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Abstract 

Peralkaline rhyolites are volatile-rich magmas that typically erupt in continental rift settings. 

The high alkali and halogen content of these magmas results in viscosities two to three orders 

of magnitude lower than in calc-alkaline rhyolites. Unless extensive microlite crystallisation 

occurs, the calculated strain rates required for fragmentation are unrealistically high, yet 

peralkaline pumices from explosive eruptions of varying scales are commonly microlite-free. 

Here we present a combined 2D scanning electron microscopy and 3D X-ray 

microtomography study of peralkaline rhyolite vesicle textures designed to investigate 

fragmentation processes. Microlite-free peralkaline pumice textures from Pantelleria, Italy, 

strongly resemble those from calc-alkaline rhyolites on both macro and micro scales. These 

textures imply that the pumices fragmented in a brittle fashion and that their peralkaline 

chemistry had little direct effect on textural evolution during bubble nucleation and growth. 

We suggest that the observed pumice textures evolved in response to high decompression 

rates and that peralkaline rhyolite magmas can fragment when strain localisation and high 

bubble overpressures develop during rapid ascent.  

 

Keywords: peralkaline rhyolite, fragmentation, textural analysis, X-ray microtromography 
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1. Introduction 

Peralkaline rhyolites, although less common than their calc-alkaline counterparts, are 

nonetheless found in many settings including continental rifts, ocean islands and back-arc 

basins. During the Holocene, central volcanoes along the East African Rift, from Afar to 

Tanzania, have produced explosive ignimbrite-forming eruptions of peralkaline magma  

(Macdonald et al. 1987). Today, these volcanic centres threaten many hundreds of thousands 

of people, yet the dynamics of peralkaline eruptions are poorly understood and have never 

been observed directly. Despite their high silica contents, peralkaline melts have a relatively 

low viscosity (equivalent to calc-alkaline andesite for similar water contents) as a result of 

their alkali-rich nature (molar (Na2O+K2O)/Al2O3 > 1, e.g., Dingwell et al. 1998; Di Genova 

et al. 2013). Their volatile-free viscosity is two to three orders of magnitude lower than that 

of calc-alkaline rhyolites: ~10
8
 Pa.s for calc-alkaline rhyolite using the model of Giordano et 

al. (2008) versus ~10
5.5

 Pa.s for peralkaline rhyolite using the model of Di Genova et al. 

(2013), both at 1223 K. Peralkaline rhyolite viscosities are so low that the fragmentation 

threshold for brittle failure (10
8
 to 10

9
 Pa.s; Papale 1999) should never be reached during 

magma ascent and degassing unless significant microlite crystallisation takes place (Di 

Genova et al. 2013), though recent numerical modelling has suggested that initial temperature 

may also exert a strong control on the depth of brittle fragmentation and whether it can occur 

at all (Campagnola et al. 2016). 

 

Peralkaline magmas are associated with a large range of eruption styles (Houghton et al. 

1985a, 1985b, 1987, 1992; Mahood and Hildreth 1986; Stevenson and Wilson 1997). For 

example, on the island of Pantelleria, Italy, magmas with near-identical major element 

compositions have produced domes, lava flows (including fountain-fed agglutinates), pumice 

cones, thick tephra fall deposits and pyroclastic flow deposits (Villari 1974; Mahood and 

Hildreth 1986; Civetta et al. 1988, 1998; Stevenson and Wilson 1997; White et al. 2009; 

Neave et al. 2012; Williams et al. 2013). The widespread welding and rheomorphism of the 

ignimbrites and fall deposits (Schmincke 1974; Wolff and Wright 1981; Mahood 1984) are a 

consequence of the low viscosity and correspondingly low glass transition temperature (Tg) 

of peralkaline melts, which can allow deformation to continue for many days after 

emplacement (Di Genova et al. 2013). 
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In this study, we use textural observations made on pumices from Pantelleria, Italy, to 

investigate the mechanisms of peralkaline rhyolite fragmentation. Our aim is to unravel the 

vesiculation and crystallisation processes in operation during magma ascent and hence 

understand magma properties to the point of fragmentation. Vesicle textures preserve 

information about bubble nucleation and growth, but are also modified by deformation, 

coalescence and outgassing (e.g., Sparks 1978; Klug and Cashman 1994; Sable et al. 2006). 

A crucial assumption made when interpreting pyroclast vesicle textures is that they represent 

the magma at the moment of fragmentation; that they have experienced no post-

fragmentation modification (e.g., Houghton and Wilson 1989). This assumption is valid when 

samples are rapidly quenched, as is the case for many pumices from Pantelleria, but the 

timescale over which textural modification occurs depends on magma viscosity, magma 

composition and the depth of fragmentation (Gurioli et al. 2015). 

 

In order to examine vesicle and crystal textures, as well as their interrelationships, in detail, 

we combined the complementary methods of multiscale 3D X-ray microtomography (XMT) 

and high resolution 2D scanning electron microscopy (SEM) (e.g., Gurioli et al. 2008; 

Giachetti et al. 2011). By integrating these techniques, we obtained high spatial resolution 

information about the geometry of objects in three dimensions, which is critical for 

understanding eruption processes (Baker et al. 2012). We compare our data to published 

textural studies of explosive eruptions, and assess similarities and differences in textures, 

bulk porosities, vesicle population characteristics and strain localisation features. By 

integrating textural and geochemical data, we reconstruct the peralkaline fragmentation 

process that accompanies the eruptions of these magmas, and test the limits of existing 

models to explain magma fragmentation. Finally, we use a fragmentation model to explore 

the role of overpressure inside rapidly growing bubbles as a driver for strain rate-driven 

fragmentation during rapid ascent. 

 

2. Geological setting 

The Quaternary volcano of Pantelleria (Figure 1) lies on the thinned continental crust of the 

E-W extending Sicily Channel (Civile et al. 2008, 2010), and has been active for at least 324 

ka (Mahood and Hildreth 1986). The mafic northwest portion of the island is separated from 

the caldera-dominated, felsic southwest portion by N-S striking regional faults (Catalano et 

al. 2009). The volcanic history of Pantelleria has been punctuated by ignimbrite-forming 

eruptions (Jordan et al. 2013; Rotolo et al. 2013), of which the ~45.7 ka Green Tuff eruption 
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was the most recent (Villari 1974; Mahood and Hildreth 1986; Scaillet et al. 2013). 

Continuous geochemical zonation in the Green Tuff deposit, from pantellerite (Fe-rich 

peralkaline rhyolite) at its base to trachyte at its top, may represent the evacuation of a 

stratified reservoir of cogenetic magmas (Civetta et al. 1988; Williams et al. 2013). Indeed, 

pantellerites are most likely formed by 70–80 % fractional crystallisation of trachytic liquids 

(White et al. 2009; Neave et al. 2012; Landi and Rotolo 2015). Small eruptions generating 

non-welded fall deposits have been most common over the last 20 ka on Pantelleria (Mahood 

and Hildreth 1986; Orsi et al. 1991; Scaillet et al. 2013). Deposits from these eruptions have 

been classed Strombolian from the limited, circular extent of their tephra dispersal (Orsi et al. 

1991, 1989; Stevenson and Wilson, 1997;  Rotolo et al. 2007), in line with similar 

observations from Mayor Island, New Zealand (Houghton et al. 1985a). 

 

Cuddia di Mida is the site of one such Strombolian eruption, which produced a small pumice 

cone around the eruptive vent (Figure 1; Orsi et al. 1991). Deposits from the Cuddia di Mida 

eruption are characteristic of the numerous small explosive eruptions that have taken place 

since the ~45.7 ka Green Tuff eruption, making it well suited to a study of the eruption 

dynamics and fragmentation of peralkaline magmas. The lowermost layer of the sequence is 

an explosion breccia (1 m thick) and is overlain by a poorly-sorted fallout layer, which has an 

increasing ash content towards the top (0.3 m). Above this is an ashy bed (0.08 m) overlain 

by a much thicker, massive, poorly-sorted fall deposit (1.2 m) (Orsi et al. 1991). The Cuddia 

di Mida deposits have not been dated, but the eruption probably occurred at a similar time to 

the Cuddia del Gallo eruption (7.1(±0.8) ka; Scaillet et al. 2013): a likely eruption window of 

9.7(±0.6)–7.1(±0.8) ka can be inferred from the ages of the nearby Serra Fastuca and Cuddia 

del Gallo eruptions (Rotolo et al. 2007; Scaillet et al. 2013). A bulk sample of pumice clasts 

was collected from a single horizon in the middle of the upper massive layer (Orsi et al. 

1991) on the Cuddia di Mida cone (36.781°N, 11.993°E). The unit consists of juvenile clasts 

~1–10 cm in diameter (Figure 2). Grey clasts make up ~95 vol.%, with the remainder made 

up of black and mixed clasts and non-juvenile clasts which are <10 cm in diameter 

(obsidians, lithics and occasional enclaves). This is sample number 09PNL001 from Neave et 

al. (2012). 

 

3. Methods 

Density measurements of juvenile material were carried out using the method of Houghton 

and Wilson (1989), with the type of material (black, mixed or grey pumice) being noted. 
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Bulk densities were converted to porosities using a glass density of 2520 kg.m
-3

, calculated 

from the Cuddia di Mida glass composition of Neave et al. (2012) at room temperature and 

pressure (Bottinga and Weill 1970; Lange and Carmichael 1990; Lange 1997; Toplis et al. 

1994; Ochs and Lange 1999). The grey and black pumices have indistinguishable major 

element glass compositions and the same glass density was therefore used for both pumice 

types (Table 1). Grey pumices exhibit the lowest density of any juvenile material from the 

Cuddia di Mida eruption. In Strombolian eruptions, grey pumices are thought to represent the 

films that encase gas slugs and are therefore most likely to capture the moment of 

fragmentation (Lautze and Houghton 2005). The black and mixed pumices appear to be 

collapsed grey pumices and therefore were not considered further as they are unlikely to 

capture the moment of fragmentation. Cylinders ~10 mm in diameter and ~10–20 mm in 

height were cut from four clasts (A-D) of the grey pumices for qualitative textural analysis by 

SEM (Back Scatter Electron mode) and XMT imaging (e.g., A10 in Table 2). Two additional 

cylinders ~5 mm in diameter were cut from clasts A and C (e.g., A5) in order to acquire high 

quality XMT images at a range of resolutions. These two cylinders were also imaged by 

SEM. Full details of SEM and XMT image acquisition and processing, including the 

calculation of vesicle size distributions which followed the principles employed in the 

FOAMS software (Shea et al. 2010), are included in the supplementary material. All images, 

both SEM and XMT, are available from the authors upon request. 

 

4. Results 

4.1 Porosity 

As the histogram of porosities (Figure 3) shows a bimodal distribution, a robust estimate of 

the average density of the whole population cannot be made owing to insufficient 

measurements (67 measurements of juvenile material, of which 48 were grey pumices and 19 

were black/mixed pumices) (Bernard et al., 2015). The broad, low porosity mode (mean 

36.9±12.2 vol.%, equivalent density of 1.59±0.31 g.cm
-3

) consists of black and mixed 

pumices whereas the narrow, high porosity mode (mean 78.5±2.7 vol.%, equivalent density 

0.54±0.07 g.cm
-3

) consists exclusively of grey pumices. Sufficient measurements of the high 

porosity mode were made to obtain a robust estimate of its average (Bernard et al. 2015). The 

clasts used for textural analysis are all grey pumices from the high porosity mode. The 

average porosity estimated from the bulk density of A and C is 76.2 vol.%, which compares 

well with the vesicularity calculated from 2D SEM images (78.2 vol.%).  
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4.2 Crystals 

Crystal phases are dominantly anorthoclase and aegirine augite (tabular euhedral to angular 

and broken), alongside subordinate Fe-Ti oxides (generally equant) and aenigmatite (elongate 

bladed) (Neave et al. 2012). The average crystal content estimated using XMT images (A and 

C) is 3.24 vol.% (13.7 vol.% when recalculated on a vesicle-free basis) and the average 

aspect ratio of the crystals is 2.41. Crystal size distributions were not calculated from SEM or 

XMT images due to the low number of crystals present, i.e., crystal populations are not 

statistically robust. Therefore, only crystal area contents were measured in SEM images for 

calculation of crystal-free vesicle number densities. No microlites were observed, even in the 

highest resolution SEM images (Figure 4). The uniform BSE intensity of the pumice glasses 

implies that any nanolites present must be < 0.02  m
2
 (< 1 pixel on the highest resolution 

SEM images). 

 

4.3 Qualitative textural analysis of vesicles 

Grey pumices (A-D) show a variety of vesicle textures in both SEM and XMT images 

(Figures 5–7). In some regions, there is a sub-spherical, unimodal, isotropic vesicle 

population connected by thin melt films (~10
-3

 mm) that have an overall appearance 

resembling a polyhedral foam (Figure 5a). Some regions contain elongate vesicles which 

have thicker vesicle walls (~10
-2

 mm) than the surrounding regions and therefore appear 

denser (Figure 5b). Whilst vesicles within these regions are strongly aligned, nearby regions 

have different alignments and there is no overall bulk preferred orientation. Medium-sized 

vesicles (L ~ 10
-1

 mm, where L is the equivalent diameter of a sphere with the same volume 

as the vesicle) associated with crystals are often somewhat elongated perpendicular to crystal 

faces and are connected to the crystals by thin melt films; the crystals themselves are often 

mantled by melt films (Figure 5c). The largest vesicles (L ~ 10
0
 mm) are distributed 

randomly throughout the samples and have highly convoluted surfaces that are often, but not 

always, associated with crystals or regions of small vesicles. The films separating these large 

vesicles are very thin and often pinch out in the middle to widths thinner than the resolution 

of the SEM images (0.15 μm; Figure 5d). In SEM and XMT images, all samples display all 

these textures in approximately similar amounts (Figures 6 and 7) with two exceptions: in 

SEM images, A5 only displays the polyhedral foam texture with occasional larger vesicles 

(Figure 6); and in XMT images, C5 displays more of the elongate and orientated deformation 

vesicles (Figure 7). 
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4.4 Quantitative textural analysis of vesicles 

Vesicle size varies by three orders of magnitude in clasts A and C with L ranging from 

1.69×10
-3

 mm (SEM; Figure 6) to 4×10
0
 mm (XMT; Figure 7). Vesicle wall thicknesses vary 

from below the resolution of SEM images (< 0.15 µm) to ~30 µm (Figures 6 and 7). A10 and 

C10 contain equal proportions of circular and elongate vesicles (where elongate vesicles are 

defined as having long axis to short axis ratios > 2) whereas A5 contains 33 % elongate 

vesicles and C5 62 %, as observed qualitatively.  Relationships between the number of 

vesicles per unit volume (NV) and L from the SEM data are similar for both clasts in the 

range L = 0.15–4000 µm, with greater variation found at the upper and lower limits of L 

(Figure 8a). Stereological correction procedures from Sahagian and Proussevitch (1998) and 

Mangan et al. (1993) (abbreviated to SP98 and MCN93 respectively throughout), produced 

similar results (e.g., for A10, NV,tot is 7.26×10
5
 mm

-3
 using MCN93 and 6.14×10

5
 mm

-3 
using 

SP98). Vesicle properties calculated with the more widely used SP98 procedure were carried 

forward into further calculations (Table 2; Figure 8a). The XMT data show very similar 

trends for clasts A and C (Figure 8b), with greater inter-sample variation for large vesicles (L 

> 1 mm). In these samples, the XMT data extend the range of L to values half an order of 

magnitude greater than those recovered by SEM, and the higher number of vesicles observed 

at larger L means less scattered data at larger vesicle sizes (Figure 8c). At intermediate values 

of L (6×10
-2 

< L < 4×10
-1

 mm), XMT and SEM data have very similar NV distributions 

(Figure 8c).  

 

For cumulative vesicle number density (NV > L), changes in slope at ~2×10
-2

 mm (from SEM 

data) and ~5×10
-1

 mm (from XMT data) define three segments, which can be fitted with 

power-law curves (e.g., Blower et al. 2001) (Table 3; Figure 8d). At small values of L (SEM; 

L < 2×10
-2 

mm),
 
the curve can be fitted with a power law exponent (d) of 1.96. For 

intermediate values of L (SEM and XMT; 2×10
-2 

< L < 5×10
-1

 mm), d increases to 3.24 and 

3.28 respectively. For large values of L (XMT; L > 5×10
-1

 mm), d has a lower of 2.06. 
 

 

The average melt corrected total vesicle number density (NV,tot
melt

) from SEM images is 

2.52×10
6
 mm

-3
, which is two orders of magnitude larger than the value of 4.23×10

4
 mm

-3 

from XMT images (Table 2). NV,tot
melt

  values are dominated by the smallest vesicles, which 

can be artificially combined by XMT when image resolution is insufficient to capture the 

finest of melt films or artificially separated by SEM when complicated vesicles are counted 
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multiple times on a 2D surface. When NV,tot
melt

 is calculated using vesicles of 2×10
-2 

< L < 

2×10
-1

 mm (the resolution range covered well by both techniques), the XMT and SEM 

datasets show close agreement. 

 

The spatial correlation between crystals and moderately large vesicles identified qualitatively 

(Figure 5c) was tested further in A10 and C10 as they contain the most crystals and were 

imaged with a resolution appropriate for capturing larger vesicles. The NV versus L 

relationship of all vesicles was compared to that of the 100 vesicles closest to each crystal 

quantified using 3D nearest neighbour analysis implemented in the SpatStat package in R 

(Baddeley and Turner 2005). Due to small instabilities during repeated iterations of nearest 

neighbour calculations, NV versus L systematics of near-crystal vesicles are presented as a 

field rather than a single line (Figure 9). Vesicles near crystals have larger modal equivalent 

diameters by ~1.5×10
-1

 mm, verifying previous qualitative assessments. 

 

5. Discussion 

5.1 Comparison of results from SEM and XMT 

By combining SEM and XMT imaging, we were able to obtain high spatial resolution images 

(SEM) as well as quantifying 3D relationships between objects (XMT). When applying any 

method with a finite spatial resolution, a population of small features may always be beyond 

the limits of imaging resolution. The resolution (and contrast) of the XMT data was 

insufficient to determine the finest of vesicle walls and the presence, or in this case absence, 

of microlites. Region of interest scanning, or higher resolution XMT laboratory systems, can 

yield 3D datasets with voxel resolutions down to 50 nm which would allow SEM-comparable 

imaging of thin vesicle walls, albeit within much smaller 3D volumes. However, the large, 

heterogeneously distributed high density crystals (aegirine augite, Fe-Ti oxides and 

aenigmatite) increased image noise and thus prevented observation of fine scale structures in 

these samples. In highly porous samples, like those investigated here, XMT image analysis 

generally underestimates vesicle number densities, primarily by the over-coalescence of 

neighbouring vesicles. Direct comparison of volcanological interpretations from SEM and 

XMT multiscale data should therefore be made with caution. For example, multiscale 

imaging studies of basaltic scoria and bombs from Villarrica observed discrepancies between 

SEM- and XMT-derived NV,tot values of a similar magnitude to those we observe at 

Pantelleria (Gurioli et al. 2008). In contrast, in datasets where vesicles are large with respect 

to the XMT voxel resolution, SEM and XMT datasets may agree well with each other, as 
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reported in pumices from Montserrat (Giachetti et al. 2011). Imaging using any method 

(optical, SEM, XMT, etc.) where the smallest feature (vesicle or vesicle wall) is less than 

three pixels/voxels in diameter will be subject to significant uncertainty (Lin et al. 2015). 

 

Segmentation and separation of the vesicles in the 3D dataset was performed by automated 

methods (20–60 mins per step, per sample), and was entirely parameterised from the data. 

The processing of XMT data therefore avoided the time-consuming manual rectification 

required for SEM data (>16 hours per sample) and eliminates user-induced bias for feature 

recognition. The good agreement between the VSDs from both methods (Figure 8c) indicates 

that our SEM and XMT datasets can be combined to extend the range of L. Using XMT 

scans at two resolutions, it is theoretically possible to constrain VSDs over at least five
 
orders 

of magnitude of equivalent diameter (beyond the 10
3
 range observed in our sample). XMT is 

able to accurately define the volume of all vesicles (within the image resolution) without 

using stereological corrections. This is particularly important for non-spherical elongate or 

coalesced vesicles, which are treated poorly by standard stereological conversions applied to 

2D data. For ellipsoidal vesicles, vesicle volume calculated assuming sphericity using the 2D 

cross-section can significantly over or underestimate volume depending on orientation 

relative to the 2D section plane. Vesicles with highly complex morphologies can be counted 

multiple times depending on their intersection with the plane of the 2D section, affecting size 

distributions and number densities (e.g., Sahagian and Proussevitch 1998). The limited 

sample area of 2D analyses impacts on the structural information extracted, and 3D imaging 

is critical for textural studies (Giachetti et al. 2011; Baker et al. 2012). This is highlighted by 

sample C5, where the strong, localised and variably oriented fabric visible in the XMT 

images is entirely missed by the SEM data acquired in a single plane through the same 

sample volume. 3D imaging also allowed us to quantify spatial correlations between vesicles 

and crystals, which was not possible from 2D data due to the limited number of crystals 

intersected in single slices.  

 

5.2 Bubble nucleation, growth and deformation recorded in pumice textures 

Grey pumices exhibit a narrow range of porosities (78.9±2.4 vol.%) and are texturally similar 

to one another – they have VSDs that are within error over the full range of L. The modal 

density of the grey pumices (0.5–0.6 g.cm
-3

) is similar to the Oira pumice cone (0.5–0.6 g.cm
-

3
) and Ruru Pass Tephra (0.4–0.5 g.cm

-3
) of Mayor Island, NZ, both magmatic peralkaline 

eruptions of Strombolian-to-Hawaiian intensity (Houghton et al. 1987). The power-law 
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relationships in the cumulative VSD data imply non-equilibrium, continuous and/or 

accelerating nucleation and growth of bubbles; conditions common during explosive 

eruptions of silica-rich magmas (e.g., Mangan and Cashman 1996; Blower et al. 2001, 2003). 

Power law exponents, d, of < 2 have been shown experimentally to represent continuous 

nucleation and free growth of bubbles (Blower et al. 2001, 2003); we suggest that the 

smallest vesicles (L < 2×10
-2

 mm; d = 1.96) originated in this way. This value of d is 

comparable to those reported for vesicles of a similar size from Askja 1875 (Carey et al. 

2009) and Chaitén 2008 (Alfano et al. 2012) (Table 4), where bubble development is thought 

to reflect a final stage of rapid decompression that occurred shortly before fragmentation at a 

high degree of vapour supersaturation. For intermediate vesicle sizes (2×10
-2

 < L < 5×10
-1

 

mm), our peralkaline samples have a power law exponent of ~3.25, a change in slope which 

may have been caused by bubble coalescence overprinting continuous nucleation (Gaonac’h 

et al. 1996), a process that has been reported for Askja 1875 (Carey et al. 2009), Chaitén 

2008 (Alfano et al. 2012), Mount Mazama 7700 BP (Klug et al. 2002) and Taupo 1.8 ka 

(Houghton et al. 2010) (Table 4). This intermediate-sized population of vesicles includes 

heterogeneously distributed bubbles that we interpret as having nucleated early on 

phenocrysts at low degrees of supersaturation (Figures 4c and 9). Our largest vesicle 

population (L > 5×10
-1

 mm) returns to a power law exponent typical of continuous nucleation 

and free growth (d = 2.06), which we suggest could be related to dynamic processes such as 

tearing and deformation during fragmentation, but has not been noted in previous studies. 

 

There is a high degree of spatial heterogeneity in vesicle deformation over small length scales 

(< 1 mm), suggesting that strain was localised (Wright and Weinberg 2009). This is 

especially noticeable in C5 (Figure 7). The presence of deformed, elongated vesicles (with 

elongation factors often > 10) suggests that maximum strain rates during the eruption were 

locally much higher than those that would be calculated using bulk parameters (e.g., conduit 

radius and volume flux). However, the larger, near-crystal vesicle population shows little or 

no deformation, which suggests the possible formation of strain shadows around crystals. The 

spatial relations between crystals and deformation require further investigation before this 

can be quantified. 

 

To compare vesicle textures of the Cuddia di Mida eruption with those from other eruptions, 

literature data from a variety of magmatic (i.e., not phreatomagmatic) eruptions is shown in 

Figure 10. Figure 10a displays NV versus melt SiO2 content for a wide range of magma 
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compositions (basalt to rhyolite) and eruption styles (Strombolian to Plinian). In general, 

rhyolitic eruptions have higher NV than basaltic eruptions, although some basaltic Plinian 

eruptions reach values similar to rhyolitic eruptions. Within basaltic eruptions, Plinian 

eruptions tend to have higher NV than Strombolian events but the values do overlap. 

Conversely, NV for rhyolitic eruptions does not correlate with eruption style as the small 

cone-forming events have NV values similar to those from sub-Plinian and Plinian events. For 

example, the Cuddia di Mida eruption has NV values similar to those from a small cone-

forming rhyolitic eruption on Raoul (Rotella et al. 2014) and from sub-Plinian to Plinian 

rhyolitic eruptions. These values are one-to-four orders of magnitude larger than basaltic 

Strombolian eruptions and at the maximum values for basaltic Plinian eruptions. However, 

the total vesicle number densities we report for the Cuddia di Mida eruption are an order of 

magnitude larger than those reported from member A of the peralkaline Green Tuff eruption 

by a recent study (Campagnola et al. 2016). 

 

Figures 10b and 10c only include a sub-set of the eruptions used in Figure 10a selected to 

represent data from two end-member fragmentation mechanisms (Gonnermann 2015): 

inertia-driven break-up of low viscosity melt (e.g., basaltic Strombolian) and strain-induced 

brittle failure (e.g., crystal-free rhyolitic Plinian). Crystal-free rhyolitic eruptions were chosen 

as the Cuddia di Mida eruption contains only a minor phenocryst component and no 

microlites, implying that a high crystal content did not lead to fragmentation. As expected, 

comparing NV to melt viscosity (Figure 10b) shows a very similar trend to comparing to melt 

SiO2 content. 

 

Small peralkaline eruptions have been compared to basaltic Strombolian eruptions in 

previous work due to their low viscosities (e.g., Houghton et al. 1985a). However, the 

viscosity and NV of the Cuddia di Mida eruption are much more similar to rhyolitic eruptions 

than basaltic Strombolian eruptions. This may be due to the lower diffusivities of volatile 

species through cooler rhyolitic melts influencing bubble nucleation and growth: with slower 

diffusion it is easier to nucleate new bubbles than to diffuse volatiles into existing bubbles, 

which results in higher NV (Sparks 1978). 

 

Figure 10c shows vesicle size distributions (VSDs) for rhyolitic sub-Plinian to Plinian and 

basaltic Strombolian eruptions as well as our data from the Cuddia di Mida eruption. VSDs 

from single eruptions are similar to each other, but VSDs do not appear to correlate with 
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eruption style or magma composition in general. Basaltic Strombolian eruptions tend to have 

few large vesicles compared to rhyolitic eruptions but rhyolitic eruptions also span wide 

ranges of vesicle sizes. However, our samples from Cuddia di Mida are more similar to those 

from rhyolitic eruptions than from basaltic Strombolian eruptions because they contain many 

small vesicles that are absent in the basaltic eruptions. 

 

The low viscosity of the peralkaline Cuddia di Mida melt does not appear to have exerted a 

major control on the final vesicle textures of the pumices (Figures 5 and 10). That is, the 

peralkaline rhyolites studied here resemble deposits from silica-rich, calc-alkaline eruptions 

with much higher melt viscosities, particularly with respect to minimum vesicles sizes and 

strain localisation features (see studies on Chaitén 2008 and the Campanian Ignimbrite from 

Alfano et al. (2012) and Polacci et al. (2003) respectively). The pumice textures do not 

resemble those of scoria from basaltic, Strombolian eruptions at Stromboli or Villarrica, 

which are characterised by much larger vesicles (Gurioli et al. 2008; Lautze and Houghton 

2005, 2006, 2008; Polacci et al. 2009; Leduc et al. 2015). Furthermore, the NV,tot
melt

 values 

and VSDs calculated are similar to those from the products of high-silica calc-alkaline 

eruptions of varying size (Table 4, Figures 10a and 10c).  

 

5.3 The fragmentation mechanism of peralkaline magmas 

Interaction with external water is not considered to be a viable fragmentation mechanism for 

the Cuddia di Mida eruption due to the lack of field evidence for magma-water interaction  

(Mahood and Hildreth 1986). Furthermore, pumice clasts from Cuddia di Mida lack the 

fluidal shapes associated with inertia-driven fragmentation of the type observed in Hawaiian 

eruptions (Namiki and Manga 2008); and the total vesicle number density is one to four 

orders of magnitude larger those found in the products of basaltic Strombolian eruptions. 

Therefore tearing apart of melt by bubble bursting is also not a viable fragmentation 

mechanism (Figure 10; Gonnermann 2015). Textural similarities between peralkaline and 

calc-alkaline pumices thus suggest similar brittle fragmentation mechanisms, despite 

differences in chemistry and physical properties. 

 

Magmas fragment in a brittle fashion when a critical, viscosity-dependent strain-rate is 

exceeded (Papale 1999). Bulk magma viscosity depends on melt composition and on magma 

crystallinity and vesicularity (e.g., Rust and Manga 2002; Giordano et al. 2008; Vona et al. 

2011; Mader et al. 2013). Magma water content decreases dramatically during decompression 
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and degassing, increasing the bulk viscosity (Giordano et al. 2008) and bringing the magma 

closer to fragmentation. Assuming that the melt was largely degassed at the point of 

fragmentation, we use the PS-GM viscosity model of Di Genova et al. (2013) to calculate a 

melt viscosity range of 10
4.28

 to 10
7.11

 Pa.s (at 0.0−1.0 wt.% water) at a temperature of 1075 

K (Neave et al. 2012). The PS-GM viscosity model is based on a modified Vogel-Fulcher-

Tammann equation and is specifically calibrated for peralkaline compositions (Di Genova et 

al. 2013). Including crystals (13.8 vol.%, average aspect ratio of 2.4 ) has a negligible effect 

on the bulk viscosity (10
4.65

 to 10
7.48

 Pa.s at 0.0−1.0 wt.% water; Mader et al. 2013). 

 

Samples contain elongate vesicles (33 – 62 % of total vesicle populations) which implies that 

melt capillary numbers were high and that the bulk viscosity decreased with increasing 

bubble content (Rust and Manga 2002). At the high vesicle volume fractions observed here 

(~76 vol.%), the standard models that relate viscosity to porosity are not applicable (they 

remain robust up to a maximum porosity of 50 vol.%; Mader et al. 2013). It is therefore not 

possible to calculate the bulk viscosity at the moment of fragmentation precisely. However, 

assuming that the melt had an initial water content of 5 wt.% (Neave et al. 2012), contained 

13.7 vol.% crystals when resident in the magma chamber at 1.5 kbar (Neave et al. 2012) and 

carried only a negligible volume of pre-existing bubbles, we calculate a bulk viscosity of 

10
1.54

 Pa.s prior to decompression (1075 K, Neave et al. 2012). If there was no melt-bubble 

separation during the initial ascent, the viscosity, bubble content and pressure-dependent melt 

water content up to the 50 vol.% porosity threshold can be estimated (the porosity threshold 

is estimated to occur at ~25 bars; Papale et al. 2006). Beyond this threshold we cannot assess 

the effect of bubbles on viscosity and therefore a maximum estimate for the viscosity of a 

bulk magma at containing 50 vol.% bubbles at fragmentation is 10
4.15

 to 10
6.61

 Pa.s (assuming 

0.0−1.0 wt. % water at 1075 K; Mader et al. 2013). 

 

The minimum bulk viscosity (µ) required for strain-induced fragmentation is defined as μ ≥ 

(CG∞πr
3
/Q)

(1/0.9)
, where r is the conduit radius (m), Q is the volume flux (m

3
.s

-1
), G∞ is the 

elastic modulus at infinite frequency (10 GPa) and C is a fitting parameter (0.01 (Pa.s)
-0.1

) 

(Gonnermann and Manga 2003). For a realistic conduit radius of 10 m (e.g., Campagnola et 

al. 2016) a mass flux of 2.4×10
8
 to 3.5×10

10
 kg.s

-1 
(equivalent to a volume flux of 3.5×10

5
 to 

5.8×10
7
 m

3
.s

-1
) is required to achieve the minimum strain rate required for fragmentation 

when considering the viscosities calculated above (10
4.15

 to 10
6.61

 Pa.s). These should be 

considered as minimum mass flux estimates as bulk viscosity will likely be reduced further at 
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higher vesicle contents (~25 vol.% of measured porosity beyond the model limits, Mader et 

al. 2013). The much larger Green Tuff eruption had a comparable viscosity to the Cuddia di 

Mida eruption during the earliest explosive and crystal-poor part of the eruption 

(Campagnola et al. 2016), yet the mass fluxes we calculate to be necessary for fragmentation 

are much larger than those estimated for both the entire Green Tuff eruption (~2×10
8
 kg.s

-1
; 

Williams et al. 2013), and member A of the Green Tuff (9.3×10
5
 kg.s

-1
; Campagnola et al. 

2016) and are therefore unfeasible. Conversely, achieving fragmentation using the lower 

bound of the published mass fluxes for these eruptions would require a conduit radius of < 1 

m. Assuming strain-induced fragmentation, the calculated minimum mass fluxes and conduit 

radii required for fragmentation in both small (Cuddia di Mida) and large (Green Tuff) 

eruptions of peralkaline rhyolite respectively are thus geologically unrealistic. 

 

An alternative mechanism invokes bubble overpressure causing strain-induced fragmentation 

when gas is unable to expand over the timescale of decompression due to the tensile strength 

of the surrounding melt (Zhang 1999; Spieler et al. 2004; Mueller et al. 2008). Although 

there is no permeability data available for the Cuddia di Mida pumice, the overpressure 

required for fragmentation (ΔPfr; MPa) can be calculated from ΔPfr = σm/φ using the known 

porosity (φ) and magma tensile strength (σm = 0.995 MPa; Spieler et al. 2004). With a 

porosity of 76 vol.%, the Cuddia di Mida pumices require a bubble overpressure of 1.3 MPa 

to cause fragmentation. Bubble overpressure is a function of decompression rate and melt 

viscosity (Barclay et al. 1995). An NV,tot
melt

 of 2.5×10
6
 mm

-3
 implies decompression rates of 

the order 10
7
 Pa.s

-1
 (Toramaru 2006), and the melt viscosity gives relaxation times (τs) of 

1.9×10
-6

 to 1.3×10
-3

 s for 1.0–0.0 wt.% water using the expression τs = μs/G∞ (Dingwell and 

Webb 1989). The onset of non-Newtonian, unrelaxed, viscoelastic behaviour at 1.9×10
-4

 to 

1.3×10
-1

 s, thus implies that average decompression rates of 1.0×10
7
 to 6.9×10

9
 Pa.s

-1
 are 

required for fragmentation. Even the lower of these estimates (for the most viscous melt) is 

extreme, and significantly larger than the value estimated for member A of the Green Tuff 

eruption (3.82×10
6
 Pa.s

-1
; Campagnola et al. 2016). 

 

Rapid decompression following edifice collapse has been suggested to explain the explosive 

behaviour of other magmas with seemingly insufficient viscosity to fragment (e.g., ~10
6
 to 

10
8
 Pa.s for Chaitén 2008; Castro and Dingwell 2009; Alfano et al. 2012). However, edifice 

collapse is not a viable mechanism for driving rapid decompression on Pantelleria, where 

cone-forming events have defined recent silicic volcanism. Instead, the high volatile content 
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and low viscosity of peralkaline magmas may play a crucial role in promoting rapid 

decompression during the initial stages of eruption. 

 

Our 3D XMT data show significant, localised bubble deformation, implying that substantial 

partitioning of strain across heterogeneous samples took place prior to fragmentation. Strain 

localisation entails a complex interaction of shear heating (decreasing viscosity) and volatile 

solubility modification (increasing viscosity) that can drive gas exsolution (increasing or 

decreasing viscosity depending on strain rate), elastic stress unloading and changes in the 

rheological behaviour of vesicles (Wright and Weinberg 2009). These shear bands have been 

observed in low viscosity magmas, such as phonolites from Vesuvius, and are thought to 

develop in the conduit due to lateral velocity gradients and cause outgassing (Shea et al. 

2012; 2014). These processes result in a variable and highly heterogeneous rheology on a 

range of spatial and temporal scales, and a consequently variable fragmentation criterion at 

the bubble-wall scale. Therefore, strain localisation could have permitted fragmentation to 

have occurred at a lower bulk viscosity than calculated above, but requires further empirical 

and theoretical investigation. 

 

6. Conclusions 

By investigating the textures of pumices erupted from the Cuddia di Mida vent on Pantelleria, 

Italy, we have inferred that, despite having bulk magma viscosities seemingly far too low, 

peralkaline magmas fragment by brittle failure. Integrating multiscale 2D and 3D analysis 

techniques on pumice samples allowed vesicle size and shape distribution characteristics to 

be defined across a wide range of equivalent vesicle diameters. The textures, bulk porosity, 

VSDs and NV,tot
melt

 values of pumices from Cuddia di Mida are comparable with those from 

calc-alkaline rhyolite deposits, and imply that, despite the difference in viscosity between 

calc-alkaline and peralkaline rhyolites, both magma types fragment by strain-induced brittle 

fragmentation. We show that initial nucleation occurred on large crystals at low degrees of 

volatile supersaturation. This was followed by some degree of coalescence and textural 

maturation before homogeneous, continuous nucleation occurred during rapid ascent at 

higher degrees of volatile supersaturation. Our data also show a possible third regime for the 

largest vesicles. We show that microlite-free peralkaline pumices cannot reach classically 

defined fragmentation conditions under even the most extreme of permitted geological 

conditions, and mechanisms such as bubble overpressure driven by rapid decompression and 

strain localisation around crystals are suggested instead. The very high decompression rates 
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suggested by our analysis may be aided by the high volatile content and low viscosity of 

peralkaline magmas. 
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Tables 

Table 1 Major element glass composition in wt.% from Neave et al. (2012) for grey and black pumices from Cuddia di Mida. 1σ errors are 

shown. 

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 

Grey 70.74±0.35 0.25±0.02 7.18±0.06 8.73±0.14 0.36±0.01 0.04±0.02 0.34±0.03 6.83±0.07 4.44±0.07 0.01±0.00 

Black 70.92±0.27 0.26±0.03 7.14±0.09 8.69±0.20 0.37±0.02 0.04±0.02 0.34±0.03 6.88±0.09 4.49±0.08 0.01±0.00 

 

Table 2 Vesicle and crystal data from SEM and XMT.  

Sample Density  
 

g.cm-3 

Porosity  
 

vol.% 

Vesicularity 
 

vol.% 

Proportion 
elongate 

vesicles 

Crystal 
(vesicle free)  

vol.% 

Crystal 
aspect 

ratio 

Microlite 
 

vol.% 

NA,tot  
 

(mm-2) 

Nv,tot 

MCN93 

(mm-3) 

Nv,tot
melt 

MCN93 

(mm-3) 

Nv,tot 

SP98 

(mm-3) 

Nv,tot
melt 

SP98 

(mm-3) 

Nv,tot 

XMT 

(mm-3) 

Nv,tot
melt 

XMT 

(mm-3) 

A10 0.58 76.9 79.2 0.49 2.62 (11.4) 2.48 0 2.51×103 7.26×105 3.14×106 6.14×105 2.66×106   

A5 0.58 76.9 77.6 0.50 3.99 (17.3) 2.36 0 2.41×103 7.00×105 3.03×106 6.03×105 2.61×106   

C10 0.60 76.0 83.0 0.33 3.81 (16.1) 2.44 0 1.98×103 6.49×105 2.70×106 5.80×105 2.42×106   

C'5 0.67 73.8 73.5 0.62 2.82 (10.8) 2.02 0 2.29×103 7.29×105 2.78×106 6.16×105 2.35×106   

Average 0.60 76.2 78.2 0.44 3.24 (13.7) 2.41 0 2.34×103 7.05 ×105 2.93×106 6.08×105 2.52×106 1.02×104 4.23×104 

 

Porosity is calculated using the bulk density measurements with volumes measured from low resolution XMT images. Vesicularity and microlite 

content are calculated from the highest resolution SEM images. Crystal content and aspect ratios are calculated from XMT images. 

 

Table 3 Power law exponents (d) and vesicle equivalent diameter (L) break in slope values for small (s), medium (m) and large (l) vesicle 

populations using SEM and XMT data. 

 

 Ls-m (mm) Lm-l (mm) ds dm dl 

SEM 2.5×10
-2

  1.96 3.24  

XMT  5.0×10
1
  3.28 2.06 
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Table 4 Summary table for crystal-poor rhyolitic, basaltic Strombolian and peralkaline eruptions.  

Volcano Melt SiO2 

(wt.%) 

AI Log [Anhydrous 

melt viscosity, 

(Pa.s)] 

Vesicle 

content 

(vol.%) 

Crystal 

content 

(vol.%) 

Microlite 

content 

(vol.%) 

Nv,tot
melt

  

(× 10
6
 mm

-3
) 

d1 d2 

Small cone-forming          

Cuddia di Mida, Pantelleria 70.7 2.23 6.80 78.5 3.2 0 2.5 2.0 3.3 

Raoul, KA 69.3 0.51 8.12 82.3 <5 <1 3.0 n.d. 3.9 

Strombolian          

Stromboli, Italy 52.2–52.5 0.59–0.64 3.10–3.54 24–78 12-35 <1 0.000096-0.030 n.d. 0.7–1.3 

Villarica, Chile 53.9–54.4 0.43–0.45 2.80–2.85 47.9-88.8 1.12–19.8 <1 0.00074-0.014 n.d. n.d. 

Violent Strombolian          

Vesuvius, Italy 46.7 0.67 2.66 43.2–46.3 28.7–39.1 Low 0.018–0.12 n.d. n.d. 

Sub-Plinian to Plinian          

Askja, USA 71.0–72.4 0.72–0.80 6.50–6.68 77.6–88.5 <0.5 0 0.71–2.4 1.6–2.1 3.0–5.1 

Chaitén, Chile 74.2 0.73 10.61 43–80 <1 Rare 0.064–0.23 1.0–1.7 3.5–4.2 

Mount Mazama, USA 70.4 0.76 8.28 78.5–85.0 10 0 0.36–6.0 n.d. 3.3 

Mount St. Helens, USA 72.7–79.6 0.67–0.93 8.15–9.35 55.6–80.7 6–15 0-7 0.82–2.0 n.d. n.d. 

Pantelleria, Italy 62.7–69.4 1.0-1.8 6.52-7.28 78-81 8–22 0-11 0.026-0.35 n.d. n.d. 

Raoul, KA 68.0–69.0 0.44–0.48 7.53–8.06 34.7–88.6 <5 <22 0.98–19 n.d. 3.6–4.0 

Taupo, NZ 73.7 0.76 9.85 44–89 2–3.5 Sparse 0.019–4.8 n.d. 3.2 

 

AI is agpaitic index (Na2O+K2O)/Al2O3 in mol.%; viscosity is for the melt phase, excluding the effects of bubbles, crystals and microlites using 

Giordano et al. (2008) and Di Genova et al. (2013); vesicle, crystal and microlite content are relative to total volume; Nv,tot
melt

 is the total vesicle 

number density corrected for vesicularity; and power law exponents (d) are for the smaller (1) and larger (2) vesicle populations. References: 

Cuddia di Mida, Pantelleria: this study, Neave et al. (2012); Stromboli, Italy: Metrich et al. (2001), Lautze and Houghton (2005, 2007), Polacci 
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et al. (2009), Leduc et al. (2015); Villarica, Chile: Gurioli et al. (2008); Vesuvius, Italy: Cioni et al. (2011); Raoul, KA: Barker et al. (2012), 

Rotella et al. (2014);  Askja, USA: Sigurdsson and Sparks (1981), Carey et al. (2009); Chaitén, Chile: Castro and Dingwell (2009), Alfano et al. 

(2012); Mount Mazama, USA: Bacon and Druitt (1988), Klug et al. (2002); Mount St. Helens, USA: Rutherford et al. (1985), Klug and 

Cashman (1994); Pantelleria, Italy: Campagnola et al. (2016); Taupo, NZ: Sutton et al. (1995), Houghton et al. (2010). A more complete dataset 

is available in the Supplementary Material. 
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Figure captions 

Figure 1 Geological map of Pantelleria, Italy, with the location of the sample from Cuddia di 

Mida (09PNL001) indicated by the red diamond (after Mahood and Hildreth 1986). 
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Figure 2 Photograph of the Cuddia di Mida deposit (a) (lower contact of the explosion-

breccia is not visible), where * indicates the layer sampled which is shown in detail (b). 
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Figure 3 Porosity distribution of juvenile material from the Cuddia di Mida second airfall 

deposit (09PNL001) coloured for grey and black/mixed clasts. Porosity of clasts A (red) and 

C (blue) highlighted. 
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Figure 4 SEM image at the highest resolution showing the absence of any microlites. 

Vesicles are black and melt is grey. 
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Figure 5 SEM images highlighting the different vesicle textures found in both the SEM and 

XMT images: a) polyhedral foam; b) sub-spherical, thicker walled vesicles; c) vesicles 

attached to crystal faces and; d) large vesicles with convoluted faces. Vesicles are black and 

melt/crystals is grey. Images shown are not necessarily stacked in order to represent typical 

textures at equivalent resolutions. 
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Figure 6 Selected SEM images with increasing resolution from top to bottom (field of view 

shown along each side). Vesicles are black and melt/crystals are grey. Sample letter shown 

along the top. All slices are in the XY plane of the XMT data. 
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Figure 7 Selected orthogonal 2D slices through the 3D XMT images with field of view 

shown on the bottom. Vesicles are black, melt/feldspars/pyroxenes are grey and oxides are 

white. Sample letter shown along the top. Arbitrary slice orientations shown along each side. 
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Figure 8 Vesicle size distributions (VSDs) with respect to equivalent diameter (L) for SEM 

and XMT data: a) SEM generated VSDs (NV) stereologically corrected using Mangan et al. 

(1993) (MCN93, dashed line) and Sahagian and Proussevitch (1998) (SP98, solid line); b) 

XMT generated VSDs (NV); c) comparison of VSDs generated by SEM and XMT and; d) 

comparison of cumulative VSDs (NV > L) for SEM and XMT showing exponential and 

power law fits. Small, medium and large in the legend refer to the vesicle sizes. 
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Figure 9 Vesicle size distribution (VSDs) for all vesicles (solid line) and vesicles next to 

crystals (average indicated by the dashed line and range indicated by the filled region) for A 

(red) and C (blue). 
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Figure 10 a) Effect of melt composition (silica content) on total melt corrected vesicle 

number density (NV,tot
melt

) for various eruption styles; comparison of crystal-poor rhyolitic, 

basaltic Strombolian and peralkaline eruptions for b) NV,tot
melt

  variation with anhydrous melt 

viscosity; c) comparison of cumulative melt corrected VSD (NV
melt

 > L). Viscosities 

calculated using Giordano et al. (2008), except in the case of Pantelleria where Di Genova et 

al. (2013) was used. References: Sigurdsson and Sparks (1981), Rutherford et al. (1985), 

Bacon and Druitt (1988), Klug and Cashman (1994), Sutton et al. (1995), Metrich et al. 

(2001), Klug et al. (2002), Landi et al. (2004), Lautze and Houghton (2005, 2007), Adams et 

al. (2006), Sable et al. (2006, 2009), Gurioli et al. (2008), Carey et al. (2009), Castro and 

Dingwell (2009), Polacci et al. (2009), Costantini et al. (2010), Houghton et al. (2010), Cioni 

et al. (2011), Rotella et al. (2014), Alfano et al. (2012), Barker et al. (2012), Neave et al. 

(2012), Leduc et al. (2015), Campagnola et al. (2016) and  this study. 
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Highlights  

 First detailed vesicle textural study of a peralkaline magma.  

 Combines 3D X-ray microtomography with high resolution 2D scanning electron 
microscopy.  

 Peralkaline magmas fragment in a similar manner to calc-alkaline rhyolites.  

 Viscosity does not appear to impact bubble nucleation and growth processes in 
peralkaline magmas.  

 Bubble overpressure and strain localisation are important for peralkaline magma 
fragmentation.  
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