal price by p*: 

*
2

a bp p
p

               (10) 

Thus, using the Rectangular demand density likely to 

be used initially by the retailer as well as by economists 

in their first consideration of demand, the important re- 

sult emerges that the optimal price and the mean price 

will coincide: 

pp *                 (11) 

Since the mean and median are equal in a symmetrical 

distribution, it follows also that 

* medp p                  (12) 

where med  is the median of the retailer’s Rectangu- 

lar demand density. 

p

It must be considered unlikely, however, that the true 

demand curve will be exactly straight, nor, by the same 

token, will the demand density curve be precisely Rec- 

tangular. Hence, while the value,   2ba pp  , may be 

close to optimal, it will not be the true optimum. To find 

out how near to the true optimum the mean of the Rec- 

tangular distribution is likely to be, we may examine how 

far it can be made representative of a wide variety of 

underlying demand densities. 

5.3. Matching the Rectangular Demand Density 
to the Underlying Demand Density 

If the true, underlying distribution were known, it would 

be possible to model the retailer’s intuitive identification 

of the lower and upper limits of his Rectangular distribu- 

tion by the mathematical procedure of minimizing the 

integrated square error between the Rectangular distribu- 

tion and the underlying distribution. In practice, the un- 

derlying distribution is not likely to be known, but a 

near-exhaustive survey may be made using candidate 

distributions with characteristics spanning the possible 

probability space. Once the Rectangular demand density, 

g(p), has been matched to the underlying demand density, 

h(p), the mean of g(p), which we shall call the matched 

Rectangular mean, becomes a property of h(p). 

6. Demand Density: Candidate 1, When the 
MAP Is Proportional to the Ability to Pay 

Prima facie, one reasonable assumption is that the MAP 

is conditioned by, and, in the simplest case, proportional 

to the ability to pay. Demand density may then be related 

to post-tax household annual income [4]. It is further 

supposed that the price of commodities that are needed 

and obtained by almost everyone in the population will 

be determined by the attitudes and decisions of those 

with incomes up to some percentile level, θ. Those with 
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incomes above the  th percentile are then considered to 

be price-takers for these goods. (For example, very 

wealthy people may have their shopping done for them, 

and their less wealthy agents may tend to apply their own 

personal judgements on what constitutes value for 

money). 

as well as the optimal price for the underlying distribu- 

tion, h(p), as well as the mean of the retailer’s matched 

Rectangular distribution, g(p), versus percentile for all 

the percentiles listed in Table 1. Clearly the optimal 

price, based on the underlying distribution, h(p), is dis- 

tinct from all the other measures. However, both the me- 

dian and the mean of the underlying distribution, h(p), 

are reasonable approximations to the optimal price, the 

mean performing better for lower percentiles, the median  

The percentage of people,  , determining the price of 

each commodity may vary according to commodity, and 

moreover, that percentage may not be known with any 

precision. To cope with this situation, we have allowed 

for   to take a range of possible percentages, from 51% 

to 99%. Table 1 gives cumulative probabilities for in- 

come; it may be noted that the last column, where 

%100 , is incomplete due to lack of IFS data beyond 

the 99th percentile.  
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Figure 3 shows the case for the 85th percentile cohort. 

(The highest MAP that anyone in the cohort will assign, 

m , is set to 10 units in each case, a convention that will 

be followed throughout the paper.) It may be remarked 

immediately that the distribution shown in Figure 3 is 

interior unimodal, in the sense that the mode lies strictly 

within the interval . 

p

Figure 3. Demand density, h(p), for 85th percentile cohort. 

Also shown is the matched Rectangular demand density, 

g(p). 
mmode

Figure 4 plots the normalised mode, median and mean 

pp 0

 

Table 1. UK post-tax household income 2009: Cumulative probability,  ,F y  , up to the  th percentile income (equiv-

alised, based on a couple with no children). 

Cumulative probability,  ,F y   
House-hold income,  

y (£ p.a.) θ = 51% θ = 59% θ = 67% θ = 78% θ = 85% θ = 93% θ = 96% θ = 99% θ = 100%

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

5200 0.0588 0.0508 0.0448 0.0385 0.0353 0.0323 0.0313 0.0303 0.0300 

7800 0.1176 0.1017 0.0896 0.0769 0.0706 0.0645 0.0625 0.0606 0.0600 

10,400 0.2353 0.2034 0.1791 0.1538 0.1412 0.1290 0.1250 0.1212 0.1200 

13,000 0.4118 0.3559 0.3134 0.2692 0.2471 0.2258 0.2188 0.2121 0.2100 

15,600 0.6078 0.5254 0.4627 0.3974 0.3647 0.3333 0.3229 0.3131 0.3100 

18,200 0.8235 0.7119 0.6269 0.5385 0.4941 0.4516 0.4375 0.4242 0.4200 

20,800 1.0000 0.8644 0.7612 0.6538 0.6000 0.5484 0.5313 0.5152 0.5100 

23,400  1.0000 0.8806 0.7564 0.6941 0.6344 0.6146 0.5960 0.5900 

26,000   1.0000 0.8590 0.7882 0.7204 0.6979 0.6768 0.6700 

28,600    0.9359 0.8588 0.7849 0.7604 0.7374 0.7300 

31,200    1.0000 0.9176 0.8387 0.8125 0.7879 0.7800 

36,400     1.0000 0.9140 0.8854 0.8586 0.8500 

46,800      1.0000 0.9688 0.9394 0.9300 

54,600       1.0000 0.9697 0.9600 

80,860        1.0000 0.9900 
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Figure 4. Mode, optimal, median and mean of underlying 

demand density, h(p); mean of Rectangular demand density, 

g(p). Plotted versus income percentile. 
 

doing better for percentiles above about 75%. The root- 

mean-squared error is about 5% for the underlying me- 

dian and 6% for the underlying mean. 

The matched Rectangular mean is a slightly worse ap- 

proximation to the optimal price for the underlying dis- 

tribution, being an average of about 10% too high over 

the range considered, rising to 20% in the worst case of 

the 85th percentile. 

The mode gives a relatively poor approximation to the 

optimal price. However, it provides a useful way of 

characterizing the demand density. Figure 5 shows the 

optimal, mean, and matched Rectangular mean plotted 

against the mode of the underlying distribution. Larger 

deviations between the mean and the optimal price are 

evident when the mode is located centrally in the range. 

7. Demand Density: Candidate 2, the  
“Double Power” Demand Density 

The Double Power demand density introduced here is 

defined on non-negative values of MAP, p, by: 

 
m

m

dc

pp

ppbpapph




for                      0

0for         
    (13) 

where the coefficients, a, b, c and d are non-negative. 

The Double Power demand density has the desirable 

property that, through suitable selection of its parameters, 

a, b, c and d, its mode may be located anywhere between 

zero and the maximum conceivable value:  

m , thus ensuring the necessary coverage of 

the probability space.  

pp  mode0

7.1. Mode at the Zero Boundary 

The mode lies at the zero boundary, , when c = 0. 

The fact that the matched Rectangular demand density 

has  implies a zero variable cost: 

0p

0ap 0vc

1

. The 

curve of  is strictly convex when  ph 0 d

d

1

, linear 

when  and strictly concave when . See Fig-

ures 6(a) and (b). 

1d

7.2. Mode at the Maximum Boundary, Pm  

The mode occurs at the maximum price, m , when b = 

0 (except for the limiting case where c is also zero: if 

p

0 cb , the probability distribution becomes uniform  

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.2 0.4 0.6 0.8 1

Mode of underlying distribution

O
p

ti
m

a
l,

 m
e
a

n
, 
m

e
d

ia
n

 a
n

d
 

R
e
c

ta
n

g
u

la
r 

m
e
a
n

.
.0

Optimal

Mean

Median

Rectangular mean

 

Figure 5. Optimal, mean, median and rectangular mean 

versus the mode of the underlying distribution. 
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Figure 6. Matching a Rectangular demand density to con-

vex and concave Double Power demand densities when the 

mode is 0.0. (a) Convex Double Power demand density: c = 

0, d = 0.25; (b) Concave Double Power demand density: c = 

0, d = 8.0. 
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on (0, m ), with no unique mode). The curve of p  ph  

is strictly concave when 10  c , linear when 1c  

and strictly convex when  (Figures 7(a) and (b)). 1c

7.3. Mode Strictly Interior 

The mode will be strictly interior when the coefficients, a, 

b, c and d are all positive. See Figure 8. Once c has been 

set, a suitable selection of d allows the mode to be lo- 

cated anywhere in the range between 0 and , with the 

mode increasing as d increases.  
mp

Figure 8(c), where c = 8 and d = 128, shows also how 

a high value of the power, c, used in conjunction with a 

high value of the power, d, can simulate approximately 

the situation where the effective lowest MAP is above 

zero–roughly p = 5 in this case. A large majority of 

population is prepared to pay 5 units or more for the 

good.  

8. Results Using the Double Power Demand 
Density 

8.1. Mode at the Zero Boundary 

Figure 9 shows the behaviour of the optimal price, the 

mean price, the median and the matched Rectangular 

mean price, as the power, d, is varied from 10−3 to 103. 

While the optimal is distinct from the other central mea- 
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Figure 7. Matching a Rectangular demand density to con- 

cave and convex Double Power demand densities when the 

mode takes the maximum value, pm. (a) Concave Double 

Power demand density: b = 0, c = 0.25; (b) Convex Double 

Power demand density: b = 0, c = 4.0. 
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Figure 8. Matching a Rectangular demand density to a 

Double Power demand density with a strictly interior mode. 

(a) Double Power demand density. c = 1, d = 0.5; (b) Double 

Power demand density. c = 2, d = 4; (c) Double Power de-

mand density. c = 8, d = 128. 
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Figure 9. Boundary mode at p = 0. Varying the power, d. 
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sures, the mean and the matched Rectangular mean are 

reasonable approximations to it over the whole range, 

with a maximum error of about 12%. 

8.2. Mode at the Maximum Boundary 

Figure 10 shows the behaviour of the optimal price, the 

mean price, the median and the matched Rectangular 

mean price, as the power, c, is varied from 10-3 to 103. 

The mean and the matched Rectangular mean show a 

good correspondence with the optimal over the whole 

range. The maximum error is about 4%.  

8.3. Mode Strictly Interior 

Figure 11 shows the optimal price, the mean price and 

the matched Rectangular mean price against the mode 

when the parameter, c, is equal to 2. The optimal price is 

distinct, but each of the other central measures acts as a 

reasonable approximation to it over the whole range of 

modes for all the values of c examined. The maximum 

discrepancy, of about 9%, occurs when the mode is 

mid-range.   
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Figure 10. Boundary mode at p = pm. Varying the power, c. 
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Figure 11. Optimal, mean and Rectangular mean vs. un- 

derlying mode. Distribution with interior mode, c = 2 

As an example, for the case shown in Figure 8(c), 

where just about everyone is prepared to pay 5 units or 

more for the good, the optimum price is 9.162 units, the 

mean is 8.931 while the matched Rectangular mean is 

9.041 units. Clearly the matched Rectangular mean can 

give a very good approximation to the optimal price.  

8.4. Summary 

A very large number of Double Power demand densities 

have been examined, with modes spanning the full range 

of MAP: mpp 0 . While the optimal price is distinct 

from each of the mean, the median and the matched 

Rectangular mean, both the mean and the matched Rec- 

tangular mean offer good approximations to the optimal. 

The discrepancy is less than 10% in almost all cases, 

with 5% being more typical. 

9. Matching of the Rectangular Demand 
Distribution to the Two Candidate  
Demand Distributions 

It is reasonable to suppose that a Rectangular distribution 

may be fitted to any conceivable, unimodal demand den- 

sity. Since some form of demand density must be valid in 

all market situations, it is reasonable to postulate, under 

the mild restriction that it must be unimodal, that the true 

demand density may be approximated by the Rectangular 

demand density matched to it. The mean of the matched 

Rectangular demand density may then serve as an ap- 

proximation to the optimal price of the underlying de- 

mand density. The analysis using the two sets of demand 

densities, the first based on the ability to pay and the 

second on the general, Double Power distribution, sug- 

gests that the degree of approximation is likely to be 

relatively small, typically of the order of 5%. 

These results provide, inter alia, a degree of validation 

for the straight-line demand curve conventionally cited 

by economists, since this is equivalent to a Rectangular 

demand density. The results may be exploited further to 

use market testing data to identify the matched Rectan- 

gular demand density rather than the underlying demand 

density, which would be more difficult to do. A simple 

algorithm can then be developed that is able to give a 

good approximation to the optimal price after only a sin- 

gle perturbation of price.   

10. Extension of the Results to Situations 
Other than Monopoly 

10.1. Monopolistic Competition 

Monopolistic competition is held to occur when there are 

many firms producing different brands of a similar prod- 

uct, when those firms may enter and leave the market 

freely and when a new market entrant will take sales 
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from existing retailers in proportion to their current mar- 

ket share [1]. A firm, let us call it firm 1, will set its op- 

timal price without taking into account the individual 

reactions of its competitors. However, their presence 

means that the downward slope of the demand curve it 

faces is expected to be gentler than if it had a monopoly. 

This is because the upper price pertaining at 0S  will 

be lower than in the monopoly situation, while the price 

at  will be unchanged at v  (assuming that firms 

will not sell at less than variable cost). Hence the average 

slope between the two points must be less steep.   

1S  c

In terms of the demand density curve, the maximum 

conceivable price, m , valid in the monopoly situation, 

will have been reduced to a lower value, m . But the 

results set out above were for a general value of m , and 

will therefore apply equally when  is replaced by 

.  

p

p
p

mp

mp
10.2. Oligopoly 

This is a common situation in a modern economy, where, 

for example, food shopping is dominated by a small 

number of large supermarket chains. Whatever the de- 

tails of the oligopolistic interaction, it is reasonable to 

suppose that some sort of demand curve will apply, with 

a slope that we can expect to be generally downward 

sloping even if we might have difficulty specifying its 

precise shape. In terms of the demand density, we can 

expect the probability density, h(p), to exist over some 

finite, non-zero range of prices. The results of Sections 2 

to 9 suggest that it will be possible to approximate such a 

demand density curve reasonably well by a Rectangular 

distribution, resulting in a straight-line demand curve.  

Cournot analysed, in 1838, the situation of a duopoly 

where each firm chose the size of its output based on the 

assumption that the other firm would hold its throughput 

constant [5]. The effect on the monopoly demand curve, 

that is to say the curve that each firm would see if it held 

a monopoly, is simply to shift it to the left by the fraction 

of the market held by the other firm, provided the overall 

market size stays constant. For example, Figure 12 

shows the effective demand curve facing firm 1 if firm 2 

is supplying 25% of the market. Firm 1 will now see a 

lower maximum feasible price, m , and will have to 

work with only 75% of the total market; Figure 12 can 

be seen to be fully analogous to Figure 1.  

p

In 1883 Bertrand claimed that the behaviour of an oli- 

gopoly could be understood better on the assumption that 

firm 1 would see firm 2 as keeping its price constant, 

rather than its output [6]. However, this would lead to 

destructive competition, driving price to the level of 

short-term marginal cost, so that fixed costs would not be 

covered. More recent research has suggested that firms 

avoid this loss-making situation by curbing their ambi-  
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Figure 12. The demand curve of firm 1 in the Cournot 

model. 
 

tion to supply the whole market by deliberately limiting 

their maximum feasible output. Under these conditions, 

Cournot’s model offers a useful insight into oligopoly 

behaviour, while yielding a clearly defined demand curve 

of the shape we have considered previously.  

Half a century later, Hall and Hitch [7] and Sweezy [8] 

came up independently with similar specifications for the 

general form for an oligopolistic demand curve. Sweezy 

suggested that, in the case of oligopoly, the effective de- 

mand curve would be concave, with a kink linking two 

downwardly inclined lines he drew as essentially straight, 

but with the second line having a more negative slope. 

The kinked demand curve may be seen as an asymmetric 

combination of the Bertrand and Cournot assumptions 

and suggested that oligopolistic prices would tend to be 

sticky. This made the construct controversial amongst 

some economists such as Stigler [9], who considered the 

rapid adjustment of prices a fundamental economic tenet. 

The authors give no opinion either way, but include the 

kinked demand curve for the sake of argument and com- 

pleteness.  

The piecewise linear, kinked demand curve, shown in 

Figure 13(a), has a corresponding demand density curve 

that exhibits a step, with the ratio of the probability den- 

sities before and after the step being the ratio, r, of the 

slopes of the demand curve before and after the kink. See 

Figure 13(b).  

Figure 14 shows a contour plot for a constant ratio of 

the mean price to the optimal price for a kinked demand 

curve. It is clear that the mean price lies within 10% of 

the optimal price for a wide range of values of  pp , 

provided the post-kink slope multiplier, r, is 2 or less. 

Equally, the mean price will be within 10% of the opti-

mal for a wide range of values of r, provided the ratio of 

upper and lower prices,  pp , is 2 or less. If both 

 pp  and r are below 2, then the discrepancy be- 

tween the mean price and the optimal price must be be-  
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Figure 13. The kinked demand curve and its corresponding 
demand density. k, r, pα and pβ are defined in Figure 13(b). 

(a) Demand curve when: 2, 6, 1.5r p p p     ; (b) 

Corresponding demand density. 
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Figure 14. Contour plot of constant ratio of the mean price 

to the optimal price for kinked demand curve. 
 

low 5%. For the example shown in Figure 13, where 

5.1 pp  and r = 2, then the mean is just 3.1% be- 

low the optimal price.  

10.3. Perfect Competition 

In the case of perfect competition, the demand curve is 

horizontal, which implies a single price set by the market, 

not subject to change by the retailer. The corresponding 

demand density curve will be an impulse at the market 

price—a rectangular pulse of unit area with a width ap- 

proaching zero and a height approaching infinity, a func- 

tion known to physicists as a Dirac delta function. Self 

evidently all central measures, such as the mean and me- 

dian of the distribution and the mean of the matched 

Rectangular distribution, will converge to a single value 

under these conditions, which value will also constitute 

the optimal price. 

10.4. Summary of the Results for Situations 
Other than Monopoly 

Demand curves that are continuous and downward slop- 

ing will characterize both monopolistic competition and 

oligopoly in the case where Cournot’s theory gives an 

adequate characterization. These will imply a demand 

density, h(p), that will exist over some finite, non-zero 

range of prices. It will be possible to approximate such a 

demand density by a Rectangular demand density, the 

mean of which (the matched Rectangular mean) can be 

expected to approximate the optimal price reasonably 

well. 

Another possibility has been examined in the case of 

oligopoly, namely the kinked demand curve. This has 

been shown to correspond to a stepped demand density 

curve. It is found that the mean of the kinked probability 

distribution will be similar to the optimal price for a 

plausible range of its principal parameters.  

In the case of perfect competition, the proposition that 

the mean and the matched Rectangular mean will ap- 

proximate the optimal price is satisfied exactly, if trivi- 

ally: all the central measures converge to the single mar- 

ket price in this case. 

Thus the mean of the matched Rectangular demand 

density can be expected to provide a good approximation 

to the optimal price in all market situations. 

11. Estimating the Optimal Retail Price with 
Minimum Market Testing 

The fact that the matched Rectangular mean gives a good 

approximation to the optimal price for a near-exhaustive 

range of demand densities means that a simple method 

may be advanced to estimate the optimal price. The 

method is aimed at overcoming the difficulty the retailer 

may have in providing an accurate estimate of the highest 

price in the retailer’s mental model, b . It is assumed 

that the retailer will be able to determine his variable cost 

per item, , to good accuracy, thus fixing the lowest 

p

vc
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MAP of interest, .  vaa

The algorithm is based on the minimum amount of 

market testing, using just two price levels, i , i = 1, 2, 

where bia . These will lead to two different 

numbers, , i = 1, 2, of consumers buying the product 

where: 

cpp :

p

p

pp 
in

 ipi NSn 

  p

p

gduuh
b

i

 

               (14) 

Meanwhile, from Equation (1) the fraction of the 

market prepared to pay at least  will be: ip

     ib

p

i ppgduupS

i

  0    (15) 

where  is the rectangular distribution given in 

Equation (7), and 

 pg  ab ppg 10 . Hence, combining 

Equations (14) and (15),   ibi ppNgn  0           (16) 

Thus the ratio, 21 nn , of the numbers of customers 

buying at prices, and , will be: 1p 2p

2

1

2

1

pp

pp

n

n

b

b 
             (17) 

so that the estimate of the highest price in the retailer’s 

mental model, , is then bp




 


  1
2

1
12

2

1

n

n
pp

n

n
pb       (18) 

The estimate of the optimal price is then simply the 

mean of the Rectangular distribution: 

    


 

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2

1

2
*

2

1
12

2

1

n

n
cpcp

n

npc
p vv

bv  

(19) 

This algorithm has been tested against a number of 

Double Power demand densities, and proved to be highly 

accurate when the initial price level, 1 , is already close 

to the underlying optimum (which should be so even if 

the retailer had available only the sparse information on 

price discussed in Section 4), and the price perturbation, 

, is of the order of 10% or less. 

p

1

Hence, for the demand density shown in Figure 7(a), 

when the price level is set first at  and second at 

, the algorithm gives an estimated optimal price 

of 5.35 units, compared with the true optimum calculated 

for the underlying demand density of 5.34 units. 

2 pp 
51 p

5.52 p

Meanwhile, for the demand density of Figure 8(b), 

setting the price levels at 61 p  then 2  leads 

the algorithm to predict an optimal price of 6.16 units, 

compared with the true optimum calculated for the un- 

derlying demand density of 6.17 units.  

6.5p 

It may be noted that the extra information coming 

from the simulated market testing has improved upon the 

first approximations to the optimal prices coming from 

the matched Rectangular mean, which were 5.13 units 

and 6.30 units respectively.  

12. Conclusions 

A perfect knowledge of the distribution of MAP, or de- 

mand density, would enable the retailer to extract the 

maximum profit, but using market surveys in an effort to 

obtain such comprehensive and accurate information 

would be expensive and problematical even if the num- 

ber of items researched were small. Recognizing the im- 

practicality of repeated market surveys for each and 

every retail good, the study has tested a near-exhaustive 

range of possible demand density curves, as embodied in 

candidate sets 1 and 2. The evidence of the study is that 

the optimal price may be approximated reasonably well 

by the mean of the underlying distribution for all the 

candidate demand densities.  

It has been found that all the demand densities consid- 

ered may be matched well with a Rectangular demand 

density, which yields an optimum price equal to the 

mean price. The mean of the matched Rectangular de- 

mand density has been found to lie close to the optimum 

price of the underlying distribution for all the candidate 

demand densities considered. This is in itself an impor- 

tant result, since the matched Rectangular demand den- 

sity is likely to correspond to the retailer’s initial mental 

model of demand density. It suggests that the retailer will 

be able to make a reasonable initial estimate of the opti- 

mal price to charge based on rather sparse price data.   

An improved estimate may be found if the retailer is 

prepared to use the minimum of market testing, using a 

single perturbation from his initial price. An algorithm 

has been developed using the assumption that the under- 

lying demand distribution may be approximated well by 

a Rectangular demand distribution. Worked examples 

show that the price estimated by the algorithm is an im- 

provement on the mean of the matched Rectangular de- 

mand density and is very close to the actual optimal price 

based on the true, underlying distribution, whatever it is. 

The results apply to all the basic forms of interaction 

between the retailer and his customers, monopoly, mo- 

nopolistic competition and oligopoly, as well as, in their 

limiting form, to perfect competition.   
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