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ABSTRACT

The shapes of forward curves of energy commoddies believed to contain information on the
volatility of futures prices for these commoditi@&he slope of the forward curve not only reflects
temporal supply and demand conditions, but also réationship between current and expected
market conditions. However, no empirical invesiigatexists in the literature on whether utilising
information on the slopes of the forward curvespérgy commodities can improwae’s ability to
capture the dynamics of the volatility of the fsiprices of these commoditiehéelaim of this study

is to undertake such an investigation. Daily endtgyres prices traded on the New York Mercantile
Exchange (NYMEX) over the period January 1997 to dbdwer 2006 are used to estimate the
parameters of an augmented transition EGARCH mdlda allows for changes ithe model’s
parameters based on the forward curve. The foiagaserformance of the model is compared to that
of other models in predicting the volatility of egg futures prices over the period January 2007 to
December 2008. The results provide strong suppofavour ofa convex relationship between the
volatility of energy futures prices and the forwargve.
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1. Introduction

In 2008 the world’s energy consumption reached its highest record level: 11,295 million
petroleum tons (crude oil, oil products, and natural gas), coal, and nuclear awd hydr
electricity, representing 59%, 29% and 12% of this consumption, respectivieie.
dependence of the world economy on energy commodities has been highlighted ioausume
studies, e.g., studies by Lee et al. (1995), Ferderer (1996), Huang et al. (1996 ansé\5
(1999 2003). In recent years, competition to secure supplies of energy commaodgities
developed and developing economies and the growth in international trabeitsa
transportation have contributed to substantial increases in the pricpriaadvolatility of
energy commodities. Also, world political events have impacted energyetaaand thus
energy prices and price volatilities, e.g., the price of natural gas irdployt&urope from
Russia via Ukraine increased in the winter of 2008 following a disputeebrt®&urope and
Russia.

Also in recent years, energy commodities have become an importangrasgefor investors
and traders who use such commodities for diversification, speculation argtmewe
purposes. This occurrence has been the impetus for a large body of litdratunedels the
behaviour and dynamics of the volatility of energy prices (mainly oil angroitlucts).
Wilson et al. (1996) found that there were three major shifts in the veglatflitvorld oil
prices during the 1984-1992 period, attributed to the nature and magnitude of theoesoge
shocks- OPEC policy changes, Iran-Irag conflict, Gulf War and extreme weather conditions.
Fong and See (2008)und hat the volatility of oil prices can vary with market conditions.

Sadorsky (2006) in examining the forecasting performance of GARCH and Threshold
GARCH (TGARCH) type models in predicting volatility of daily oil priceoncludes thatm

one model is the best predictor. Further, non-parametric models perform thetter
parametric models based upon back-testing. This is expected becauseefidtien of the

oil price distribution from normality and the existence of excess kurssibserved by Chan

et al (2007). Narayan and Narayan (2007) report that asymmetric impact &§ sitothe
volatility of oil prices and the persistence of this volatildgn be different depending on
sample period considered. Fan et al. (2008) propose a Generalised Emibutiziat (GED)
GARCH approach to estimate ValaeRisk of WTI and Brent crude oil prices. They argue
that this approach is more appropriate as it can address deviations from normality. Alizadeh et
al. (2008) examine the performance of Markov Regime Switching GARCH (MRS-GARC
models for hedging WTI Crude Oil, Heating Oil, and Gasoline futures costiacted in
NYMEX, and report that regime switching hedge ratios are generalfgrpe better than
other dynamic hedge ratios.

In a recent study, Kang, Kang and Yoon (2009) examine the specificatidifferent
GARCH type volatility models in capturing, forecasting and identifyshgized features of
volatility of crude oil prices for WTI, Brent and Dubai grades. They find @anponent
GARCH (CGARCH) and Fractionally Integrated GARCH (FIGARCH) models laatter

! BP Statistical Review of World Energy 2009.
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equipped to explain the persistence of volatility of crude oil pricespamed to simple
GARCH and IGARCH models. In the natural gas market, Suenaga et al. €@08ne the
dynamics of volatility of NYMEX Natural Gas prices and report thiatle volatility tends to
increase in winter, volatility persistence and correlation betweenugemtly traded contracts
exhibits certain degree of seasonality. They also argue that ignarahg ehaviour in
volatility dynamics can result in sub-optimal hedging stratedixlels that have been used

to investigate the volatility of energy prices, in turn, have beenfosettriving hedge ratios

(e.g. Haigh and Holt, 2002, Alizadeh et al, 2008), risk monitoring and \AResk
estimations (e.g. Sadorsky, 2006, Sadeghi and Shavvalpour, 2006, Hung et al., 2008, and
Marimoutou et al., 2009), asset allocation (e.g. Alizadeh and Nom2d®8, Liao, et al.,

2008) and derivatives pricing (Brennan and Schwartz, 1985, and Schwartz, 1997, and
Anderluh and Borovkova, 2008).

An aspect of the volatility of energy prices that has not been consitleretofore in the
literature is the slope of the energy forward curva proxy for market condition - that can
explain the dynamics of volatilityfahe energy prices. Whilst the theoretical underpinning of
energy forward curve has been discussed by Litzenberger and Robinowitz (1995), Garlson e
al. (2007) and Kogan et al. (2009), the nature of the curve and its impottarme
understanding of the dynamics of the volatility of energy prices have notelxaerined in

the literature. The purpose of this study is to empirically inyate whether incorporating the
slope of the forward curve in energy price volatility models can improve ity to
capture the dynamics of second moments of the futures prices as vieliragrove the
forecasting performance of these models.

This study contributes to the literature on modelling the volatlitgnergy prices in several
ways. First, it provides empirical evidence of the existence dfoag convex relationship
between the slope of forward curve and the volatility of energy pricesneit establishes
that the dynamics of the volatility of energy prices depends on the ntarditions defined

by the shape of the forward curve. Third, using short-term energy futures priassesses
the impact of the shape of forward curve on 1, 2, and 3 monthly maturity futures prnieegy
volatilities. Finally, it compares the forecasting performance of ergigg volatility models
that incorporate the shape of the forward curve with conventional volatility models that do not
include the shape of the curve as well as measures the asynuhelny forecasts. The
study’s findings are expected to have important implications for traders and other participants
in energy futures markets by allowing them to accommodate asymmetigk assessment
and loss functions measurement of these markets.

The study is structured as follows. The next section reviews the ticabbackground on the
relationship between the market condition for energy commodities (asteeflby the slope
of the forward curve) and the volatility of energy commodity prices. Se&iqmesents

proposed statistical models to be used in investigating thieoredaip between the forward
curve and volatility of energy prices. Section 4 describes the lo@tate to be used in the
estimation of the parameters of these models. Then, the estimatids sersupresented in
section 5, while sections 6 and 7 discuss the forecasting performah@e@uracy of VaR

estimates of different volatility models, respectively. In the fgedtion, conclusions of the
study are found.



2. Theoretical background

Market prices for energy commodities are determined via the markenglsapply-demand
process. However, since energy commodities are exhaustible natoaicess the market
clearing supply-demand process for these commodities will differ sbatdvom the market
clearing process of commodities with infinite supply. Theoretical mazfelse dynamics of
energy prices and their volatilities have developed through a seriagd@fssthat have taken

two different approaches in this development. The first approach is based on statistetal mod
of commodity price dynamics where convenience vyield is assumed texdmgenous,
stochastic, and correlated with price (e.g., studies by Brennan and Sch@@5tzBrenan

1991, and Schwartz 1997). In the second approach, an endogenous price procesdis deriv
from an equilibrium price framework, where production, demand, storage, and inveaterie
considered (e.g., studies by Litzenberger and Robinowitz, 1995, Routledge et al., 2000,
Carlson et al., 2007, Geman and Ohana, 2009, and Kogan et al.? 2009).

Litzenberger and Robinowitz (1995) note that energy prices exhibit strong backamrdati
i.e., discounted futures prices are below spot prices. Assuming thatpdgaroduction are
uncertain, they argue that holding commodity extraction rights isaitaila call option with
a strike price (a proxy for extraction cost) and that price backwardatisesafiom an
equilibrium trade-off between exercising the option or keeping iealihat is to say, if
discounted futures prices are higher than spot price and the cost ofiextveas to increase,
all producers would postpone extraction, thereby resulting in an incretheespot price and
weak price backwardation. Litzenberger and Robinowitz (1995) thus claim thexistence
of weak price backwardation in energy markets is a necessary contbtioourrent
production. In addition, due to the production capacity constraint, they shovhénatis a
positive and linear relationship between the volatility of eng@rgyes and the degree of price
backwardation. Assuming a mean reverting demand process and the resultiitgiwequi
inventory dynamics, Routledge et al. (2000) derive spot and forward energy piess.
show that their model in utilizing a backwardation forward curve capthessrpact of low
stock levels and high consumption of energy commaodities.

A study by Carlson et al. (2007) develops a general equilibrium modael riwarrket for an
extractable resource, where both prices and extraction costs are dedeemdagienously.

The study argues that production adjustment costs result in endogenousoextigices

that, in turn, cause higher price volatility both at high and low demarelsl Further, the
Carlson et al. (2007) model allows for a nonlinear U shape relationship betwesopthef
forward curve and price volatility due to production and extraction choices amgtradpts.
Geman and Ohana (2009) in using the slope of the forward curve as a proxy for inventory
levels of energy commodities finds a negative correlation betwess wilatility of oil prices

and oil inventory levels. This negative correlation however prevails dunling periods of
scarcity when oil inventory levels are below the historical.

More recently, Kogan et al2009) argue that models such as that of Litzenberger and
Robinowitz (1995), based on competitive storage and changes in inventory forgtbere
determination, ignore the production side of the economy. This shortcoming issedbi®y
developing a model for determining energy futures prices in an equilibpiaguction
economy with stochastic demand. Kogan et al. (2009) show that irreveygabtitmaximum
investment rate constraints can affect the investment, output ang si@gions of energy

2 Also, see studies by Deaton and Laroque (1992, 1996)ail and Wright (1991), and Chambers and Baily (1996).



commodity firms, and therefore, the volatility of futures prices of energy comesdfiogan
et al. (2009) also conclude that the relationship between the forward curpaandolatility
is non-monotonic and V shape. Their theoretical argument to support ldtisnghip is as
follows: if the capital stocks for energy commodity firms are much higher tthex optimal
level (for a given demand level), the firms’ decisions would be to postpone investment and
irreversibility constrains binds. However, when capital stocks a@nbtie optimal level,
firms tend to increase their investment rate and the investnterdamastraint will be binding.
Therefore, in both cases (extremes), the supply curves for energy commwilitiescome
inelastic and therefore futures prices will become more volatile.

Energy commodities tend to have highly price inelastic demand curves 8iey are
necessaries as opposed to luxury commodities, i.e., they are needed riot dalyto day
life such as transportation and heating, but also as an impumany industrial production
processes (see Figure 1). On the other hand, supply curves for energy comrterditits
have highly price elastic and inelastic sections (see Figuren Xggion B in Figure 1, the
demand curve is highly price inelastic and the supply curve is highly price elastiecréase
(decrease) in demand in this region will result in a pronounced increasea@mcin supply
and a relatively small increase (decrease) in price. In fasydt price and demand levels,
producers (suppliers) are able to adjust production (supply) and respond to changes in
demand. This includes reducing production, using storage facilities tk gfmoexcess
production, adjusting refining output, reducing flow of gas through pipelines, and other
methods. At the same time, when market recovers and demand stanteiase, the excess
capacity can be utilised to boast production to meet excess demaadioim C in Figure 1,
both the demand and supply curves are highly price inelastic. The suppb is price
inelastic due to limited production capacity. A pronounced increase in griceeded to
obtain the same increase in output that occurred in region B from a relatively smedbsenmn
price. In region A in Figure 1, both the demand and supply curves are adaliy rige
inelastic. However, the supply curve is now price inelastic, mauéyto the irreversibility of
capital investment in up- and down-stream oil and gas producing firras, the costs of
reactivating a production site following a shutdown are expected tagbe Further, in
certain instances, reactivation of a production site may not be posSies, energy
commodity firms may continue to produce, even at relatively low prices.

3. Methodology

This study models prices of energy commodities via the EGARCHtstatimodel (Nelson,
1991). The EGARCH model allows for asymmetric impact of shocks on pricelityokand
relaxes the non negativity assumptions on the parameters of the vadgoaéon.
Specifically, three versions of the EGARCH model are utilized: 1p&iraGARCH model,

2) Augmented EGARCH model (EGARCH-X), and 3) Augmented Transition EGARCH
model (EGARCH-TX). The Simple EGARCH model is specified as
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Where ¢ represents one period percentage price change in an energy comasodity
Autoregressive process function of its past valugss an independently and identically

distributed random error process with zero mean and variarceThe variances/?, is

specified as an exponential function of lagged standardised resmh@dlsagged log of
variance. While the main advantage of EGARCH specification is tthatlows for
asymmetric impact of shocks on price volatility, it also ensures iymsitefiniteness of
variances. In equation 1 tifie; coefficients measure the asymmetric impact of shocks (with
respect to different magnitudes) on price volatility, whije; coefficients reflect the
asymmetric impact of shocks (with respect to different signs) on yoledility. Coefficients

of lagged variancds ;, measure the degree of persistence of price volatility on its past values.

The effect of the slope of the forward curve on volatility of energy pricedeanvestigated
by augmenting the variance equation in the Simple EGARCH model dabawelude the
extra term- the quadratic function of the slope of the forward curvéo obtain the
Augmented EGARCH model (EGARCH-X), i.e., equation 2.

p
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where z; represents the slope of the forward curve at tirhecalculated as the difference
between the log of thé"émonth and the near-month futures prices. The quadratic function is
included to capture the asymmetric relationship between volatilignergy prices and the

slope of the forward curve both in terms of the sign and the magnitude.itAs@mcluded,
because it is believed that this relationship between the slopleedforward curve and
volatility of energy prices is non- linear and U shafde choice of the futures contracts to
measure the slope of the forward curve is based on the idea that 6 month differences in futures
contracts can present a clear picture with regard to the degree aja@antbackwardation of

the forward curve.

Once againfi; coefficients measure the asymmetric impact of shocks (with respect
different magnitudes) on price volatility, whifg ; coefficients reflect the asymmetric impact
of shocks (with respect to different signs) on price volatility. The coefficdf the slope of
the forward curvey, measures the relationship between volatility of prices and the marke
condition for which the slope of the forward curve is its proxy. Furthermore, th@fuse
EGARCH-X specification ensures that the non-negativity constramthe parameters of the
model are not violated, especially since the slope of the forward curve can beenegativ

The Augmented Transition EGARCH-X model (i.e., EGARCH-TX) augmém@ £ GARCH-
X model by allowing the sign of the slope of the forward curve to be eitbgative or
positive. The EGARCH-TX model is specified as follows

3 We also used linear specification in the form of absokalee of zt-1, but empirical results and Likelihood Raésts
strongly supported the quadratic relationship.



P
r=a, +Z:05Li r.+e¢ , & ~iid (O O'f)
i=1

E &
O-t2 :eXp(,Bo"'ﬁll Hl"‘ﬂz o_t_l + f;1n O-t2—1+7zt2—1+
-1 1

&
R

-1 Oy

St

+6,5,1In O_tz—l) 3)

where S is a dummy variable taking a value of one when the slope of forward murve
negative, i.e., the market is in backwardation, and a value of zerotivetope of forward
curve is positive, i.e. the market is in contango. Therefore, whether liaeiter of price
volatility depends on the market condition and the slope of the forward amigedested by
whether the estimates of coefficients 8, 01, 02, and 03 are statistically significant.
Furthermore, EGARCH-TX equation (3) can be regarded as a more gquesification of
the time-varying variance that not only incorporates information regactiiuigges in market
condition and the slope of forward curve, but also allows for the dynamics ofrthroeato
be dependent on the slope of the forward curve.

The above three EGARCH model versions are estimated using futures fanidfour main
energy commodities. Further, tests will be performed to investigate evhisth estimated
models capture the dynamics of the time-varying volatility of energy futures prices.

4. Description of data

The data used in this study comprises daily futures prices for four magyemnmodities
traded on the New York Mercantile Exchange (NYMEXWTI Crude Oil, the New York
Harbour Heating Oil Number 2, the New York Harbour Unleaded Gasoline, andetirg
Hub Natural Gas Futuresfor the period January 1, 1997 to December 31, 2008. The data
was obtained from Datastream. After filtering the data for holidaysimgivalues and non-
trading dates, the final sample contains 3,013 daily observations. To cblastoigtinuous
series out of monthly traded contracts the contracts were rolEdt@the next once trading
activity has shifted from the nearest to the second nearest to snaamitact. Consequently,

in all cases, three continuous futures series with 1- , 2- and 3-monthaturity were
constructed. Data for the periotl January 1997 to $1December 2006 (2,509 observations)
are used for the in-sample analysis; ofssample analysis is carried out using the remaining
data for the period of*1lJanuary 2007 to 81December 2008 (504 observations).

Summary statistics of logarithmic firdifferences (“log-returns”) of daily prices for the
whole period in the four energy markets are presented in Table 1. Mean addréta
deviation of returns are annualised. Average returns for all energy futures andiesaare
positive varying from 3.0% to 9.2%. The unconditional volatility of returnsiuokeslas
maturity increases, which confirms the Samuelsson effect and thestiercture of volatility
of energy prices due to mean reversion. Also, comparisons of volatilities @omsnodities
suggest higher fluctuations in Natural Gas prices compared to Crudeeatingd Oil and
Gasoline prices over the sample period.



Bera and Jarque (1980) tests indicate significant departures from normalityefoettrn

series of 1-, 2- and 3- month contracts across all commodities. jlihg &nd Box (1978)
statistic on the first 10 lags of the sample autocorrelation funesiamot significant for

Heating Oil, Gasoline and Natural Gas returns, revealing that serralation is not present.
However, the Ljung and Box (1978) statistic indicates some degree ofoaataton in

crude oil return series. The Engle’s (1982) ARCH test, carried out as the LjunBex tests on

the squared return series, indicate the existence of strong heterositgdastic 2- and 3-

month return series across all commodities. Finally, the PhillipdPanen (1988) unit root
test and the Kwiatkowski et al. (1992) test for stationarity suggestitheeturn series are
stationary.

The state of the market for a given energy commodity over the sanmijud feillustrated in
the plot of the slope of the forward curve measured as the difference hetveed-month
and the near-month futures prices for the four energy commodities. A posieessiggests
that the market is contango and a negative slope suggests tharitet is in backwardation.
The slopes of forward curves for the four energy commodities are presentedrgsfdgo 5.
It can be seen that all in markets there are periods of backwardatioorgadgo over the
sample period. Moreover, the variation of the slope of the forward curve tendetadrbss
markets.

5. Empirical Results

This section presents the empirical results on the relationshwgd&etthe term structure and
the volatility of energy futures prices. Different EGARCH models thkt the dynamics of
term structure and volatility are estimated.

The estimation results of the EGARCH(1,1), EGARCH-X(1,1) and EGARCH-TX(1,1)
models for the near-month"month and %-month return series for WTI Crude, Heating
Oil, Gasoline, and Natural Gas are presented in Tables 2 to 5, respyecklodels are
estimated using the quasi-maximum likelihood estimation method oferBl@V and
Wooldridge (1992) that yields robust standard errors in the presence of non-noradity
tables include regression statistics and diagnostics testsesitlct to specification, validity
and in sample performance.

In Table 2 the diagnostic tests of the estimated crude oil futuressEGARCH models
suggest that all the models are well specified and there is noo$ig® or 10" order
autocorrelation or first order ARCH effects in standardised residuals of each model. However,
there seem to be some™6rder ARCH effects in models fof2and 3 month futures that
could not be removed, even with the introduction of higher-order ARCH terms aneari
specifications.The coefficients of sizesymmetry, f;, are positive and significant in all
models and across all maturities, thereby suggesting that laageaverage shocks or news
(price changes) have a greater impact on volatility than srihleraverage shocks. The
coefficients of sigmsymmetry, B, are negative and significant in all models, except in the
EGARCH-TX models for 2" and ' month futures, therefore suggesting that bad news
(negative price changes) tend to have a greater impact on voldwitygood news (positive
price changes). The coefficients of lagged volatility are posdve statistically significant
and ranging in value from 0.948 to 0.971, thereby indicating high persistemogatility in

all models. More importantly, coefficients tfgged squared slope, y, are all positive and
statistically significant in the EGRACH-X and EGARCH-TX maglakcross all maturities



indicating a quadratic relationship between the volatility and thyeesbdf the forward curve,
meaning that volatility increases at an increasing rate asntr&et moves deeper into
backwardation or contango.

The coefficients of transition in the dynamics of volatility, 6o, 61, 62, and &3, are negative and
statistically significant in the EGARCH-TX models, suggestithgt the behaviour of
volatility changes as market moves from contango to backwardation.n@nce, the
negative 63 coefficients for all maturities suggest that volatility is lovwrera backwardated
market than in a contango market. Tinative 5, coefficients in the ¥ and 3 month
models suggest that negative shocks or bad news tembaee greater impact on volatility
than positive shocks or good news only when the market is in backwardahafly, the
likelihood ratio, LR, tests for the null @=6,=5,= 65=0 are rejected for™ and & month
EGARCH-TX models, suggesting that the dynamics of volatilitycefde oil futures are
dependent the state of the market.

In Table 3 the diagnostic tests of the estimated gasoline futuress #GARCH models
suggest that all the models are well specified and with nodfigmitocorrelation or ARCH
effects in residuals. The estimation results for gasoline futuresspndicate that there are
significant size effects across all maturities in EGACH and EGH-X models, since the
coefficients of P; are positive and statistically significant. However, the EGARICH-
estimate for the ™ month return series suggests that size effects are only presenthehen
market is backwardated since coefficient B; is insignificant and theoefficients of ; is
positive and significant. At the same timeefficients of sign effects, o, for 2 and &
month futures are negative throughout in the EGARCH, EGARC&Ad EGARCH-TX
models and are statistically significant except for the coeffian the EGARCH-TX model
for the 29 month return series. Moreover, coefficients of lagged squared slope of forward
curve, v, are all positive and significant in EGRACH-X and EGARCH-TX models and across
all maturities. Significance of the likelihood ratio tests for jthiat significance ofog, 61, 62,
and 83 in the EGARCH-TX models confirm that these unrestricted model<apiure the
dynamics of volatility of gasoline futures better than restricted elso8GARCH and
EGARCH-X models.

The estimats of the heating oil futures prices EGARCH models are presented in Zable
Again, the diagnostics tests suggest that the models arspeeified, with the exception of
the test for normality. Estimated coefficients of size asymmél, are all positive and
statistically significant, suggesting that larger shocks havelasiviedy greater impact on
volatility than smaller shocks. The statistically significantl positive 8, coefficients in the
EGARCH-TX model estimates suggest that the impact of |styseks on volatility is greater
than smaller shocks when the heating oil market is backwardatiomttanit is in contango.
Estimated coefficients of B, and 6, are all insignificant which suggests that there is no
asymmetric impact on volatility with respect to shocks of differegriss Coefficients of 63
are all negative and significant in the case8fahd 3! month futures, meaning that volatility
persistence declines as the market moves from contango to backwardation. Theotsefici
y are all positive and statistically significant in the EGRAEHwnd EGARCH-TX models
across all maturities. Once again, the likelihood ratio tests thjecestricted EGARCH and

4 The LR test is a test for joint significancedgf 8, 35, andds with the null 0f§,=6,=8,= 63=0. The test statistic is calculated
asLR=2[ LL, — LL, JwhereLL, andLL, are the Loglikelihood of thenrestrictednodel (EGARCH-TX) andestricted

model (EGARCH-X). The test statistics follows a chi-squarsttidution with 4 degrees of freedorﬁg,f.



EGACRH-X models in favour of the EGARCH-TX model in the case of neatmand 3°
month futures.

Finally, the estimasof the natural gas futures prices EGARCH modeldaradin Table 5.
The diagnostic tests confirm that the models are well specifiedhaitiign of autocorrelation
or ARCH effects in residuals. The coefficients of size asymm@tryare positive and
statistically significant in all models across all matastiThe estimated coefficients &fin
the EGARCH-TX models are negative and statistically sigmifidar the near month and
second month futures suggesting that the asymmetric impact of shocks with different
magnitudes is less when the natural gas market is in backwardationwhen it is in
contango. Estimated coefficienfts are positive and statistically significant in the EGARCH
and EGARCH-X models, suggesting that positive shocks tend to increlasiéity more than
negative shocks. Conversely, the estimated coefficienfis &dr the EGARCH-TX models
are statistically insignificant. The estimatéd coefficients are positive and statistically,
revealing that an asymmetric impact of shocks with different signslaility exists when
the market is in backwardation. Additionally, tlde coefficients are negative but only
significant in the near month series, suggesting similar vojatpiersistence under
backwardation and contango in the neamth series. The coefficients of y are all positive
and significant in the EGRACH-X and EGARCH-TX models and across aiflinities —
again suggesting the existence of a quadratic relation betweailityodnd the slope of the
forward curve but now in the natural gas market. Furthermore, the LR tests thegec
restricted EGARCH-X models in favour of unrestricted EGARCH-TX modelgiwhllow
for changes in the values of parameters and dynamics of volatilityanfrd Gas futures
prices.

The above estimation results reveal noticeable differences in tiaentlys of the volatility of
the futures prices of the four energy commodities when the condition andnket is
measured via the slope of the forward curiee volatilities vary with shocks that differ in
size and in direction. For instance, negative shocks (or bad news) tendreéase the
volatility of crude oil and gasoline futures prices more than posstieeks (or good news),
whereas the volatility of natural gas futures tend to increase mooavimlj a positive shock
than a negative shock. The volatility of crude oil, gasoline andnigeatl futures prices
depend on the slope of the forward curve, whereas the volatility of natgréltgees prices
is independent of market conditions. There are also differences ingteedd dependence
of volatility of energy commodities on the slope of forward curve. Figure Gemieshe
scatter diagram of slope of forward curve and volatility of near-month futaetract for the
four commodities under investigation. The scatter plots and fitted quad¥gtiession lines
illustrate a clear quadratic association between the two varididegever, the degree of this
convexity differs among the relationships.

6. Forecasting Performance of Volatility Models

The appropriateness of the above volatility models is examined byigatesj thér out-of-
sample forecasting performance over the period January 2007 to Decembet 2008.

> We set the end of our estimation period two years beferert of the sample, i.e. December 2006. This allows useto
the last two years of the sample (January 2007 to Decem8r 204 observations) to examine the forecasting perfaenan
of models in predicting volatility of energy futures pricapractice known as ex-post forecast evaluation technique.
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Specifically, the out-of-sample forecast evaluation tests aréedaout by comparing the
forecasting performance of the one-step-ahead forecasts of the EGARCH(1ABCHG
X(1,1) and EGARCH-TX(1,1) models to those of the Naive (or Historical Neejpand
Exponentially Weighted Moving Average Variance (the RiskMetrictho) models. The
Naive model, which is the simplest method of forecasting variaiscdased on the
assumption that the best one-period ahead forecast for variance igré@ gariance, i.e.,

672, =07, where, 6/, is the one-period ahead forecast of variance. The RiskMetrics method

uses exponentially weighted average of current variance and returns to frediature
varianceg?, = lo? + (- A)r,?, with a weighting coefficient df (e.g.A=0.95).

The accuracy of the out-of-sample volatility forecasts for differeatlels is investigated
using the root mean square error (RMSE), which is the root of the average sofutired
differences between forecasted variances and squared realised returns, i.e.,

M (A2 .22
RMSE = z% (4
i=1

where M is the number of forecasts arfdis the square of realized changes in futures prices.

The RMSE essentially measures how close the variance estitraatkeghe changes in the
square of futures prices. However, RMSE does not provide information on the asymimetry
the variance prediction errors, i.e., if there is a significant differdrateveen variance
forecast errors when the variance forecasts over-predict or under-predilited variance
(changes in futures prices

Although forecast errors are expected to be unbiased, there might bemxedsen a model
over-predicts the variance of futures prices relatively more often bubtbeast errors are
smaller and under predicts the variance relatively less frequautithe forecast errors are
larger. A model with symmetric forecast errors should produce about 50% pasitiv&0%
negative forecast errors, with similar positive and negative mean .efitoesexistence of
asymmetric forecast errors is investigated using the Brailsford &h@1Ba6) Mixed Mean
Error (MME) statistic, which uses a mixture of positive and negativecdégteerrors with
different weights to assess the asymmetry in forecast errors.

} (5)

1 U — (@) R
MME (U) ZV{ 62 =i [+ D185 —r2 '} 6)

i=1 i=1

A2

2
i T

1 U R (0]
MME (O) :M{Z'“ii —rZ 1+
i=1 i=1

MME(O) applies more weight to over-predicted forecast errors in cdluyléhe MME
statistic, while MME(U) applies more weight to under-predicted fateeaors in calculating
the statistic. By comparing the two statistics, one can adses®lative degree of under-
prediction and over-prediction of forecast errors. Asymmetric error statistieslatility
estimation and forecasting have important implications for traders and patheipants in
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energy futures markgtsince the statistics enable traders and other participants tcstluee
issue of asymmetry in their risk assessments.

Results of different forecasts evaluation techniques for crude oil futures areeésund in
Table 6.A comparison of the RMSE statistics suggests that EGACRH-TX out-pertbens
other models in terms of predictive accuracy. At the same thredyIME statistics reveal that
all models appear to over-predict the variance of futures prnoa® often than under
predicting. However, the mean over-prediction is much lower than the ameker-prediction
in all models. The EGARCH model has the lowest MME(U) statiatid the Historical
Variance model has the lowest MME(O) statistic. Nevertheleessum of the MME(U) and
MME(O) statistics for each model reveals that this sum isldiest for the Historical
Variance, thus indicating that it has the best performance in ternfiereafasting error
asymmetry.

With respect to gasoline futures prices, no model outperforms the othefdbke6) in
predicting the volatility of these prices. The RiskMetrics model thes lowest RMSE
statistic, while the EGARCH and Historical Variance models hhedowest MME(O) and
MME(U) statistics, respectively. Once again, the sum of theBAD) and MME(U) statistics
is the lowest for the Historical Variance model.

The forecast evaluation technique results for heating oil futures pridedble 6 suggests that
the RiskMetrics model out-performs the other models in terms of predicttveaay with
respect to the RMSE and MME(O) statistics. That is to say, thldvietrics model has the
lowest RMSE, and MME(O) statistics. However, the RiskMetrics mbdsl the highest
MME(U) statistic, while the EGARCH model has the lowest MME(ta}istic. Nevertheless,
the sum of the MME(U) and MME(O) statistics for each model revéalsthis sum is the
lowest for the Historical Variance model, followed by the RiskMetricgl@hwith the second
lowest sum value.

For natural gas futures prices, all three EGRACH-type models haveathe and lowest
RMSE statistic and EGARCH-TX has the lowest MME(O) statistic. The EGARGHe! has

the lowest MME(U) statistic. However, the sum of the MME(O) and MYEstatistics is the
lowest for the EGACRH-TX model.

7. Value-at-Risk Analysis

VaR analysis that has become an integral part of risk managemtmrnioial institutions,
trading houses, oil companies and other businesses related to energy,isadssentially a
method of monitoring risk exposure of trading positions and portfolios. By definition, VaR is
the possible portfolio loss that might occur over a given time witivengprobability. The
time horizon over which the VaR is estimated is known as the VaRohotiygpically one

day. The probability associated with VaR is the significant level (o), typically taking on
values of 1%, 2.5% or 5%. For instance, a 1-day 1% VaR is the possible lassyhatcur

in one day with a 1% probability.

Letr.x be the (log) return on an asset over the period+k and(1-o) the confidence level.

Then, conditional on the information set availabld, &;, the VaR can be defined as the
solution to the following expression:
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Pr(r,,, < VaRik|Qt) =a @

The simplest method among several methods for estimating VaRise tihhe one-day ahead
forecast of volatilityg,,,, and the o percentile of a parametric distribution such as the

standardised normal,,Zto obtainVaR’* =Z_&,,,. In using this method, the accuracy and

forecasting performance of VaR estimates will thus depend on the acotithey volatility
forecast and the underlying distribution from which the a-percentile is obtained. While the
percentile can be obtained from parametric distributions, VaR déssman also be retrieved
from the historical distribution of returns or standardised returns. These noepacav/aR
approaches, e.g., the Historical Simulation (HS) and Filtered Historicall&ion (FHS)
approaches, obtain percentiles from historical distributions of returns or standardisecreturns.

To further assess the practical implication of the results in termsslofagssessment and
measurement, the VaR estimates of the proposed EGARCH-X and EGAKR#bdels are
compared with other competing models using a backtesting procedurkte®eg is
performed by running the model through a given sample to test whether the promdrti
times that changes in the variable/portfolio exceeded the Va® tmrresponds to the
significance level chosen. If such violations of VaR occur, say@abf the time, then we are
assured that the method chosen to estimatei¥he/aR is relatively accurate. On the other
hand, if changes in the portfolio significantly exceed b€ VaR level, one would not be
confident about the predictive performance of the VaR methodology. The orostanly
used framework in backtesting VaR models has been developed by Christoffersen fd003) a
appears in Appendix A.

The performance of models in accuracy and efficiency of VaR estimagoooanpared for

long and short positions of near-month futures prices of different energy commodle

results of the VaR analysis for the four energy commodities are presented in Tables 7 to 10. In
each table 1-day VaR values are reported for long and short positohslifierent
significance levels (1%, 2.5% and 5%). Reported statistics include: numberuségadr
violations (\f), percentage of violations (%), and Likelihood Ratio tests for unconditional
coveragel(lL ,), independence coverade {,q), and conditional coveragel(cy).

The backtesting results for near-month crude oil futures prices that areedepoitable 7
reveal that that the Historical Variance (HV), Historical Siioh (HS), and Filtered
Historical Simulation (FHS) models all fail to pass one or more ofds®s in the estimation

of VaR for both long and short positions (upside and downside risks). In addition, the
RiskMetrics and simple EGACRH models also fail the LR testis meispect to short position
whena is 2.5%. The models that pass the backtesting exercise for differelst d&éw are the
EGARCH-X and EGARCH-TX models.

The backtesting results for gasoline futures prices found in Table 8 aré, sixee no model
convincingly outperforms the others. For instance, the Historical VariarSeahtd FHS
models all fail to pass one or more of the LR tests in esbmati VaR for both long and
short positions for different levels of. At the same time, the EGACRH, EGARCH-X and

6 SeeChristoffersen1999 for more details on nonparametric models for VaR estimatiahCabedo and Moya (2003) and
Costello et al. (2008) for applications of nonparametric VaR estimat oil markets.
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EGRACH-TX models pass the tests whers 5%, but the EGACRH-TX model fails the test
whena is 1% and 2.5%. Overall, the RiskMetrics and EGARCH-X models perform better
than other models, i.e., passing more of the LR tests for different lewels of

In the case of heating oil futures prices, backtesting results reporfedble 9 reveal that the
Historical Variance, RiskMetrics and all EGACH models pass thaesi for alla levels.
However, the two nonparametric models fail to pass one or more of thedt® The
backtesting results for natural gas futures prices reported in Table 10thateall volatility
models except the Historical Variance and FHS models pak& d@#sts for long and short
positions at different levels of a. The historical variance and FHS models also pass the LR
tests when a is at 2.5% and 5%. However, when we consider the forecast accuracy and
backtesting results together, the EGARCH-TX model performs bestrrstof low RMSE
values and VaR violations.

8. Conclusions

This paper has investigated the relationship between the dynamics tefrthastructure of
forward curves and theme-varying volatility of the futures prices of energy commodities
from estimation of augmented EGARCH models. The rationale for the inséstigs that

the slopes of forward curves not only reflect temporal supply and demand conditibpakso
relationships between current and expected market conditions. Four main energy commodities
traded on the New York Mercantile Exchange are used in the investigaamely, crude oil,
gasoline, heating oil and natural gas.

The main findings of the paper are as follows. First, it provides ewed#émat a convex (U
shape) relationship exists between the forward curve and the volatiéityeafy prices- i.e.,

the volatility of energy prices increases exponentially as the mankees deeper into
backwardation or contango. Second, it provides evidence that the dynamics of the volatility of
energy prices and thus the behaviour of energy prices are dependent orpé¢hef dioe
forward curve. Third, it enhances our understanding of the dynamics of price wolatilit
specific energy commodities) negative shocks tend to increase the volatility of crude olil
and gasoline futures prices more than positive shocks; b) the volatilitafioral gas tends to
increase more following a positive shock than following a negative skptke volatility of
crude oil, gasoline and heating oil futures prices depend on the slope fofwiaed curve,
whereas the volatility of natural gas futures prices is independerdr&getrconditions; and)d
the degree of the dependence of the volatility of energy prices on the sltpe fofward
curve differs among energy commodities.

Out-of-sample forecasting performance of the estimated models are lsammeiwed as there
is no single model that consistently outperforms others. This might b dibe fact that the
volatility of energy prices is an unobservable variable and the metdcassa proxy for this
volatility (i.e., squared returns of futures prig@s evaluating forecasting performance might
not be an appropriate proxy. Nevertheless, the forecasting evaluatisticstatiggest that all
models tend to over-predict more often than they under-predict the wplatienergy prices,
but the average under-prediction is higher than the average over redidtiwever, the
backtesting VaR analysis results suggest that in general Nplatilergy-price models that
include the slope of the forward curve, i.e., the EGARCH-X and EGARCH-TX Isjode
perform reasonably well in forecasting energy prices in main energy markets.
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Appendix A

A sequence of out-of-sample VaR estimates for a long position iscsdid efficient with
respect to the information set available-at Q. 4, if the following condition holds:

B . _]L R <VaR?
E[@ |0 .]=a  wih q)‘_{o, R 2VaR' AL

The above equation implies that the expected VaR faill&s), should be: 1) on average,
equal to the nominal confidence leve),and 2) uncorrelated with any function/variable in the
information set available atl. The above property is tested using intermediary statistics of
unconditional coverage developed by Kupiec (198%)ependeng, and conditional coverage
proposed by Christoffersen (2003). In this respect, the rejection of the model can be
categorized as the failure of unconditional coverage, clustering of wvimdatior both.
Christoffersen (2003) defines all three tests as likelihood ratio based tests.

The LR statistic for the correct unconditional coverage is specified as:

LR,c = LR = 2Jlog(z (1—,)" )~ log(@— ) a™ )|~ 22, A2

where n,is the number of 1’s in the indicator series, n,is the number of 0’s in the indicator
series,a is the tolerance level of the VaR estimates, amd=n, /(n, +n,) . The LR statistic
for test of independence is specified as:

LR, = 2['09((1_ 72'01)(%7%1) o3 (1_ 7711)(Q7r‘11) ”ﬁl)_ IOg(ﬂ'lnl (1_ 72'1)n0 )J - Z(Zi) A.3

wheren, is the number af values followed by avalue in the indicator series,

m =Pl =il =]} forij=0,1 and ”01:%' ﬂllzh A4
n

1
0 1

And finally, the LR statistic for the correct conditional coverage is given as thefsinm
correct unconditional coverage and the independence test:

LRec =LRyc + LRy ~ Zé) A5

The best models are those that generate a coverage rate teggethaminal and a model is
considered to be adequate for risk management when it is able to pasisebotimditional
and unconditional coverage tests.
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Table 1: Descriptive statistics of daily returnson energy futuresprices

Mean  Volatility Normality Autocorrelation ARCH Unit Root
SD J-B LB-Q 1d" 10" PP KPSS

WTI CrudeQil

1-month 0.045 0.396 2026.4 23.094 393.98 -55.807 0.125

2-month 0.055 0.357 1303.9 17.219 351.19 -55.756  0.130

3-month 0.060 0.335 1023.2 18.572 516.57 -55.911 0.135
Heating Oil

1-month 0.055 0.392 2642.2 13.431 121.56 -56.744 0.128

2-month 0.058 0.359 548.4 12.153 115.92 -57.275 0.136

3-month 0.062 0.337 321.2 11.660 163.24 -57.178 0.140
Gasoline

1-month 0.030 0.431 1509.1 8.359 109.89 -53.717 0.111

2-month 0.034 0.378 731.9 8.582 250.65 -54.834 0.136

3-month 0.038 0.344 552.4 16.918 498.24 -55518 0.148
Natural Gas

1-month 0.092 0.587 4687.3 8.328 108.82 -56.394 0.026

2-month 0.068 0.531 1505.7 6.627 162.94 -56.741  0.054

3-month 0.078 0.476 4719.9 6.928 57.018 -55.882 0.070

e Sample period:January 1997 to $1December 2008.
e Mean and standard deviation of returns are annualised.

e JB is the Bera and Jarque (1980) test for normality whilidwie a;((zz) distribution. The 5% critical

value for this test is 5.991.
e ARCH is the Engle (1982) test for l@rder Autoregressive Conditional Heteroscedasticity which

follows a;((zlo) distribution. The 5% critical value for this test is 18.307.

e LB-Q is the Ljung and Box (1978) test for "L@rder autocorrelation which follows 26}210)

distribution. The 5% critical value for this test is 18.307.
e PP is the Philips and Perron (1988) unit root test. The 5%adnitalue for this test is -2.862.
o KPSS is the Kwiatkowski et al. (1992) test for stationaiitye 5% critical value for this test is 0.463.
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Table 2: Estimation results of EGARCH(1,1), EGARCH-X(1,1), and EGARCH-TX(1,1) for NYMEX crude ail futures prices

EGARCH-X o2 =exp(y+ p ol g fy g o2
t—1 i1
2 e, | Eia 2 2
EGARCH-X ol =exp(B, + B + /3, P Baslno, +yz7,)
t—1 t—1
2 l&, 4| Eia 2 2 l& 4 | Eia 2
EGARCH-TX o’ =expB, + b, + B, +pBsINo +yz20, +0,S,+6,S +0,S, +06;§.,Inc’,)
O O -1 -1
Near month 2"9 Month 39 Month
EGARCH EGARCH-X EGARCH-TX EGARCH EGARCHX  EGARCHTX EGARCH EGARCHX EGARCHTX
Mean
ao 0.0003 0.0005 0.0005 0.0004 0.005 0.0005 0.0004 0.0005 0.0005
(0.777) (1.085) (1.076) (0.979) (1.260) (1.305) (1.087) (1.281) (1.430)
Variance
-0.217" -0.404” -0.286 -0.333" -0.404~ -0.331" -0.309" -0.343" -0.314"
Bo (-4.148) (-5.387) (-3.620) (-4.423) (-4.757) (-3.432) (-3.888) (-4.263) (-3.091)
0.105" 0.090” 0.091" 0.116" 0.098" 0.124" 0.101" 0.091" 0.131"
Ba (8.026) (6.739) (4.846) (10.399) (8.532) (6.348) (8.595) (7.909) (6.608)
-0.044" -0.045" -0.041” -0.041" -0.042" -0.015 -0.035" -0.033" -0.012
B2 (-5.592) (-4.717) (-2.929) (-4.547) (-4.308) (-0.957) (-3.963) (-3.370) (-0.785)
0.9717 0.948" 0.964" 0.956" 0.949" 0.958" 0.960" 0.957" 0.961"
Bs (139.82) (97.866) (92.988) (80.922) (88.247) (77.190) (95.321) (95.433) (74.818)
5 -0.306" -0.666 -0.693"
0 (-2.679) (-3.154) (-2.817)
5 -0.014 -0.040 -0.046
1 (-0.529) (-1.328) (-1.512)
5 -0.016 -0.078" -0.068"
2 (-0.775) (-3.428) (-3.021)
-0.041" -0.086" -0.088"
83 (-2.671) (-3.138) (-2.807)
2.345" 2.503" 1.823" 2.752" 1.3917 2.281"
v (5.413) (5.581) (5.168) (5.991) (4.348) (5.204)
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LR test 5.540

14.260 12.420
p-value 0.2362 0.0065 0.0145
Diagnogtics
R-bar sq -0.002 -0.002 -0.004 -0.002 -0.002 -0.004 -0.002 -0.002 -0.004
AIC -6.551 -6.565 -6.567 -6.745 -6.754 -6.760 -6.895 -6.902 -6.907
SBIC -6.535 -6.546 -6.536 -6.730 -6.736 -6.729 -6.879 -6.883 -6.876
LL 8218.18 8235.39 8238.16 8461.88 8473.48 8480.61 8649.61 8658.39 8664.60
LB-Q(1) 0.139 0.139 0.139 0.064 0.064 0.064 0.033 0.033 0.033
[0.710] [0.710] [0.710] [0.801] [0.801] [0.801] [0.856] [0.856] [0.856]
LB-Q(10) 13.597 13.597 13.597 12.951 12.951 12.951 11.410 11.410 11.410
[0.192] [0.192] [0.192] [0.226] [0.226] [0.226] [0.326] [0.326] [0.326]
ARCH (1) 1.201 0.345 0.472 0.263 0.053 0.035 1.960 1.476 0.715
[0.273] [0.556] [0.492] [0.608] [0.817] [0.851] [0.169] [0.224] [0.398]
ARCH (10) 13.079 14.135 12.809 21.480 22.740 21.442 19.384 19.974 18.845
[0.219] [0.167] [0.235] [0.018] [0.012] [0.018] [0.036] [0.039] [0.042]
JB test 1173.5 1173.5 1173.5 1039.55 1039.55 1039.55 579.65 579.65 579.65
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
e Sample period:*1January 1997 to $1December 2006.
e zis the slope of forward curve calculated as the differémdog of near month and th& éonth futures prices.
e AIC and SBIC are the Akaike and Schwartz Bayesian InfiomaCriteria, respectively.
e LL is the log-likelihood value of the estimated model.
e LR testis the likelihood Ratio test for the joint sigrafice ofdg, 81, 02, O3,
[ )

LB-Q(1) and LB-Q(10) are the Ljung and Box (1978) tests fodttend the 16 order autocorrelation. The 5% critical values for theses are 3.841 and 18.307,
respectively.

e ARCH(1) and ARCH(10) are the Engle (1982) tests for tharid the 18 order Autoregressive Conditional Heteroscedasticity. S%ecritical values for these
tests are 3.841 and 18.307, respectively.

e JB is the Jarque and Bera (1980) test for normality. The BRtatwalue for this test is 5.991.
e Standard errors are corrected using Bollerslev and Wdgkl{1992).
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Table 3: Estimation results of EGARCH(1,1), EGARCH-X(1,1), and EGARCH-TX(1,1) for NYMEX gasoline futures prices

EGARCH-X ol =exp(B, + B % + B, b BsInol))
t-1
2 | Eia 2 2
EGARCH-X ol =exp(B, + A + 5. +BsIno’, +yz7,)
O O'F1
2 e | Eiq 2 2 e | Eiq 2
EGARCH-TX o =exp(B, + p, + /5, . +pBsInc’, + 20, +6,S5.,+6,S +0,5,——+5;§,Inc’,)
t-1 t-1 t-1 t-1
Near month 2"9 Month 3% Month
EGARCH EGARCH-X EGARCH-TX EGARCH EGARCHX EGARCH-TX EGARCH EGARCHX  EGARCHTX
M ean
o 0.0005 0.0006 0.0006 0.0002 0.0003 0.0003 0.0001 0.0003 0.0002
(0.990) (1.291) (1.229) (0.378) (0.674) (0.703) (0.327) (0.659) (0.592)
Variance
-0.304~ -0.502" -0.455" -0.135" -0.1937 -0.169" -0.203" -0.293" -0.288"
Bo (-4.073) (-4.834) (-3.545) (-3.384) (-3.833) (-2.881) (-2.938) (-3.454) (-2.748)
0.136" 0.134" 0.053 0.067" 0.076" 0.033 0.087" 0.095" 0.070”
Ba (9.292) (8.129) (1.684) (5.948) (5.968) (1.492) (6.140) (6.374) (2.633)
0.009 0.0003 0.009 -0.016" -0.015~ -0.015 -0.025" -0.024" -0.030
B2 (1.050) (0.030) (0.455) (-2.367) (-1.936) (-1.059) (-3.098) (-2.625) (-1.870)
0.957" 0.933" 0.939" 0.982" 0.975" 0.978" 0.974" 0.9637 0.963"
Bs (92.965) (66.580) (52.942) (185.53) (148.49) (126.19) (109.99)  (89.798) (71.553)
5 -0.115 -0.403" -0.608"
0 (-0.765) (-2.451) (-2.402)
5 0.115" 0.084" 0.054
! (3.194) (3.026) (1.515)
5 -0.023 -0.031 -0.030
2 (-0.869) (-1.431) (-1.160)
-0.015 -0.052" -0.076°
83 (-0.701) (-2.430) (-2.351)
1.1187 1.240° 0.325" 0.542" 0.441" 0.802"
v (5.141) (5.182) (3.015) (3.083) (3.728) (3.214)
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LR test

10.800 7.960 10.900
p-value 0.0289 0.0931 0.0277
Diagnogtics
R-bar sq -0.002 -0.002 -0.004 -0.002 -0.002 -0.004 -0.002 -0.002 -0.004
AIC -6.298 -6.309 -6.313 -6.599 -6.6-2 -6.605 -6.822 -6.825 -6.830
SBIC -6.282 -6.290 -6.262 -6.583 -6.583 -6.574 -6.806 -6.807 -6.798
LL 7900.88 7914.02 7919.42 8277.98 8281.96 8285.94 8557.77 8562.36 8567.81
LB-Q(1) 3.412 3.412 3.412 0.605 0.605 0.605 0.112 0.112 0.112
[0.065] [0.065] [0.065] [0.437] [0.437] [0.437] [0.738] [0.738] [0.738]
LB-Q(10) 13.553 13.553 13.553 10.235 10.235 10.235 13.046 13.046 13.046
[0.194] [0.194] [0.194] [0.420] [0.420] [0.420] [0.221] [0.221] [0.221]
ARCH (1) 1.037 0.660 1.038 3.076 1.862 1.059 1.289 0.584 0.107
[0.309] [0.417] [0.308] [0.079] [0.172] [0.303] [0.256] [0.445] [0.744]
ARCH (10) 10.942 8.701 9.421 11.322 10.359 8.278 11.437 10.655 8.279
[0.362] [0.561] [0.493] [0.333] [0.410] [0.602] [0.324] [0.385] [0.602]
JB test 1541.24 1541.24 1541.24 482.45 482.45 482.45 185.68 185.68 185.68
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
e Sample period:*1January 1997 to $1December 2006.
e zis the slope of forward curve calculated as the differémdog of near month and th& éonth futures prices.
e AIC and SBIC are the Akaike and Schwartz Bayesian InfaomaCriteria, respectively.
e LL is the loglikelihood value of the estimated model.
e LR testis the likelihood Ratio for the joint signifi@ofdg, 81, 02, d3.
e LB-Q(1) and LB-Q(10) are the Ljung and Box (1978) tests fodtrend the 18 order autocorrelation.
[ )
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ARCH(1) and ARCH(10) are the Engle (1982) tests for thantl the 18 order Autoregressive Conditional Heteroscedasticity.
JB is the Jarque and Bera (1980) test for normality.

Standard errors are corrected using Bollerslev and Wdgkl(1992).



Table 4: Estimation results of EGARCH(1,1), EGARCH-X(1,1), and EGARCH-TX(1,1) for NYMEX heating oil futures prices

& &
ot =ep (G, + 02l g, By ino?y)

EGARCH-X
O t-1
EGARCH-X o =exp(fy+ 4, ol 1 g, :;H +fsIncl, +y22,)
t-1 t-1
2 le .y | i 2 2 le s | Eia 2
EGARCH-TX o =exp(B, + B, + B, +psIno’, +y20, +6,S ., +6,S +0,S, +6;5.,Inc’,)
O O 1 O O 1
Near month 2" Month 39 Month
EGARCH EGARCH-X EGARCH-TX EGARCH EGARCHX  EGARCHTX EGARCH EGARCHX EGARCHTX
M ean
ao 0.0006 0.0007 0.0007 0.0004 0.0005 0.0006 0.0003 0.0005 0.0004
(1.470) (1.572) (1.552) (1.047) (1.343) (1.280) (0.737) (1.162) (1.052)
Variance
Bo -0.336" -0.716~ -0.586 " -0.297" -0.566 -0.456~ -0.220” -0.420” -0.158"
(-5.169) (-4.591) (-3.637) (-3.436) (-3.637) (-2.915) (-3.480) (-3.562) (-2.339)
B 0.162” 0.160" 0.061"° 0.102° 0.106™ 0.060" 0.085" 0.100" 0.046"
(10.579) (7.622) (2.626) (7.255) (5.591) (2.825) (6.049) (5.736) (3.120)
B, 0.034" 0.017 0.018 -0.003 -0.007 0.000 -0.005 -0.001 -0.007
(3.495) (1.482) (1.223) (-0.307) (-0.689) (0.000) (-0.640) (-0.110) (-0.771)
Bs 0.954" 0.906" 0.925 0.961" 0927" 0.942" 0.971" 0.946" 0.980"
(109.31) (44.340) (44.230) (85.151) (46.186) (46.918) (119.38) (63.150) (114.57)
3o -0.124 -0.390 -0.357°
(-0.580) (-1.593) (-2.018)
81 0.180" 0.119" 0.091"
(5.333) (3.358) (3.144)
8, 0.015 -0.006 0.021
(0.569) (-0.235) (1.023)
83 -0.021 -0.054 -0.047
(-0.747) (-1.678) (-2.064)
y 2.002"7 1.633" 1.155" 1.255" 0.746" 0.586"
(6.294) (4.945) (4.768) (4.163) (4.230) (3.639)
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LR test

19.220 8.400 7.000

p-value 0.0007 0.0780 0.1359
Diagnostics

R-bar sq -0.002 -0.002 -0.004 -0.002 -0.002 -0.004 -0.002 -0.002 -0.004

AIC -6.468 -6.487 -6.495 -6.628 -6.638 -6.642 -6.773 -6.778 -6.781

SBIC -6.452 -6.469 -6.464 -6.612 -6.620 -6.610 -6.757 -6.760 -6.750

LL 8114.11 8138.45 8148.06 8114.71 8327.79 8331.99 8496.10  8503.29 8506.79

LB-Q(1) 1.542 1.542 1.542 3.232 3.232 3.232 2.550 2.550 2.550

[0.214] [0.214] [0.214] [0.072] [0.072] [0.072] [0.110] [0.110] [0.110]

LB-Q(10) 11.975 11.975 11.975 9.589 9.589 9.589 9.261 9.261 9.261

[0.287] [0.287] [0.287] [0.477] [0.477] [0.477] [0.507] [0.507] [0.507]

ARCH (1) 0.028 0.391 0.550 0.743 0.443 0.678 0.030 0.004 0.012

[0.868] [0.532] [0.214] [0.389] [0.506] [0.410] [0.863] [0.947] [0.912]

ARCH (10) 8.673 9.016 9.472 14.256 14.410 12.840 11.751 11.095 13.070

[0.563] [0.530] [0.488] [0.162] [0.155] [0.232] [0.302] [0.350] [0.220]

JB test 2718.24 2718.24 2718.24 510.49 510.49 510.49 262.66 262.66 262.66

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Sample period: January 1997 to $IDecember 2006.

z, is the slope of forward curve calculated as the differémdog of near month and th& onth futures prices.
AIC and SBIC are the Akaike and Schwartz Bayesian Infdom&riteria, respectively.
LL is the log-likelihood value of the estimated model.

LR test is the likelihood Ratio for the joint significofdg, 61, 6o, 03,
LB-Q(1) and LB-Q(10) are the Ljung and Box (1978) tests fodthend the 18 order autocorrelation.
ARCH(1) and ARCH(10) are the Engle (1982) tests for thentl the 16 order Autoregressive Conditional Heteroscedasticity.
JB is the Jarque and Bera (1980) test for normality.

Standard errors are corrected using Bollerslev and Waglel(1992).
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Table5: Estimation results of EGARCH(1,1), EGARCH-X(1,1), and EGARCH-TX(1,1) for NYMEX natural gasfuturesprices

| €y | &
ol =expB, + f,—= +ﬂ2611+:33|n6t2—1)

EGARCH-X
t-1 t-1
2 l& | Eia 2 2
EGARCH-X o =exp (B, + B, + + B, Inc?, +y22)
O O
2 _ | & | S 2 2 | & | S 2
EGARCH-TX o =exp(B, + B + 5 +pIno, +y27,+6,S5.,+6,S ., +6,8,——+6;5,Ino7y)
=1 O =1 O
Near month 2" Month 3% Month
EGARCH EGARCH-X EGARCHTX EGARCH EGARCHX  EGARCHTX EGARCH EGARCHX  EGARCHTX
Mean
oo 0.001 0.001 0.0009 0.001" 0.001 0.001 0.0015" 0.0013 0.0013
(1.638) (1.782) (1.437) (2.043) (1.705) (1.117) (2.736) (2.391) (2.363)
Variance
Bo -0.1327 -0.198" -0.200” -0.107" -0.269~ -0.262” -0.085~ -0.267" -0.248”
(-4.105) (-5.146) (-4.629) (-5.224) (-5.318) (-4.367) (-4.025) (-4.605) (-3.724)
B1 0.149" 0.122" 0.117° 0.119 0.107" 0.100° 0.111" 0.113" 0.102"
(10.495) (9.941) (7.474) (10.463) (8.326) (5.861) (9.565) (7.597) (5.171)
B, 0.025" 0.039" 0.000 0.029" 0.036 0.007 0.042” 0.035" 0.004
(3.495) (6.201) (0.002) (4.315) (4.239) (0.709) (6.282) (4.173) (0.419)
Bs 0.979" 0.971" 0.971" 0.983" 0.961" 0.963 0.987" 0.963" 0.966"
(200.87) (171.70) (157.40) (325.91) (133.48) (114.51) (322.44) (119.94) (105.30)
Ao -0.105 -0.082 -0.017
(-1.633) (-1.052) (-0.257)
Ay -0.077" -0.048 -0.005
(-3.024) (-1.774) (-0.156)
As 0.091" 0.075" 0.088"
(5.973) (4.371) (4.978)
As -0.018 -0.014 -0.004
(-1.772) (-1.199) (-0.450)
y 0.276" 0.282" 0.327" 0.318" 0.278" 0.238"
(6.984) (6.335) (6.658) (5.365) (6.242) (4.584)
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LR test

39.040 20.500 20.940
p-value 0.0000 0.0004 0.0003
Diagnostics
R-bar sq -0.002 -0.003 -0.004 -0.002 -0.003 -0.004 -0.003 -0.003 -0.004
AIC -6.671 -6.688 -6.703 -5.835 -5.854 -5.862 -6.078 -6.088 -6.096
SBIC -6.655 -6.669 -6.672 -5.820 -5.835 -5.831 -6.062 -6.069 -6.065
LL 7114.18 7134.99 7154.51 7320.21 7344.04 7354.29 7624.75 7637.37 7647.84
LB-Q(1) 3.853 3.853 3.853 2.481 2.481 2.481 0.524 0.524 0.524
[0.050] [0.050] [0.050] [0.115] [0.115] [0.115] [0.469] [0.469] [0.469]
LB-Q(10) 9.317 9.317 9.317 7.321 7.321 7.321 10.064 10.064 10.064
[0.502] [0.502] [0.502] [0.695] [0.695] [0.695] [0.435] [0.435] [0.435]
ARCH (1) 0.531 0.253 0.035 0.003 0.004 0.205 0.364 0.644 0.124
[0.466] [0.615] [0.851] [0.960] [0.950] [0.651] [0.546] [0.422] [0.725]
ARCH (10) 12.643 9.644 12.244 13.623 12.935 14.026 7.225 10.968 12.054
[0.244] [0.472] [0.269] [0.191] [0.227] [0.172] [0.704] [0360] [0.281]
JB test 2632.22 2632.22 2632.22 1190.41 1190.41 1190.41 4097.94 4097.94 4097.94
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
e Sample period: LJanuary 1997 to $IDecember 2006.
e zis the slope of forward curve calculated as the diffexémdog of near month and th& onth futures prices.
e AIC and SBIC are the Akaike and Schwartz Bayesian Infaom&riteria, respectively.
e LL is the log-likelihood value of the estimated model.
e LR testis the likelihood Ratio for the joint signifi@@ofdg, 81, 02, d3.
e LB-Q(1) and LB-Q(10) are the Ljung and Box (1978) tests fofittend the 18 order autocorrelation.
[ )
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ARCH(1) and ARCH(10) are the Engle (1982) tests for thentl the 16 order Autoregressive Conditional Heteroscedasticity.
JB is the Jarque and Bera (1980) test for normality.

Standard errors are corrected using Bollerslev and Wdgkl({1992).



Table 6: Forecast evaluation and asymmetric bias of volatility forecasts

Crude Qil
Ave Vol RMSE Over Prediction Under Prediction Sum
% Mean MME(O) % Mean MME(U)
Hist. Variance 0.37158 0.00225 64.3% 0.00034 0.01183 35.7% -0.00177 0.01200 0.02383
RiskMetrics 0.43871 0.00210 66.7% 0.00050 0.01367 33.3% -0.00158 0.01070 0.02437
EGARCH 0.43436  0.00214 679% 0.00049 0.01426 32.1% -0.00168 0.01049 0.02476
EGARCH-X 0.42388 0.00209 67.3% 0.00045 0.01343 32.7% -0.00168 0.01079 0.02422
EGARCH-TX 0.42862 0.00208 65.7% 0.00047 0.01314 34.3% -0.00157 0.01088 0.02401
Gasoline
Ave Vol RMSE Over Prediction Under Prediction Sum
% Mean MME(O) % Mean MME(U)
Hist. Variance 0.40034 0.00174 66.67% 0.00043 0.01157 33.3% -0.00165 0.01382 0.02539
RiskMetrics 0.44660 0.00165 66.87% 0.00055 0.01076 33.1% -0.00144 0.01495 0.02571
EGARCH 0.44830 0.00169 68.65% 0.00056 0.01056 31.3% -0.00156 0.01597 0.02653
EGARCH-X 0.44740 0.00168 68.65% 0.00055 0.01064 31.3% -0.00156 0.01576 0.02640
EGARCH-TX 0.43472 0.00168 68.25% 0.00051 0.01091 31.7% -0.00158 0.01488 0.02578
Heating Oil
Ave Vol RMSE Over Prediction Under Prediction Sum
% Mean MME(O) % Mean MME(U)
Hist. Variance 0.32793 0.00103 63.10% 0.00030 0.00930 36.9% -0.00090 0.01083 0.02013
RiskMetrics 0.35751  0.00100 66.07% 0.00036 0.00846 33.9% -0.00087 0.01183 0.02029
EGARCH 0.37816  0.00102 70.63% 0.00040 0.01383 29.4% -0.00097 0.00784 0.02168
EGARCH-X 0.36015 0.00103 69.64% 0.00036 0.01301 30.4% -0.00100 0.00826 0.02127
EGARCH-TX 0.33641 0.00104 66.87% 0.00031 0.01168 33.1% -0.00098 0.00890 0.02058
Natural Gas
Ave Vol RMSE Over Prediction Under Prediction Sum
% Mean MME(O) % Mean MME(U)
Hist. Variance 0.50540 0.00446 71.63% 0.00081 0.02002 28.4% -0.00232 0.01086 0.03088
RiskMetrics 0.48710 0.00442 69.64% 0.00071 0.01819 30.4% -0.00212 0.01076 0.02896
EGARCH 0.51540 0.00441 73.41% 0.00078 0.02016 26.6% -0.00229 0.00987 0.03003
EGARCH-X 0.50491 0.00441 74.01% 0.00073 0.01961 26.0% -0.00238 0.00994 0.02955
EGARCH-TX 0.47326 0.00441 70.63% 0.00064 0.01762 29.4% -0.00222 0.01075 0.02837

Notes:

The total number of one-step ahead forecasts is 504.

Historical Variance forecast is based on a 126 day rollangnce.

Ave Vol is the average annualised volatility over the for@oggperiod. RMSE is the root mean squared error of volatility
forecast compared to squared returns. MME(O) and MME(U) are Mixech EMear statistics (Brailsford and Faff, 1996) for
comparisons of asymmetries in volatility forecasts. Mean OWedér) Prediction is the average of forecast errors when
predicted volatility is higher (Lower) than the realised.oPercentage is the proportion of under prediction andpsediction
over the forecast period. Sum is the sum of the MME(O) and WY Etatistics.
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Table 7. Comparison of forecasts of different volatility modelsfor Near-month NYMEX
crude ail futures

Panel A: VaR for 1% and 5% M odels Crude Oil

Model N¢ % LLyc LRing LR¢ N¢ % LL LRing LR
1.0% 99.0%
Hist. Variance 10 1.98% 3.833 1.768 5.601 14 2.78% 10.848* 3.731 14.58*
Hist. Sim 16 3.17% 15.288* 2.800 18.088* 17 3.37% 17.706* 2.404 20.11*
Filtred Hist Sim 12 2.38% 6.998* 1.167 8.165* 13 2.58% 8.844* NA NA
RiskMetrics 6 1.19% 0.174 3.730 3.904 10 1.98% 3.833 NA NA
EGARCH(1,1) 6 1.19% 0.174 NA NA 6 1.19% 0.174 NA NA
EGARCHX(1,1) 8 1.59% 1.490 NA NA 8 1.59% 1.490 2.584 4.074
EGARCHTX(1,1) 9 1.79% 2.548 2.144 4.692 9 1.79% 2.548 2.144 4.692
2.5% 97.5%
Hist. Variance 25 4.96% 9.775* 2.055 11.83* 25 4.96% 9.775* 2.055 11.829*
Hist. Sim 38 7.54% 34.43* 1.574 36.01* 26 5.16% 11.238* 1.747 12.984*
Filtred Hist Sim 22 4.37%  5.904* 0.962 6.866* 23  456% 7.104* 0.764 7.868*
RiskMetrics 13 2.58% 0.013 0.928 0.941 24  4.76% 8.396* 2.394 10.790*
EGARCH(1,1) 14 2.78% 0.154 0.723 0.877 17 3.37% 1.423 5.843 7.266*
EGARCHX(1,1) 15 2.98% 0.442 0.549 0.991 19 3.77% 2.892 1.728 4.620
EGARCHTX(1,1) 17 3.37% 1.423 2.404 3.827 17 3.37% 1.423 2.404 3.827
5.0% 95.0%
Hist. Variance 46 9.13% 14.682* 0.177 14.859* 39 7.74% 6.866* 0.000 6.866*
Hist. Sim 54 10.71% 26.479* 1.988 28.468* 47 9.33% 15.999* 0.102 16.100*
Filtred Hist Sim 37 7.34% 5.115* 0.034 5.148 36 7.14% 4.326* 0.806 5.132
RiskMetrics 31 6.15% 1.313 0.619 1.932 33 6.55% 2.326 0.338 2.664
EGARCH(1,1) 26 5.16% 0.026 1.747 1.773 30 5.95% 0.909 0.794 1.703
EGARCHX(1,1) 32 6.35% 1.786 0.467 2.253 31 6.15% 1.313 0.619 1.932
EGARCHTX(1,1) 32 6.35% 1.786 1.756 3.542 30 5.95% 0.909 0.794 1.703

Notes:

The total number of one-step ahead forecasts is 504.

Historical Variance forecast is based on a 126 day rollangnce.

N; is the number of failures of VaRR,. , LRing, and LR, are tests for “unconditional coverage”, *“ independence” and
“conditional coverage”, respectively (see Christoffersen 2003 LR, andLR;4 follow a Chi-Squared distribution with 1 degree of
freedom, whileLR . follows a Chi-Squared distribution with 2 degrees of freeddhe 5% critical value farR,. andLR;,q tests

is 3.841, and the 5% critical value foR. test is 5.991. * indicates rejection of the null antufai of the test.
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Table 8: Comparison of forecasts of different volatility modelsfor Near-month NYMEX
gasoline futures

Panel A: VaR for 1% and 5% M odels Crude Oil

Model N¢ % LLyc LRing LR¢c N¢ % LL LRing LR
1.0% 99.0%
Hist. Variance 15 298% 13.00r 0.549  13.55* 7 1.39% 0.687 3.105 3.792
Hist. Sim 10 1.98%  3.833* NA NA 13 2.58% 8.844* 0.928 9.772*
Filtred Hist Sim 16 3.17%  15.29* NA NA 20 3.97% 25.66* 0.054 25.72*
RiskMetrics 13 2.58%  8.844* NA NA 5 0.99% 0.000 4.499 4.499
EGARCH(1,1) 7 1.39% 0.687 NA NA 4 0.79% 0.233 5.482* 5.715
EGARCHX(1,1) 9 1.79% 2.548 NA NA 5 0.99% 0.000 4.499* 4.500
EGARCHTX(1,1) 15 2.98% 12.99* 0.549 13.55* 4 0.79% 0.233 NA NA
2.5% 97.5%
Hist. Variance 25 4.96%  9.775* 0.055 9.829* 14 2.78% 0.154 3.731 3.885
Hist. Sim 19 3.77% 2.892 0.109 3.001 25 4.96% 9.775 2.055 11.83*
Filtred Hist Sim 24 4.76% 8.396* 0.020 8.416* 36 7.14% 29.920 0.158 30.08*
RiskMetrics 18 3.57% 2.100 NA NA 17 3.37% 1.423 2.404 3.827
EGARCH(1,1) 19 3.77% 2.892 0.109 3.001 7 1.39% 3.035 3.105 6.139*
EGARCHX(1,1) 19 3.77% 2.892 0.109 3.001 9 1.79% 1.170 2.144 3.314
EGARCHTX(1,1) 18 3.57% 2.100 0.184 2.284 10 1.98% 0.591 6.353* 6.944*
5.0% 95.0%
Hist. Variance 38 7.54% 5.962* 1.574 7.536* 33 6.55% 2.326 0.014 2.340
Hist. Sim 40 7.94%  7.825* 1.084 8.909* 38 7.54% 5.962* 0.007 5.969*
Filtred Hist Sim 46 9.13% 14.68* 0.012 14.69* 45 8.93% 13.41* 0.000 13.41*
RiskMetrics 28 5.56% 0.317 0.251 0.568 32 6.35% 1.786 0.001 1.787
EGARCH(1,1) 27 5.36% 0.132 0.171 0.303 21 417% 0.779 1.188 1.967
EGARCHX(1,1) 25 4.96% 0.002 0.055 0.056 22 4.37% 0.446 0.962 1.408
EGARCHTX(1,1) 35 6.94%  3.597 0.093 3.690 24 476% 0.061 0.591 0.652
Notes:

The total number of one-step ahead forecasts is 504.

Historical Variance forecast is based on a 126 day rolém@rce.

N; is the number of failures of VaRR,. , LRing, and LR, are tests for “unconditional coverage”, *“ independence” and
“conditional coverage”, respectively (see Christoffersen 2003 LR, andLR;4 follow a Chi-Squared distribution with 1 degree of
freedom, whileLR . follows a Chi-Squared distribution with 2 degrees of freeddhe 5% critical value farR,. andLR;,q tests

is 3.841, and the 5% critical value foR. test is 5.991. * indicates rejection of the null antufai of the test.
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Table 9: Comparison of forecasts of different volatility modelsfor Near-month NYMEX
heating oil futures

Panel A: VaR for 1% and 5% M odels Crude Oil

Model N¢ % LLyc LRing LR¢ N¢ % LL LRing LR
1.0% 99.0%
Hist. Variance 8 1.59% 1.490 NA NA 9 1.79%  2.548 2.144 4.692
Hist. Sim 13 2.58%  8.844* NA NA 13 2.58% 8.844* 0.928 9.772*
Filtred Hist Sim 21 417%  28.55* NA NA 14 2.78% 10.85* NA NA
RiskMetrics 9 1.79% 2.548 NA NA 9 1.79%  2.548 NA NA
EGARCH(1,1) 6 1.19% 0.174 NA NA 5 0.99%  0.000 4.499 4.500
EGARCHX(1,1) 8 1.59% 1.490 NA NA 4 0.79%  0.233 5.482 5.715
EGARCHTX(1,1) 9 1.79% 2.548 NA NA 6 1.19% 0.174 3.730 3.904
2.5% 97.5%
Hist. Variance 17 3.37% 1.423 NA NA 20 3.97% 3.793 0.054 3.847
Hist. Sim 24 4.76%  8.396* 0.020 8.416* 23 456% 7.104 0.003 7.107
Filtred Hist Sim 24 4.76%  8.396* NA NA 29 5.75% 16.10* 0.070 16.17*
RiskMetrics 16 3.17% 0.868 NA NA 18 3.57% 2.100 0.184 2.284
EGARCH(1,1) 10 1.98% 0.591 NA NA 12 2.38% 0.030 1.167 1.197
EGARCHX(1,1) 11 2.18% 0.218 NA NA 11  2.18% 0.218 1.445 1.662
EGARCHTX(1,1) 16 3.17% 0.868 0.403 1.271 15 298% 0.442 0.549 0.991
5.0% 95.0%
Hist. Variance 29 5.75% 0.576 0.347 0.923 36 7.14% 4.326 0.806 5.132
Hist. Sim 43 8.53% 11.03* 1.057 12.08* 39 7.74% 6.866* 0.346 7.212*
Filtred Hist Sim 44 8.73% 12.19* 1.246 13.44* 48 9.52% 17.36* 0.048 17.41*
RiskMetrics 24 4.76% 0.061 NA NA 33 6.55% 2.326 0.338 2.664
EGARCH(1,1) 17 3.37% 3.156 NA NA 23 456% 0.208 0.764 0.972
EGARCHX(1,1) 24 4.76% 0.061 0.020 0.082 26 5.16% 0.026 0.317 0.344
EGARCHTX(1,1) 36 7.14% 4.326 0.079 4.405 36 7.14% 4.326 0.079 4.405

Notes:

The total number of one-step ahead forecasts is 504.

Historical Variance forecast is based on a 126 day rolém@rce.

N; is the number of failures of VaRR,. , LRing, and LR, are tests for “unconditional coverage”, *“ independence” and
“conditional coverage”, respectively (see Christoffersen 2003 LR, andLR;4 follow a Chi-Squared distribution with 1 degree of
freedom, whileLR . follows a Chi-Squared distribution with 2 degrees of freeddhe 5% critical value farR,. andLR;,q tests

is 3.841, and the 5% critical value foR. test is 5.991. * indicates rejection of the null antufai of the test.
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Table 10: Comparison of forecasts of different volatility modelsfor Near-month
NYMEX natural gasfutures

Panel A: VaR for 1% and 5% M odels Crude Oil

Model Nr % LLye  LRig LR Nr % LL,e  LRing LRec
1.0% 99.0%
Hist. Variance 9 1.79% 2548 NA NA 11  2.18% 5.322* 1445  6.767*
Hist. Sim 6 1.19% 0.174  NA NA 9  1.79% 2548  2.144 4.692
Filtred Hist Sim 11  2.18% 5.322* 1445 6.767* 5 0.99% 0000  4.499 4.500
RiskMetrics 9 1.79% 2548 2144  4.692 5 0.99% 0000  4.499 4.500
EGARCH(1,1) 5 0.99%  0.000  NA NA 4  079% 0233 5482 5.715
EGARCHX(L,1) 5 0.99%  0.000  NA NA 6 119% 0.174  3.730 3.904
EGARCHTX(1,1) 8 1.59% 1490  NA NA 7 1.39% 0687  3.105 3.792
2.5% 97.5%
Hist. Variance 18  357% 2100 0.184  2.284 16 3.17% 0.868  0.403 1.271
Hist. Sim 13 258% 0013 NA NA 16 3.17% 0.868  0.403 1.271
Filtred Hist Sim 20 397% 3.793 0.054  3.847 18 357% 2.100  0.184 2.284
RiskMetrics 14  2.78% 0.154 0723  0.877 16 3.17% 0.868  0.403 1.271
EGARCH(1,1) 10 1.98% 0591  NA NA 10 1.98% 0591  1.768 2.359
EGARCHX(1,1) 11 2.18% 0218 NA NA 9  1.79% 1170  2.144 3.314
EGARCHTX(1,1) 15  2.98% 0442 0549  0.991 11 2.18% 0.218  1.445 1.662
5.0% 95.0%
Hist. Variance 26  5.16% 0026 0.105 0.131 21 417% 0779  0.019 0.798
Hist. Sim 29  575% 0576 0.070  0.647 26  5.16% 0026  0.105 0.131
Filtred Hist Sim 44  873% 12194 0.008  12.202 36 7.14% 4326  1.405 5.731
RiskMetrics 27 536% 0132 1468  1.601 29 575% 0576  0.347 0.923
EGARCH(1,1) 20 397% 1.212 0.054  1.266 25 4.96% 0002  0.055 0.056
EGARCHX(1,1) 21 417% 0779 0.019  0.798 25 4.96% 0002  0.055 0.056
EGARCHTX(1,1) 23 456% 0208 0764  0.972 28 556% 0317  0.132 0.448

Notes:

The total number of one-step ahead forecasts is 504.

Historical Variance forecast is based on a 126 day rolém@grce.

N; is the number of failures of VaRR,. , LRing, and LR, are tests for “unconditional coverage”, “ independence” and
“conditional coverage”, respectively (see Christoffersen 2008 LR, andLR;,q follow a Chi-Squared distribution with 1 degree of
freedom, whileLRfollows a Chi-Squared distribution with 2 degrees of freeddhe 5% critical value fatR,. andLR,q tests

is 3.841, and the 5% critical value foR. test is 5.991. * indicates rejection of the null antufai of the test.
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Figure 1: Supply-demand framework for energy commodities
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Figure 6: Slope of forward curve and volatility of near month futures pricesfor different energy commodities
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