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Abstract. Asymptotic tail probabilities for linear combinations of randomly weighted order statistics

are approximated under various assumptions. One key assumption is the asymptotic independence

for all risks. Therefore, it is not surprising that the maxima represents the most influential factor

when one investigates the tail behaviour of our considered risk aggregation, which for example, can

be found in the reinsurance market. This extreme behaviour confirms the “one big jump” property

that has been vastly discussed in the existing literature in various forms whenever the asymptotic

independence is present. An illustration of our results together with a specific application are explored

under the assumption that the underlying risks follow the multivariate Log-normal distribution.
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1. Introduction

Consider positive dependent random variables (or risks) Xi, i = 1, . . . , n and let X1,n ≥ . . . ≥ Xn,n be the correspond-

ing upper order statistics. We investigate the asymptotic tail behaviour of linear combinations of order statistics

L(C) =
∑n

i=1 CiXi,n where the Ci’s are random deflators/weights and C1 > 0.

Studying the tail probability for such order statistics has multiple financial and insurance applications (for example,

see Hashorva, 2007, Ladoucette and Teugels, 2006, Asimit and Jones, 2008 a and b, Jiang and Tang, 2008 and Li

and Hashorva, 2013). All of these papers have studied the extreme behaviour of the L(C), where C was assumed

to be a deterministic vector. The tail asymptotics of the total risk L(1) =
∑n

i=1 Xi has been investigated in many

recent contributions such as Asmussen and Rojas-Nandayapa (2008), Chen and Yuen (2009), Mitra and Resnick

(2009), Foss and Richards (2010), Asmussen et al. (2011), Kortschak (2012), Hashorva (2013), Embrechts et al.

(2014), Hashorva et al. (2014). It has been seen that the assumption of constant Ci’s represents a popular setting

considered in the recent past, where the asymptotic tail probabilities of some linear combinations of order statistics

have been obtained. Obviously, randomising the Ci’s is a more challenging problem to be studied, which is the main

purpose of this paper. It is also of interest to recognise situations in which the randomisation represents a problem of

interest. This is the case if one is interested in a more accurate risk aggregation, where the time value of the money is

introduced in the model. That is, this popular risk evaluation takes into account not only the amount of claim, but

also the time when the claim occurs, and therefore L(C) becomes the discounted value of the aggregate risk. Another

application that will be detailed in Section 3, is given when the Ci’s quantify the random proportions paid by the

risk holder in the case of its default in payment. In fact, our results are appealing even when C is deterministic.

Take for instance C = (2, 1, , . . . , 1), then

L(C) = 2Xn,n +
n−1∑

i=1

Xi,n = Xn,n + L(1). (1.1)

The maximum risk Xn,n and the total risk L(1) are known to behave similarly in terms of large values (tail behaviour)

for many tractable models, say for instance the Log-normal one, see e.g., Embrechts et al. (2014). However, these

two risks are strongly dependent, and therefore, the behaviour of their sum Xn,n + L(1) is not intuitively clear.

Roughly speaking, our results show that, in many tractable dependence structures, we can substitute L(1) by the

largest risk.
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We now explain the mathematical framework that will be further assumed in this paper. Under some technical

conditions, it is obtained that the most significant contribution to the tail probability of L(C) is given by the largest

component, i.e., C1X1,n. This can be explained by the fact that under asymptotic independence, the “one big

jump” property is always present. In other words, as has been observed in the existing literature see e.g., Foss et al.

(2013), the largest value is the most influential factor in risk aggregation. Our proofs are extremely sensitive to the

tail behaviour of the individual risks. Therefore, a characterisation of the tail distribution of a random variable is

necessary, which is a classical result of the Extreme Value Theory. A distribution function (df) F is said to belong

to the Maximum Domain of Attraction (MDA) of a non-degenerate df G, written as F ∈ MDA(G), if there are some

an > 0 and bn ∈ R for n ∈ N such that for any constant x we have limn→∞ Fn(anx+ bn) = G(x), where G is of one

of the following three df’s:

Fréchet: Φα(x) = exp(−x−α), x > 0, α > 0;

Gumbel: Λ(x) = exp(− exp(−x)), −∞ < x < ∞;

Weibull: Ψα(x) = exp(−|x|α), x ≤ 0, α > 0.

We focus on distributions with unbounded support, i.e., from MDA(Φα) and MDA(Λ), and therefore only the Fréchet

and Gumbel cases will be considered. In Extreme Value Theory, the class of such distributions F is completely

characterised. The following section presents our main result. In Section 3, we illustrate our findings with an

application, while all the proofs are relegated to the last section.

2. Main Results

We consider first the Fréchet MDA and further include the case where the index α is allowed to be 0, i.e., X1 may

exhibit a slowly regularly varying tail. The mathematical formulation of the tail condition imposed on X1 is given

by

lim
t→∞

P (X1 > tx)

P (X1 > t)
= x−α, α ≥ 0. (2.1)

The index α is crucial, since it determines the existence of the moments ofX1. For instance if α < 1, then E{X1} = ∞;

clearly such risks cannot be insured. Further, condition (2.1) means that the tail of X1 can be written simply as

P (X1 > x) = x−αL(x) where L is a slowly varying function (i.e., limt→∞ L(tx)/L(t) = 1, ∀x > 0). A canonical

example for the slowly varying function is L(x) = (log x)γ , γ > 0. Our treatment below is very general, as we do
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not restrict α or L. Under a moment condition on the scaling random variable C1, Breiman’s Lemma (see Breiman

(1965)) shows that the tail of C1X1 is up to E{Cα
1 } the same as the tail of C1. For more details on regular variations

of random variables and vectors see e.g., Jessen and Mikosch (2006).

Throughout the remainder of the paper λ1, . . . , λn are non-negative constants and λ̃n :=
∑n

i=1 λi.

Some standard notation are used, as well as further explanations, in order to provide a precise meaning of our

statements. For two positive functions a(·) and b(·), we write a(·) ∼ cb(·) to mean asymptotic equivalence, i.e.,

lim a(·)/b(·) = c for some positive constant c. We also denote lim sup a(·)/b(·) ≤ 1 by a(·) . b(·).

Theorem 2.1. Let X1, . . . , Xn be some positive random variables satisfying

lim
t→∞

P(Xi > t)

P(X1 > t)
= λi ∈ [0,∞), for all i ∈ {1, . . . , n}. (2.2)

Let C = (C1, . . . , Cn) be a random vector such that C1 > 0 is independent of the maximum X1,n. Suppose that (2.1)

holds with α > 0 and E{Cβ
1 } < ∞ for some β ∈ (α,∞). It is assumed that

lim
t→∞

max
1≤i<j≤n

P(C̃Xi > t, C̃Xj > t)

P(X1 > t)
= 0, (2.3)

with C̃ = max(1,max2≤i≤n |Ci|). If further there exists a positive constant τ such that

P
(
C̃Xi > t, C̃Xj > t, C̃ > τ

)
≥ κijP

(
Xi > t/rij , Xj > t/rij

)
(2.4)

holds for all large t and any two indices i < j in {1, . . . , k} with rij a positive constant, then

P
(
L(C) > t

)
∼ P(C1X1,n > t) ∼ P(X1 > t)E{Cα

1 }λ̃n, t → ∞. (2.5)

We now discuss in greater details the conditions imposed in Theorem 2.1. Relation (2.4) is clearly satisfied if C̃ is

independent of Xi, i ≤ k. Another case for which (2.4) still holds is C̃ has a df with positive lower endpoint α̃ (take

τ = rij = α̃). In numerous applications, risks can be of different nature in terms of their tail behaviour, where both

light and heavy-tailed risks can be part of the aggregation process. A classical result in the case of independent

risks with non-random weights states that the heaviest tail represents the dominant factor in explaining the extreme

events of the aggregate risk. This is also the case for our considered model. Indeed, if Xk has heavier tail than X1,

i.e., (2.2) holds with λk = 0, then the result in (2.5) shows that there is no impact of Xk when performing asymptotic
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evaluations. If E{C̃β} < ∞ for some β ∈ (α,∞), then by Lemma 4.2 for any i 6= k, i > 1

P(C̃Xi > t, C̃Xk > t)

P(X1 > t)
≤

P(C̃Xk > t)

P(X1 > t)
→ 0, t → ∞

and thus condition (2.3) can be relaxed as follows:

lim
t→∞

max
(i,j)∈E+

P(C̃Xi > t, C̃Xj > t)

P(X1 > t)
= 0, (2.6)

where E+ := {(i, j) : 1 ≤ i ≤ j, λi > 0, λj > 0}. Note in passing that due to the dependence among the Ci’s, (2.4) is

still needed even if λk = 0 for some k ≤ n.

It is worth mentioning that (2.4) implies

P (Xi > t,Xj > t) = o
(
P(X1 > t)

)
, t → ∞. (2.7)

In non-technical terms, relation (2.3) ensures that CiXi’s are asymptotically independent, i.e. it is unlikely to observe

joint extreme outcomes arising from this set of random variables. The technical assumption from (2.4) does not have

an intuitive explanation, but earlier examples showed that it is plausible to fall in one of the given settings.

Next, we discuss the case in which the random scaling are independent of the portfolio risks, and has the advantage

of being able to characterise the tail behaviour of L(C) in the presence of slowly variation property of the individual

risks.

Theorem 2.2. Let X1, . . . , Xn be some positive random variables satisfying (2.6). Let C = (C1, . . . , Cn) be a random

vector independent of Xi, i ≤ n with C1 > 0. Suppose that (2.1) holds with α ≥ 0 and (2.3) is satisfied. If further

E{max1≤i≤n |Ci|
β
} ∈ (0,∞) for some β ∈ (α,∞), then (2.5) holds and moreover

P(L(C) > t) ∼

n∑

i=1

P(CiXi,n > t), t → ∞. (2.8)

The Fréchet scenario requires a Pareto-like extreme behaviour for the individual risks, and sometimes leads to an

overestimate of the extreme events magnitude. Additionally, this assumption is appropriate in case that not all of

the moments of X1 exist. Therefore, the Gumbel tail assumption represents a valid alternative, which includes from

moderately heavy-tailed distributions, such as Log-Normal, to light-tailed distributions with all finite moments, such

as Exponential. We further investigate this scenario for which some background is now provided.
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It is well-known (see Embrechts et al. 1997) that if F ∈ MDA(Λ), then there exists a positive, measurable function

a(·) such that F̄ := 1− F satisfies

lim
t→∞

F̄ (t+ a(t)x)

F̄ (t)
= exp(−x) (2.9)

for any x ∈ R. In addition, the latter holds locally uniformly in x (see Resnick, 1987). Recall that the auxiliary

function a(·) satisfies a(t) = o(t) and is such that the relation

lim
t→∞

a (t+ a(t)x)

a(t)
= 1 (2.10)

holds locally uniformly in x.

If X1 has df F1 satisfying (2.9), then the asymptotic tail of X1 can be determined under some weak conditions on

the random scaling factor C1. In the sequel we shall only consider the case in which C1 is bounded, i.e., its df has

some finite upper endpoint ω ∈ (0,∞). Specifically, the following two settings are investigated in this paper:

i) Model A: Assume that P(C1 = ω) = p ∈ (0, 1] and P(C1 ≤ η) = 1− p hold for some η ∈ (0, ω).

ii) Model B: For any x > 0 and some γ ∈ [0,∞), we have

lim
t→∞

P (C1 > ω − x/t)

P (C1 > ω − 1/t)
= xγ . (2.11)

Our first model considers the case that the random weight C1 has a jump at its upper endpoint. This model is of

particular interest, since if p = 1, one may recover the case in which C1 is a deterministic constant. As mentioned in

the Section 1, our results are new even for such weights. The case in which C1 has an unbounded upper endpoint,

i.e., ω = ∞, is more complex and less tractable. If both C1 and X1,n have Weibullian tails the exact asymptotic tail

behaviour of C1X1,n is obtained in Arendarczyk and Dȩbicki (2011).

The excellent contribution of Mitra and Resnick (2009) derives the asymptotic tail behaviour of the sum of dependent

random variables with Gumbel tails, and their sufficient conditions provide the appropriate framework to elaborate

our next result, stated as Theorem 2.3. It is worth mentioning that our proof also provides a simplified argumentation

of their main result for portfolios consisting of three or more risks. In the following we assume without loss of generality

that C1 has upper endpoint equal to 1.

Theorem 2.3. Let X1, . . . , Xn be some positive random variables and suppose that X1 has df in the MDA(Λ) with

infinite right endpoint and an auxiliary function a(·) as defined in (2.9). Let further C = (C1, . . . , Cn) be a given
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random vector such that C1 > 0 is independent of X1,n and the assumption of Model A or Model B holds with ω = 1.

If (2.2) is satisfied and further

lim
t→∞

max
1≤i 6=j≤n

P (C∗Xi > t,C∗Xj > a(t)x)

P(C1X1 > t)
= 0, for all x > 0 (2.12)

holds for C∗ := max1≤i≤n |Ci|, then as t → ∞

P(L(C) > t) ∼ P(C1X1,n > t) ∼ λ̃nP (C1X1 > t) ,

provided that

lim
t→∞

P (C∗Xi > Lija(t), C
∗Xj > Lija(t))

P(C1X1 > t)
= 0, for some Lij > 0 and all 1 ≤ i < j ≤ n. (2.13)

Special attention is now given to the conditions imposed in Theorem 2.3. In the above theorem, if C1 has upper

endpoint ω ∈ (0,∞), then C1X1,n is in MDA(Λ) with auxiliary function a1(t) := ωa
(
t/ω
)
. Clearly, when ω = 1,

then a1(t) = a(t). A simpler case is when C1, . . . , Cn are independent of X1, . . . , Xn, and this setting is addressed

below in greater details under the framework of Log-Normal risks X1, . . . , Xn.

It is worth discussing our model when all C ′
is are constant. Consider for simplicity the model in (4.3). For such an

instance, Theorem 2.3 states that the total of the maximum risk and the sum of all n risks behaves asymptotically

like two times the maximum risk. Additionally, when all risks are asymptotically tail equivalent, i.e., λi’s are all

equal to 1, then the tail probability of 2Xn,n has the same behaviour as n times the tail probability P (2X1 > t)

for t large. Therefore, it only remains to determine the tail probability of each risk, which is a great advantage for

practical purposes.

The permissible dependence structures for our risks models are sensitive to the random weights. Since risks are

assumed to be heavy-tailed in Theorem 2.1, the dependence structure required therein is quite general as compared

to what is required in Theorem 2.3. In order to illustrate our point, let us consider the deterministic weights C ′
is,

as defined in (4.3). The dependence structure assumed in Theorem 2.1 requires the risks to be asymptotically

independent, meaning that (2.3) holds with C̃ = 1. The asymptotic independence assumption alone is however

not enough for the dependence structure assumed in Theorem 2.3. Since the risks in the Gumbel max-domain of

attraction can be very light-tailed, the additional conditions imposed in Theorem 2.3 are not restrictive.

Note that our assumptions stated in (2.12) and (2.13) are in fact the conditions from Mitra and Resnick (2009)

adapted to our setting. In other words, our assumptions ensure more than the fact that it is unlikely to observe
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joint extreme outcomes arising from CiXi’s. In addition, joint extreme outcomes are not likely to occur even if

the extreme thresholds are not equal (for asymptotic independence these extreme thresholds are equal to t). The

set of random variables with Gumbel tails may behave in a peculiar and uncontrolled manner when the risks are

aggregated. Moreover, the classical asymptotic independence assumption has been shown to be insufficient when C’s

are not random, and therefore, if C’s are random, the tail of the aggregated risk is even more expected to exhibit an

erratic behaviour.

3. Applications

In this section, we discuss an application of one of our main results, namely an illustration of the approximations

found in Theorem 2.3. It is further assumed that the individual risks are multivariate Log-Normal distributed.

That is, Xi = exp
(
σiZi + µi

)
, i ≤ n, where (Z1, . . . , Zn) is a multivariate Gaussian distributed random vector with

Pearson correlation coefficients ρij ∈ (−1, 1), 1 ≤ i < j ≤ n and σi > 0, µi ∈ R are some given constants. Further,

suppose that Xi, i ≤ n are independent of C1, which is a random variable with [0, 1] support. Furthermore, C1 is

Beta distributed with positive parameters α, β. It is well-known that Xi’s have distribution functions in the Gumbel

MDA with scaling functions ai(t) = σ2
i t/
(
log(t) − µi

)
, i ≤ n (see for example, Embrechts et al., 1997). By using

Lemma 4.1, it is not difficult to find that C1X1,n has also df in the Gumbel MDA.

The next step is to show that Theorem 2.3 is applicable in the current setting, and therefore we only need to establish

that condition (2.13) holds. In view of our assumptions, we have the stochastic representation

(Xi, Xj)
d
=
(
exp

(
σ2
i sin(Θ)R+ µi

)
, exp

(
σ2
j

(
ρij sin(Θ) +

√
1− ρ2ij cos(Θ)

)
R+ µj

))
, 1 ≤ i 6= j < n,

where the random angle Θ is uniformly distributed on (0, 2π) being independent of the random radius R > 0. Note

that P (R > r) = e−r2/2, r > 0. Assume without loss of generality that µ1 > max2≤i≤n µi and σ1 ≥ max2≤i≤n σi.

Requiring further that Ci’s are bounded, say by 1, we have

P (C∗Xi > Lija(t), C
∗Xj > Lija(t)) ≈ exp

(
−
(log t)2

2σ2
1η

2
ij

)
,

where ≈ stands for a logarithmic asymptotic equivalence, and

ηij = max
0≤θ≤2π

(
min

(
sin(θ), ρij sin(θ) +

√
1− ρ2ij cos(θ)

))
< 1.
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Note that f(t) ≈ g(t) means that log f(t) ∼ log g(t) is true. Now, (2.13) holds since P (C1X1 > t) ≈ exp
(
− (log t)2

2σ2
1

)

is satisfied for all large t. Recall that λi = 1 if σi = σ1, µi = µ1 and otherwise λi = 0. Consequently, Theorem 2.3

holds in our setting. The setup formulated in (4.3) leads to

P

(
2Xn,n +

n−1∑

i=1

Xi,n > t

)
∼

n∑

i=1

P (2Xi > t) ∼
n∑

i=1

P (2σiZ > log(t)− µi) (3.1)

as t → ∞, where Z is an N(0, 1) random variable. Hence, as it can be easily seen above, determining σi’s and

µi’s is crucial in the Log-normal model. Several extensions of this model can be still covered by our main results.

Clearly, the technical assumption that C1 is beta distributed can be weakened to C1 has finite upper endpoint with

a regularly varying tail. Additionally, as in Embrechts et al. (2014) we can easily include in our application the

log-normal model with stochastic volatilities. For instance, we can assume that σi’s are random with finite upper

endpoint satisfying the assumptions of Model A or Model B. Note that the case of Model A has been considered in

the aforementioned paper for Ci’s being all equal. Another interesting and feasible extension is to consider the more

general framework of Log-elliptical risks. For such a model, our results generalise the recent findings of Kortschak

and Hashorva (2013). The Log-normal assumption is widely accepted by practitioners as a distribution for modelling

individual risks. Choosing an appropriate dependence to model the association among various risks is a difficult

tasks, and therefore, the Gaussian dependence is an acceptable choice due to many convenient features, such as

the availability of relatively simple estimation and simulation methods. Moreover, as mentioned above, our results

allow for dependent risks with Log-elliptical dependence structure and stochastic volatility, which are of interest in

particular when the Log-normality is not tenable.

Let us now discuss the parametric model considered above. Consider the situation in which the holder of this portfolio,

named insurer, prefers to transfer the first k largest claim amounts, with 1 ≤ k < n, to a different insurance player,

namely reinsurer. This risk transfer contract is also known as the Large Claims Reinsurance (LCR) (see for example,

Ladoucette and Teugels, 2006) and the reinsurer is liable to pay

k∑

i=1

Xi,n, which might not always be paid in full

due the possibility of default in payment. Therefore, the insurer expects to pay an additional amount (as a result

of the default event) of Lk(C) :=
∑k

i=1 CiXi,n, where 0 ≤ Ci = 1 − RecRi ≤ 1 are some random weights with

RecRi being the so-called recovery rate corresponding to the ith largest claim. Our assumptions require that RecR1

is Beta distributed with parameters β and α. Assume next for simplicity that σ1 > σj , j ≥ 1. Theorem 2.3 shows

that P (Lk(C) > t) ∼ P
(
C1X1 > t

)
, and consequently, the insurer may easily understand the severity of the extreme
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events associated with the reinsurer default. Specifically, the asymptotic result can be used in approximating tail

risk measures such as Value-at-Risk (VaR) and Expected Shortfall (ES):

ESp (Lk(C)) ∼ V aRp (Lk(C)) ∼ V aRp

(
C1X1

)
as p ↑ 1, (3.2)

since C1X1,n is in the Gumbel MDA (for more details, see Asimit and Badescu, 2010). Recall that for a generic

random variable Z, V aRp(Z) represents the pth quantile and ESp(Z) := E{Z|Z > V aRp(Z)}. It can be easily

seen that evaluating the extreme events associated with Lk(C) has been drastically reduced via our findings from

Theorem 2.3. Moreover, the claim in (3.2) holds for general Log-elliptical risks with underlying random radius in the

Gumbel MDA.

4. Further Results and Proofs

We display next some lemmas which are of some independent interests and then proceed with the proofs of the main

results.

Lemma 4.1. Let C and X be two independent positive random variables. Suppose that C has upper endpoint

ω ∈ (0,∞) and X has df in MDA(Λ) with scaling function a(·).

i) If C obeys Model A, then for a function R(t) with R(t) = o

((
a(t)
t

)ξ)
, for every ξ > 0

P (CX > tω) ∼ pP (X > t) (1 +R(t)) .

ii) If C satisfies the assumption (2.11) of Model B, then

P (CX > tω) ∼ Γ(γ + 1)P

(
C > ω −

ωa(t)

t

)
P (X > t) ,

where Γ(·) is the Euler gamma function.

Proof of Lemma 4.1 i) The crucial asymptotic result for establishing the claim is the so-called Davis-Resnick tail

property of distributions in the MDA(Λ). Namely, by Proposition 1.1 in Davis and Resnick (1988)

lim
t→∞

(
a(t)

t

)µ
P (X > Kt)

P (X > t)
= 0

holds for any µ ∈ R,K > 1. The latter and the fact that η ∈ (0, ω) implies the proof. �

ii) Since C∗ := C/ω has df with upper endpoint 1 and is regularly varying at 1 with index γ, the claim follows

immediately from Theorem A.2 in Hashorva (2015), and thus the proof is now complete. �
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Lemma 4.2. Let C,X and Y be three positive random variables such that C is independent from X,Y and X

satisfies (2.1) with some constant α ≥ 0. Suppose that there exists a positive function h(·) such that limt→∞ h(t) =

limt→∞ t/h(t) = ∞ and

lim
t→∞

P (C > h(t))

P (X > t)
= 0. (4.1)

If further

lim
t→∞

P (Y > t)

P (X > t)
= 0, (4.2)

then we have

lim
t→∞

P (CY > t)

P (X > t)
= 0. (4.3)

Furthermore, if E{Cβ} < ∞ for some β > α, then (4.1) is valid.

Proof of Lemma 4.2 By the assumptions

P (CY > t)

P (X > t)
=

P (CY > t,C ≤ h(t)) + P (CY > t,C > h(t))

P (X > t)

≤
P (CY > t,C ≤ h(t)) + P (C > h(t))

P (X > t)

holds for all large t. Denote by F the df of C and set h∗(t) = t/h(t). Since limt→∞ h∗(t) = limt→∞ h(t) = ∞, then for

any large M we can find n(M) so that for all t > n(M) we have h∗(t) > M and h(t) > M. Further, by (4.2) for any

ε > 0 and for some M ′ (take for simplicity M ′ = M), we have P(Y >t)
P(X>t) ≤ ε, ∀t > M. Consequently, for any c ∈ (0, 1)

we have h∗(t)/c > M/c > M implying P (Y > h∗(t)/c) /P (X > h∗(t)/c) ≤ ε, ∀t > n(M). The independence of C

and Y together with equation (4.2) yield
(
set G(c) := F

(
h(t)c

))

P (CY > t,C ≤ h(t))

P (CX > t)
=

∫ h(t)

0

P (Y > t/c)

P (CX > t)
dF (c)

=
1

P (CX > t)

∫ 1

0

P (Y > h∗(t)/c)

P (X > h∗(t)/c)
P (X > h∗(t)/c) dG(c)

≤
ε

P (CX > t)

∫ 1

0

P (X > h∗(t)/c) dG(c)

= ε
P
(
CX > t,C ≤ h(t)

)

P (CX > t)
≤ ε
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for any t > n(M), and thus (4.3) follows. Next, if E{Cβ} < ∞ for some β > α, then the random variable X has

heavier tail than C, i.e., E{Xα+ε} = ∞ and E{(C1+ε′)α+ε′′} < ∞ for some ε, ε′, ε′′ positive with ε′′ > ε implying

thus (4.1) holds since further by the assumption limt→∞ h(t)/t = 0, hence the proof is complete. �

In the following we shall need the concept of vague convergence. Let {µn, n ≥ 1} be a sequence of measures on a

locally compact Hausdorff space B with countable base. Then µn converges vaguely to some measure µ, written as

µn
v
→ µ, if for all continuous functions f with compact support we have

lim
n→∞

∫

B

f dµn =

∫

B

f dµ.

A thorough background on vague convergence is given in Resnick (1987).

Lemma 4.3. If the assumptions of Theorem 2.1 are satisfied with α > 0 and Ci ≥ 0 almost surely for all 2 ≤ i ≤ n,

then the following vague convergence

P
(
(C1X1,n/t, . . . , CnXn,n/t) ∈ ·

)

P(C1X1,n > t)

v
→ µ(·), t → ∞ (4.4)

holds on [0,∞]× [M,∞]× · · · × [M,∞] \ {(0, 0, . . . , 0)} for any M < 0 where the limit measure µ is given by

µ(dx1, dx2, . . . , dxn) := αx−α−1
1 dx1ǫ0(dx2) · · · ǫ0(dxn),

where ǫ0(·) denotes the Dirac measure.

Proof of Lemma 4.3 First note that by Bonferroni’s inequality for any real t we have

n∑

i=1

P(Xi > t)−
∑

1≤i<j≤n

P(Xi > t,Xj > t) ≤ P(X1,n > t) ≤

n∑

i=1

P(Xi > t). (4.5)

Clearly, equation (2.7) suggests that
∑

1≤i<j≤n P(Xi > t,Xj > t) = o
(
P (X1 > t)

)
as t → ∞. Hence, equation (2.2)

implies that limt→∞
P(X1,n>t)
P(X1>t) = λ̃n, which in turn by Breiman’s Lemma (see Breiman, 1965) yields

lim
t→∞

P(C1X1,n > t)

P(X1 > t)
= E{Cα

1 }λ̃n. (4.6)

Next, we show the vague convergence only for the first two largest order statistics, since the high dimensional

case follows easily by using further the fact that X1,n ≥ X2,n ≥ · · · ≥ Xn,n almost surely. The above-mentioned

convergence of measures holds if the convergence is valid over the following relative compact sets:

i) (x,∞]× (y,∞], where x > 0, y ≥ M and y 6= 0;
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ii) [0,∞]× (y,∞], where y > 0.

Part i) is now investigated for which P(C1X1,n > tx,C2X2,n > ty) = P(C1X1,n > tx) holds for all y < 0 due to the

positivity assumption of the Xi’s. Consequently, equation (4.6) yields

lim
t→∞

P
(
(C1X1,n/t, C2X2,n/t) ∈ (x,∞]× (y,∞]

)

P(C1X1,n > t)
= x−α = µ ((x,∞]× (y,∞]) .

For any y > 0, the following is true

P(X2,n > y) ≤
∑

1≤i<j≤n

P(Xi > y,Xj > y). (4.7)

Now,

P
(
(C1X1,n/t, C2X2,n/t) ∈ (x,∞]× (y,∞]

)

P(C1X1,n > t)

≤
P(C2X2,n > ty)

P (C1X1,n > t)

≤
P(X1 > ty)

P(X1 > t)

P(X1 > t)

P(C1X1,n > t)

∑

1≤i<j≤n

P(C2Xi > ty,C2Xj > ty)

P(X1 > ty)

∼ y−α
(
E{Cα

1 }λ̃n

)−1 ∑

1≤i<j≤n

P(C2Xi > ty,C2Xj > ty)

P(X1 > ty)

→ 0 = µ ((x,∞]× (y,∞]) , t → ∞, (4.8)

where the third implication is due to equations (2.1) and (4.6), while the fourth implication is a consequence of (2.3).

Thus, part i) is fully justified. Finally, part ii) can be shown in the same manner as displayed in (4.8). �

Lemma 4.4. Let us assume that the assumptions of Theorem 2.3 are satisfied such that Ci ≥ 0 almost surely for all

2 ≤ i ≤ n. Then as t → ∞

P

((
(C1X1,n − t)/a(t), C2X2,n/a(t), . . . , CnXn,n/a(t)

)
∈ ·
)

P(C1X1,n > t)

v
→ ν(·) (4.9)

holds on [M,∞]× [−∞,∞]× · · · × [−∞,∞] for any M < 0 with limiting measure ν given by

ν(dx1, dx2, . . . , dxn) := exp(−x1)dx1ǫ0(dx2) · · · ǫ0(dxn).

Proof of Lemma 4.4 The proof is similar to that of Lemma 4.3 and it is sufficient to verify the convergence only

over the following compact sets:

i) (x1,∞]× (x2,∞]× . . .× (xn,∞], where x1 > M and xi < 0 for all i ≥ 2;
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ii) (x1,∞]× (x2,∞]× . . .× (xn,∞], where x1 > M and xi > 0 for some i ≥ 2.

For any set from part i)

P
(
C1X1,n > t+ a(t)x1, CiXi,n > a(t)xi, for all i ≥ 2

)
= P

(
C1X1,n > t+ a(t)x1

)
.

By Lemma 4.1, under the assumptions of Model A or Model B the random variable C1X1 is in the MDA(Λ) with

auxiliary function a(·). Note that when ω 6= 1, then the auxiliary function is not a(·) but ωa(t/ω). Moreover, C1X1,n

is also in the MDA(Λ) with auxiliary function a(·) under the assumptions of Model A or Model B, provided that

X1,n is in MDA(Λ) with auxiliary function a(·), which we show next. We shall show that

lim
t→∞

P(C1X1,n > t)

P(C1X1 > t)
= λ̃n (4.10)

holds, and thus both X1,n and C1X1,n have df in the Gumbel MDA. The fact that C1 > 0, equations (2.2) and (4.5),

and the main result of Lemma 4.1 suggest that (4.10) is satisfied as long as

P(C1Xi > t,C1Xj > t) = o
(
P(C1X1 > t)

)
, t → ∞, for all 1 ≤ i < j ≤ n. (4.11)

Recall that a(t) = o(t) as t → ∞. The latter and equation (2.12) yield that for large t we have

P(C1Xi > t,C1Xj > t) ≤ P(C∗Xi > t,C∗Xj > t)

≤ P
(
C∗Xi > t,C∗Xj > a(t)

)
= o
(
P(C1X1 > t)

)
, t → ∞,

which justifies (4.11). Consequently,

lim
t→∞

P

((
C1X1,n−t

a(t) ,
C2X2,n

a(t) , . . . ,
CnXn,n

a(t)

)
∈ (x1,∞]× (x2,∞]× . . .× (xn,∞]

)

P(C1X1,n > t)

= lim
t→∞

P
(
C1X1,n > t+ a(t)x1

)

P(C1X1,n > t)

= e−x1 = ν
(
(x1,∞]× (x2,∞]× . . .× (xn,∞]

)
.
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For the second part, without loss of generality x2 > 0 is further assumed. Now,

P

((
C1X1,n−t

a(t) ,
C2X2,n

a(t) , . . . ,
CnXn,n

a(t)

)
∈ (x1,∞]× (x2,∞]× . . .× (xn,∞]

)

P(C1X1,n > t)

≤

P

((
C1X1,n−t

a(t) ,
C2X2,n

a(t)

)
∈ (x1,∞]× (x2,∞]

)

P (C1X1,n > t)

≤
P (C1X1 > t)

P (C1X1,n > t)

P
(
C1X1,n > t+ a(t)x1, C2X2,n > a(t)x2

)

P (C1X1 > t)

≤
P
(
C∗X1,n > t+ a(t)x1, C

∗X2,n > a(t)x2

)

P (C1X1 > t)

≤
∑

1≤i 6=j≤n

P
(
C∗Xi > t+ a(t)x1, C

∗Xj > a(t)x2

)

P (C1X1 > t)

→ 0 = ν
(
(x1,∞]× (x2,∞]× . . .× (xn,∞]

)
, t → ∞

follows from (2.12), (4.7) and the fact that

max
1≤i 6=j≤n

P
(
C∗Xi > t+ a(t)x1, C

∗Xj > a(t)x2

)
= o
(
P(C1X1 > t)

)
.

The latter is justified in few steps. Equation (2.10) yields that (1 − ε)a(t) ≤ a (t+ a(t)x1) ≤ (1 + ε)a(t) for

any arbitrarily fixed 0 < ε < 1 and all large t. Recall that C1X1 is in the MDA(Λ) with scaling function a(·).

Consequently,

P (C∗Xi > t+ a(t)x1, C
∗Xj > a(t)x2)

P(C1X1 > t)
≤

P

(
C∗Xi > t+ a(t)x1, C

∗Xj > a (t+ a(t)x1)
x2

1+ε

)

P(C1X1 > t)

∼
P

(
C∗Xi > t+ a(t)x1, C

∗Xj > a (t+ a(t)x1)
x2

1+ε

)

P(C1X1 > t+ a(t)x1)
e−x1

→ 0, t → ∞

holds for any x1 ∈ R and x2 > 0, which is a consequence of relations (2.9) and (2.12), and thus the claim follows. �

Proof of Theorem 2.1 In the first instance, we assume that Ci ≥ 0 for all i ≥ 2. Clearly,

P

(
n∑

i=1

CiXi,n > t

)
= P

(
n∑

i=1

CiXi,n > t,C1X1,n > 0

)
. (4.12)

In addition,

lim
t→∞

P

(
n∑

i=1

CiXi,n > t,C1X1,n > 0

)

P(C1X1,n> t)
= lim

t→∞

P

((
C1X1,n/t, C2X2,n/t . . . , CnXn,n/t

)
∈ A1

)

P(C1X1,n > t)
= µ(A1) = 1, (4.13)
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where A1 := {x :
∑n

i=1 xi > 1, x1 > 0, xi > M for all i ≥ 2} and M is a negative constant. Note that the second

step is due to the fact that Proposition A2.12 of Embrechts et al. (1997, p. 563) can be applied in (4.4) since A1

does not put any mass on its boundary. In addition, the whole mass over the set A1 is concentrated on the line

(1,∞]× {0}n−1. Combining (4.12) and (4.13) we have

P

(
n∑

i=1

CiXi,n > t

)
∼ P (C1X1,n > t) , t → ∞. (4.14)

Similarly,

lim
t→∞

P

(
C1X1,n −

n∑

i=2

CiXi,n > t,C1X1,n > 0

)

P(C1X1,n> t)
= µ(A2) = 1,

where A2 := {x : x1 −
∑n

i=2 xi > 1, x1 > 0, xi > M for all i ≥ 2}. Once again, the entire mass over the set A2 is

concentrated on the line (1,∞]× {0}n−1. Thus,

P

(
C1X1,n −

n∑

i=2

CiXi,n > t

)
∼ P(C1X1,n > t), t → ∞. (4.15)

We may now drop the non-negativity assumption for the Ci, i ≥ 2 since

P

(
C1X1,n −

n∑

i=2

C−
i Xi,n > t

)
≤ P

(
n∑

i=1

CiXi,n > t

)
≤ P

(
n∑

i=1

C+
i Xi,n > t

)
, (4.16)

where C+
i = max{Ci, 0} and C−

i = max{−Ci, 0}. The latter, together with (4.6), (4.14) and (4.15) completes the

proof for this case. �

Proof of Theorem 2.2 We show first that for any index i such that 2 ≤ i ≤ n

C+
i Xi,n

t

∣∣∣(C1X1,n > t)
p
→ 0
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is valid where
p
→ and

d
→ stand for convergence in probability and in distribution, respectively letting the argument

t → ∞. Indeed, by (2.3) for any y > 0 we obtain applying Breiman’s Lemma (set C := max2≤i≤n C
+
i )

P

(
C+

i Xi,n

t
> y
∣∣C1X1,n > t

)

=
P
(
C+

i Xi,n > ty,C1X1,n > t
)

P (C1X1,n > t)

≤
P
(
CX2,n > ty

)

P (C1X1,n > t)

≤
P(X1 > ty)

P(X1 > t)

P(X1 > t)

P(C1X1,n > t)

∑

1≤i<j≤n

P
(
CXi > ty,CXj > ty

)

P (X1 > ty)

→ 0 as t → ∞

since by the assumption on C ′
is

lim
t→0

P
(
CXi > ty,CXj > ty

)

P (X1 > ty)
≤ lim

t→0

P
(
C̃Xi > ty, C̃Xj > ty

)

P (X1 > ty)
= 0.

Therefore, limt→∞ P

(
C+

i
Xi,n

t > y
∣∣C1X1,n > t

)
= 0. Further, equation (4.6) implies that

C1X1,n

t

∣∣∣(C1X1,n > t)
d
→ W,

where the random variable W ≥ 1 has survival function x−α, x ≥ 1. Thus,

(
C1X1,n

t
,
C+

2 X2,n

t
, , . . . ,

C+
n Xn,n

t

) ∣∣∣(C1X1,n > t)
d
→ (W, 0, . . . , 0) (4.17)

implying

(
C1X1,n

t
+

n∑

i=2

C+
i Xi,n

t

)∣∣∣(C1X1,n > t)
d
→ W. (4.18)

When α = 0, then W = 1 and hence the convergence holds in probability. Similarly, we obtain

(
C1X1,n

t
+

n∑

i=2

C−
i Xi,n

t

)∣∣∣(C1X1,n > t)
d
→ W.

Consequently,

lim
t→∞

P

(
C1X1,n −

n∑

i=2

C−
i Xi,n > t

)

P (C1X1,n > t)
= lim

t→∞

P

(
C1X1,n −

n∑

i=2

C−
i Xi,n > t,C1X1,n > t

)

P (C1X1,n > t)

= lim
t→∞

P

(
C1X1,n −

n∑

i=2

C−
i Xi,n > t

∣∣C1X1,n > t

)
= P (W > 1) = 1.
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If C = 0 almost surely the proof follows, therefore let us assume that C > 0. Suppose for notational simplicity that

Ci > 0, i ≤ n. For any ε > 0 we have

P

(
n∑

i=1

CiXi,n > t

)
≤ P

(
n∑

i=1

CiXi,n > t,C1X1,n > t(1− ε)

)
+ P

(
n∑

i=2

CiXi,n > εt

)

≤ P

(
n∑

i=1

CiXi,n > t,C1X1,n > t(1− ε)

)
+ P

(
nCX2,n > εt

)
.

By (4.8) we have limt→∞
P

(
nCX2,n>εt

)

P(C1X1,n>t) = 0. Thus, in view of (4.17)

lim
t→∞

P

(
n∑

i=1

CiXi,n > t,C1X1,n > t(1− ε)

)

P (C1X1,n > t(1− ε))
= lim

t→∞
P

(
n∑

i=1

CiXi,n > t/(1− ε)|C1X1,n > t

)
= P

(
W > 1/(1− ε)

)
,

and hence the proof follows from equation (4.16) and letting ε ↓ 0. �

Proof of Theorem 2.3 The proof is based on Lemma 4.4 and similar arguments as provided for Theorem 2.1. We

first assume that Ci ≥ 0 for all 2 ≤ i ≤ n and let M < 0 such that −M > (n − 1)L∗, where L∗ = max1≤i<j≤n Lij .

Obviously,

P

(
n∑

i=1

CiXi,n > t

)
= P

(
n∑

i=1

CiXi,n > t,C1X1,n ≤ t+Ma(t)

)
+ P

(
n∑

i=1

CiXi,n > t,C1X1,n > t+Ma(t)

)
.(4.19)

Further, we have

P

(
n∑

i=1

CiXi,n > t,C1X1,n ≤ t+Ma(t)

)
≤ P

(
n∑

i=2

CiXi,n > −Ma(t)

)
(4.20)

≤ P

(
C∗X2,n > −

M

n− 1
a(t)

)

≤
∑

1≤i<j≤n

P

(
C∗Xi > −

M

n− 1
a(t), C∗Xj > −

M

n− 1
a(t)

)

= o
(
P(C1X1 > t)

)
, t → ∞,

where the last implication is due to (2.13) and the fact that −M > (n−1)Lij for all 1 ≤ i < j ≤ n. Next, the second

term from (4.19) is investigated via (4.9), i.e.,

lim
t→∞

P

(
n∑

i=1

CiXi,n > t,C1X1,n > t+Ma(t)

)

P(C1X1,n > t)
(4.21)

=
P

((
(C1X1,n − t)/a(t), C2X2,n/a(t), . . . , CnXn,n/a(t)

)
∈ B1

)

P(C1X1,n > t)
= ν(B1) = 1,
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where B1 := {x :
∑n

i=1 xi > 0, x1 > M}. Now, the second step is due to the fact that Proposition A2.12 of Embrechts

et al. (1997, p. 563) can be applied in (4.9) since B1 does not put any mass on its boundary. In addition, the whole

mass over the set B1 is concentrated on the line (0,∞]× {0}n−1. Combining equations (4.19), (4.20) and (4.21), we

get

P

(
n∑

i=1

CiXi,n > t

)
∼ P(C1X1,n > t), t → ∞. (4.22)

Similarly,

lim
t→∞

P

(
C1X1,n −

n∑

i=2

CiXi,n > t,C1X1,n > t+Ma(t)

)

P(C1X1,n > t)
(4.23)

=
P

((
(C1X1,n − t)/a(t), C2X2,n/a(t), . . . , CnXn,n/a(t)

)
∈ B2

)

P(C1X1,n > t)
= ν(B2) = 1,

where B2 := {x : x1 −
∑n

i=2 xi > 0, xi > M}. Once again, the entire mass over the set B2 is concentrated on the line

(0,∞]× {0}n−1. Note that

P

(
C1X1,n −

n∑

i=2

CiXi,n > t,C1X1,n ≤ t+Ma(t)

)
= 0

due to the non-negativity assumption of the Ci’s. The latter and (4.23) yield that

P

(
C1X1,n −

n∑

i=2

CiXi,n > t

)
∼ P(C1X1,n > t), t → ∞. (4.24)

Therefore, equations (4.22), (4.24) and (4.16) help in dropping the non-negativity assumption for the Ci for all

2 ≤ i ≤ n, and the proof follows utilising further (4.10). �
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