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Abstract. It is proved that every elementary amenable group of type FPy admits a
cocompact classifying space for proper actions.

1. Introduction

For discrete groups the term cohomological finiteness condition refers to any property
of groups which holds for all groups that admit finite Eilenberg–Mac Lane spaces.
Amongst such properties there are classical finiteness conditions such as finite generation

and finite presentability and there are also the more exotic conditions such as type FPy,
type FP, and type FL. Note also that the property of being torsion-free is a cohomological
finiteness condition but not a classical finiteness condition while residual finiteness is a
classical finiteness condition but not a cohomological finiteness condition.

In recent years there has been increasing interest in a variant of the Eilenberg–
Mac Lane space, namely the classifying space for proper actions. In this paper we shall
determine the precise conditions under which elementary amenable groups admit co-
compact proper classifying spaces. Bredon cohomology plays a role in studying these
classifying spaces in a way that runs largely parallel to the role of ordinary group coho-
mology in studying Eilenberg–Mac Lane spaces and their universal covers. In Bredon
cohomology, the group G is replaced by the orbit category OXG defined with respect
to a suitable family of subgroups X. In this paper we shall only be concerned with the
family F of finite subgroups and so we simply write OG for the orbit category instead
of OFG. Modules over the orbit category are contravariant functors to the category of
abelian groups. These are called OG-modules. The category of OG-modules has enough
projectives and homological algebra can be developed using projective resolutions giv-
ing rise to the Bredon cohomology of groups with clear resemblance to ordinary group
cohomology.
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All the notions type FPy, type FP, type FL, etc. have analogues when considering
Bredon projective resolutions and we refer to these by the names type Bredon FPy, type

Bredon FP, type Bredon FL, etc. Figure 1 shows the various interrelationships between
these properties and all these implications are easily established. The notion of type Bredon

F is by definition equivalent to the existence of a cocompact proper classifying space. Save
for the two implications marked � all the implications shown are known to be irreversible.
We have included a short explanation of this diagram in the last section of this paper.

For virtually soluble groups or, more generally, elementary amenable groups there are
no surprises as to which groups are of Bredon type F and our main theorem is as follows.

Theorem 1.1. Let G be an elementary amenable group. Then the following are

equivalent.

(i) G is of type Bredon F.

(ii) G is of type Bredon FL.

(iii) G is of type Bredon FP.

(iv) G is of type Bredon FPy.

(v) G is virtually of type F.

(vi) G is virtually of type FL.

(vii) G is virtually of type FP.

(viii) G is of type FPy.

(ix) G is constructible.

(x) Either G is polycyclic-by-finite or G has a normal subgroup K such that G=K is

a Euclidean crystallographic group and for each subgroup LMK with L=K finite there is a

finitely generated virtually nilpotent subgroup B ¼ BðLÞ of L and an element t ¼ tðLÞ of L
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Figure 1. Connections between cohomological finiteness conditions
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such that t�1BtHB and L ¼ B�B; t is a strictly ascending HNN-extension with base B and

stable letter t.

Here (ix) refers to the notion of constructible group as introduced by Baumslag and
Bieri [3]. The class of constructible groups is the smallest class of groups closed under form-
ing amalgamated free products, HNN-extensions and finite extensions and all such groups
are finitely presented and of type FPy. Baumslag and Bieri provide a thorough discussion
of the nature of soluble constructible groups, [3]. Further analysis of this class appears in
the work [11] of Bieri and Strebel and plays a crucial role in this paper.

In view of known interconnections between the conditions (i)–(x), which we discuss
below, most of the work in this paper is concerned with establishing (viii) ) (x) ) (i).
The first of these implications is the subject of §2 and the second is the subject of §4. For
the second implication we use Bredon cohomology which we review in §3.

The following is an immediate consequence. Note that prior to this work this corol-
lary was not proven even for the class of soluble groups of type FP.

Corollary 1.2. Every elementary amenable group of type FP is of type F.

Proof. Let G be an elementary amenable group of type FP. According to Theorem
1.1, G is of type Bredon F and so admits a cocompact model for the classifying space for
proper actions EG. Since every group of type FP, in particular G, is torsion free it follows
that EG ¼ EG and G is of type F. r

Corollary 1.3. Let G be an elementary amenable group of type Bredon F and let F
be a finite group of automorphisms of G. Then the subgroup FixðFÞ of elements of G fixed

by every element of F is also of type Bredon F.

Proof. The split extension, or semidirect product, G zF is elementary amenable
and of type FPy since both of these properties are inherited by finite index over groups.
Therefore, according to Theorem 1.1 (viii) ) (i), G zF is of type Bredon F. Normalizers
of finite subgroups of groups of type Bredon F are always of type FPy and hence the nor-
malizer NGzFðFÞ is of type FPy. The subgroup FixðFÞ has finite index in this normalizer
and so is also of type FPy and hence of type Bredon F. r

For any group G satisfying the conditions in the theorem one has

hG ¼ cdQ G ¼ cd G < y

where hG is the Hirsh rank of G and cd G the Bredon cohomological dimension, which is
the analogous of the usual cohomological dimension but for Bredon cohomology. This
leads to the following:

Conjecture 1.4. The conditions

(xi) hG ¼ cdQ G < y,

(xii) hG ¼ cd G < y

can be added to the theorem.
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It follows from [12] that for any group cdQ G e cd G and hence (xii) implies (xi) in the
above conjecture. Furthermore (xi) implies that G=T is of type Bredon F, where T is the
largest normal locally finite subgroup of G. Hence a positive answer to the following would
also prove Conjecture 1.4.

Conjecture 1.5. Let G be an elementary amenable group such that hG ¼ cdQ G is

finite. Then G has a bound on the orders of the finite subgroups.

Background to the theorem. Historically, the very first steps towards understand-
ing cohomological finiteness conditions for soluble groups were taken by Gruenberg and
Stammbach. Key steps concerning nilpotent groups appear in Gruenberg’s notes [18] and
homological dimension was computed by Stammbach [32]. The question was further inves-
tigated and highlighted by Bieri [6]. Gildenhuys determined exactly which soluble groups
have cohomological dimension 2: the solution [15] shows that all non-abelian such groups
are ascending HNN-extensions of type F and is the first evidence that questions about
cohomological finiteness conditions for soluble groups would prove to be substantial and
interesting. For soluble-by-finite groups, the equivalence of conditions (vi), (vii) and (ix)
of Theorem 1.1 was established by Gildenhuys, Strebel and Kropholler, [16], [17], [20]. Sub-
sequently it was shown [21], [22] by Kropholler that soluble groups of type FPy are virtu-
ally of type FP and work [19] of Hillman and Linnell made it possible to extend the results
to the elementary amenable case. At this stage it became clear that every elementary
amenable group of type FPy is nilpotent-by-abelian-by-finite, constructible and virtually
of type F. However it remained an open problem whether or not elementary amenable
groups, or even soluble groups, of type FP are necessarily of type FL. Moreover, the inter-
est in proper classifying spaces, which are natural to consider for groups with torsion,
raised questions as to whether all soluble groups of type FPy satisfied the strongest Bredon
finiteness conditions, see for example [27] where the equivalence between (viii) and (iii) is
proven. Theorem 1.1 shows that this is the case. Part (x) comes about through a careful
analysis of the Bieri–Strebel strategy for characterizing properties of nilpotent-by-abelian-
by-finite groups using invariants [11], commonly called BNS-invariants [7], which are sub-
sets of certain valuation spheres.

2. Bieri–Strebel invariants for nilpotent-by-abelian-by-finite groups,

and the proof of Theorem 1.1 (viii) ) (x)

The goal of this section is to establish the more refined structure theory for G stated in
Theorem 1.1 (x). As explained above, results in [21], [22] and in [19] imply that any elemen-
tary amenable group of type FPy is finite-by-virtually soluble. By taking the centralizer of
the finite normal subgroup, which is soluble of finite index one easily sees that the group is
in fact nilpotent-by-abelian-by-finite.

We adopt the notation used by Bieri and Strebel in [11]. For a finitely generated abe-
lian group Q we write SðQÞ for the valuation sphere as defined in [11], §1.1. Let ðN;HÞ be
an admissible pair of subgroups of the group G, meaning that the following conditions are
satisfied:

� N and H are both normal subgroups of G;

� N LH;
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� N is nilpotent;

� H=N is abelian; and

� G=H is finite.

Now let P denote the largest normal locally polycyclic subgroup of H. Then H=P is a
finitely generated abelian group and so the valuation sphere SðH=PÞ is defined. More-
over, Bieri and Strebel show that if ðN 0;H 0Þ is another admissible pair then the valuation
spheres SðH=PÞ and SðH 0=P 0Þ can be identified in a canonical way. Therefore they define
the valuation sphere SðGÞ to be SðH=PÞ for some fixed choice of admissible pair ðN;HÞ
without any essential ambiguity.

Bieri and Strebel introduce the invariant sðGÞ, a certain closed subset of SðGÞ. We
shall be interested in the following results about this invariant which are the content of
[11], Theorems 5.2 and 5.4.

Proposition 2.1. (i) G is constructible if and only if sðGÞ is contained in an open

hemisphere.

(ii) G is polycyclic-by-finite if and only if sðGÞ is empty.

Taking Q to be the quotient group H=N we naturally have that SðGÞ ¼ SðH=PÞ is a
subsphere of SðQÞ.

We now note that the action of G by conjugation on H stabilizes sðGÞ (see [27],
Lemma 3.4). Moreover it induces an action of the finite group G=H on both H=N

and H=P. In turn this induces actions of G=H on the vector spaces homðH=P;RÞ and
homðH=N;RÞ and hence also on the valuation spheres SðGÞ ¼ SðH=PÞ and SðH=NÞ sta-
bilizing sðGÞ.

Also, the group G acts by conjugation on N and this passes to an action of G=N on
the largest abelian quotient Nab ¼ N=½N;N� of N. In this way we may view Nab as a right
Z½G=N�-module. For x A G and b A N we write bx for the conjugate x�1bx and we write x

for the image of x in G=N, that is x is the coset Nx. If a is an element of Nab so that is
a ¼ ½N;N�b for some b A N then we write ax for the coset ½N;N�bx. In other words we shall
notate Nab as a right G=N-module.

Associated to the data G, H, N we may consider the following subsets B0 and B
of G.

� B0 is defined to be the set of x in G for which there exists a finitely generated sub-
group B0 of Nab such that B0xLB0 and

S

ie0

B0xi ¼ Nab.

� B is defined to be the set of x in G for which there exists a finitely generated sub-
group B of N such that Bx LB and

S

ie0

Bxi ¼ N.

We shall now make the assumption that G is constructible. Therefore by Proposition
2.1 (i) the invariant sðGÞ is contained in an open hemisphere of SðGÞ and the following
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three lemmas all rely on this. We shall also assume that sðGÞ is non-empty, i.e., that G is
not polycyclic-by-finite.

Lemma 2.2. There exists x A B0 whose image x in G=N belongs to the centre

zðG=NÞ.

Proof. As remarked above the finite group G=H acts on Q and on the sphere SðQÞ
stabilizing sðGÞ. Now let

C=N ¼ CH=NðG=HÞe zðG=NÞ:

Since Q is finitely generated abelian [27], Lemma 3.5 implies that by changing H if
necessary to a finite index subgroup we may assume that H=N is torsion free and
H=N ¼ C=N � T=N with T=N as in [27], Lemma 3.6. So applying that result we deduce
that sðCÞ is contained in an open hemisphere. If rk C=N ¼ 0 then sðCÞ ¼ j, and hence C

and also G would be polycyclic-by-finite. Therefore by [10], Theorem 4.6 there are ele-
ments q1; . . . ; qs of C=N and a finitely generated subgroup B0 of Nab such that qi all
satisfy the condition B0qi LB0 and Nab ¼

S

i<0

B0ðq1 . . . qnÞ i. It su‰ces then to take x with
x ¼ q1 . . . qs. r

The previous result can also be proven as follows. Since sðGÞ is non empty, compact
(in fact results of Bieri and Strebel show that it is finite in this case) and stabilized by the
finite group G=H it follows that its centre of mass is a fixed point of G=H. Then one can
argue in a similar way as in [10], Theorem 4.6, but using this fixed element to deduce the
existence of a finite subset fq1; . . . ; qmg of Q with the following properties:

� fq1; . . . ; qmg is invariant under the action of the finite group G=H, and hq1; . . . ; qmi
generate a subgroup of finite index in Q.

� There is a finitely generated subgroup B0 of Nab such that the qi all satisfy the con-
dition B0qi LB0.

� Nab ¼
S

i<0

B0ðq1 . . . qmÞ i.

Then one takes x A G with x ¼ q1 . . . qm.

Lemma 2.3. B0 ¼ B.

Proof. This is an easy variation on the proof of [11], Theorem 5.2. Take x A B0 and
consider the derived series of N with

g1N ¼ N;

giþ1N ¼ ½giN;N�:

We prove by induction on l that there is some finitely generated subgroup Blþ1 of
N=glþ1N with Bx

lþ1 LBlþ1 and
S

ie0

Bxi

lþ1 ¼ N. When l ¼ 1 there is nothing to prove
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and so we assume that lf 2 and that there exists a finitely generated subgroup Bl

with the desired properties. Let Al be a finitely generated subgroup of N=glþ1N with
AlglN=glN ¼ Bl. Exactly as in [11], Theorem 5.2 one gets a finitely generated subgroup
A0 of glN=glþ1N having similar properties as those of Bl and it sufices to take

Blþ1 ¼ AlA0: r

Using Lemma 2.2, choose x A B0 such that x belongs to zðG=NÞ. By Lemma 2.3, x

belongs to B and so we may choose a finitely generated subgroup B of N such that Bx LB

and N ¼
S

i<0

Bxi

. We now keep x and B fixed for the remainder of this section. Note that

if x has finite order then G is polycyclic-by-finite. We shall therefore assume that x has
infinite order.

Lemma 2.4. The subgroup K :¼ hB; xi is normal in G and if L is any subgroup

containing K such that L=K is finite then there exist y A G and a finitely generated subgroup

D of L such that

(i) B is a subgroup of finite index in D,

(ii) Dy LD,

(iii) yk ¼ xl for some positive integers k, l,

(iv) L ¼ hD; yi.

Proof. Since N ¼
S

i<0

Bxi

we have that N LK and clearly K=N is the cyclic group

generated by x which is central in G=N. Thus K is normal in G.

Suppose now that L is a subgroup of G containing K such that L=K is finite. Then
L=N is virtually infinite cyclic and centre-by-finite. Let N1=N denote the largest finite
normal subgroup of L=N. Then L=N1 is infinite cyclic. Choose y to be a generator of L

modulo N1. Then y and x generate commensurable cyclic subgroups of L=N and so,
replacing y by y�1 if necessary, we may assume that there are positive integers k and l
such that yk ¼ xl. Notice that xly�k is then an element of N.

Let N1 be a finite subset of G consisting of coset representatives for the elements of
N1=N. Since x is central in G=N it follows that for each g A N1 there exists ng A N such that
gx ¼ gng. Choose j < 0 so that Bx j

contains all the elements ng as g runs through N1 and
so that it also contains xly�k. The choice of j is possible because there are only finitely
many ng and N is the directed union

S

i<0

Bxi

. Now consider the group B1 :¼ hBx j

WN1i.

This is contained in the virtually nilpotent group N1 and so is itself virtually nilpotent.
Also, B1 is finitely generated, Bx

1 LB1, and we have N1 ¼
S

i<0

Bxi

1 . Define D by

D :¼ hB1;B
y
1 ; . . . ;B

yk�1

1 i:

Then D has the desired properties. First, Dy is generated by B
y
1 ; . . . ;B

yk�1

1 ;B
yk

1 and since
xly�k belongs to B1 we have B

yk

1 ¼ Bxl

1 LB1 so that Dy LD. Secondly hD; yi contains
N, N1 and y so equals L. r

55Kropholler, Mart ı́nez-Pérez and Nucinkis, Amenable groups



Establishing the structure described in Theorem 1.1(x). There are two cases accord-
ing to whether or not sðGÞ is empty. If sðGÞ ¼ j then G is polycyclic-by-finite by Proposi-
tion 2.1 (ii) and we are done. If sðGÞ3j then Lemma 2.4 applies. In that case, let K be as
in Lemma 2.4 and let K1=K be largest finite normal subgroup of G=K. Since G=K is a
quotient of G=H it is finitely generated and abelian-by-finite. Therefore G=K1 is a Eucli-
dean crystallographic group. Lemma 2.4 shows that any overgroup L of finite index over
K or K1 also enjoys the structure of being an ascending HNN-extension. Therefore we may
replace K by K1 and have the desired conclusion.

3. Bredon cohomology and finiteness conditions for proper classifying spaces

Let G be a group. We write OG for the orbit category of G with respect to the class of
finite subgroups of G. The orbit category has the transitive G-sets with finite stabilizers
as objects and G-maps between them as morphisms. Modules over the orbit category are
contravariant functors from the orbit category to the category of abelian groups. A se-
quence A ! B ! C of OG-modules is exact at B if and only if each instance is exact, that
is AðDÞ ! BðDÞ ! CðDÞ is exact at BðDÞ for every transitive G-set D.

For G-sets D, W we write ½D;W�G for the set of G-maps from D to W and we write
Z½D;W�G for the free abelian group on ½D;W�G. When there is no ambiguity we drop the
symbol G and simply write ½D;W�. Fixing W and allowing D to range over transitive G-sets
with finite stabilizers we obtain an OG-module Z½ ;W�. The trivial OG-module, usually
written Z, arises from this construction by taking W to be the one-point G-set. For any fi-
nite group H, the OG-module Z½ ;HnG� is projective and direct sums of modules of this
form (allowing di¤erent finite subgroups) are called free OG-modules. Every projective OG-
module is a direct summand of a free module and the finitely generated projective modules
are precisely the direct summands of finite direct sums of modules of the form Z½ ;HnG�
with H finite. The notions of type Bredon FP, Bredon FL, Bredon FPy are defined in
terms of projective resolutions of Z over OG in just the same way that the classical notions
of type FP, FL and FPy are defined.

Moreover it is also possible to define the notion of type Bredon FPn for each nf 0.
The following lemma implies the Bredon analogue of the classical fact that a group is of
type FP1 if and only if it is finitely generated.

Lemma 3.1. Let G be a group. Then G is of type Bredon FP0 if and only if G has only

finitely many conjugacy classes of finite subgroups, and G is of type Bredon FPn if and only if,
in addition, the Weyl-group KnNGðKÞ of each finite subgroup K is of type FPn.

Proof. If G is of type Bredon FP0 then there is a G-finite G-set W with finite stabil-
izers and an epimorphism

Z½ ;W� ! Z:

Now let K be an arbitrary finite subgroup of G. Evaluating this epimorphism at W we
obtain an epimorphism ZWK ! Z and therefore WK is non-empty. This shows that K

belongs to the finite set of conjugacy classes of subgroups which have fixed points in W.
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Conversely, if there are only finitely many conjugacy classes of finite subgroups then we can
take W ¼

F

H

HnG where H runs through a set of conjugacy class representatives of

finite subgroups, and the obvious augmentation map Z½ ;W� ! Z is an epimorphism.

The necessary and su‰cient conditions for Bredon type FPn are consequences of the
following lemma. r

We say a Bredon module M is finitely generated if there is a finite OG-set S in the
sense of Lück [24], 9.16, 9.19, such that there is a free Bredon module F on S mapping
onto M. An OG-set S is determined by sets SK for each finite subgroup K . S is said to be
finite if for all finite subgroups K, SK is finite and SH ¼ j for all but finitely many finite
subgroups H.

Lemma 3.2. Let G be a group with finitely many conjugacy classes of finite subgroups.

Then a Bredon module M is of type Bredon FPn if and only if for each finite subgroup K of

G, MðKnGÞ is a module of type FPn over the Weyl-group WK ¼ KnNGðKÞ.

Proof. Let M be a Bredon module of type Bredon FPn and let P� !! M be a
projective resolution. We may assume that all Pi for ie n are finitely generated free
Bredon modules. An argument analogous to [29], Section 3 shows that upon evaluating
the PiðKnGÞ are finitely generated permutation modules over WK with finite stabilizers.
Hence, by [28], Proposition 6.3, PiðKnGÞ is of type FPy for all ie n. A dimension shift,
see [6], Proposition 1.4, implies that MðKnGÞ is a WK-module of type FPn.

The converse is proved by induction on n. Let n ¼ 0 and M be a Bredon module such
that MðKnGÞ is a finitely generated WK-module for all finite subgroups K . We will con-
struct a finite OG-set S generating M as a Bredon module. The free Bredon module on S
then is finitely generated and maps onto M. Recall that for every G-map HnG ! KnG

there is a homomorphism of abelian groups jH
K : MðKnGÞ ! MðHnGÞ. For each finite

subgroup H of G fix a finite generating set XH of MðHnGÞ. Now SH is the union of XH

with all elements of MðHnGÞ of the form jH
K ðxKÞ whenever there is a G-map HnG ! KnG

and xK A XK . Since there are only finitely many conjugacy classes of finite subgroups this
results in a finite set SH . Since only one representative for each finite subgroup needs to be
taken into account, the resulting OG-set is indeed finite. There are maps SK ! SH induced
by the maps jH

K and the free module F on S maps onto M.

Now suppose n > 0 and the claim is true for k < n. Since for each finite subgroup
MðKnGÞ is a WK-module of type FPn it is in particular finitely generated. And we have
shown that there is a short exact sequence of Bredon modules K0 qP0 !! M with P0 fi-
nitely generated free. Then, as above, P0ðHnGÞ is a WH-module of type FPy. Hence by
[6], Proposition 1.4 all K0ðHnGÞ are WH-modules of type FPn�1 for all finite subgroups
H of G. By induction K0 is of type Bredon FPn�1 and the claim follows. r

Let X be a G-complex in the sense of tom Dieck ([34], Chapter II): this is a G-
CW-complex on which G acts by permuting the cells and in such a way that the stabi-
lizer of each cell fixes that cell point by point. We shall write DnðXÞ for the set of n-cells
of X .
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Lemma 3.3. Let X be a G-complex such that the fixed sets X H are acyclic for all

finite subgroups of G. Then the augmented Bredon cell complex

� � � ! Z½ ;DnðXÞ� ! Z½ ;Dn�1ðXÞ� ! � � � ! Z½ ;D1ðXÞ� ! Z½ ;D0ðXÞ� ! Z ! 0

is an exact sequence of OG-modules.

Proof. To check that the Bredon cell complex is exact it su‰ces to check that the
chain complex obtained by evaluating on each transitive G-set with finite stabilizers is ex-
act. A typical such G-set has the form HnG, that is the set of right cosets of some finite
subgroup H. For any G-set W the set ½HnG;W� can be identified with the H-fixed point
set WH and so when we evaluate the Bredon complex at HnG, what we see is the ordinary
augmented cellular chain complex of the space X H . Thus the lemma follows from the
assumption that all the fixed sets X H are acyclic. r

Corollary 3.4. If T is a G-tree with edge set E and vertex set V then the augmented

Bredon cell complex

0 ! Z½ ;E� ! Z½ ;V � ! Z ! 0

is a short exact sequence of OG-modules.

Proof. If H is any finite subgroup of G then the fixed set T H is again a tree and
hence acyclic. Thus the corollary follows from Lemma 3.3. r

Lemma 3.5. Let G be a group and let B be a subgroup. If B is of type Bredon FP then

Z½ ;BnG� is an OG-module of type Bredon FP.

Proof. This follows in much the same way as the corresponding result for groups of
type FP. First, there is a functor �BG : OB ! OG. This facilitates a restriction functor from
the category of OG-modules to the category of OB-modules and the restriction functor has,
in turn, a left adjoint called induction. We need to know that the induction functor is exact,
that it carries finitely generated projective OB-modules to finitely generated projective
OG-modules, and that IndG

B Z½�;Z�B GZ½�;BnG�G. The lemma follows from these facts
by applying induction to a finite projective resolution of the trivial OB-module Z.

Details can be found in Symonds exposition [33]. For the reader’s convenience we
include a summary of the key steps.

The induction functor is defined in [24], 9.15, and takes the following form in our
notation.

ðIndG
B MÞðSnGÞ ¼ Mð�ÞnOB Z½SnG;��B G�G

where M is an OB-module, S a finite subgroup of G and nOB is the tensor product defined
for example in [24], 9.12. For any finite subgroup L of B there is a Yoneda-type formula for
this tensor product:

Mð�ÞnOB Z½LnB;��B ¼ MðLnBÞ:
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There is a bijection

½SnG;��B G�G G
F

x A ðBnGÞS

½S x�1nB;��B;

and, taking free abelian groups on both sides, this gives rise to an isomorphism

Z½SnG;��B G�G G
L

x A ðBnGÞS

Z½S x�1nB;��B:

This together with the Yoneda formula above yield

ðIndG
B MÞðSnGÞ ¼

L

x A ðBnGÞS

MðS x�1nBÞ:

This formula is used in [33] to define induction. Note that as exactness means exact-
ness upon evaluation from the formula above one deduces that induction is exact [33], 2.9.
And in the particular case when M ¼ Z½ ;LnB� we get

IndG
B Z½ ;LnB�B ¼ Z½ ;LnG�G:

This implies that IndG
B takes finitely generated free OB-modules to finitely generated

free OG-modules (see [33], Lemma 2.9), (which is not a surprise as the restriction functor is
exact) and also implies that IndG

B Z ¼ Z½ ;BnG�G (this is [33], Lemma 2.7). r

We shall work with the Grothendieck group K0ðOGÞ of finitely generated projective
OG-modules. If P is a finitely generated projective OG-module then we write ½P� for the
corresponding class in the Grothendieck group. If M is an OG-module of type Bredon FP
then we write ½M� for the element

P

if0

ð�1Þ i½Pi� in K0ðOGÞ where P� ! M is any choice

of finite projective resolution of M over OG. An application of Schanuel’s lemma shows
that ½M� is well-defined.

Lemma 3.6. Let G be a group of type Bredon FP. If ½Z� ¼ 0 in K0ðOGÞ then G is of

type Bredon FL.

Proof. This is a special case of [24], Theorem 11.2a. More generally one can work
with the image of ½Z� in ~KK0ðOGÞ the quotient of the Grothendieck group modulo the sub-
group generated by classes of Bredon free modules and it is su‰cient to check vanishing
there. r

Lemma 3.7. Let 0 ! A ! B ! C ! 0 be a short exact sequence of modules of type

Bredon FP over OG. Then the equation ½C� ¼ ½B� � ½A� holds in the Grothendieck group

K0ðOGÞ.

Proof. Choose finite projective resolutions P� ! A and Q� ! C. Then the horse-
shoe lemma can be used to construct a resolution of B in which the nth projective is
Pn lQn. Now it is immediate that ½B� ¼ ½A� þ ½C� and the result follows. r

Corollary 3.8. Let G ¼ B�B; t be an ascending HNN-extension in which B is of type

Bredon FP. Then G is of type Bredon FL.
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Proof. There is an action of G on a tree with one orbit of edges so that the G-sets of
vertices and edges are both isomorphic to the transitive G-set BnG. Using Corollary 3.4 this
gives rise to a short exact sequence of OG-modules

0 ! Z½ ;BnG� ! Z½ ;BnG� ! Z ! 0:

Lemma 3.5 shows that the module Z½ ;BnG� which appears here is of type Bredon FP. By
Lemma 3.7 we have ½Z� ¼ 0. Hence by Lemma 3.6, G is of type Bredon FL. r

Note that the results above also imply that if G acts on a tree of finite type with
stabilizers which are of type Bredon FL then G itself is of type Bredon FL.

4. Proof of Theorem 1.1 (x) ) (i)

Lemma 4.1. Let G be a group of type Bredon FL. Then

(i) the Weyl group HnNGðHÞ associated to any finite subgroup H of G is of type FPy

and in particular it is finitely generated; and

(ii) G is of type Bredon F if and only if all Weyl groups of finite subgroups of G are

finitely presented.

Proof. Part (i) follows from Lemma 3.1. Lück showed ([25], Theorem 5.1) that a
group admits a finitely dominated model for EG if and only if it satisfies the conditions in
(i) and all Weyl groups of finite subgroups are finitely presented. Since G is of type Bredon
FL the equivariant finiteness obstruction vanishes and (ii) follows. r

Lemma 4.2. Let L ¼ B�B; t be an ascending HNN-extension over a finitely generated

virtually nilpotent base B. Then L is of type Bredon F.

Proof. The finitely generated virtually nilpotent group B has type Bredon F and it
follows from Corollary 3.8 that L has type Bredon FL. By Lemma 4.1 (i), the Weyl groups
of finite subgroups of L are finitely generated. As explained in [8], L is a coherent group
meaning that all finitely generated subgroups are finitely presented. Therefore all normal-
izers of finite subgroups, and the corresponding Weyl groups, of L are finitely presented
and L is of type F by Lemma 4.1 (ii). r

Proof of Theorem 1.1(x) ) (i). If G is polycyclic-by-finite it is of type Bredon F,
which can be seen by an induction on the Hirsch length of the group, see [26], Example
5.26. Therefore we suppose that G satisfies the second part of the statement. Any finite sub-
group of G is therefore contained in a subgroup L which is a finite index overgroup of the
group K. Moreoever, L is an ascending HNN-extension over a finitely generated virtually
nilpotent group B and so is of type Bredon F by Lemma 4.2. Also, G=K is a Euclidean
crystallographic group and so is of type F. The following result of Lück may therefore be
used to complete the proof. r

Proposition 4.3 ([25], Theorem 3.2). Let G be a group with a normal subgroup K such

that G=K is of type Bredon F. Suppose that for each subgroup LMK of G such that L=K is

finite, L is a type Bredon F. Then G is of type Bredon F.
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5. Appendix. The non-reversibility of the implicatons in Figure 1

a The celebrated paper [5] of Bestvina and Brady includes constructions for groups
which are of type FP2 but not finitely presented, showing that n is not a reversible im-
plication. Such a group can be chosen to be of type FL and then it illustrates the non-
reversibility of the implications marked a. It remains conceivable that soluble groups of
type FP2 are always finitely presented. The first major positive result in this direction was
that of Bieri and Strebel which established the equivalence of type FP2 and finite present-
ability for metabelian groups using their method of invariants on the valuation sphere, [9].

b Thompson’s group F shown to be of type FPy by Brown and Geoghegan [14] has
infinite cohomological dimension and is also torsion-free. It is a group of type Bredon FPy

and not Bredon FP as well as being a group of type FPy and not FP.

g Any non-trivial finite group shows that the implications marked g are not revers-
ible. A perhaps more significant observation is that if X denotes any of the types F, FL,
FP then ‘‘type Bredon X’’ neither implies nor is implied by ‘‘virtually of type X’’. In one
direction, Raghunathan gave examples ([30], [31]) of groups which are not residually
torsion-free but which are patently of type Bredon F. Conversely there are Leary–Nucinkis
examples described in the next item which are virtually of type F but fail all the type
Bredon X conditions.

d Leary–Nucinkis [23] have constructed groups which are virtually of type F and
hence of type FPy but which are not of type Bredon FP0.

e Many examples are known of groups which are of type FP2 or finitely presented
but not FPy. There are also examples for each n of groups which are of type FPn but not
of type FPnþ1. Some can be found in the work [2], [4] of Abramenko and Behr. Further
examples can be found in work of Abels and Brown [1], [13]. There are many other such
examples in the literature, too numerous to mention in detail here.
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