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We investigate the effect of an inhomogeneous exchange field on the proximity effect in superconductor-
ferromagnet hybrid structures within the quasiclassical theory of superconductivity. As an example, we study
a superconductor-ferromagnet bilayer with an in-plane spiral magnetic order in the ferromagnet. The super-
conducting proximity effect induces in this case triplet correlations in the bilayer that are sensitive to the local
quantization axis of the exchange field in the ferromagnet. The coexistence of singlet and triplet pair correla-
tions in the bilayer results into a sensitivity of the superconducting transition temperature on the spatial
variation of the exchange field in the ferromagnetic layer. We show that the inhomogeneity also tends to
suppress the oscillating behavior of the pair amplitudes in the ferromagnet.
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I. INTRODUCTION

The coexistence of superconductivity and magnetism is a
long-standing issue and has recently gained a lot of attention
due to experimental progress. One example is the discovery
of ferromagnetic superconductors.1,2 Typically, magnetism
tends to suppress singlet superconductivity via two mecha-
nisms of pair breaking: �i� the orbital pair-breaking effect by
action on the electron charges; �ii� the paramagnetic pair-
breaking effect by action on the electron spin via the Zeeman
coupling.

In contrast to the above-mentioned example of ferromag-
netic superconductors, in hybrid superconductor/ferromagnet
�S/F� structures there is in general no coexistence of the mag-
netic and superconducting long range orders �assuming the
ferromagnetic exchange field vanishes in S and the pairing
interaction is repulsive or vanishingly small in F�. Neverthe-
less, the influence of the magnetism on the superconductivity
manifests itself near the S/F interface through the supercon-
ducting proximity effect: Cooper pairs can penetrate a certain
distance into the ferromagnetic material. As a result of the
exchange splitting of the Fermi surface in the ferromagnet,
the Cooper pairs acquire a finite momentum and this causes
spatial oscillations of the pair wave function in the F part.
The oscillation of the pair amplitude in F shares many
similarities3 in its origin with the Fulde-Ferrell-Larkin-
Ovchinnikov oscillations4,5 of the superconducting order pa-
rameter predicted to occur in the systems where the para-
magnetic pair-breaking mechanism is dominant. In addition,
the pair-breaking effect of the exchange field results in a
much shorter penetration of singlet superconducting pair cor-
relations in the ferromagnet than in a nonmagnetic metal.

In S/F bilayer systems a nonmonotonic behavior is met
again in the dependence of the superconducting critical
temperature6,7 and in the dependence of the Josephson criti-
cal current8–10 on the ferromagnet thickness df or on the
amplitude of the exchange field �for a recent review see Ref.
11 and references therein�. Most of the quantitative investi-
gations of these nonmonotonic behaviors are based on the
quasiclassical theory of superconductivity,12,13 which pro-

vides the simplest framework to study the inhomogeneity of
pair correlations near the S/F interface. In the vast majority
of the theoretical works the exchange field J in the F layer is
considered homogeneous for the sake of simplicity. However
in reality often the magnetic system is characterized by the
presence of an inhomogeneous magnetization, leading to a
domain structure. In this paper we address specifically the
influence of such domain walls on the proximity effect.

Recently, Rusanov et al.14 have observed in S/F bilayers a
quantitative dependence of the superconducting critical tem-
perature Tc on the domain state of the ferromagnet. In the
presence of domain walls, Tc is found to be enhanced com-
pared to the Tc obtained in the absence of domain walls. As
the domain walls in Ref. 14 are argued to be of the Néel type
with an in plane magnetic moment, the orbital pair-breaking
effect is here negligible. The importance of the domain walls
for the proximity effect has also been pointed out in Ref. 15.

The above-mentioned effect is reminiscent to a similar
effect in magnetic superconductors with an inhomogeneous
exchange field �for a review see Ref. 16, and references
therein�. As was first hypothesized by Matthias and Suhl,17

one expects that the Cooper pairs experience an exchange
field averaged over the superconducting coherence length
��s� scale, which leads effectively to a reduced pair-breaking
effect for domain wall sizes comparable to or smaller than �s.
It is however worth mentioning that this qualitative picture is
borrowed from the physics of coexistence of magnetism and
superconductivity, and its applicability stricto sensu to hybrid
structures may be questioned. One goal of this paper is to
point out and investigate in depth the mechanism responsible
for the sensitivity of the �singlet� superconductivity on the
directional changes of the exchange field in the S/F hybrid
structures.

The consideration of a full domain structure, i.e., with an
alternation of regions with fixed magnetizations and domain
walls represents a formidable theoretical task. This calls
naturally for the study of simplified models in a preliminary
step. One possibility is to study a local inhomogeneity of J in
the vicinity of the S/F interface. It has been found18–20 that
superconducting triplet correlations with an unusually long
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penetration length in the ferromagnet arise through the S/F
proximity effect. Such long range triplet correlations have
been shown also to be characteristic for F/S/F trilayer struc-
tures with non-collinear F moments.21,22 It was
concluded18–22 from these two models that the sufficient in-
gredient for the existence of the long-range triplet compo-
nents is a change in direction of the F moment.

In a recent paper,23 we have studied an S/F bilayer within
a model of an in-plane rotating magnetization �spiral order24�
in the F layer �see Fig. 1�. This model is consistent with the
fact that the domain structure is expected a priori to appear
in the layer rather than across the layer. We found23 that the
long-range triplet components are not induced, although the
exchange field is inhomogeneous. To understand this pecu-
liarity, it is worth noting that the models of moment inhomo-
geneities studied in Refs. 18–22 led to one-dimensional spa-
tial dependences of the pair correlations: the inhomogeneity
of the moment was always considered across the layers, i.e.
competing with the inhomogeneity due to the proximity ef-
fect itself. Contrary to this, the moment inhomogeneity
within the in-plane spiral order model occurs in the trans-
verse direction, so that the problem is intrinsically two di-
mensional.

As pointed out in Ref. 25, the anomalous Green function
f and the Green function g, which are 2�2 matrices in spin
space, acquire both a nontrivial spin structure through the
proximity effect. It has been realized22,23,26,27 that this always
results in short-range triplet components �i.e., even in ab-
sence of inhomogeneity of J� induced together with the sin-
glet component in the ferromagnet near the S/F interface. For
example, the difference in the Tc in F/S/F trilayers in the
parallel and antiparallel configurations of the F moments28

stems precisely from these short-range triplet components.26

The same mechanism is responsible for the sensitivity of Tc
on the degree of inhomogeneity in the model of the rotating
magnetization.23

In the next section of this paper, we develop our general
approach within the framework of the quasiclassical theory
of superconductivity. We derive the conditions required for
the presence of long-range triplet components. In Sec. III we
investigate how the S/F proximity effect depends quantita-
tively on the degree of moment inhomogeneity in an S/F
bilayer structure within the spiral order model. We provide

the details of the calculations leading to the results already
presented in our short paper.23 In addition to Ref. 23, we
present the results concerning the spatial dependences of the
singlet and short-range triplet components and discuss quan-
titatively the conditions which may increase or reduce the
triplet amplitude.

II. SPIN STRUCTURE OF THE GREEN FUNCTIONS
INDUCED BY THE S/F PROXIMITY EFFECT

In this section, we show that it is possible to capture gen-
eral features of the S/F proximity effect independent of the
specific geometry of the system under consideration. For ex-
ample, a spin splitting in the local density of states29 is
straightforwardly found to result from the production of the
triplet components near the S/F interface.23 This spin imbal-
ance is obviously accompanied by the penetration of a spin
magnetization in the superconductor.27 We shall also put for-
ward the conditions and the physical reasons for the produc-
tion of the long-range triplet components.

A. Equations in Nambu-Gor’kov space

We discuss the S/F proximity effect within the framework
of the quasiclassical theory of superconductivity within the
Nambu-Gor’kov formalism. The particle-hole quantum-
mechanical coherence is expressed by a 2�2 matrix struc-
ture of the Green function in Nambu-Gor’kov space,

ĝ = �g f

f̃ g̃
� . �1�

The functions g̃ and f̃ are the particle-hole conjugates of the
Green functions g and f . We assume that the S/F bilayer we
consider is in the diffusive limit, in which case the Green
function ĝ�R ,�n� depends on a spatial coordinate R, and on
the Matsubara frequencies �n=�T�2n+1� �n an integer, T
the temperature�. The Green function obeys the Usadel trans-
port equation for diffusive systems,13

�i�n�̂3 − �̂ − J�R� · 	̂, ĝ� +
Dij

�
�i�ĝ� jĝ� = 0 �2�

with the normalization condition

ĝ2 = − �2�̂0, �3�

where Dij is the diffusion constant tensor. In Eq. �2�, we used
the Einstein convention for summation over repeated indices
�i , j=x ,y ,z�. We assume in our calculations for simplicity
isotropic diffusion tensors, Dij =D
ij. The diffusion constant
D in the superconductor differs a priori from the diffusion
constant in the ferromagnet �an index characterizing both
values is introduced below�. We assume the same diffusion
constants for both spin projections in the ferromagnet. The

superconducting order parameter �̂ and the spin matrix 	̂
have the form

FIG. 1. �Color online� The exchange field rotates in the ferro-
magnetic layer in the plane �xy� with a constant wave vector Q. The
period of rotation in the y direction is 2� /Q.
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�̂ = �0 �

�̃ 0
� and 	̂ = �� 0

0 �* � . �4�

Here � is the vector of spin Pauli matrices. We consider a

superconductor with conventional s-wave pairing, so that �̃
=�*. In the ferromagnet, the superconducting order param-
eter vanishes, �=0. The proximity effect manifests itself in a
nonzero pair amplitude f �0 in the ferromagnet. In the su-
perconductor, the exchange field vanishes, J�R�=0, express-
ing the noncoexistence of superconducting and ferromag-
netic orders. A nonzero magnetization 
M�R� in the
superconductor may be induced by the inverse proximity ef-
fect.

The Nambu-Gor’kov representation includes some redun-
dancy which manifests itself in the fundamental symmetry

relations30 g̃�R ,�n�=g*�R ,�n� , f̃�R ,�n�= f*�R ,�n�, and

g�R,− �n� = g†�R,�n� , �5�

f�R,− �n� = − f tr�R,�n� . �6�

Here g† and gtr are respectively the adjoint and transposed
matrices.

B. Spin structure

The Green function g and the anomalous Green function f
are 2�2 spin matrices. For example, the anomalous Green
function is written as

f = � f↑↑ f↑↓

f↓↑ f↓↓
� . �7�

The order parameter in spin space for singlet pairing reads

� = �si	y . �8�

Generally f can be written in the form �see, e.g., Refs.
30–33�

f = �fs + �ft · ���i	y = �− f tx + if ty f tz + fs

f tz − fs f tx + if ty
� , �9�

where ft= �f tx , f ty , f tz� is the triplet pairing vector and fs is the
singlet pair amplitude. J defines the spin-quantization axis
�while in Sec. II we choose to coincide with the z axis�. Thus
the probability of finding a pair in the triplet state with zero
spin projection on the quantization axis ẑ is proportional to
�f tz�2. When the vector ft is directed along the exchange field
J �i.e., f ty = f tx=0�, the Cooper pair spin is perpendicular to J
and does not contribute to the spin paramagnetic susceptibil-
ity. When the triplet vector ft is noncollinear with J, it means
that the amplitudes ±f tx+ if ty of the states with spin projec-
tions ±1 on the quantization axis are nonzero. In this case,
the Cooper pairs contribute to the susceptibility.

As for the Green function g, we adopt the notation

g = g0 + g · � = � g0 + gz gx − igy

gx + igy g0 − gz
� �10�

with g= �gx ,gy ,gz� the vector part of g, and g0 its scalar part.
Also, we expand the particle-hole conjugates in the spin
space as

f̃ = i	y� f̃ s − �f̃t · ���, and g̃ = g̃0 − 	yg̃ · �	y . �11�

C. Normalization condition in spin-space

The normalization condition �3� written for the different
components of the Nambu space yields the relations

gf + f g̃ = 0, �12�

g2 + f f̃ = − �2	0, �13�

where 	0 is the unit matrix in the spin-space. In equilibrium,
it can be shown from Eqs. �12� and �13� that for physical
solutions necessarily the condition

Tr�ĝ� = 0, i.e., g̃0 = − g0 �14�

holds, which expresses the particle-hole symmetry in the hy-
brid S/F structure.

Using the fact that the matrices �	0 ,	x ,	y ,	z� form a
basis for the spin matrices, we find from Eqs. �12� and �14�
that the different components of f and g in spin space obey
the following conditions:

ft · �g − g̃� = 0, �15�

fs�g − g̃� = ift � �g + g̃� . �16�

Equation �13� yields

g0
2 + g2 − fs f̃ s + ft · f̃t = − �2, �17�

2g0g + fsf̃t − f̃ sft + ift � f̃t = 0 , �18�

with g2=gx
2+gy

2+gz
2=g ·g ���g�2 if the components of g are

complex numbers�. By combining the last equation �18� with
its particle-hole conjugate, we obtain the relations

g0�g − g̃� = if̃t � ft, �19�

g0�g + g̃� = f̃ sft − fsf̃t. �20�

As Eqs. �15� and �16� follow from �19� and �20�, the normal-
ization condition �3� together with �14� leads to 3 indepen-
dent equations �17�, �19�, and �20� in spin-space. Note that
from Eqs. �19� and �20� follows g2= g̃2. However, in general

g̃�g. According to Eq. �19�, the equality holds when ft � f̃t.
Moreover, we see that necessarily g= g̃=0 when ft=0.

This implies a spin-independent density of states in the fer-
romagnet in the absence of the proximity effect. This finding
reflects the fact, that changes in the normal-state density of
states as a result of an exchange splitting are small in the
expansion parameters of quasiclassical theory as long as the
exchange splitting is small compared to the conduction band
widths for both spin directions. Concordantly, we assume
spin-independent diffusion constants for consistency. In the
opposite case, when the splitting is large compared to all
low-energy scales of the problem �T ,�s�, the spin splitting
must be taken into account as spin-dependent dispersions
before applying the quasiclassical approximation �see Ref.
34�.
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D. Quasiclassical transport equations in spin-space

We now derive the transport equations for the spin com-
ponents of f and g. For the component f Eq. �2� yields

D

�
� j�g� j f + f� jg̃� + 2i�nf = �g̃ − g� + J · �f − fJ · �*.

�21�

The system of equations in the spin space reads �taking
into account that g̃0=−g0�

D

�
� j�g0� j f s − fs� jg0 + g · � jft − ft · � jg̃� + 2i�nfs

= − 2g0�s + 2J · ft, �22�

D

�
� j�g0� jft − ft� jg0 + g� j f s − fs� jg̃ + ig � � jft + i� jg̃ � ft�

+ 2i�nft = − �s�g̃ + g� + 2Jfs. �23�

It is supplemented by the self-consistent equation defining
the s-wave order parameter � from fs which reads in the
dirty limit for a weak coupling

�s�R� = �T	
n

fs�R,�n� �24�

with � the pairing interaction constant. Using the equation

�T	
n

1

��n�
=

1

�
+ ln

Tc0

T

relating the critical temperature Tc0 of the superconductor
without the proximity of a ferromagnetic layer and �, we can
rewrite Eq. �24� as

�s ln
Tc0

T
= �T	

n
��s

�n
−

fs��n�
�

� . �25�

Near the critical temperature Tc, the pair amplitudes fs
and ft are small and the Green function g deviates only
slightly from its value �g=−i�	0 sgn �n� in the normal state,
so that the Usadel equations �22� and �23� can be linearized
and take the simpler form23

�D�2 − 2��n��fs = − 2��s + 2i sgn��n�J · ft, �26�

�D�2 − 2��n��ft = 2i sgn��n�Jfs. �27�

E. General features of the S/F proximity effect

Within a particular geometry for the S/F hybrid structures,
we have to complement the transport equations with bound-
ary conditions. Nevertheless, many general features of the
S/F proximity effect such as the number and the nature of the
nonzero spin components for f and g can be determined in-
dependently from the geometric effects of the boundaries.

From the transport Eq. �23�, and even clearer from Eq.
�27�, it follows that the triplet vector ft is necessarily nonzero
if the singlet component fs penetrates in the ferromagnet.

Moreover, the triplet vector tends to align with the exchange
field J, indicating that the dominant triplet component has
zero spin projection. Thus the singlet component and the
triplet component with zero spin projection coexist always in
the ferromagnet near the S/F interface. This is physically
expected since these two pair correlations are energetically
equivalent in the ferromagnet with respect to their interaction
with the exchange field. Both components are characterized
by short-range penetration lengths in the ferromagnet.

On the contrary, if the triplet vector ft is noncollinear with
J, it means that triplet components with nonzero spin-
projection on J are produced. Since these correspond to
equal-spin pairing, they are not limited locally by the para-
magnetic interaction with the local exchange field and may
have long-range scales in the ferromagnet. A misalignment
between the triplet vector ft and the moment J occurs in
presence of sudden changes in orientation of J. The reason is
that ft obeys a differential equation and its variations in ori-
entation have thus to be relatively smooth.

From Eq. �20� it is clear that the counterpart for the pro-
duction of triplet components �ft�0� for f is the presence of
g�0 for g. As a direct consequence, the density of states for
the up and down spin projections differs.29 Furthermore, in
the presence of long-range triplet components, the Green
function g contains also off-diagonal �spin-flip� terms. As a
result of the spin splitting in the density of states generated
by the S/F proximity effect, a spin magnetization 
M is in-
duced near the S/F interface. This magnetization leakage has
been investigated recently in Ref. 27 within a model consid-
ering a fixed exchange field. The spin magnetization induced
by the proximity effect is given by32,33


M�R� = 2N0T	
n

g�R,�n� . �28�

Since the triplet vector ft is also induced in the supercon-
ductor near the S/F interface via an inverse proximity effect,
the vector g characterizing the magnetic correlations pen-
etrates also in the superconductor according to the relation
�20�.

As we show in the following, the sum over Matsubara
frequencies in the expression �28� is in general nonzero. In-
deed, as noticed in the papers,18,21,22 in the diffusive limit the
triplet components have the property to be odd functions of
the Matsubara frequencies �n, while the singlet amplitude fs
is an even function of �n. These properties follow directly
from the Pauli principle, which leads to the relation �6�. The
different components of g have also symmetry properties
with respect to �n. Combining Eq. �14� with Eq. �5�, we
obtain that g0 is an odd function of �n, and

g�− �n� = g̃��n� . �29�

We note that the relations �19� and �20� between the vec-

tors g and ft are simplified when ft� f̃t=0. This condition
corresponds to unitary triplet superconductivity.31 It can be
seen from the transport equations �22� and �23� that if the
gap �s can be chosen real �and thus the singlet amplitude fs

is real�, then the triplet vector ft is purely imaginary, i.e., f̃t
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= ft
*=−ft �taking into account that g̃0=−g0, i.e., g0 is purely

imaginary�. As a result, one obtains the simpler relations

g = g̃, g0g = fsft. �30�

These simplifications are found also if ft �J �i.e., when no
long-range triplet components are induced�. Combining the
relations �29� and �30�, we conclude that the spin-vector part
g is an even function of �n under certain circumstances,
which demonstrates that the induced spin magnetization 
M
is nonzero.

Therefore, although there is no coexistence of ferromag-
netic and superconducting orders, magnetic and supercon-
ducting correlations do coexist in the vicinity of both sides of
the S/F interface. It is worth noting that near Tc, the singlet
amplitude fs and the triplet vector amplitude are small so that
g and thus 
M appear to be second order terms �see Eq.
�20��. Accordingly, one expects that the induced spin magne-
tization 
M penetrating the superconductor, which is negli-
gibly small near Tc, increases significantly by reaching tem-
peratures well below Tc.

III. S/F BILAYER WITH A ROTATING EXCHANGE FIELD

In this section, we study the proximity effect in a S/F
bilayer within the model of a rotating exchange field in F
�see Fig. 1�. We derive analytical expressions for the spatial
dependences of the singlet and triplet amplitudes near the
superconducting critical Tc as a function of the spiral
wavevector Q. We calculate also numerically the dependence
of Tc on Q. A part of the results has been already reported in
our short paper.23 We shall see here that the magnetization
induced in the superconductor by the triplet components re-
flects the inhomogeneity of the exchange field J in the fer-
romagnet.

A. Model and boundary conditions

In the F layer �defined by the plane �x ,y��, J rotates with
an angle varying along the direction y, i.e.,

J�y� = J�cos Qy,sin Qy,0� . �31�

It is straightforward to see that in the present geometry the
component f tz of the triplet vector is zero �because J never
points in this direction�. It is worth mentioning that here z
does not correspond to the spin quantization axis. To identify
physically the different components of the triplet vector, one
has to express ft in the local basis �X ,Y ,Z� where Z is the
direction of the local exchange field J. According to the sym-
metry relations �see the previous section�, it is sufficient to
consider the positive Matsubara frequencies. We want to de-
termine the dependence of the critical temperature Tc on the
rotation wave vector Q, and for this purpose we have to
solve the linearized Usadel equations. The y dependence of
the moment J is eliminated in the right-hand side of Eqs.
�26� and �27� by considering the new components

f+ = �− f tx + if ty�eiQy , �32�

f− = �f tx + if ty�e−iQy . �33�

The new system of equations to solve takes the form

�D�2 − 2�n�fs = − 2��s + iJ�f− − f+� , �34�

�D�2 � 2iDQ�y − DQ2 − 2�n�f± = � 2iJfs. �35�

The diffusion constants are D=Ds in the S layer and D=Df
in F.

The components of the triplet vector in the plane �x ,y� are
obtained from f+ and f− with the relations

f tx =
1

2
�f−eiQy − f+e−iQy� , �36�

f ty =
1

2i
�f−eiQy + f+e−iQy� . �37�

In the present case, the gap amplitude �s and the singlet
amplitude fs can be chosen real. Then f−= f+

*, i.e.,

f tx = i�− Im f+ cos Qy + Re f+ sin Qy� , �38�

f ty = − i�Re f+ cos Qy + Im f+ sin Qy� . �39�

It is clear that the amplitudes of the triplet components are
purely imaginary.

The system of equations �34� and �35� is supplemented by
boundary conditions. The boundary conditions at the S/F in-
terface �provided that J�F with �F the Fermi energy� for
the diffusive regime have been formulated by Kuprianov and
Lukichev for a small barrier transparency.35 The general
boundary conditions have been derived by Nazarov.36 Near
Tc, they are formally equivalent and reduce to

�s �zf�SC = �� f �zf�F, � = �s�s/� f� f , �40�

where �s and � f are, respectively, the normal-state resistivi-
ties of the S and F metals �this boundary condition follows
from the continuity of the current at the interface�, and

� f�b �zf�F = f�SC − f�F, �b = RbA/� f� f �41�

with Rb the resistance of the S/F boundary, and A its area.
Here �s=
Ds /2�Tc0 is the superconducting coherence length
in S and � f =
Df /2�Tc0 is the superconducting coherence
length in F. At the outer surfaces of the F or S layers
�z=−df and z=ds�, the current through the boundary has to
vanish, i.e.,

�zf = 0. �42�

It is important to note that the present boundary conditions
�40�–�42� do not couple the different spin components of f .

B. In the ferromagnet

In the ferromagnetic layer, the singlet amplitude and the
triplet components f± are coupled through

��2 − �n� f
−2�fs = i�J

−2�f− − f+� , �43�

��2 � 2iQ�y − Q2 − �n� f
−2�f± = � 2i�J

−2fs. �44�

where �J=
Df /J and �n= �2n+1�T /Tc0.
Since the geometry is periodic in the y direction, the com-

ponents of the superconducting condensate wave function f
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can be expanded into a Fourier series. Using the boundary
condition at the outer surface �z=−df�, the components of f
are sought under the form

f l�y,z� = 	
p=−�

+�

f l
�p� cosh�kfp�z + df��eipQy , �45�

where l=s ,±. Substituting these expressions in the set of
equations �43� and �44� leads to the following linear system

�k̃p
2 − Qp

2 − i�J
−2 i�J

−2

− 2i�J
−2

k̃p
2 − Qp+1

2 0

2i�J
−2 0 k̃p

2 − Qp−1
2
�� fs

�p�

f−
�p�

f+
�p� � = 0, �46�

with k̃p
2 =kfp

2 −�n� f
−2 and Qp= pQ. The eigenvalues kfp

2 are
determined from the condition of zero determinant for the
3�3 matrix. For p�0 the three eigenvalues kfpj

2 �j=1, 2,
and 3� and the associated eigenvectors �fs,p,j , f−,p,j , f+,p,j� take
a complicated analytical form that we shall not give here. We
note that for p�0, the three components of each eigenvec-
tors f l,p,j are nonzero.

For p=0, the three eigenvalues can be easily derived and
have a simple form

kf0�
2 = �n� f

−2 + �2i�J
−2�−� and kf03

2 = �n� f
−2 + Q2,

�47�

with ��=
1−�2+ i�� for ��1, �= ±1, and �=�J
2Q2 /4. For

��1, we have ��=−i
�2−1+ i��. The two first eigenvalues
�index �=+ or equivalently j=1, and �=− or j=2� which are
related by a complex conjugation for ��1 correspond to a
short penetration length �at least at small Q� of the order of
�J� f for strong ferromagnets �J�2�Tc0�. On the contrary,
the third eigenvalue �kf03

2 �, which is independent of the ex-
change field amplitude J, is real and gives a much longer
decay length of the order of � f for the pair amplitude in the
ferromagnet. The corresponding eigenvectors have the form

� fs,�

f−,�

f+,�
� = � ��

�

− �
� and � fs,3

f−,3

f+,3
� = �0

1

1
� . �48�

In the limit Q→0, then �→0 and ��→1, and we find again
from Eq. �47� the known eigenvalues for a fixed exchange
field.6,18

The general solution of the system �43� and �44� satisfy-
ing the outer boundary condition can be written as

f l�y,z� = 	
p=−�

+�

	
j=1

3

aj
�p�f l,p,j cosh�kfpj�z + df��eipQy , �49�

where the three coefficients aj
�p� have to be determined with

the help of the boundary conditions at the S/F interface.

C. In the superconductor

1. Triplet components

In the S layer, there is no coupling by the equations be-
tween the singlet and triplet components. The solutions for f±

satisfying the boundary condition at the outer surface �at z
=ds� and being periodical in the y direction are straightfor-
wardly derived and have the form

f±�y,z� = 	
p=−�

+�

f±
�p� cosh�ktp

± �z − ds��eipQy , �50�

where

ktp
± = 
�n�s

−2 + Qp�1
2 �51�

and the coefficients f±
�p� have to be determined with the

boundary conditions at the S/F interface.

2. Singlet component

In the S layer, the equation for the singlet pair amplitude
fs

�Ds�
2 − 2�n�fs = − 2��s �52�

is coupled to the self-consistency equation �25�. Due to the
periodic geometry in the y direction, fs and �s can also be
expanded into Fourier series

fs�y,z� = 	
p=−�

+�

fs
�p��z�eipQy , �53�

�s�y,z� = 	
p=−�

+�

�s
�p��z�eipQy . �54�

Then, the Fourier amplitude fs
�p��z� obeys the differential

equation

��z
2 − Qp

2 − �n�s
−2�fs

�p� = − 2��s
�p�/Ds, �55�

while the gap amplitude �s
�p��z� is given by

�s
�p��z�ln

Tc0

T
= 2�T	

n�0
��s

�p��z�
�n

−
fs

�p��z�
�

� . �56�

In general, the coupled equations �55� and �56� cannot be
solved analytically due to the self-consistence.

It is clear at this point that there is no mixing between the
different Fourier components of the superconducting conden-
sate function f neither in the ferromagnet nor in the super-
conductor near the critical temperature. It means that each
single Fourier component p �which determines a particular y
dependence� is a solution of the system of equations which
satisfies the boundary conditions. For each p, we obtain a
different gap equation �56�, i.e., a different critical tempera-
ture Tc�p�. The solution realized physically is the one which
gives the highest critical temperature �i.e., which is energeti-
cally most favorable�.

For p�0, the singlet amplitude fs and the order parameter
�s are inhomogeneous along the direction y even far from
the S/F interface. The solution with p=0 corresponds to a
singlet amplitude fs which depends only on the spatial vari-
able z both in the F and S layers. In this case, the components
f± are also independent of the coordinate y �characterizing
the spatial inhomogeneity of J�. The y dependence of the
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triplet vector is then simply revealed by the relations �36�
and �37�. The influence of the inhomogeneity of the ex-
change field on the singlet amplitude fs in the supercon-
ductor occurs near Tc only through the boundary conditions
at the S/F interface.

D. Pair amplitudes

The remaining step is to determine the coefficients aj
�p�

and f±
�p� with the boundary conditions at the S/F interface. Let

us define the short-hand notation 
0
�p�= fs

�p��z=0�. The condi-
tion �41� yields


0
�p� = 	

j=1

3

aj
�p�fs,p,jA j

�p�, �57�

f l
�p�cosh�ktp

l ds� = 	
j=1

3

aj
�p�f l,p,jA j

�p�, �58�

where l=± and

A j
�p� = cosh�kfpjdf� + �bkfpj� f sinh�kfpjdf� . �59�

Then, the condition �40� considered for the triplet compo-
nents only, combined with Eq. �58� gives

	
j=1

3

aj
�p�f l,p,jÃ j,l

�p� = 0, �60�

with

Ã j,l
�p� = A j

�p� + Cj
�p��ktp

l �s tanh�ktp
l ds��−1, �61�

Cj
�p� = �kfpj� f sinh�kfpjdf� . �62�

Equations �57� and �60� lead to a 3�3 linear system for the
coefficients aj

�p�. As a result, we obtain straightforwardly for
p�0

aj
�p� = 
0

�p� Nj

F · N
, �63�

with N=h+�h−, and where hl �l= ± � and F are vectors
whose components labeled by j=1, 2, and 3 are given by

Fj = fs,p,jA j
�p�, hl,j = f l,p,jÃ j,l

�p�. �64�

For p=0, the absence of coupling between the singlet am-
plitude fs,3 and the two triplet amplitudes f±,3 for the third
eigenvector in Eq. �48� yields that the long-range contribu-
tion is absent �a3

�0�=0�. By the same occasion, the quantity

Ã j,l
�0� is independent of the index l=± �which is dropped out

in the forthcoming expressions�. According to the form of
the eigenvectors associated with the eigenvalues kf�

2 in Eq.
�48� �from now on we drop the index indicating that p=0�,
the two triplet components f+ and f− in the ferromagnet are
related as f+=−f−. Since in addition the symmetry property
f+= f−

* holds, we have necessarily Re f+=0. Then using Eqs.
�38� and �39�, we find that the corresponding triplet vector
has the spatial dependence

f tx�y,z� = i Im f−�z�cos Qy , �65�

f ty�y,z� = i Im f−�z�sin Qy , �66�

i.e., ft follows everywhere the direction of the inhomoge-
neous exchange field J�y�. Thus, only the triplet vector com-
ponent f tZ with zero spin-projection on the local moment J
�direction Z� exists. One obtains that

f tZ�z� = f−�z� = 	
�=±

a�� cosh�kf��z + df�� �67�

is characterized by a short penetration length in the ferro-
magnet, as expected from the physical arguments presented
in Sec. II. In the F layer, f tZ exhibits in addition oscillations
in space as long as the eigenvalues kf�

2 are complex. The two
remaining nonzero amplitudes a+ and a− in the ferromagnet
�for convenience we label the amplitudes by �=± rather than
j=1,2� obey the 2�2 system determined by Eqs. �57� and
�60�, and are given by

a+ = 
0

Ã2

�+A1Ã2 + �−A2Ã1

, �68�

a− = 
0

Ã1

�+A1Ã2 + �−A2Ã1

. �69�

For ��1, we have a+=a−
*, while for ��1 the coefficents a±

are purely imaginary. We find from Eq. �58� that the triplet
component with zero spin projection has the following spa-
tial dependence in the S layer

f tZ�z� = �a+A1 − a−A2�
cosh�kt�z − ds��

cosh�ktds�
�70�

with the real wave vector kt=
�n�s
−2+Q2. Finally, it is

straightforward to see that for p=0, the spin-vector part g �an
even function of �n here� of the Green function g determined
from the singlet and triplet components according to the re-
lation �30� can be written near Tc as

g =
i

�
fs�z�f tZ�z�Ĵ�y� . �71�

From this equation, we note that the spin magnetization in-
duced in the superconducting layer exhibits the same inho-
mogeneity as the exchange field J�y� in the transverse direc-
tion y.

E. Superconducting critical temperature Tc

Using the last boundary condition �40� considered for the
singlet amplitude and the expression �63�, we derive a rela-
tion between the derivative of the singlet component fs

�p��z�
and its value 
0

�p� at the interface as

�sfs
�p���z = 0� = Wp
0

�p�, �72�

with

EFFECT OF AN INHOMOGENEOUS EXCHANGE FIELD … PHYSICAL REVIEW B 72, 054523 �2005�

054523-7



Wp =
C · N

F · N
. �73�

For p=0, the function W0 can be written as

W0 =
�+C1Ã2 + �−C2Ã1

�+A1Ã2 + �−A2Ã1

. �74�

In the limit Q→0, we recover from this expression the for-
mula �12� of Ref. 7 obtained for a S/F bilayer with a constant
exchange field J in the ferromagnetic layer. All the informa-
tions characterizing the proximity effect between the S and F
layers are contained in this real function Wp.

Following Ref. 7, the solution of the Eq. �55� satisfying
the boundary conditions at the outer surface �Eq. �42� for z
=ds� and at the S/F interface �Eq. �72�� is expressed using the
Green function of the equation. As a result, one can write the
singlet pair amplitude as

fs
�p��z� = �

0

ds

G�y,z���p��y�dy , �75�

with the Green function G given by

G�y,z� =
�ks�s

2�Tc0�−1

sinh�ksds� + �Wp/ks�s�cosh�ksds�

� �v1�z�v2�y� , z � y ,

v2�z�v1�y� , y � z ,
� �76�

where

v1�z� = cosh�ksz� + �Wp/ks�s�sinh�ksz� , �77�

v2�z� = cosh�ks�z − ds�� , �78�

and

ks = 
�n�s
−2 + Qp

2. �79�

Combining Eqs. �56� and �75�–�79� one obtains a single
equation to be solved numerically.

F. Numerical results and discussion

The dependence of Tc on the spiral wave vector Q for the
different harmonic solutions is plotted in Fig. 2 �for definite-
ness, we took here similar parameters as in Fig. 2 of Ref. 7,
that is Tc0=7 K, �=0.15, J=130 K, �s=8.9 nm, and � f
=7.6 nm�. As shown in this figure, the harmonic p=0 yields
the highest Tc. We found the same result for a large range of
input parameters �e.g., for bigger thicknesses ds and df, not
shown here�. The solutions with p�0 correspond to a super-
conducting state in the S layer which remains inhomoge-
neous far from the S/F interface �corresponding to a Fulde-
Ferrell-Larkin-Ovchinnikov state4,5�. They are energetically
less favorable than the solution with p=0 which gives a sin-
glet pair amplitude that is inhomogeneous only near the in-
terface due to the proximity effect �the fact that the singlet
correlations are independent of the coordinate y for a
y-independent order parameter simply reflects their isotropy

in the spin space: singlet pairs do not see the directional
changes of the exchange field�.

Henceforth, we discuss only the physically relevant solu-
tion p=0. The superconducting critical temperature Tc
clearly increases with Q as shown in Fig. 2 �see also Fig. 2
and Fig. 3 of Ref. 23�. This enhancement is observed for a
large range of parameters we have tested, and thus is likely
to be general. The dependence of Tc as a function of df is
shown in Fig. 3 for two different values of the dimensionless
parameter Q�s �here we took J=20Tc0, �s=� f, ds=2�s, �
=0.15 and �b=0�. An important characteristic feature re-
vealed by this figure is the evolution of the nonmonotonic
dependence of Tc�df� in favor of a monotonic one in the
presence of a moment inhomogeneity in the ferromagnet.

As an exacerbation of this nonmonotonic behavior of
Tc�df�, it is well known7 that within a particular choice of
parameters the superconducting critical temperature may
even jump to zero for a finite range of thicknesses df with a
reentrance of superconductivity for higher values of df. We
investigated the influence of the moment inhomogeneity
within this particular range of df where Tc=0. As shown in
Fig. 2 of Ref. 23, we found the restoration of the supercon-

FIG. 2. �Color online� Tc versus the spiral wave vector Q for
different harmonic solutions. The highest critical temperature at Q
�0 is obtained for p=0. Here �b=0.3, df =2.5 nm, and ds=7 nm.

FIG. 3. �Color online� Tc versus df for Q�s=0 and Q�s=1. The
characteristic nonmonotonic dependence of Tc�df� found at Q=0 is
suppressed by the moment inhomogeneity in F. Here J=20Tc0, �s

=� f, ds=2�s, �=0.15, and �b=0.
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ductivity above a threshold value for the spiral wave vector
Q. It is worth mentioning that a similar reentrance of super-
conductivity caused by a moment inhomogeneity is known
in some rare-earth intermetallic compounds where a mag-
netic order competes with a superconducting order �see Ref.
16�. In these compounds superconductivity is accompanied
by a transition from the homogeneous ferromagnetic state to
the cryptoferromagnetic state.16 However, it is important to
note that this similar reentrance behavior in bulk systems and
in S/F hybrid structures does not result from a similar physi-
cal mechanism. In S/F structures this behavior results from a
nonlocal influence of the magnetic order on the supercon-
ducting order �since both orders are assumed to be spatially
separate� based on the Andreev reflection process. According
to Sec. II, this process is characterized by the coexistence of
singlet and triplet pair correlations near the S/F interface.

In Fig. 4 we have represented the dependences Tc�Q� for
different values of the parameter �b �the other parameters are
the same as in Fig. 2 and Fig. 3 of Ref. 23�. The threshold
value for Q corresponding to the switch from the normal
state to the superconducting state depends as expected on the
quality of the S/F interface characterized here by �b �in the
case of a perfect transparency at the interface �b=0, while
�b�1 for a low-barrier transparency�. From Fig. 4, one sees
that a relatively high transparency of the S/F interface is
needed in order to have a strong dependence of Tc on the
wave vector Q.

So far we have only discussed the evolution of Tc with the
exchange field inhomogeneity. In the following we show
how the singlet and triplet pair amplitudes depend on the
spiral wave vector Q. For this purpose, we study the quanti-
ties

Fs�z� = T	
n�0

fs��n,z� ,

FtZ�z� = T	
n�0

Im f tZ��n,z� .

In Fig. 5, one sees that the enhancement of Tc with Q can be

related with the enhancement of the singlet amplitude Fs�0�
at the interface. We considered the parameter �b=0, which
means that the singlet and triplet pair amplitudes are continu-
ous at the interface. The triplet amplitude FtZ�0� penetrating
the singlet superconductor �which is negative in the plot�
decreases to zero when Q increases. Thus, it seems that a
reduction of the triplet pair correlations is in correspondence
with an enhancement of the superconducting critical tem-
perature Tc.

The most important effect of the inhomogeneity concerns
the features of the spatial dependence of the pair amplitudes.
It is known that a fixed exchange field may give rise to a
change of sign of the pair amplitude in the ferromagnet at
some distances of the S/F interface �this occurs under spe-
cific conditions, e.g., a sufficiently large df�. Actually, both
singlet and triplet amplitudes may have a nonmonotonic spa-
tial dependence and change sign. This feature is illustrated in
Fig. 6: the curves for the singlet and triplet correlations
change both sign in the ferromagnet at Q=0. One can even
note that they intersect near the position z=−1.3�s. As shown
in Fig. 6, the shape of the spatial dependences for the singlet
and triplet amplitudes is modified in the presence of the in-
homogeneity �Q�0�. The crossing of the singlet and triplet
curves tends to be suppressed with Q. Above a threshold
value for Q, one finds that the singlet and triplet amplitudes
do not change sign.

Finally, it is possible to capture the numerical results con-
cerning the reentrance of Tc or the suppression of the non-
monotonic spatial dependence of the pair amplitudes with
the exchange field inhomogeneity at a qualitative level. In
fact, these features stem from the imaginary character of the
eigenvalues kf

2 which are for Q=0

kf±
2 = 2��n ± iJ�/Df . �80�

In Sec. III B we obtained that, in the presence of the inho-
mogeneity, J has to be replaced by an effective exchange

field J̃±�Q�

FIG. 4. �Color online� Tc versus the spiral wave vector Q for
different values of the interface parameter �b. Here df =5 nm and
ds=7 nm. The remaining parameters are the same as in Figs. 2 and
3 of Ref. 23.

FIG. 5. �Color online� Singlet and triplet pair amplitudes at the
S/F interface versus the spiral wave vector Q. An increase of Q is
accompanied by an enhancement of the singlet amplitude together
with a reduction of the �negative� triplet amplitude. Here, we took
the same parameters as in Fig. 3 with df =2�s.
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J → J̃±�Q� = J�
1 − �2 � i�� , �81�

where we recall that �=DfQ
2 /4J. It is worth noting that now

the imaginary part of kf
2 for ��1 is proportional to 
1−�2.

Obviously, it is reduced in the presence of the inhomogeneity
of the exchange field ���0� compared to the value obtained
for a fixed exchange field ��=0�. Furthermore, for ��1, the
eigenvalues kf±

2 become only real. This indicates that the in-
homogeneity of the exchange field is detrimental to all the
interesting features that characterize the S/F proximity effect
such as the nonmonotonic dependence Tc�df�, the oscillatory
behavior of the pair amplitudes or of the local density of
states in the ferromagnet.

IV. CONCLUSION

We have discussed the system of spin-dependent quasi-
classical equations that describes diffusive S/F hybrid struc-

tures. We have pointed out that it is possible to predict many
physical features of the S/F proximity effect directly from
these equations, independent of the specific geometry for the
hybrid structure or the specific model for the spatial evolu-
tion of the exchange field in the ferromagnet. Singlet and
triplet pair correlations are demonstrated to always coexist
near the S/F interface. The triplet vector has the tendency to
be aligned with the exchange field, resulting predominantly
into triplet pairs with zero-spin projection. We have shown
that the triplet correlations with nonzero spin projection on
the local exchange field, which may have a long-range pen-
etration in the ferromagnet, arise when perfect alignment be-
tween the triplet vector with the magnetic moment is pre-
vented. The production of triplet components is accompanied
by a spin-splitting in the local density of states and by the
induction of a spin magnetization near the S/F interface.

We have studied quantitatively the dependences of the
singlet and triplet pair amplitudes and of the superconducting
critical temperature on the spiral wave vector within a model
of a rotating magnetization in the ferromagnet. The typical
nonmonotonic behaviors of these quantities present for bilay-
ers with homogeneously magnetized ferromagnets are sup-
pressed with increasing degree of inhomogeneity. This dem-
onstrates the influence of domain walls in the ferromagnet on
measurable properties, implying that it is necessary to char-
acterize the domain structure in order to compare quantita-
tively experiment with theory. The dependence of the super-
conducting properties on the inhomogeneity of the exchange
field is expected to be a general feature of the proximity
effect in mesoscopic hybrid structures composed of super-
conductors and ferromagnets, because it is a signature of the
triplet correlations with zero-spin projection induced near the
S/F interface.
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