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Abstract

The identification of the population density of a logistic equation backwards in time associated with nonlocal dif-

fusion and nonlinear reaction, motivated by biology and ecology fields, is investigated. The diffusion depends on

an integral average of the population density whilst the reaction term is a global or local Lipschitz function of the

population density. After discussing the ill-posedness of the problem, we apply the quasi-reversibility method to

construct stable approximation problems. It is shown that the regularized solutions stemming from such method not

only depend continuously on the final data, but also strongly converge to the exact solution in L2-norm. New error

estimates together with stability results are obtained. Furthermore, numerical examples are provided to illustrate the

theoretical results.

Keywords and phrases: Inverse problem; Nonlocal diffusion; Nonlinear reaction; Ill-posed problem; Population
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1. Introduction

We consider the following nonlinear parabolic equation for the population density u:

ut = D (ℓ0 (u) (t))∆u + R (x, t, u) , (x, t) ∈ Ω × (0, T ), (1)

where T > 0, Ω is an open, bounded and connected domain in R
n, n ≥ 1 with a smooth boundary ∂Ω, R is the

reaction term and D is the diffusion which depends on a linear functional ℓ0(u), as given in equation (2) below.

Many physical processes can be described by such a time-dependent parabolic equation with nonlocal diffusion

and nonlinear reaction, see e.g. [10, 11, 37] and the references therein. These can be from the study of unsteady

heat transfer phenomena in a solid, where we desire to know information of the thermal conductivity, or starting from

the model of diffusion and reaction of active chemical species in predicting concrete corrosion. From biology and

ecology perspectives that we consider in this paper, u represents the population density of an individual species at

time t and the point x where the species stays. Also, studying a nonlocal term which is density dependent in diffusion

D, i.e.

D (ℓ0 (u) (t)) = D
(∫

Ω

f (x) u (x, t) dx

)

, ℓ0 (u) (t) :=

∫

Ω

f (x)u(x, t)dx, (2)

∗Corresponding Author: Daniel Lesnic; Email: amt5ld@maths.leeds.ac.uk. Emails of other authors: Nguyen Huy Tuan (nguyenhuy-

tuan@tdt.edu.vn), Vo Van Au (vvau8190hg@gmail.com), Vo Anh Khoa (vakhoa.hcmus@gmail.com)



where f is a given weight function, has a direct correlation to the development of population dynamics, and it is

obviously meaningful if the density-related reaction R (often representing birth/death, immigration/emigration) is

also present.

For simplicity, we consider homogeneous Neumann boundary conditions

∂φ

∂ν
(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ), (3)

where ν is the outward unit normal to the boundary ∂Ω, which physically mean that the boundary of the biological

specimen is insulated. Homogeneous Dirichlet boundary conditions can also be considered instead of (3).

Inverse diffusion problems have been of continuous interest to researchers in a wide range of disciplines, and

in the context of identifying parameters broadly popular, see e.g. [2, 13, 18] and references therein. However, our

inverse problem considered here has a different formulation. In fact, we are interested in the question that if we do

know the density of a certain biological species at a finite time T > 0, namely,

u (x, T ) = g (x) , x ∈ Ω, (4)

then we have to determine the density at preceding times down to the initial time t = 0. Notice that the backward heat

problem (1)-(4) is not well-posed in the sense that the solution does not depend continuously on data (4), i.e., from

the small noise made in measurement data, the corresponding solution may generate itself large and undesired errors,

and standard computational procedures are not stable.

If the diffusion coefficient is constant or time-dependent, [27], then equations (1)-(4) form the classical backward

heat conduction problem (BHCP) which has been thoroughly investigated in many studies, see e.g. [1, 15, 16, 19, 20,

21, 31, 32, 36] to mention only a few. Further, even if the diffusion coefficient is density dependent, [2, 8, 13, 18], it

is still not related to our study which considers the non-local diffusion expression (2).

Up-to-date, we believe we are the first to treat the general problem in this context: find a real unknown function

u (x, t) for (x, t) ∈ Ω × (0, T ) solution to the problem (P) given by equation (1) with the diffusion coefficient given

by equation (2) and endowed with the conditions (3) and (4). Motivated by the aforementioned reasons, we shall

employ a regularization method to find a stable approximate solution to this backwards in time determination of the

population density. In particular, we are herein interested in the quasi-reversibility (QR) method.

Referring to the QR method, the work was commenced by Lattès and Lions [24] where this approach was first

proposed to deal with the Cauchy problem for elliptic equations. The idea of the method is to construct a well-posed

fourth-order problem that depends on a small regularization parameter, from the original ill-posed second-order

problem. A dual-based QR method to solve the Cauchy problem in the presence of noisy data has been investigated

in [6], whilst numerical finite element method has been implemented in [3, 9]. Various convergence rates for the QR-

method have been established, e.g. Holder-type rate with the aid of Carleman estimates in [23], and of logarithmic-

type in C1,1 and Lipschitz domains in [4] and [5], respectively.

While many papers try to deal with ill-posed problems by performing regularization at the discretization level, in

this paper we regularize the problem directly by the QR method. Furthermore, formal (computationally symbolic)

iterative methods such as Picard’s iteration, the decomposition method or the homotopy method, [12, 17, 25], which

avoid discretization, are easy to use and in many cases enable to obtain an accurate solution within a few iterations.

We will describe such an iterative procedure in Section 3.

The purpose of this paper is three-fold. First, we review in Section 2 basic facts about abstract settings working for

our results, the forward problem, and understand the ill-posedness caused by the instability in the backward problem

throughout a simple example. Second, the main results are achieved in Section 3 where we give the unique solvability,

error and stability estimates. In particular, we investigate first the inverse problem without reaction, i.e. R = 0, in

Subsection 3.1, by the classical QR approach. Theorems 4 and 5 show the unique solvability of the backward heat

problem (27) and its regularized counterpart (33), whilst Theorem 7 gives the error and stability estimates (44) and

(47), respectively. Next we investigate the inverse problem with reaction in Subsection 3.3 by the modified QR

approach. The regularized problem presented in (56) for the global Lipschitz reaction case, is shown to be uniquely

solvable in Lemmas 11 and 12, whilst theorem 13, which contains the main results of the paper, gives the error and

stability estimates. Furthermore, in the same spirit, Subsection 3.3.3 considers the case of local Lipschitz reaction,

where the cut-off projection is applied and the obtained estimates are presented in Theorem 15. Third, we give in
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Section 4 numerical examples to corroborate our theoretical results. Finally, Section 5 presents the conclusions of

this research.

2. Preliminaries

2.1. Abstract settings

We begin this subsection by introducing some notations and assumptions that are needed for our analysis in the

next sections. Let us first define

V :=

{

φ ∈ H1 (Ω) :
∂φ

∂ν
= 0 on ∂Ω

}

,

the closed subspace of H1 (Ω), and call H−1 (Ω) the dual space of H1 (Ω). With a Banach space X we denote by

Lp (0, T ; X), C ([0, T ] ; X) and C1 (0, T ; X) the Banach spaces of real functions u : (0, T )→ X measurable, such that

‖u‖Lp(0,T ;X) =

(∫ T

0

‖u (·, t)‖p
X

dt

)1/p

< ∞, 1 ≤ p < ∞,

‖u‖L∞(0,T ;X) = ess sup
0<t<T

‖u (·, t)‖X < ∞, p = ∞,

and

‖u‖C([0,T ];X) = sup
0≤t≤T

‖u (·, t)‖X < ∞, ‖u‖C1(0,T ;X) = ‖u‖C([0,T ];X) + ‖ut‖C([0,T ];X) < ∞.

Moreover, throughout this paper, we denote the L2-norm by ‖·‖, and the inner product on L2 (Ω) by 〈·, ·〉.
We now make the following assumptions:

(A1) The measurable function D > 0 is such that the mapping ξ 7→ D (ξ) is continuous for ξ ∈ R;

(A2) There exist positive constants η1 and η2 such that

η1 ≤ D (ξ) ≤ η2, ∀ ξ ∈ R;

(A3) There exists a positive constant L such that

|D (ξ1) −D (ξ2)| ≤ L |ξ1 − ξ2| , ∀ ξ1, ξ2 ∈ R;

(A4) f ∈ L2 (Ω);

(A5) g ∈ L2 (Ω) represents the exact data, whilst gǫ ∈ L2 (Ω) represents the measured data with noise level ǫ > 0

such that

∥

∥

∥gǫ − g
∥

∥

∥ ≤ ǫ.

Remark 1. The assumptions (A3) and (A4) imply that for any u1, u2 ∈ L∞(0, T ; L2(Ω)) we have

|D (ℓ0 (u1) (t)) −D (ℓ0 (u2) (t))| ≤ L ‖ f ‖ ‖u1 (·, t) − u2 (·, t)‖ , t ∈ [0, T ], (5)

where we have used the Hölder inequality and the definition (2).

An important point to be made is that, see [14, Section 6.5], the eigenvalues of the operator −∆ on the open,

bounded and connected domain Ω ⊂ R
n with a smooth boundary, subject to standard homogeneous boundary condi-

tions (here we specify the zero Neumann conditions (3)) have the property that there exists an orthonormal basis of

L2 (Ω), denoted by
{

φp

}

p∈N, satisfying

φp ∈ V ∩C∞
(

Ω
)

, −∆φp(x) = λpφp(x), x ∈ Ω, 0 = λ0 < λ1 ≤ λ2 ≤ ..., and lim
p→∞
λp = ∞, (6)
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where
{

λp

}

p∈N is the discrete spectrum of the operator.

We also introduce the abstract Gevrey class of functions of order γ > 0 and index σ > 0, see e.g., [7], defined by

the spectrum of the Laplacian (a terminology previously used in the book [30]), as

Gσ,γ =

{

v ∈ L2 (Ω) :

∞
∑

p=0

λ
γ
pe2σλp

∣

∣

∣

∣

〈

v, φp

〉

∣

∣

∣

∣

2
< ∞

}

,

which is a Hilbert space equipped with the inner product

〈v1, v2〉Gσ,γ :=

〈

(−∆)γ/2eσ
√
−∆v1, (−∆)γ/2eσ

√
−∆v2

〉

, ∀v1, v2 ∈ Gσ,γ

and the corresponding norm

‖v‖Gσ,γ =

√

√

√ ∞
∑

p=0

λ
γ
pe2σλp

∣

∣

∣

∣

〈

v, φp

〉

∣

∣

∣

∣

2
< ∞.

In what follows, we denote by (P) the main inverse problem given by equations (1)-(4). We mention that its full

analysis will be given in Subsection 3.3 and the main results concerning error and stability estimates will be stated

and proved in Theorems 13 and 15. But before that, in the next subsection the forward problem is discussed.

2.2. The forward problem

Let us take for the time being R = 0 and consider the forward problem given by the homogeneous Neumann

boundary condition (3), the partial differential equation

ut = D (ℓ0 (u) (t))∆u, (x, t) ∈ Ω × (0, T ), (7)

and the initial condition

u(x, 0) = u0(x), x ∈ Ω. (8)

Theorem 2. Suppose that (A1)-(A4) hold. Then, for u0 ∈ L2 (Ω) there exists a unique weak solution

u ∈ L2 (0, T ; V) ∩ C
(

[0, T ] ; L2 (Ω)
)

, (9)

satisfying (7) in the weak sense, i.e.

d

dt
〈u (·, t) , v〉 = −D (ℓ0 (u) (t)) 〈∇u (·, t) ,∇v〉 , ∀v ∈ V, t ∈ (0, T ), (10)

and (8).

Theorem 3. Theorem 2 follows from the fact that the solution to the aforementioned forward problem can be repre-

sented as

u (x, t) =

∞
∑

p=0

exp

(

−λp

∫ t

0

D (ℓ0 (u) (s)) ds

)

u0pφp (x) , (11)

where u0p =
〈

u0, φp

〉

.
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Proof. Letting v = φp in (10) in combination with plugging the solution u under the Fourier-mode

u (x, t) =

∞
∑

p=0

〈

u (x, t) , φp(x)
〉

φp (x) , (12)

we then obtain














〈

ut (x, t) , φp(x)
〉

+D (ℓ0 (u) (t)) λp

〈

u (x, t) , φp(x)
〉

= 0, t ∈ (0, T ) ,
〈

u (x, 0) , φp (x)
〉

= u0p.
(13)

Multiplying both sides of the first equation of (13) by the function exp
(

λp

∫ t

0
D (ℓ0 (u) (s)) ds

)

and noticing that

d

dt

(∫ t

0

D (ℓ0 (u) (s)) ds

)

= D (ℓ0 (u) (t)) ,

then integrating the obtained result with respect to t, and combining with the second equation in (13), it is straight-

forward to obtain that

exp

(

λp

∫ t

0

D (ℓ0 (u) (s)) ds

)

〈

u (x, t) , φp (x)
〉

= u0p,

which, via (12), leads to (11). It is also clear, by direct calculus, that u given by (11) satisfies (8) and (10).

Using the notation

E(a,b)

(

D (ℓ0 (u) (s)) , λp

)

:= exp

(

λp

∫ b

a

D (ℓ0 (u) (s)) ds

)

(14)

then, equation (11) can be written as

u (x, t) =

∞
∑

p=0

E(0,t)

(

D (ℓ0 (u) (s)) ,−λp

)

u0pφp (x) . (15)

From this, the boundedness of E(0,t)

(

D (ℓ0 (u) (s)) ,−λp

)

(derived from (6) and (A2)) and assumption (A3) imply the

well-posedness of (11) and hence of the forward problem, as follows.

Step 1. Define an operator I mapping from C
(

[0, T ] ; L2 (Ω)
)

into itself by

I (w) (x, t) :=

∞
∑

p=0

E(0,t)

(

D (ℓ0 (w) (s)) ,−λp

)

u0pφp (x) .

We prove by induction that for w1,w2 ∈ C
(

[0, T ] ; L2 (Ω)
)

and n ∈ N
∗

∥

∥

∥In (w1) (·, t) − In (w2) (·, t)
∥

∥

∥

2 ≤
(

TL2 ‖ f ‖2 ‖u0‖2
)n tn

n!
‖w1 − w2‖2C([0,T ];L2(Ω))

. (16)

First, for n = 1 one easily has, by Parseval’s relation, Holder’s inequality and (5), that

‖I (w1) (·, t) − I (w2) (·, t)‖2 =
∞
∑

p=0

∣

∣

∣

∣

E(0,t)

(

D (ℓ0 (w1) (s)) ,−λp

)

− E(0,t)

(

D (ℓ0 (w2) (s)) ,−λp

)

∣

∣

∣

∣

2
u2

0p

≤ TL2 ‖ f ‖2 ‖u0‖2 t ‖w1 − w2‖2C([0,T ];L2(Ω))
.

Thus, (16) holds for n = 1. Now, supposing that this holds up to n = k, we then shall prove that it also holds for

n = k + 1. Indeed,

∥

∥

∥Ik+1 (w1) (·, t) − Ik+1 (w2) (·, t)
∥

∥

∥

2 ≤ TL2 ‖ f ‖2 ‖u0‖2
∫ t

0

∥

∥

∥Ik (w1) (·, s) − Ik (w2) (·, s)
∥

∥

∥

2
ds

≤ TL2 ‖ f ‖2 ‖u0‖2 ‖w1 − w2‖2C([0,T ];L2(Ω))

∫ t

0

(

TL2 ‖ f ‖2 ‖u0‖2
)k sk

k!
ds

=
(

TL2 ‖ f ‖2 ‖u0‖2
)k+1 tk+1

(k + 1)!
‖w1 − w2‖2C([0,T ];L2(Ω))

.
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By the induction principle, we obtain (16). Since

lim
n→∞

√

(

TL2 ‖ f ‖2 ‖u0‖2
)n tn

n!
= 0,

there exists a number n0 ∈ N
∗ such that the expression under the limit is subunitary. This yields that In0 is a

contraction mapping from C
(

[0, T ] ; L2 (Ω)
)

onto itself. Then, by the Banach fixed point theorem, there exists a

unique solution in C
(

[0, T ] ; L2 (Ω)
)

to the equation In0 (w) = w. In addition, one has In0 (I (w)) = I (In0) (w) =

I (w). Combining this with the uniqueness of the fixed point of In0 , the equation I (w) = w admits a unique solution

in C
(

[0, T ] ; L2 (Ω)
)

.

Step 2. In this step we show that the solution u obtained at Step 1, also belongs to L2 (0, T ; V). First note that

from (15),

‖u(·, t)‖2
V
=

∞
∑

p=0

λp

〈

u(x, t), φp

〉2
=

∞
∑

p=0

λpE(0,t)

(

D (ℓ0 (u) (s)) ,−2λp

)

u2
0p, ∀t ∈ [0, T ].

Then, from this, (A2) and (14) we obtain

‖u‖2
L2(0,T ;V)

=

∫ T

0

‖u(·, t)‖2
V

dt =

∫ T

0

∞
∑

p=0

λpE(0,t)

(

D (ℓ0 (u) (s)) ,−2λp

)

u2
0pdt

≤
∫ T

0

∞
∑

p=0

λpu2
0p exp(−2λptη1)dt =

1

2η1

∞
∑

p=0

u2
0p(1 − exp(−2λpTη1)) ≤ 1

2η1

‖u0‖2 < ∞,

which implies that u ∈ L2 (0, T ; V) indeed. The proof is completed.

2.3. Ill-posedness of the backward problem

Whilst in the previous subsection the forward problem was shown to be well-posed, in this subsection we in-

vestigate the ill-posedness of the backward problem. For time being, we postpone to the next section the proof the

existence and uniqueness of solution in C
(

[0, T ] ; L2 (Ω)
)

∩ L2 (0, T ; V), and investigate the solution’s dependence on

data. Similarly to the derivation of (15), one easily deduces the representation of solution to the backward problem

(3), (4) and (7) as

u (x, t) =

∞
∑

p=0

E(t,T )

(

D (ℓ0 (u) (s)) , λp

)

gpφp (x) , (17)

where gp :=
〈

g, φp

〉

.

While the term E(0,t)

(

D (ℓ0 (u) (s)) ,−λp

)

in the forward problem solution (15) can be definitely bounded by a

constant, for the term E(t,T )

(

D (ℓ0 (u) (s)) , λp

)

in our backward problem solution (17), we have the following in-

equality:

∣

∣

∣

∣

E(t,T )

(

D (ξ1) , λp

)

− E(t,T )

(

D (ξ2) , λp

)

∣

∣

∣

∣

2
≤ max























λ2
p

∣

∣

∣

∣

∫ T

t

[D (ξ1) −D (ξ2)
]

ds
∣

∣

∣

∣

2

E(t,T )

(

D (ξ1) ,−2λp

) ,
λ2

p

∣

∣

∣

∣

∫ T

t

[D (ξ1) −D (ξ2)
]

ds
∣

∣

∣

∣

2

E(t,T )

(

D (ξ2) ,−2λp

)























, (18)

for any u1, u2 ∈ C
(

[0, T ] ; L2 (Ω)
)

∩ L2 (0, T ; V), where we have denoted

ξi := l0(ui)(s) =

∫

Ω

f (x)ui(x, s)dx, E(t,T )

(

D (ξi) , λp

)

= exp

(

λp

∫ T

t

D(ξi)ds

)

, i = 1, 2,

and we have used the elementary inequality:

∣

∣

∣ea − eb
∣

∣

∣ ≤ max
{

|a − b| ea, |a − b| eb
}

, ∀a, b ≥ 0. (19)
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Combining this with (A2) and using Hölder’s inequality, yield

∣

∣

∣

∣

E(t,T )

(

D (ξ1) , λp

)

− E(t,T )

(

D (ξ2) , λp

)

∣

∣

∣

∣

2
≤ exp

(

2η2λp (T − t)
)

λ2
p

∣

∣

∣

∣

∣

∣

∫ T

t

[D (ξ1) −D (ξ2)
]

ds

∣

∣

∣

∣

∣

∣

2

≤ exp
(

2η2λp (T − t)
)

λ2
p (T − t)

∫ T

t

|D (ξ1) −D (ξ2)|2 ds. (20)

In order to illustrate the ill-posedness of the backward problem through an example, let g ∈ Gσ,γ for σ ≥ η2T, γ = 2

(this condition is essentially needed to prove the existence and uniqueness of solution) and an explicitly defined

function gǫ ∈ L2 (Ω) given by

gǫ (x) = g (x) +
1

λn

φn (x) ,

where ǫ := ǫ (n) = 1
λn

(for some positive integer n) represents the possible measurement noise which obviously

satisfies (A5). Then, the corresponding solution to the backward problem (3), (4) and (7) with such a noisy final data

can be represented as

uǫ (x, t) =
E(t,T ) (D (ℓ0 (uǫ ) (s)) , λn)

λn

φn (x) +

∞
∑

p=0

E(t,T )

(

D (

ℓ0
(

uǫ
)

(s)
)

, λp

)

gpφp (x) , (21)

where we have used the orthonormal property of the eigenfunctions {φp}p∈N. It yields from (17) and (21), by the

triangle inequality, that

∥

∥

∥uǫ (·, t) − u (·, t)
∥

∥

∥ ≥
∥

∥

∥

∥

∥

E(t,T ) (D (ℓ0 (uǫ) (s)) , λn)

λn

φn (x)

∥

∥

∥

∥

∥

−

∥

∥

∥

∥

∥

∥

∥

∥

∞
∑

p=0

[

E(t,T )

(

D (

ℓ0
(

uǫ
)

(s)
)

, λp

)

− E(t,T )

(

D (ℓ0 (u) (s)) , λp

)]

gpφp (x)

∥

∥

∥

∥

∥

∥

∥

∥

. (22)

The next step is to estimate the second norm on the right-hand side of (22) (here it is denoted by J1). Using (5), (20)

and Parseval’s relation, we have

J2
1 ≤ L2 ‖ f ‖2 T



















∞
∑

p=0

λ2
p exp

(

2η2λpT
)

g2
p



















∫ T

t

∥

∥

∥uǫ (·, s) − u (·, s)
∥

∥

∥

2
ds

≤ TL2 ‖ f ‖2 ‖g‖2
Gσ,γ

(T − t)
∥

∥

∥uǫ − u
∥

∥

∥

2

C([0,T ];L2(Ω)) , (23)

or,

J1 ≤ TL ‖ f ‖ ‖g‖Gσ,γ
∥

∥

∥uǫ − u
∥

∥

∥

C([0,T ];L2(Ω))
. (24)

Combining (22), (24) and (A2), we obtain

∥

∥

∥uǫ (·, t) − u (·, t)
∥

∥

∥ + TL ‖ f ‖ ‖g‖Gσ,γ
∥

∥

∥uǫ − u
∥

∥

∥

C([0,T ];L2(Ω))
≥ eη1(T−t)λn

λn

. (25)

Now, since we assume that the functions uǫ and u belong to the space C
(

[0, T ] ; L2 (Ω)
)

, from (25) we obtain that

∥

∥

∥uǫ − u
∥

∥

∥

C([0,T ];L2(Ω))
≥ eη1(T−t)λn

λn

(

1 + TL ‖ f ‖ ‖g‖Gσ,γ
) , t ∈ [0, T ].

Therefore, we conclude that for any t ∈ [0, T )

lim
n→∞

∥

∥

∥uǫ − u
∥

∥

∥ ≥ lim
n→∞

eη1(T−t)λn

λn

(

1 + TL ‖ f ‖ ‖g‖Gσ,γ
) = ∞. (26)

So, (26) shows that that even if the noise level ǫ = 1/λn goes to zero, as n → ∞, the instability always happens

backwards in time. Hence, the need for a regularization method has been ascertained.
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3. Quasi-reversibility (QR) based iterative approximation

In recent years, considerable attention has been given to accommodate the QR method, originally introduced

in the book of Lattès and Lions [24], as a regularization approach for obtaining stable numerical solutions of ill-

posed boundary value problems for partial differential equations. The main idea of such method is to basically add a

perturbed term into the main equation or in the input conditions such that its new solution is stable and convergent to

the exact solution, as the perturbation becomes decreasingly small, [3, 23]. In the present paper, we apply this general

idea of the QR method for solving problem (P) given by equations (1)-(4).

Included below, we first try to apply the QR method to the problem without reaction term, i.e. R = 0 in (1). Then,

global and local Lipschitz nonlinearity reactions will be studied using a modified QR approach.

3.1. The inverse problem without reaction

In this subsection, we take R = 0 in (1) and consider the backward heat problem given by



























ut = D (ℓ0 (u) (t))∆u, (x, t) ∈ Ω × (0, T ) ,
∂u
∂ν

(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ) ,

u (x, T ) = g (x) , x ∈ Ω.
(27)

As mentioned before in subsection 2.3, it is now worth proving the existence and uniqueness of solution to the

problem (27), as given by the following theorem.

Theorem 4. Assume (A1)-(A5) hold and let g ∈ Gσ,γ for σ ≥ η2T, γ = 2. Then the integral equation (17) has a

unique solution in C
(

[0, T ]; L2(Ω)
)

∩ L2 (0, T ; V), which is also the unique solution of the problem (27).

Proof. The proof is divided into three steps. First, we prove, by the contraction principle, that equation (17) has a

unique solution in C
(

[0, T ]; L2(Ω)
)

. Second, we prove that this solution also belongs to L2 (0, T ; V). Thirdly, we

prove that the problem (27) is equivalent to the integral equation (17).

Step 1. For w ∈ C
(

[0, T ] ; L2 (Ω)
)

, we define an operator G mapping from C
(

[0, T ] ; L2 (Ω)
)

into itself by

G (w) (x, t) :=

∞
∑

p=0

E(t,T )

(

D (ℓ0 (w) (s)) , λp

)

gpφp (x) . (28)

We prove by induction that for w1,w2 ∈ C
(

[0, T ] ; L2 (Ω)
)

and n ∈ N
∗

∥

∥

∥Gn (w1) (·, t) − Gn (w2) (·, t)
∥

∥

∥

2 ≤
(

TL2 ‖ f ‖2 ‖g‖2
Gσ,γ

)n (T − t)n

n!
‖w1 − w2‖2C([0,T ];L2(Ω))

. (29)

First, for n = 1 one easily has, by Parseval’s relation, that

‖G (w1) (·, t) − G (w2) (·, t)‖2 =
∞
∑

p=0

∣

∣

∣

∣

E(t,T )

(

D (ℓ0 (w1) (s)) , λp

)

− E(t,T )

(

D (ℓ0 (w2) (s)) , λp

)

∣

∣

∣

∣

2
g2

p.

In a similar manner to that used to get (23), we obtain

‖G (w1) (·, t) − G (w2) (·, t)‖2 ≤ TL2 ‖ f ‖2 ‖g‖2
Gσ,γ

(T − t) ‖w1 − w2‖2C([0,T ];L2(Ω))
.

Thus, (29) holds for n = 1. Now, supposing that (29) holds up to n = k, we then shall prove that it also holds for

n = k + 1. Indeed, it is straightforward to estimate (29) at that level, by following the derivation of (23) using (19), to

obtain

∥

∥

∥Gk+1 (w1) (·, t) − Gk+1 (w2) (·, t)
∥

∥

∥

2 ≤ TL2 ‖ f ‖2 ‖g‖2
Gσ,γ

∫ T

t

∥

∥

∥Gk (w1) (·, s) − Gk (w2) (·, s)
∥

∥

∥

2
ds

≤ TL2 ‖ f ‖2 ‖g‖2
Gσ,γ
‖w1 − w2‖2C([0,T ];L2(Ω))

∫ T

t

(

TL2 ‖ f ‖2 ‖g‖2
Gσ,γ

)k (T − s)k

k!
ds

=
(

TL2 ‖ f ‖2 ‖g‖2
Gσ,γ

)k+1 (T − t)k+1

(k + 1)!
‖w1 − w2‖2C([0,T ];L2(Ω))

.
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By the induction principle, we obtain (29) or, in another form by taking the square root

∥

∥

∥Gn (w1) (·, t) − Gn (w2) (·, t)
∥

∥

∥ ≤
√

(

TL2 ‖ f ‖2 ‖g‖2
Gσ,γ

)n (T − t)n

n!
‖w1 − w2‖C([0,T ];L2(Ω)) . (30)

Since

lim
n→∞

√

(

TL2 ‖ f ‖2 ‖g‖2
Gσ,γ

)n (T − t)n

n!
= 0,

there exists a number n0 ∈ N
∗ such that

√

(

TL2 ‖ f ‖2 ‖g‖2
Gσ,γ

)n0 (T − t)n0

n0!
< 1,

which from (30) it yields that Gn0 is a contraction mapping from C
(

[0, T ] ; L2 (Ω)
)

onto itself. Then, by the Banach

fixed point theorem, there exists a unique solution in C
(

[0, T ] ; L2 (Ω)
)

to the equation Gn0 (w) = w. In addition, one

has Gn0 (G (w)) = G (Gn0) (w) = G (w). Combining this with the uniqueness of the fixed point of Gn0 , the equation

G (w) = w admits a unique solution in C
(

[0, T ] ; L2 (Ω)
)

.

Step 2. In this step we show that the solution u obtained at Step 1, also belongs to L2 (0, T ; V). First note that

from (17),

‖u(·, t)‖2
V
=

∞
∑

p=0

λp

〈

u(x, t), φp

〉2
=

∞
∑

p=0

λpE(t,T )

(

D (ℓ0 (u) (s)) , 2λp

)

g2
p, ∀t ∈ [0, T ].

From the assumption on g, we have that
∑∞

p=0 λ
2
pe2σλp g2

p < ∞. Then using the above, (A2) and σ ≥ η2T , we obtain

‖u‖2
L2(0,T ;V)

=

∫ T

0

‖u(·, t)‖2
V

dt =

∫ T

0

∞
∑

p=0

λpE(t,T )

(

D (ℓ0 (u) (s)) , 2λp

)

g2
pdt

≤
∫ T

0

∞
∑

p=0

λp exp(2η2λp(T − t))g2
pdt ≤ T

∞
∑

p=0

λpe2σλp g2
p ≤

T

λ1

∞
∑

p=0

λ2
pe2σλp g2

p < ∞,

which implies that u ∈ L2 (0, T ; V) indeed.

Step 3. If u ∈ C
(

[0, T ] ; L2 (Ω)
)

∩ L2 (0, T ; V) satisfies (17), then by direct calculus we obtain that u is a solution

of (27). Thus, it remains to prove that if u satisfies (27), it must be a solution of (17). Indeed, the proof can be

established by using the representation of solution to the forward problem. Observe that from (11), one can find a

relationship between u0p and gp. Letting t = T in (11) and taking the action with φp we obtain

gp =
〈

u (x, T ) , φp (x)
〉

= E(0,T )

(

D (ℓ0 (u) (s)) ,−λp

)

u0p

or,

u0p = E(0,T )

(

D (ℓ0 (u) (s)) , λp

)

gp. (31)

Combining (11) and (31), we conclude that u is a solution of (17). The proof of the theorem is completed.

So far, from Theorem 4 we have proved the existence and uniqueness of solution to the problem (27) and, from

subsection 2.3, the discontinuous dependence of such a solution on the data. It is now essential to develop a reg-

ularization approach in order to obtain a stable solution. In fact, we will construct an approximation problem to

(27), denoted by (P1), which will be used to establish our regularized solution (denoted by uǫ), whose existence and

uniqueness carry out as in Theorem 4. Obviously, here we take the noisy measured final data gǫ into account.

By an analogue of (14), let us denote, for α > 0,

Eα(a,b)

(

D (ℓ0 (u) (s)) , λp

)

:= exp

(∫ b

a

D (ℓ0 (u) (s)) λp

1 + αD (ℓ0 (u) (s)) λp

ds

)

, (32)
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and let us consider the regularized problem (P1) given by



























uǫt = D (ℓ0 (uǫ ) (t))∆uǫ + αD (ℓ0 (uǫ ) (t))∆uǫt , (x, t) ∈ Ω × (0, T ) ,
∂uǫ

∂ν
(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ) ,

uǫ (x, T ) = gǫ (x) , x ∈ Ω,
(33)

where α = α(ǫ) plays the role of a regularization parameter. Next we prove that this problem has a unique solution,

as follows.

Theorem 5. Assume (A1)-(A5) hold. Then the integral equation

uǫ (x, t) =

∞
∑

p=0

Eα(t,T )

(

D (

ℓ0
(

uǫ
)

(s)
)

, λp

)

gǫpφp (x) , (34)

where gǫp :=
〈

gǫ , φp

〉

, has a unique solution in C
(

[0, T ] ; L2 (Ω)
)

∩ L2
(

0, T ; L2(Ω)
)

, which is also the unique solution

of the problem (33).

Proof. As in the proof of Theorem 4 we have three steps.

Step 1. Let us define the mapping Gα : C
(

[0, T ] ; L2 (Ω)
)

→ C
(

[0, T ] ; L2 (Ω)
)

by

Gα (w) (x, t) =

∞
∑

p=0

Eα(t,T )

(

D (ℓ0 (w) (s)) , λp

)

gǫpφp (x) , ∀w ∈ C
(

[0, T ] ; L2 (Ω)
)

. (35)

For w1,w2 ∈ C
(

[0, T ] ; L2 (Ω)
)

and n ∈ N
∗, we proceed using induction to prove that

∥

∥

∥Gn
α (w1) (·, t) − Gn

α (w2) (·, t)
∥

∥

∥

2 ≤












TL2 ‖ f ‖2 ‖gǫ‖2 e2T/α

η2
1
α2













n
(T − t)n

n!
‖w1 − w2‖2C([0,T ];L2(Ω))

. (36)

As in the proof of Theorem 4, though the technicalities are slightly different, we first estimate the difference

J2 :=
∣

∣

∣

∣

Eα(t,T )

(

D (ℓ0 (w1) (s)) , λp

)

− Eα(t,T )

(

D (ℓ0 (w2) (s)) , λp

)

∣

∣

∣

∣

2
, (37)

by the following:

J2 ≤
∣

∣

∣

∣

∣

∣

∫ T

t

( D (ℓ0 (w1) (s)) λp

1 + αD (ℓ0 (w1) (s)) λp

−
D (ℓ0 (w2) (s)) λp

1 + αD (ℓ0 (w2) (s)) λp

)

ds

∣

∣

∣

∣

∣

∣

2

×max

{

(

Eα(t,T )

)2 (

D (ℓ0 (w1) (s)) , λp

)

,
(

Eα(t,T )

)2 (

D (ℓ0 (w2) (s)) , λp

)

}

≤ e2(T−t)/α

∣

∣

∣

∣

∣

∣

∫ T

t

( D (ℓ0 (w1) (s)) λp

1 + αD (ℓ0 (w1) (s)) λp

−
D (ℓ0 (w2) (s)) λp

1 + αD (ℓ0 (w2) (s)) λp

)

ds

∣

∣

∣

∣

∣

∣

2

, (38)

where we have used the elementary inequality (19) and that

Eα(t,T )

(

D (ℓ0 (w) (s)) , λp

)

≤ e(T−t)/α, ∀w ∈ C
(

[0, T ] ; L2 (Ω)
)

, (39)

noticing that
D(ℓ0(wi)(s))λp

1+αD(ℓ0(wi)(s))λp
≤ 1
α

for i = 1, 2. Moreover, if J3 denotes the integral on the last right-hand side of (38),

it is due to (A2) that

J3 ≤ (T − t)

∫ T

t

∣

∣

∣

∣

∣

∣

∣

∣

[D (ℓ0 (w1) (s)) −D (ℓ0 (w2) (s))] λp
(

1 + αD (ℓ0 (w1) (s)) λp

)

(1 + αD (ℓ0 (w2) (s)) λp)

∣

∣

∣

∣

∣

∣

∣

∣

2

ds

≤ T − t

η2
1
α2

∫ T

t

|D (ℓ0 (w1) (s)) −D (ℓ0 (w2) (s))|2 ds, (40)
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where we have applied the Hölder inequality and that 1 + αD (ℓ0 (w) (s)) λp ≥ 1.

Combining (35), (37), (38), (40) coupled with (5), and thanks to Parseval’s relation, we obtain

‖Gα (w1) (·, t) − Gα (w2) (·, t)‖2 ≤ TL2 ‖ f ‖2 e2(T−t)/α

η2
1
α2



















∞
∑

p=0

∣

∣

∣gǫp

∣

∣

∣

2



















∫ T

t

‖w1 (·, s) − w2 (·, s)‖2 ds

≤ TL2 ‖ f ‖2 ‖gǫ‖2 e2(T−t)/α

η2
1
α2

(T − t) ‖w1 − w2‖2C([0,T ];L2(Ω))
. (41)

This shows that (36) holds for n = 1.

As in the proof of Theorem 4, one easily passes through the inductive step to obtain (36) by induction principle.

Following from such an argument in combination with the Banach fixed-point theorem, we conclude the existence

and uniqueness of solution uǫ ∈ C
(

[0, T ] ; L2 (Ω)
)

to the equation Gα (w) = w.

Step 2. In this step, we prove that the solution obtained in Step 1 is also in L2
(

0, T ; L2(Ω)
)

. This follows, using

(39), from

‖u‖2
L2(0,T ;L2(Ω))

=

∫ T

0

∞
∑

p=0

Eα(t,T )

(

D (ℓ0 (u) (s)) , 2λp

)

(gǫp)2dt ≤ Te2T/α
∞
∑

p=0

(gǫp)2 = Te2T/α‖gǫ‖2 < ∞.

Step 3. It suffices to prove that if uǫ ∈ C
(

[0, T ] ; L2 (Ω)
)

∩ L2
(

0, T ; L2(Ω)
)

satisfies (33), then it is a solution of

(34). In fact, by taking the action of the first equation of (33) with φp and using (6), we obtain

〈

uǫt (x, t) , φp (x)
〉

+
D (ℓ0 (uǫ) (t)) λp

1 + αD (ℓ0 (uǫ ) (t)) λp

〈

uǫ (x, t) , φp (x)
〉

= 0. (42)

Multiplying both sides of (42) by the function Eα
(0,t)

(

D (ℓ0 (uǫ) (s)) , λp

)

, integrating the obtained result with respect

to s from t to T , and using that uǫ can be represented by the Fourier series as

uǫ (x, t) =

∞
∑

p=0

〈

uǫ (x, t) , φp (x)
〉

φp (x) ,

we obtain the representation (34). The proof of the theorem is completed.

Remark 6. It is clear from the boundedness of Eα
(t,T )

(

D (ℓ0 (w) (s)) , λp

)

by (39) that for each regularization parameter

α, dependent on the noise level ǫ, the solution uǫ ∈ C
(

[0, T ] ; L2 (Ω)
)

∩ L2
(

0, T ; L2(Ω)
)

of (34) depends continuously

on the measured final data gǫ ∈ L2 (Ω). This, in combination with the existence and uniqueness results in Theorem

5, implies that the problem (P1) given by (33) is well-posed. It is also remarkable that even though we have been

proving Theorem 5 in a way that is similar to Theorem 4, the emphasis is essentially put on the regularity of the final

data. In fact, gǫ here belongs to L2 (Ω) only, whereas g needs to be in a class of Gevrey spaces, which is a closed

subset of L2 (Ω). In addition, if gǫ is also in Gσ,γ for σ ≥ η2T, γ = 2, then uǫ ∈ C
(

[0, T ] ; L2 (Ω)
)

∩ L2 (0, T ; V) and

also, there is another way to estimate (38), (40) and (41), namely,

J2 ≤ e2η2(T−t)λp

∣

∣

∣

∣

∣

∣

∫ T

t

( D (ℓ0 (w1) (s)) λp

1 + αD (ℓ0 (w1) (s)) λp

−
D (ℓ0 (w2) (s)) λp

1 + αD (ℓ0 (w2) (s)) λp

)

ds

∣

∣

∣

∣

∣

∣

2

,

J3 ≤ (T − t) λ2
p

∫ T

t

|D (ℓ0 (w1) (s)) −D (ℓ0 (w2) (s))|2 ds,

which imply

‖Gα (w1) (·, t) − Gα (w2) (·, t)‖2 ≤ TL2 ‖ f ‖2
∥

∥

∥gǫ
∥

∥

∥

2

Gσ,γ

∫ T

t

‖w1 (·, s) − w2 (·, s)‖2 ds. (43)

The advantage of (43) will be seen later on.
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At this stage, we consider the convergence analysis. To ensure this, let us note that we must also impose the

regularity of u in the space L∞
(

0, T ; H4 (Ω)
)

. We then have the convergence result given by the following theorem.

Theorem 7. Suppose that (A1)-(A5) hold and let uǫ be the solution of (P1) given by (33). Assume that g ∈ Gσ,γ for

σ ≥ η2T, γ = 2 holds. If the solution u of the problem (27) belongs to C1
(

0, T ; L2(Ω)
)

∩ L∞
(

0, T ; H4 (Ω)
)

, then we

have the following error estimate:

∥

∥

∥uǫ (·, t) − u (·, t)
∥

∥

∥ ≤
√

3

[

e2(T−t)/αǫ2 + η4
2
(T − t)2α2 ‖u‖2

L∞(0,T ;H4(Ω))

]

exp

(

3

2
T (T − t) L2 ‖ f ‖2 ‖g‖2

Gσ,γ

)

, t ∈ [0, T ].

(44)

By choosing α := α (ǫ) > 0 such that

lim
ǫ→0

eT/αǫ = lim
ǫ→0
α = 0, (45)

this implies that ‖uǫ (·, t) − u (·, t)‖ → 0 as ǫ → 0, for every t ∈ [0, T ]. Moreover, if the regularization parameter α is

explicitly given by

α =
T

ln
(

1
ǫ1−ω

) , for some ω ∈ (0, 1) , (46)

which satisfies (45), then from (44) we obtain the stability estimate

∥

∥

∥uǫ (·, t) − u (·, t)
∥

∥

∥ ≤

√

√

√

3

















ǫ2ω +
η4

2
T 2(T − t)2

ln2
(

1
ǫ1−ω

) ‖u‖2
L∞(0,T ;H4(Ω))

















exp

(

3

2
T (T − t) L2 ‖ f ‖2 ‖g‖2

Gσ,γ

)

, t ∈ [0, T ]. (47)

Proof. Let us first define wǫ (x, t) = uǫ (x, t) − u (x, t) which, based on (17) and (34), it can be expressed as

wǫ (x, t) =

∞
∑

p=0

Eα(t,T )

(

D (

ℓ0
(

uǫ
)

(s)
)

, λp

) (

gǫp − gp

)

φp (x)

+

∞
∑

p=0

[

Eα(t,T )

(

D (

ℓ0
(

uǫ
)

(s)
)

, λp

)

− Eα(t,T )

(

D (ℓ0 (u) (s)) , λp

)]

gpφp (x)

+

∞
∑

p=0

[

Eα(t,T )

(

D (ℓ0 (u) (s)) , λp

)

− E(t,T )

(

D (ℓ0 (u) (s)) , λp

)]

gpφp (x)

= J4 + J5 +J6. (48)

It is now immediate to observe that using the inequality (39) together with Parseval’s relation and (A5), give us the

following inequality:

‖J4‖2 =
∞
∑

p=0

∣

∣

∣

∣

Eα(t,T )

(

D (

ℓ0
(

uǫ
)

(s)
)

, λp

)

∣

∣

∣

∣

2 ∣

∣

∣gǫp − gp

∣

∣

∣

2 ≤ e2(T−t)/α
∥

∥

∥gǫ − g
∥

∥

∥

2 ≤ e2(T−t)/αǫ2. (49)

Estimating J5 is totally similar to (43) with the aid of Parseval’s relation, and we thus obtain

‖J5‖2 ≤ TL2 ‖ f ‖2 ‖g‖2
Gσ,γ

∫ T

t

∥

∥

∥uǫ (·, s) − u (·, s)
∥

∥

∥

2
ds. (50)

From (17) we obtain that

∞
∑

p=0

λ4
pu2

p (t) ≤ ‖u‖2
L∞(0,T ;H4(Ω))

, t ∈ [0, T ], (51)
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where u2
p (t) := E(t,T )

(

D (ℓ0 (u) (s)) , 2λp

)

g2
p. Then using (A2) and (51), as in (18), the term J6 can be estimated as

follows:

‖J6‖2 ≤
∞
∑

p=0

∣

∣

∣

∣

∣

∣

∫ T

t

( D (ℓ0 (u) (s)) λp

1 + αD (ℓ0 (u) (s)) λp

−D (ℓ0 (u) (s)) λp

)

ds

∣

∣

∣

∣

∣

∣

2

E(t,T )

(

D (ℓ0 (u) (s)) , 2λp

)

g2
p

=

∞
∑

p=0

α2λ4
p

(∫ T

t

D2 (ℓ0 (u) (s))

1 + αD (ℓ0 (u) (s)) λp

ds

)2

u2
p(t) ≤ η4

2(T − t)2α2 ‖u‖2
L∞(0,T ;H4(Ω))

. (52)

Combining (48)-(50) and (52), we obtain (using that (a + b + c)2 ≤ 3(a2 + b2 + c2)),

∥

∥

∥wǫ (·, t)
∥

∥

∥

2 ≤ 3e2(T−t)/αǫ2 + 3η4
2(T − t)2α2 ‖u‖2

L∞(0,T ;H4(Ω))
+ 3TL2 ‖ f ‖2 ‖g‖2

Gσ,γ

∫ T

t

∥

∥

∥wǫ (·, s)
∥

∥

∥

2
ds.

Finally, using Gronwall’s inequality, we conclude that

∥

∥

∥wǫ (·, t)
∥

∥

∥

2 ≤ 3

[

e2(T−t)/αǫ2 + η4
2(T − t)2α2 ‖u‖2

L∞(0,T ;H4(Ω))

]

exp
(

3T (T − t) L2 ‖ f ‖2 ‖g‖2
Gσ,γ

)

,

and taking the square root we obtain (44). This completes the proof of the theorem.

Remark 8. Theorem 7 points out that our unique and stable solution of the problem (P1) (given by equation (33)) is

strongly convergent to the exact solution of the problem (27) in the L2-norm. Furthermore, the error estimate (47) is

a combination of the orders of ǫω and − 1

ln(ǫ1−ω)
for some ω ∈ (0, 1), or we can say it is O (−1/ ln(ǫ)).

3.2. A computational tool

Our current objective is to solve the fixed point equation

uǫ (x, t) = Gα
(

uǫ
)

(x, t) , (53)

where, for each α > 0, the operator Gα defined by (35) has a unique fix point in C
(

[0, T ] ; L2 (Ω)
)

, according to the

proof of Theorem 5 (Step 1). We then seek the solution of (53) in the formal series form

uǫ (x, t) =

∞
∑

m=0

uǫ[m] (x, t) , (54)

where the components uǫ
[m]

are obtained from the following recurrence scheme, [12],



















uǫ
[m+1]

(x, t) = Gα
(

∑m
j=0 uǫ

[ j]

)

(x, t) − Gα
(

∑m−1
j=0 uǫ

[ j]

)

(x, t) , m = 1, 2, ...

uǫ
[1]

(x, t) = Gα
(

uǫ
[0]

)

(x, t) , uǫ
[0]

(x, t) = 0.
(55)

3.3. The inverse problem with reaction

In this subsection, we consider the fully nonlinear case for the problem (P) (given by equations (1)-(4)) with the

density-dependent reaction term R(x, t, u) included. This is more challenging since the regularization methods via

the nonlinear spectral theory based on Fourier series are somewhat difficult to compute in this case. The impediment

lies not only in the fact that we have to define an additional functional space reasonably covering our analysis, but

also other technicalities, where our existence and uniqueness results can be derived by fixed-point arguments, are

required.

For β := β (ǫ) > 0 by the modified QR method, let us consider the problem (P2) given by



























uǫt +D (ℓ0 (uǫ) (t))∆ǫuǫ = R (x, t, uǫ) , (x, t) ∈ Ω × (0, T ) ,
∂uǫ

∂ν
(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ) ,

uǫ (x, T ) = gǫ (x) , x ∈ Ω,
(56)
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where

up(t) :=
〈

u(·, t), φp

〉

, ∆ǫu :=

∞
∑

p=0

λ
(ǫ)
p up (t)φp (x) , uǫp(t) :=

〈

uǫ (·, t), φp

〉

, ∆ǫuǫ :=

∞
∑

p=0

λ
(ǫ)
p uǫp (t)φp (x) , (57)

and

λ
(ǫ)
p = −

1

η2T
ln

(

β + e−η2Tλp

)

. (58)

Note that from (57) and (58), we have

∥

∥

∥∆ǫuǫ (·, t)
∥

∥

∥ ≤
ln

(

1
β

)

η2T

∥

∥

∥uǫ (·, t)
∥

∥

∥ . (59)

At this stage, a brief comment between the problems (P1) and (P2) is appropriate. Of course, the main idea

of the QR method is to approximate an unbounded operator, say A, by a bounded (regularized) one, Aǫ . Note that

the problem (P2) with R = 0 does not reduce to problem (P1) for the following reasons. In the previous problem

(P1) without reaction, we have applied the classical QR method, as in (33), to obtain the convergence rates given in

Theorem 7 under the higher smoothness of the exact solution in L∞
(

0, T ; H4(Ω)
)

. However, if we apply this classical

QR method to the problem (1)-(4) with reaction, we were not able to estimate the error between the exact and the

regularized solutions. Therefore, we employ a modified QR-type approach, [33, 34], as in (56), for which we are able

to prove the error estimates given in Theorems 13 and 15 below.

3.3.1. Global Lipschitz reaction

In combination with (A1)-(A5), we make an additional Lipschitz assumption on the reaction term as follows:

(A6) R ∈ L∞ (Ω × (0, T ) × R) and there exists a positive constant K such that

|R (x, t, ξ1) − R (x, t, ξ2)| ≤ K |ξ1 − ξ2| , ∀ (x, t) ∈ Ω × (0, T ) , ∀ξ1, ξ2 ∈ R.

Notice that from (A6), we can deduce that

‖R (·, t,w1) − R (·, t,w2)‖ ≤ K ‖w1 (·, t) − w2 (·, t)‖ , ∀w1,w2 ∈ C
(

[0, T ] ; L2 (Ω)
)

, (60)

which leads to

‖R (·, t,w) − R (·, t, 0)‖ ≤ K ‖w (·, t)‖ , ∀w ∈ C
(

[0, T ] ; L2 (Ω)
)

.

Thus, we have

‖R (·, t,w)‖2 ≤ (K ‖w (·, t)‖ + ‖R (·, t, 0)‖)2 ≤
(

K2 + 1
) (

‖w (·, t)‖2 + ‖R (·, t, 0)‖2
)

. (61)

Given a constant β ∈ (0, 1) (which will be assumed from now on) and a function w ∈ C
(

[0, T ] ; L2 (Ω)
)

, we denote

the scaling with β as follows:

‖w‖β,0 (t) := β−
t
T ‖w‖C([0,T ];L2(Ω)) , ‖w‖β,∞ := sup

0≤t≤T

‖w‖β,0 (t) . (62)

It is obvious to see that ‖w (·, t)‖ ≤ ‖w‖β,0 (t) ≤ ‖w‖β,∞ for t ∈ [0, T ].

Before tackling the main results, we give the following lemmas.

Lemma 9. Suppose that (A1)-(A5) hold. Then, for 0 ≤ t ≤ T∗ ≤ T, the self-mapping H on C
(

[0, T ] ; L2 (Ω)
)

defined

by

H (w) (x, t) :=

∞
∑

p=0

E(t,T∗)

(

D (ℓ0 (w) (s)) , λ
(ǫ)
p

)

gǫpφp (x) , ∀w ∈ C
(

[0, T ] ; L2 (Ω)
)

, (63)

can be estimated by

‖H (w)‖β,0 (t) ≤ β−
T∗
T

∥

∥

∥gǫ
∥

∥

∥ , (64)

and for all w1,w2 ∈ C
(

[0, T ] ; L2 (Ω)
)

, we have
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‖H (w1) −H (w2)‖β,0 (t) ≤
L (T∗ − t) ln

(

1
β

)

‖ f ‖ ‖gǫ‖
η2T

‖w1 − w2‖β,∞ . (65)

Proof. From (14), (58) and Parseval’s relation one observes that

‖H (w) (·, t)‖2 =
∞
∑

p=0

E(t,T∗)

(

D (ℓ0 (w) (s)) , 2λ
(ǫ)
p

) ∣

∣

∣gǫp

∣

∣

∣

2

≤ exp

(

2

η2T
ln

(

1

β

)

η2 (T∗ − t)

) ∞
∑

p=0

∣

∣

∣gǫp

∣

∣

∣

2
= β

2(t−T∗)
T

∥

∥

∥gǫ
∥

∥

∥

2
.

It follows, from the definition of the norm ‖·‖β,0, that (64) holds.

To prove (65), let us first estimate the difference

J7 :=
∣

∣

∣

∣
E(t,T∗)

(

D (ℓ0 (w1) (s)) , λ
(ǫ)
p

)

− E(t,T∗)

(

D (ℓ0 (w2) (s)) , λ
(ǫ)
p

)

∣

∣

∣

∣

2
. (66)

As in (18), we have

J7 ≤
∣

∣

∣

∣

λ
(ǫ)
p

∣

∣

∣

∣

2
(T∗ − t)

∫ T∗

t

|D (ℓ0 (w1) (s)) −D (ℓ0 (w2) (s))|2 ds

×max
{

E(t,T∗)

(

D (ℓ0 (w1) (s)) , 2λ
(ǫ)
p

)

, E(t,T∗)

(

D (ℓ0 (w2) (s)) , 2λ
(ǫ)
p

)}

.

Using (A2), (5) and (58) we obtain

J7 ≤
∣

∣

∣

∣
λ

(ǫ)
p

∣

∣

∣

∣

2
(T∗ − t) exp

(

2λ
(ǫ)
p η2 (T∗ − t)

)

L2 ‖ f ‖2
∫ T∗

t

‖w1 (·, s) − w2 (·, s)‖2 ds

≤
L2 (T∗ − t)2 ln2

(

1
β

)

‖ f ‖2

η2
2
T 2

β
2(t−T∗)

T ‖w1 − w2‖2C([0,T ];L2(Ω))
, (67)

where in the last inequality we have used that the function ln2(β)β2(t−T∗)/T is decreasing, as a function of β ∈ (0, 1). It

implies from (66), (67) together with Parseval’s relation that

‖H (w1) (·, t) −H (w2) (·, t)‖2 =
∞
∑

p=0

J7

∣

∣

∣gǫp

∣

∣

∣

2 ≤
L2 (T∗ − t)2 ln2

(

1
β

)

‖ f ‖2 ‖gǫ‖2

η2
2
T 2

β
2(t−T∗)

T ‖w1 − w2‖2C([0,T ];L2(Ω))
. (68)

Taking (68) over the scaling ‖·‖β,0 and using that ‖w‖β,0 (T∗) ≤ ‖w‖β,∞, one deduces (65). This completes the proof.

Lemma 10. Suppose that (A1)-(A6) hold. Then, for 0 ≤ t ≤ T∗ ≤ T, the self-mapping H̄ on C([0, T ]; L2(Ω)) defined

by

H̄ (w) (x, t) =

∞
∑

p=0

[∫ T∗

t

E(t,s)

(

D (ℓ0 (w) (τ)) , λ
(ǫ)
p

)

Rp (w) (s) ds

]

φp (x) , ∀w ∈ C([0, T ]; L2(Ω)) (69)

is bounded by

∥

∥

∥H̄ (w)
∥

∥

∥

β,0
(t) ≤ (T∗ − t) (K + 1)

(

‖w‖β,∞ + ‖R (0)‖β,∞
)

, (70)

and for all w1,w2 ∈ C
(

[0, T ] ; L2 (Ω)
)

, we have
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∥

∥

∥H̄ (w1) − H̄ (w2)
∥

∥

∥

β,0
(t) ≤

√
2 (T∗ − t) (K + 1) ‖w1 − w2‖β,∞



















L ln
(

1
β

)

β
t
T

η2

‖ f ‖
(

‖w1‖β,∞ + ‖R (0)‖β,∞
)

+ 1



















. (71)

In (69), we have used the notation Rp (w) (s) :=
〈

R(·, s,w), φp

〉

, whilst in (70), the notation R(0) := R(·, ·, 0).

Proof. In the same way as in the proof of Lemma 9, by Parseval’s relation and Hölder’s inequality in combination

with (A2) and (58), one has

∥

∥

∥H̄ (w) (·, t)
∥

∥

∥

2
=

∞
∑

p=0

∣

∣

∣

∣

∣

∣

∫ T∗

t

E(t,s)

(

D (ℓ0 (w) (τ)) , λ
(ǫ)
p

)

Rp (w) (s) ds

∣

∣

∣

∣

∣

∣

2

≤ (T∗ − t)

∫ T∗

t

exp

(

2

η2T
ln

(

1

β

)

η2 (s − t)

) ∞
∑

p=0

∣

∣

∣Rp (w) (s)
∣

∣

∣

2
ds ≤ (T∗ − t)

∫ T∗

t

β
2(t−s)

T ‖R(·, s,w)‖2 ds. (72)

Combining this with (61) we obtain (70).

Let us now show (71). Consider the difference D (x, t) := H̄ (w1) (x, t) − H̄ (w2) (x, t), as follows:

D (x, t) =

∞
∑

p=0

[∫ T∗

t

[

E(t,s)

(

D (ℓ0 (w1) (τ)) , λ
(ǫ)
p

)

− E(t,s)

(

D (ℓ0 (w2) (τ)) , λ
(ǫ)
p

)]

Rp (w1) (s) ds

]

φp (x)

+

∞
∑

p=0

[∫ T∗

t

E(t,s)

(

D (ℓ0 (w2) (τ)) , λ
(ǫ)
p

) [

Rp (w1) (s) − Rp (w2) (s)
]

ds

]

φp (x) .

Then, we get

‖D (·, t)‖2 ≤ 2

∞
∑

p=0

∣

∣

∣

∣

∣

∣

∫ T∗

t

[

E(t,s)

(

D (ℓ0 (w1) (τ)) , λ
(ǫ)
p

)

− E(t,s)

(

D (ℓ0 (w2) (τ)) , λ
(ǫ)
p

)]

Rp (w1) (s) ds

∣

∣

∣

∣

∣

∣

2

+ 2

∞
∑

p=0

∣

∣

∣

∣

∣

∣

∫ T∗

t

E(t,s)

(

D (ℓ0 (w2) (τ)) , λ
(ǫ)
p

) [

Rp (w1) (s) − Rp (w2) (s)
]

ds

∣

∣

∣

∣

∣

∣

2

= ‖J8‖2 + ‖J9‖2 . (73)

To estimate J8, we use (5), (19) and (61) together with (A2), similarly as (67) was derived:

‖J8‖2 ≤ 2(T∗ − t)

∞
∑

p=0

∫ T∗

t

∣

∣

∣

∣

E(t,s)

(

D (ℓ0 (w1) (τ)) , λ
(ǫ)
p

)

− E(t,s)

(

D (ℓ0 (w2) (τ)) , λ
(ǫ)
p

)

∣

∣

∣

∣

2
|Rp(w1)(s)|2ds

≤ 2(T∗ − t)L2

η2
2
T 2

ln2

(

1

β

)

‖ f ‖2‖w1 − w2‖2C([0,T ];L2(Ω))

∫ T∗

t

(s − t)2β
2(t−s)

T ‖R(·, s,w1)‖2ds

≤ 2(T∗ − t)L2

η2
2
T 2

ln2

(

1

β

)

‖ f ‖2(K2 + 1)β
2t
T ‖w1 − w2‖2C([0,T ];L2(Ω))

∫ T∗

t

(s − t)2
(

‖w1‖2β,0(s) + ‖R(0)‖2β,0(s)
)

ds.

Taking the scaling (62) we obtain

‖J8‖2β,0 (t) ≤ 2(T∗ − t)4L2

3η2
2
T 2

ln2

(

1

β

)

‖ f ‖2(K2 + 1)β
2t
T ‖w1 − w2‖2β,∞

(

‖w1‖2β,∞ + ‖R(0)‖2β,∞
)

. (74)

Next, the term J9 can be estimated in the same way as (72) was derived. Thereby, we have

‖J9‖2 ≤ 2 (T∗ − t) K2

∫ T∗

t

β
2(t−s)

T ‖w1 (·, s) − w2 (·, s)‖2 ds,
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where we have also used (60). It thus follows that

‖J9‖2β,0 (t) ≤ 2 (T∗ − t)2 K2 ‖w1 − w2‖2β,∞ . (75)

Hence, combining (73)-(75) we obtain

‖D‖2β,0 (t) ≤ 2(K2+1)L2(T∗−t)4 ln2
(

1
β

)

3η2
2
T 2 β

2t
T ‖ f ‖2

(

‖w1‖2β,∞ + ‖R (0)‖2β,∞
)

‖w1 − w2‖2β,∞ + 2 (T∗ − t)2 K2 ‖w1 − w2‖2β,∞ ,

which leads to
∥

∥

∥H̄ (w1) − H̄ (w2)
∥

∥

∥

β,0
(t)

≤
√

2 (T∗ − t) (K + 1) ‖w1 − w2‖β,∞



















L ln
(

1
β

)

β
t
T (T∗ − t)

√
3η2T

‖ f ‖
(

‖w1‖β,∞ + ‖R (0)‖β,∞
)

+ 1



















≤
√

2 (T∗ − t) (K + 1) ‖w1 − w2‖β,∞



















L ln
(

1
β

)

β
t
T

η2

‖ f ‖
(

‖w1‖β,∞ + ‖R (0)‖β,∞
)

+ 1



















,

by the elementary inequality

√

a2
(

c2 + d2
)

+ b2 ≤ a
√

c2 + d2 + b ≤ a (c + d) + b, ∀a, b, c, d ≥ 0.

This shows that (71) holds, and the proof of Lemma 10 is completed.

In Lemma 10, notice that (69) can be rewritten as

H̄ (w) (x, t) =

∞
∑

p=0

[

E(t,T∗)

(

D (ℓ0 (w) (s)) , λ
(ǫ)
p

)

∫ T∗

t

E(s,T∗)

(

D (ℓ0 (w) (τ)) ,−λ(ǫ)
p

)

Rp (w) (s) ds

]

φp (x) . (76)

Then, combining the operators H given by (63) (with measured final data gǫ and regularization element λ
(ǫ)
p taken

into account) and H̄ given by (76) leads us to the following lemma.

Lemma 11. Suppose that (A1)-(A6) hold. Then the problem (P2) given by (56) has a solution uǫ ∈ C1
(

0, T ; L2(Ω)
)

.

Proof. Our proof is based on the ideas given in [34]. We divide the proof into three parts.

Part (a). The nonlinear integral equation

uǫ (x, t) = H (w) (x, t) − H̄ (w) (x, t)

=

∞
∑

p=0

E(t,T )

(

D (

ℓ0
(

uǫ
)

(s)
)

, λ
(ǫ)
p

)

[

gǫp −
∫ T

t

E(s,T )

(

D (

ℓ0
(

uǫ
)

(τ)
)

,−λ(ǫ)
p

)

Rp

(

uǫ
)

(s) ds

]

φp (x) , (77)

admits a unique solution in C
(

[0, T ] ; L2 (Ω)
)

, which is also a solution of the problem (P2) given by (56).

Proof of part (a). We prove first the second statement of part (a), namely, if uǫ satisfies (77), then it is also a solution

to the problem (56). Indeed, if we differentiate (77) with respect to t, and use (57), and (77) again, it is straightforward

to see that

uǫt (x, t) = −
∞
∑

p=0

λ
(ǫ)
p D

(

ℓ0
(

uǫ
)

(t)
)

E(t,T )

(

D (

ℓ0
(

uǫ
)

(s)
)

, λ
(ǫ)
p

)

×
[

gǫp −
∫ T

t

E(s,T )

(

D (

ℓ0
(

uǫ
)

(τ)
)

,−λ(ǫ)
p

)

Rp

(

uǫ
)

(s) ds

]

φp (x) +

∞
∑

p=0

Rp

(

uǫ
)

(t) φp (x)

= −D (

ℓ0
(

uǫ
)

(t)
)

∞
∑

p=0

λ
(ǫ)
p uǫp (t)φp (x) + R (

x, t, uǫ
)

= −D (

ℓ0
(

uǫ
)

(t)
)

∆ǫuǫ + R (

x, t, uǫ
)

.
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Furthermore, uǫ (x, T ) = gǫ (x) is also valid and ∂u
∂ν

(x, t) = 0 for (x, t) ∈ ∂Ω × (0, T ) since φp ∈ V. This completes the

proof of the second statement of parta (a).

For gǫ ∈ L2(Ω), set

M̃ :=

√

(‖gǫ‖2 + 2T Q2
)

exp

(

2 ln

(

1

β

)

+ (2K2 + 1)T

)

≥ 0, with Q := sup
t∈[0,T ]

‖R(·, t, 0)‖, (78)

and letting r > β−1M̃, we define

N :=

















T (K + 1)
(

r + ‖R (0)‖β,∞
)

r − β−1M̃

















+ 1 +













2
√

2 max {K, 1}
η2

(

L ln

(

1

β

)

‖ f ‖
(

(1 + T )r + T ‖R (0)‖β,∞
)

+ η2T

)











,

h =
T

N
, (79)

where [x] denotes the integer part of the real number x.

Let g̃ǫ
j
∈ L2(Ω) for j = 0, (N − 1), be such that ‖g̃ǫ

j
‖ ≤ M̃, and define

t j = T − jh, j = 0,N,

W j :=















v ∈ C
(

[t j+1, t j]; L2(Ω)
)

: v(x, t j) = g̃ǫj(x),∀x ∈ Ω, sup
t j+1≤t≤t j

‖v‖β,0 (t) ≤ r















, j = 0, (N − 1),

Z j (w) (x, t) := H j(w)(x, t) − H̄ j(w)(x, t), t ∈ [t j+1, t j], j = 0, (N − 1),

where we have used the notation Z j(w)(x, t) for Z(w)(x, t) restricted to the time subinterval [t j+1, t j] (and similarly

H j(w)(x, t) and H̄ j(w)(x, t)).

We investigate a local self-mapping defined on a family of closed subsets in C
(

[0, T ] ; L2 (Ω)
)

and proceed piece-

wisely backwards in time from the final layer [T − h = t1, t0 = T ] with g̃ǫ
0
= gǫ backwards. Thus, let us fix a generic

j = 0, (N − 1) and show that the operator Z j is a contraction on the space W j ⊂ C
(

[t j+1, t j]; L2(Ω)
)

.

Combining (64) and (70) (for T∗ = t j), for w ∈W j we have

∥

∥

∥Z j (w)
∥

∥

∥

β,0
(t) ≤ β−

t j
T

∥

∥

∥

∥

g̃ǫj

∥

∥

∥

∥

+
(

t j − t
)

(K + 1)
(

‖w‖β,∞ + ‖R (0)‖β,∞
)

≤ β−1M̃ + h (K + 1) (r + ‖R (0)‖β,∞), t ∈ [t j+1, t j].

From (79), one deduces that

h ≤ r − β−1M̃

(K + 1)
(

r + ‖R (0)‖β,∞
) ,

which implies that
∥

∥

∥Z j (w)
∥

∥

∥

β,0
(t) ≤ r. And it is obvious from (63) and (69) that Z (w) (x, T ) = H j (w) (x, T ) −

H̄ j (w) (x, T ) =
∑∞

p=0 g̃ǫ
jp
φp(x) − 0 = g̃ǫ

j
(x). As a consequence, we have Z j

(

W j

)

⊂W j.

By triangle’s inequality coupled with (65) and (71), after some rearrangements one has that for any w1, w2 ∈W j,

∥

∥

∥Z j (w1) −Z j (w2)
∥

∥

∥

β,0
(t) ≤

∥

∥

∥H j (w1) −H j (w2)
∥

∥

∥

β,0
(t) +

∥

∥

∥H̄ j (w1) − H̄ j (w2)
∥

∥

∥

β,0
(t)

≤
L (T − t) ln

(

1
β

)

‖ f ‖
∥

∥

∥

∥

g̃ǫ
j

∥

∥

∥

∥

η2T
‖w1 − w2‖β,∞

+
√

2 (K + 1) (T − t)



















L ln
(

1
β

)

β
t
T

η2

‖ f ‖
(

‖w1‖β,∞ + ‖R (0)‖β,∞
)

+ 1



















‖w1 − w2‖β,∞

≤ h

η2T

[

L ln

(

1

β

)

‖ f ‖
(

r +
√

2 (K + 1) T
(

r + ‖R (0)‖β,∞
))

+
√

2 (K + 1) η2T

]

‖w1 − w2‖β,∞ ,
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where we have used that, since ‖Z j(w)‖β,0(t) ≤ r and Z j(x, t j) = g̃ǫ
j
(x), we have β−

t j

T ‖g̃ǫ
j
‖ ≤ r. Afterwards, we have

also used that β
t
T ≤ 1, as β ∈ (0, 1).

Observe (79) once again to see that

1

h
≥ 2
√

2 max {K, 1}
η2T

[

L ln

(

1

β

)

‖ f ‖
(

(1 + T )r + T ‖R (0)‖β,∞
)

+ η2T

]

>
L ln

(

1
β

)

‖ f ‖
(

r +
√

2 (K + 1) T
(

r + ‖R (0)‖β,∞
))

η2T
+
√

2 (K + 1) ,

where we have used the simple inequality 2 max {K, 1} ≥ K + 1.

So, from the above it is evident to claim that there exists c ∈ [0, 1) such that
∥

∥

∥Z j (w1) −Z j (w2)
∥

∥

∥

β,0
(t) ≤

c ‖w1 − w2‖β,∞ which implies that Z j is a contraction mapping on W j ⊂ C
(

[t j+1, t j]; L2(Ω)
)

. Thus, the existence

and uniqueness arguments are obtained by the Banach fixed-point theorem. It can be observed that if the regulariza-

tion parameter β goes to zero, then h becomes smaller and smaller, whereas the space W j expands increasingly in

size. Therefore, our construction is reasonable.

Once the solution has been obtained uniquely over the layer [t j+1, t j], provided that is possible to obtain an upper

bound for the norm of uǫ , we can proceed the same way to the next layer [t j+2, t j+1] and so on, backwards in time up

to the initial time t = 0. In the next part, we establish such an upper bound.

Part (b). Upper bound of the norm of solution uǫ of problem (56).

Proof of part (b). Let 0 ≤ τ ≤ T and assume that uǫ ∈ C1
(

τ, T ; L2(Ω)
)

satisfies



























uǫt +D (ℓ0 (uǫ ) (t))∆ǫuǫ = R (x, t, uǫ ) , (x, t) ∈ Ω × (τ, T ) ,
∂uǫ

∂ν
(x, t) = 0, (x, t) ∈ ∂Ω × (τ, T ) ,

uǫ (x, T ) = gǫ (x) , x ∈ Ω,
(80)

One has

〈

uǫt , u
ǫ〉 +

〈D (

ℓ0
(

uǫ
)

(t)
)

∆ǫuǫ , uǫ
〉

=
〈R (

x, t, uǫ
)

, uǫ
〉

. (81)

Using the Lipschitz property (A6), we have

| 〈R (

x, t, uǫ
)

, uǫ
〉 | ≤ ‖R (·, t, uǫ) ‖ ‖uǫ(·, t)‖ ≤ 1

2

[‖R (·, t, uǫ) − R (·, t, 0) ‖ + ‖R (·, t, 0) ‖]2
+

1

2
‖uǫ (·, t)‖2

≤ 1

2

[

K‖uǫ (·, t)‖ + ‖R (·, t, 0) ‖]2
+

1

2
‖uǫ(·, t)‖2 ≤

(

K2 +
1

2

)

‖uǫ (·, t)‖2 + ‖R (·, t, 0) ‖2. (82)

Using (A2) and (80)-(82) we obtain

−
[(

K2 +
1

2

)

‖uǫ (·, t)‖2 + ‖R(·, t, 0)‖2
]

≤ 1

2

d

dt
‖uǫ(·, t)‖2 + η2|

〈

∆ǫuǫ , uǫ
〉 |.

Integrating this inequality from t to T we obtain

−
∫ T

t

(

K2 +
1

2

)

‖uǫ (·, s)‖2ds −
∫ T

t

‖R(·, s, 0)‖2ds ≤ 1

2
‖uǫ (·, T )‖2 − 1

2
‖uǫ (·, t)‖2 + η2

∫ T

t

| 〈∆ǫuǫ , uǫ〉 |ds.

So, we obtain

‖uǫ (·, t)‖2 ≤ ‖gǫ‖2 + 2

∫ T

t

‖R(·, s, 0)‖2ds + 2

∫ T

t

[

η2|
〈

∆ǫuǫ , uǫ
〉 | +

(

K2 +
1

2

)

‖uǫ (·, s)‖2
]

ds

≤ ‖gǫ‖2 + 2T Q2 + 2



















ln
(

1
β

)

T
+

(

K2 +
1

2

)



















∫ T

t

‖uǫ (·, s)‖2ds,
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where, from (57) and (58), we have used that

| 〈∆ǫuǫ , uǫ〉 | ≤
ln

(

1
β

)

η2T
‖uǫ (·, t)‖2. (83)

Finally, Gronwall’s inequality and (78) give

‖uǫ (·, t)‖2 ≤
[

‖gǫ‖2 + 2T Q2
]

exp

(

2 ln

(

1

β

)

+ (2K2 + 1)T

)

= M̃2,

or,

‖uǫ (·, t)‖ ≤ M̃. (84)

Part (c). The existence of a solution uǫ ∈ C1
(

0, T ; L2(Ω)
)

of problem (56).

Proof of part (c). This part connects parts (a) and (b). We shall prove by induction that problem (56) has a solution

on [t j, T ] for j = 0, 1, ...,N. In fact, for j = 0, we set gǫ
0
= gǫ . From part (a), we know that there is a unique

uǫ
0
∈W0 ⊂ C

(

[t1, T ]; L2(Ω)
)

such thatZ0(uǫ
0
) = uǫ

0
and we can verify that uǫ

0
satisfies the problem (56) on [t1, t0 = T ].

From the Lipschitz property (A1) of R, triangle inequality and (83), we obtain

∥

∥

∥

∥

∥

∥

∂uǫ
0

∂t

∥

∥

∥

∥

∥

∥

≤ ‖D
(

ℓ0
(

uǫ0

)

(t)
)

∆ǫuǫ0‖ + ‖R(·, t, uǫ0)‖ ≤ η2

ln
(

1
β

)

η2T
‖uǫ0‖ + K‖uǫ0‖ + ‖R(·, t, 0)‖ ≤

(

1

T
ln

(

1

β

)

+ K

)

r + Q.

This implies that uǫ
0
∈ C1

(

t1, T ; L2(Ω)
)

. Now, we assume that the problem (56) has a solution uǫ ∈ C1
(

[tk, T ); L2(Ω)
)

,

for 0 ≤ k ≤ N − 1 with uǫ(·, T ) = gǫ (·). We shall prove that we can extend this solution to the interval [tk+1, T ]. In

fact, from part (b), we have that (84) holds for tk ≤ t ≤ T . Set gǫ
k
= uǫ(x, tk). From part (a), there is a unique

uǫ
k
∈Wk ⊂ C

(

[tk+1, tk]; L2(Ω)
)

such that Zk(uǫ
k
) = uǫ

k
and we can verify that uǫ

k
satisfies the problem (56) on [tk+1, tk]

with uǫ
k
(·, tk) = uǫ(·, tk). And we also obtain that uǫ

k
∈ C1

(

tk+1, tk; L2(Ω)
)

. So, we can extend uǫ to [tk+1, T ] by putting

uǫ(·, t) = uǫ
k
(·, t) for t ∈ [tk+1, tk]. By induction, we complete the proof of part (c).

Finally, parts (a)-(c) when grouped together conclude the proof of Lemma 11.

Lemma 12. Suppose that (A1)-(A6) hold. Then, the solution of the problem (P2) given by (56) is unique in

C1
(

0, T ; L2 (Ω)
)

.

Proof. Lemma 11 has proved the existence of a solution uǫ ∈ C1
(

0, T ; L2 (Ω)
)

of problem (P2). To prove uniqueness,

let uǫ and vǫ be two solutions to the problem (P2) in C1
(

0, T ; L2 (Ω)
)

, where uǫ satisfies (77). Then, if we define

dǫ (x, t) = eq(t−T ) (uǫ (x, t) − vǫ (x, t)) for some q > 0, from (56) we obtain that

dǫt = qeq(t−T ) (uǫ − vǫ
)

+ eq(t−T ) (uǫt − vǫt
)

= qdǫ + eq(t−T ) [R (

x, t, uǫ
) − R (

x, t, vǫ
) −D (

ℓ0
(

uǫ
)

(t)
)

∆ǫuǫ +D (

ℓ0
(

vǫ
)

(t)
)

∆ǫvǫ
]

.

Thus, one has

dǫt +D
(

ℓ0
(

vǫ
)

(t)
)

∆ǫdǫ − qdǫ = eq(t−T ) (R (

x, t, uǫ
) − R (

x, t, vǫ
)) − eq(t−T ) [D (

ℓ0
(

uǫ
)

(t)
) −D (

ℓ0
(

vǫ
)

(t)
)]

∆ǫuǫ .

(85)

Taking the action of (85) with dǫ gives

1

2

d

dt

∥

∥

∥dǫ (·, t)
∥

∥

∥

2 − q
∥

∥

∥dǫ (·, t)
∥

∥

∥

2
= eq(t−T ) 〈R (·, t, uǫ) − R (·, t, vǫ) , dǫ (·, t)〉

−eq(t−T ) 〈(D (

ℓ0
(

uǫ
)

(t)
) −D (

ℓ0
(

vǫ
)

(t)
))

∆ǫuǫ (·, t) , dǫ (·, t)〉 −D (

ℓ0
(

vǫ
)

(t)
) 〈

∆ǫdǫ (·, t) , dǫ (·, t)〉 .
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Integrating in time yields

∥

∥

∥dǫ (·, T )
∥

∥

∥

2 −
∥

∥

∥dǫ (·, t)
∥

∥

∥

2
+ 2

∫ T

t

D (

ℓ0
(

vǫ
)

(s)
) 〈

∆ǫdǫ (·, s) , dǫ (·, s)
〉

ds = 2q

∫ T

t

∥

∥

∥dǫ (·, s)
∥

∥

∥

2
ds +J10 +J11, (86)

where J10 and J11 are defined by

J10 = 2

∫ T

t

eq(s−T ) 〈R (·, s, uǫ) − R (·, s, vǫ) , dǫ (·, s)
〉

ds,

J11 = −2

∫ T

t

eq(s−T ) 〈(D (

ℓ0
(

uǫ
)

(s)
) −D (

ℓ0
(

vǫ
)

(s)
))

∆ǫuǫ (·, s) , dǫ (·, s)
〉

ds.

First, let us estimate J10, as follows:

|J10| ≤ 2

∫ T

t

eq(s−T )
∥

∥

∥R (·, s, uǫ) − R (·, s, vǫ)
∥

∥

∥

∥

∥

∥dǫ (·, s)
∥

∥

∥ ds ≤ 2K

∫ T

t

∥

∥

∥dǫ (·, s)
∥

∥

∥

2
ds, (87)

where Hölder’s inequality, the Lipschitz property (60) of reaction term and the definition of dǫ have been applied.

Second, using (5) and (59), J11 can be estimated by

|J11| ≤ 2

∫ T

t

eq(s−T )
∣

∣

∣D (

ℓ0
(

uǫ
)

(s)
) −D (

ℓ0
(

vǫ
)

(s)
)

∣

∣

∣

∥

∥

∥∆ǫuǫ (·, s)
∥

∥

∥

∥

∥

∥dǫ (·, s)
∥

∥

∥ ds

≤ 2L ‖ f ‖
∫ T

t

∥

∥

∥dǫ (·, s)
∥

∥

∥

2 ∥

∥

∥∆ǫuǫ (·, s)
∥

∥

∥ ds ≤
2L ln

(

1
β

)

‖ f ‖
η2T

∫ T

t

∥

∥

∥dǫ (·, s)
∥

∥

∥

2 ∥

∥

∥uǫ (·, s)
∥

∥

∥ ds. (88)

Now let us estimate ‖uǫ (·, s)‖. It follows from (61), (77), Parseval’s relation, and technicalities such as (72) and

(a ± b)2 ≤ 2(a2 + b2), that

∥

∥

∥uǫ (·, t)
∥

∥

∥

2 ≤ 2

∞
∑

p=0

exp

(

2 (T − t)

T
ln

(

1

β

))

∣

∣

∣gǫp

∣

∣

∣

2
+ 2 (T − t)

∫ T

t

exp

(

2 (s − t)

T
ln

(

1

β

)) ∞
∑

p=0

∣

∣

∣Rp

(

uǫ
)

(s)
∣

∣

∣

2
ds

≤ 2β
2(t−T )

T

∥

∥

∥gǫ
∥

∥

∥

2
+ 2T

(

K2 + 1
)

∫ T

t

β
2(t−s)

T

(

∥

∥

∥uǫ (·, s)
∥

∥

∥

2
+ ‖R (·, s, 0)‖2

)

ds

≤ 2β
2(t−T )

T

(

∥

∥

∥gǫ
∥

∥

∥

2
+ T 2

(

K2 + 1
)

‖R (0)‖2
C([0,T ];L2(Ω))

)

+ 2T
(

K2 + 1
)

∫ T

t

β
2(t−s)

T

∥

∥

∥uǫ (·, s)
∥

∥

∥

2
ds,

which implies that

β−
2t
T

∥

∥

∥uǫ (·, t)
∥

∥

∥

2 ≤ 2β−2
(

∥

∥

∥gǫ
∥

∥

∥

2
+ T 2

(

K2 + 1
)

‖R (0)‖2
C([0,T ];L2(Ω))

)

+ 2T
(

K2 + 1
)

∫ T

t

β−
2s
T

∥

∥

∥uǫ (·, s)
∥

∥

∥

2
ds.

Applying Gronwall’s inequality to this yields

β−
2t
T

∥

∥

∥uǫ (·, t)
∥

∥

∥

2 ≤ 2β−2
(

∥

∥

∥gǫ
∥

∥

∥

2
+ T 2

(

K2 + 1
)

‖R (0)‖2
C([0,T ];L2(Ω))

)

exp
(

2T (T − t)
(

K2 + 1
))

.

Therefore, for all t ∈ [0, T ] we have

∥

∥

∥uǫ (·, t)
∥

∥

∥ ≤
√

2β−1
(∥

∥

∥gǫ
∥

∥

∥ + T (K + 1) ‖R (0)‖C([0,T ];L2(Ω))

)

exp
(

T 2
(

K2 + 1
))

. (89)

Combining (88) and (89), we obtain

|J11| ≤
2
√

2L ln
(

1
β

)

‖ f ‖
η2T

β−1
(∥

∥

∥gǫ
∥

∥

∥ + T (K + 1) ‖R (0)‖C([0,T ];L2(Ω))

)

exp
(

T 2
(

K2 + 1
))

∫ T

t

∥

∥

∥dǫ (·, s)
∥

∥

∥

2
ds. (90)
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From (86), (87) and (90), we can now obtain that

∥

∥

∥dǫ (·, T )
∥

∥

∥

2 −
∥

∥

∥dǫ (·, t)
∥

∥

∥

2
+ 2

∫ T

t

D (

ℓ0
(

vǫ
)

(s)
) 〈

∆ǫdǫ (·, s) , dǫ (·, s)
〉

ds ≥ 2 (q − q̄)

∫ T

t

∥

∥

∥dǫ (·, s)
∥

∥

∥

2
ds, (91)

where q̄ := K +
2
√

2L ln
(

1
β

)

‖ f ‖
η2T

β−1
(

‖gǫ‖ + T (K + 1) ‖R (0)‖C([0,T ];L2(Ω))

)

exp
(

T 2
(

K2 + 1
))

is a positive constant. We

observe that

〈

∆ǫdǫ (·, t) , dǫ (·, t)〉 =
〈 ∞
∑

p=0

λ
(ǫ)
p dǫp (t) φp,

∞
∑

p=0

dǫp (t) φp

〉

=

∞
∑

p=0

λ
(ǫ)
p

∣

∣

∣dǫp (t)
∣

∣

∣

2 ≤ 1

η2T
ln

(

1

β

)

∥

∥

∥dǫ (·, t)
∥

∥

∥

2
, (92)

where we have used 0 ≤ λ(ǫ)
p ≤ 1

η2T
ln

(

1
β

)

for β ∈
(

0, 1 − e−η2Tλ1

)

. Combining (92) with (A2) into (91) we obtain

∥

∥

∥dǫ (·, T )
∥

∥

∥

2 −
∥

∥

∥dǫ (·, t)
∥

∥

∥

2 ≥ 2

(

q − q̄ − 1

T
ln

(

1

β

)) ∫ T

t

∥

∥

∥dǫ (·, s)
∥

∥

∥

2
ds.

So our objective is well-accomplished. Indeed, by choosing q ≥ q̄ + 1
T

ln
(

1
β

)

, it becomes clear by the fact that for all

t ∈ [0, T ] we have ‖dǫ (·, t)‖ ≤ ‖dǫ (·, T )‖ ≡ 0 which leads to the uniqueness of the solution in C1
(

0, T ; L2 (Ω)
)

. This

completes the proof of the lemma.

Let us summarise what we have obtained in Lemmas 9-12 prior to investigating the convergence rate. Lemmas 11

and 12 showed that the approximate problem (P2) given by (56) admits a unique solution uǫ ∈ C1
(

0, T ; L2 (Ω)
)

. Like

the results obtained in the case without reaction in subsection 3.1, the regularized solution, based on the nonlinear

spectral theory, which can be represented by the integral equation (77), is unique as well. Therefore, we can set up

a similar computational procedure as that of subsection 3.2 once again. Another important point which should be

mentioned here is that from Lemmas 9 and 10 one easily observes the stability of the regularized solution, and hence

the well-posedness of the regularized problem (P2) given by (56).

Theorem 13. Assume (A1)-(A6) hold, and suppose that the solution u of the problem (P) given by equations (1)-(4)

belongs to C
(

[0, T ] ; Gσ,γ

)

for σ ≥ η2T, γ = 2, and ut ∈ C
(

[0, T ]; L2(Ω)
)

. Then the L2-error estimate between uǫ in

(77), solution to problem (P2) given by (56), and the exact solution u is given by

∥

∥

∥uǫ (·, t) − u (·, t)
∥

∥

∥ ≤ P β
t
T exp (µ (T − t)) , t ∈ [0, T ], (93)

where

P :=

√

√

√

β−2ǫ2 +

(1 + λ2
1
) ‖u‖2

C([0,T ];Gσ,γ)

λ2
1
T 2

and µ := K +
1

2
+

L

λ1η2T
‖ f ‖ ‖u‖C([0,T ];Gσ,γ) > 0.

By choosing β := β (ǫ) ∈ (0, 1) such that























limǫ→0+ β(ǫ) = 0,

limǫ→0+
ǫ
β(ǫ)
= finite,

(94)

this implies that ‖uǫ (·, t) − u(·, t)‖ → 0, as ǫ → 0, for every t ∈ (0, T ]. Moreover, for ǫ > 0 small enough there exists

tǫ ∈ (0, T ) such that limǫ→0+ tǫ = 0 and

‖uǫ (·, tǫ) − u(·, 0)‖ ≤ (

P exp(µT ) + B
)

√

T

ln
(

1
β

) , (95)

where B = supt∈[0,T ] ‖ut(·, t)‖.
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Proof. Let us define d̄ǫ (x, t) := eq(t−T ) (uǫ (x, t) − u (x, t)) for some q > 0. Observing the problems (P) and (P2) given

by equations (1)-(4) and (56), respectively, as in the proof of Lemma 12, one deduces that

d̄ǫt = qeq(t−T ) (uǫ − u
)

+ eq(t−T ) (uǫt − ut

)

= qd̄ǫ + eq(t−T ) [R (

x, t, uǫ
) − R (x, t, u) −D (

ℓ0
(

uǫ
)

(t)
)

∆ǫuǫ +D (ℓ0 (u) (t))∆u
]

,

or,

d̄ǫt +D
(

ℓ0
(

uǫ
)

(t)
)

∆ǫ d̄ǫ − qd̄ǫ = eq(t−T ) [R (

x, t, uǫ
) − R (x, t, u) − (D (

ℓ0
(

uǫ
)

(t)
) −D (ℓ0 (u) (t))

)

∆u

−D (

ℓ0
(

uǫ
)

(t)
) (

∆ǫu − ∆u
)]

. (96)

Taking the action of (96) with d̄ǫ gives

1

2

d

dt

∥

∥

∥d̄ǫ (·, t)
∥

∥

∥

2 − q
∥

∥

∥d̄ǫ (·, t)
∥

∥

∥

2
= eq(t−T )

〈

R (·, t, uǫ) − R (·, t, u) , d̄ǫ (·, t)
〉

−eq(t−T ) (D (

ℓ0
(

uǫ
)

(t)
) −D (ℓ0 (u) (t))

)

〈

∆u (·, t) , d̄ǫ (·, t)
〉

− eq(t−T )D (

ℓ0
(

uǫ
)

(t)
)

〈

∆ǫu (·, t) − ∆u (·, t) , d̄ǫ (·, t)
〉

−D (

ℓ0
(

uǫ
)

(t)
)

〈

∆ǫ d̄ǫ (·, t) , d̄ǫ (·, t)
〉

.

Integrating in time yields

∥

∥

∥d̄ǫ (·, T )
∥

∥

∥

2 −
∥

∥

∥d̄ǫ (·, t)
∥

∥

∥

2
+ 2

∫ T

t

D (

ℓ0
(

uǫ
)

(s)
)

〈

∆ǫ d̄ǫ (·, s) , d̄ǫ (·, s)
〉

ds = 2q

∫ T

t

∥

∥

∥d̄ǫ (·, s)
∥

∥

∥

2
ds +J12 +J13 +J14,

(97)

where

J12 := 2

∫ T

t

eq(s−T )
〈

R (·, s, uǫ) − R (·, s, u) , d̄ǫ (·, s)
〉

ds,

J13 := −2

∫ T

t

eq(s−T ) (D (

ℓ0
(

uǫ
)

(s)
) −D (ℓ0 (u) (s))

)

〈

∆u (·, s) , d̄ǫ (·, s)
〉

ds,

J14 := −2

∫ T

t

eq(s−T )D (

ℓ0
(

uǫ
)

(s)
)

〈

∆ǫu (·, s) − ∆u (·, s) , d̄ǫ (·, s)
〉

ds.

Next, we derive upper bounds for the absolute values of Ji, i = 12, 13, 14. First, notice that we obtain here the

same result as in (87) for J12, namely,

|J12| ≤ 2K

∫ T

t

‖d̄ǫ (·, s) ‖2ds. (98)

Also, as in (88), we obtain

|J13| ≤ 2L ‖ f ‖
∫ T

t

∥

∥

∥d̄ǫ (·, s)
∥

∥

∥

2 ‖∆u (·, s)‖ ds ≤ 2L

λ1η2T
‖ f ‖ ‖u‖C([0,T ];Gσ,γ)

∫ T

t

∥

∥

∥d̄ǫ (·, s)
∥

∥

∥

2
ds, (99)

where we have recalled the spectral representation (6) and the elementary inequality a < ea,∀a > 0, (in the form

eη2Tλp > η2Tλp ≥ η2Tλ1 for p ≥ 1) to yield

∆u (x, t) = −
∞
∑

p=0

λpup (t)φp (x) , ‖∆u (·, t)‖ ≤

√

√

√

√ ∞
∑

p=0

λ2
pe2η2Tλp

∣

∣

∣up (t)
∣

∣

∣

2

λ2
1
η2

2
T 2

≤ 1

λ1η2T
‖u (·, t)‖Gσ,γ .

For J14, applying Hölder’s inequality and using (A2) coupled with the basic inequality ln(1 + a) ≤ a,∀a > 0 and the

argument which reads

(

∆ǫ − ∆) u (x, t) =

∞
∑

p=0

(

λ
(ǫ)
p + λp

)

up (t)φp (x) =
1

η2T

∞
∑

p=0

ln

(

eη2Tλp

e−η2Tλp + β

)

up (t) φp (x) ,
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we obtain by Parseval’s relation that

|J14| ≤ η2
2

∫ T

t

∥

∥

∥

(

∆ǫ − ∆) u (·, s)
∥

∥

∥

2
ds +

∫ T

t

∥

∥

∥d̄ǫ (·, s)
∥

∥

∥

2
ds

≤ η2
2

∫ T

t



















1

η2
2
T 2

∞
∑

p=0

ln2

(

eη2Tλp

e−η2Tλp + β

)

∣

∣

∣up (s)
∣

∣

∣

2



















ds +

∫ T

t

∥

∥

∥d̄ǫ (·, s)
∥

∥

∥

2
ds

∫ T

t



















β2

T 2
|u0(s)|2 + 1

λ2
1
T 2

∞
∑

p=1

λ2
pe2η2Tλpβ2

∣

∣

∣up (s)
∣

∣

∣

2



















ds +

∫ T

t

∥

∥

∥d̄ǫ (·, s)
∥

∥

∥

2
ds

≤
(1 + λ2

1
)β2

λ2
1
T 2

(T − t) ‖u‖2
C([0,T ];Gσ,γ)

+

∫ T

t

∥

∥

∥d̄ǫ (·, s)
∥

∥

∥

2
ds, (100)

where we have also used that

ln2

(

eη2Tλp

e−η2Tλp + β

)

= ln2

(

βeη2Tλp + 1

e2η2Tλp

)

≤ ln2
(

βeη2Tλp + 1
)

≤ β2e2η2Tλp

and note that |u0(s)|2 ≤ ‖u‖2
C([0,T ];Gσ,γ)

for s ∈ [0, T ]. Combining (97)-(100) gives

∥

∥

∥d̄ǫ (·, T )
∥

∥

∥

2 −
∥

∥

∥d̄ǫ (·, t)
∥

∥

∥

2
+ 2

∫ T

t

D (

ℓ0
(

uǫ
)

(s)
)

〈

∆ǫ d̄ǫ (·, s) , d̄ǫ (·, s)
〉

ds

≥
[

2q − 2K − 2L

λ1η2T
‖ f ‖ ‖u‖C([0,T ];Gσ,γ) − 1

] ∫ T

t

∥

∥

∥d̄ǫ (·, s)
∥

∥

∥

2
ds −

(1 + λ2
1
)β2

λ2
1
T 2

(T − t) ‖u‖2
C([0,T ];Gσ,γ)

. (101)

By using (A2) and (92) we also have

∫ T

t

D (

ℓ0
(

uǫ
)

(s)
)

〈

∆ǫ d̄ǫ (·, s) , d̄ǫ (·, s)
〉

ds ≤ 1

T
ln

(

1

β

) ∫ T

t

∥

∥

∥d̄ǫ (·, s)
∥

∥

∥

2
. (102)

By choosing q = 1
T

ln
(

1
β

)

> 0 and noticing that
∥

∥

∥d̄ǫ (·, T )
∥

∥

∥ = ‖gǫ − g‖ ≤ ǫ by (A5), we introduce (102) into (101) to

get

∥

∥

∥d̄ǫ (·, t)
∥

∥

∥

2 ≤ ǫ2 +
(1 + λ2

1
)β2

λ2
1
T 2

(T − t) ‖u‖2
C([0,T ];Gσ,γ)

+

(

2K +
2L

λ1η2T
‖ f ‖ ‖u‖C([0,T ];Gσ,γ) + 1

) ∫ T

t

∥

∥

∥d̄ǫ (·, s)
∥

∥

∥

2
ds.

Using Gronwall’s inequality we obtain

∥

∥

∥d̄ǫ (·, t)
∥

∥

∥ ≤

√

√

ǫ2 +
(1 + λ2

1
)β2

λ2
1
T 2

‖u‖2
C([0,T ];Gσ,γ)

exp (µ(T − t)) ,

which can be rewritten, by the expression of q, as (93).

In order to show (95), remark that due to the continuity of ut, for ǫ > 0 small enough we have

‖uǫ (·, t) − u(·, 0)‖ ≤ ‖uǫ (·, t) − u(·, t)‖ + ‖u(·, t) − u(·, 0)‖ ≤ Pβ
t
T exp(µT ) + t‖ut‖C([0,T ];L2(Ω)), t ∈ [0, T ], (103)

where use has been made of (93).

Now, for every ǫ > 0 small, let us take tǫ be the unique solution in (0, T ) of the equation t = β
t
T , where obviously

β = β(ǫ). This implies that
ln(tǫ )

tǫ
=

ln(β)

T
and using the inequality ln(t) > − 1

t
for all t > 0, we obtain that

β
tǫ

T = tǫ <

√

T

ln
(

1
β

) .

Clearly, since limǫ→0+ β(ǫ) = 0 this implies that limǫ→0+ tǫ = 0, and taking t = tǫ in (103) we obtain (95). Finally,

remark that the estimate (95) also gives the stability at t = 0, as from it we have that limǫ→0+ ‖u(·, tǫ ) − u(·, 0)‖ = 0.

The proof of Theorem 13 is completed.
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3.3.2. A computational tool

Let us remind that in subsection 3.1.1, a computational tool was developed to approximate the solution of (53),

of the inverse problem without reaction. As an extension, we here enter the integral equation (53) in such a manner

that it stems from (77). To do so, we consider uǫ (x, t) = ū(x, t) + ũ(x, t), where ū (x, t) and ũ (x, t) are, respectively,

the solutions to the following integral equations:

ū(x, t) = G1 (ū) (x, t) :=

∞
∑

p=0

E(t,T )

(

D (ℓ0 (ū) (s)) , λ
(ǫ)
p

)

gǫpφp (x) ,

ũ(x, t) = G2 (ũ) (x, t) := −
∞
∑

p=0

(∫ T

t

E(t,s)

(

D (ℓ0 (ũ) (τ)) , λ
(ǫ)
p

)

Rp (ũ) (s) ds

)

φp (x) . (104)

Consequently, two corresponding iterative schemes can be unified by the following system:







































ū[m+1] (x, t) = G1

(

∑m
j=0 ū[ j]

)

(x, t) − G1

(

∑m−1
j=0 ū[ j]

)

(x, t) ,

ũ[m+1] (x, t) = G2

(

∑m
j=0 ũ[ j]

)

(x, t) − G2

(

∑m−1
j=0 ũ[ j]

)

(x, t) , m = 1, 2, ...

ū[1] (x, t) = G1

(

ū[0]

)

(x, t) , ũ[1] (x, t) = G2

(

ũ[0]

)

(x, t) ,

ū[0] (x, t) = ũ[0] (x, t) = 0.

(105)

Then, the series
∑∞

i=0

(

ū[i] + ũ[i]

)

(x, t) yields the unique solution uǫ of (77).

3.3.3. Local Lipschitz reaction

Much of the analysis of subsection 3.2.1 can be extended to the case when the reaction term R(·, ·, u) is only a

local Lipschitz function instead of a global one, using the techniques recently developed by the authors in [35].

Keeping (A1)-(A5), we replace the global Lipschitz assumption (A6) by the local Lipschitz one:

(A7) R ∈ L∞ (Ω × (0, T ) × R) and for each M > 0, there exists K(M) ∈ (0,∞) such that

|R(x, t, ξ1) − R(x, t, ξ2)| ≤ K(M)|ξ1 − ξ2|, ∀(x, t) ∈ Ω × (0, T ), ∀ξ1, ξ2 ∈ [−M,M].

In general, we can take

K(M) := sup

{
∣

∣

∣

∣

∣

R(x, t, ξ1) − R(x, t, ξ2)

ξ1 − ξ2

∣

∣

∣

∣

∣

: (x, t) ∈ Ω × [0, T ], ξ1, ξ2 ∈ [−M,M], ξ1 , ξ2

}

< +∞,

be continuous increasing function with limM→0+ K(M) = 0 and limM→∞ K(M) = ∞.

Now, we outline our ideas of constructing a regularization method for the problem (P) given by equations (1)-(4).

For any M > 0, we approximate R by RM defined by

RM(x, t, u) :=



























R(x, t,M), u > M,

R(x, t, u), −M ≤ u ≤ M,

R(x, t,−M), u < −M.

(106)

From (A7) and (106) we immediately obtain the following lemma.

Lemma 14. For R ∈ L∞ (Ω × (0, T ) × R), we have

|RM(x, t, ξ1) − RM(x, t, ξ2)| ≤ K(M)|ξ1 − ξ2|, ∀(x, t) ∈ Ω × (0, T ), ∀ξ1, ξ2 ∈ R.

For each ǫ > 0, we consider a sequence Mǫ → +∞ as ǫ → 0+ and let uǫ be the solution of the following problem

(P3):



























uǫt +D (ℓ0 (uǫ) (t))∆ǫuǫ = RMǫ (x, t, uǫ ) , (x, t) ∈ Ω × (0, T ) ,
∂uǫ

∂ν
(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ) ,

uǫ (x, T ) = gǫ (x) , x ∈ Ω.
(107)
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Theorem 15. Assume (A1)-(A5) and (A7) hold, and suppose that the solution u of the problem (P) given by equations

(1)-(4) belongs to C
(

[0, T ] ; Gσ,γ

)

∩ L∞
(

[0, T ]; L2(Ω)
)

for σ ≥ η2T, γ = 2, and ut ∈ C
(

[0, T ]; L2(Ω)
)

. Then,

for β = β(ǫ) ∈ (0, 1) such that limǫ→0+ β(ǫ) = 0, assuming that we can choose a sequence Mǫ > 0 such that

limǫ→0+ Mǫ = ∞ and satisfying

K(Mǫ) ≤ 1

T
ln

(

lnm

(

1

β

))

, for some m > 0, (108)

the L2-norm of the error between the solution uǫ of the problem (P3) given by (107), and the exact solution u is

estimated by

∥

∥

∥uǫ (·, t) − u (·, t)
∥

∥

∥ ≤ P exp(µ̃(T − t))β
t
T lnm

(

1

β

)

, t ∈ [0, T ], (109)

where µ̃ := 1
2
+ L
λ1η2T

‖ f ‖ ‖u‖C([0,T ];Gσ,γ).

If β := β (ǫ) ∈ (0, 1) satisfies (94) then (109) implies that ‖uǫ (·, t) − u (·, t)‖ → 0, as ǫ → 0+, for all t ∈ (0, T ].

Moreover, for ǫ > 0 small enough there exists tǫ ∈ (0, T ) such that limǫ→0+ tǫ = 0 and

‖uǫ (·, tǫ) − u(·, 0)‖ ≤
(

P exp(µ̃T ) lnm

(

1

β

)

+ B

)
√

T

ln
(

1
β

) . (110)

Remark that if m ∈ (0, 1/2) the right-hand side of (110) tends to zero, as ǫ → 0+.

Proof. As in the proof of Theorem 13, using (108) we obtain that

∥

∥

∥uǫ (·, t) − u (·, t)
∥

∥

∥ ≤ P exp(µ̃(T − t))β
t
T exp

(

K(Mǫ) (T − t)
)

≤ P exp(µ̃(T − t))β
t
T exp

(

K(Mǫ)T
)

≤ P exp(µ̃(T − t))β
t
T lnm

(

1

β

)

, t ∈ [0, T ]. (111)

This proves the estimate (109). In deriving (111), all the arguments made in the proof of Theorem 13 remain valid

for R replaced by RMǫ . Since limǫ→0+ Mǫ = +∞, for a sufficiently small ǫ > 0, there is an Mǫ > 0 such that

Mǫ ≥ ‖u‖L∞([0,T ];L2(Ω)). Then, for this Mǫ we have RMǫ (x, t, u) = R(x, t, u) and we can use the Lipschitz property of

RM globally, as given by Lemma 14.

The estimate (110) is established the same way as (95) and using (108). Finally, remark that this also gives the

stability at t = 0, as from (110) for m ∈ (0, 1/2) we have that limǫ→0+ ‖u(·, tǫ ) − u(·, 0)‖ = 0. The proof of theorem is

completed.

4. Numerical results and discussion

In this section, we give applications of the proposed QR iterative scheme in computing solutions of model prob-

lems. Our two examples are over the region (x, t) ∈ Ω × (0, T ) = (0, π) × (0, 1), where the exact solutions uex(x, t) are

explicitly available and are compared with the regularized solutions in order to assess their accuracy and stability.

An orthonormal eigenbasis in L2(0, π) satisfying (6) is φp (x) =

√

2
π

cos (px) and λp = p2, p ∈ N, is the corre-

sponding eigenvalue.

The final exact observation (4) is measured by a noisy function gǫ (x) as

gǫ (x) = Aǫg(x), x ∈ Ω = (0, π), Aǫ := 1 +
ǫ rand(ǫ)

‖g‖ (112)

with maximum error ǫ and rand (ǫ) is as a random number between [−1, 1].

At the discretization level, a uniform grid of mesh-points (xk, tn) is used, where xk = k∆x and tn = n∆t for

k = 0,K, n = 0,N and ∆x =
|Ω|
K
= π

K
; ∆t = T

N
= 1

N
. We shall seek the unknowns un

k
:= u (xk, tn) at which the
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regularized solution is computed.

To numerically illustrate our theoretical results in L2-norm, we use the following discrete norm of the ℓ2-error,

approximated using the trapezoidal rule as,

E(tn) :=
∥

∥

∥un
h − uex(·, tn)

∥

∥

∥

ℓ2(0,π)
=

√

√

√

∆x

















K−1
∑

k=1

∣

∣

∣un
k
− uex(xk, tn)

∣

∣

∣

2
+

1

2

[

∣

∣

∣un
0
− uex(0, tn)

∣

∣

∣

2
+

∣

∣

∣un
K
− uex(π, tn)

∣

∣

∣

2
]

















,

n = 0,N. (113)

We also define the rate of convergence between two amounts of noise ǫ1 > ǫ2 as

Rate(ǫ1 > ǫ2; tn) := ln

(E(tn)|ǫ1
E(tn)|ǫ2

) /

ln

(

ǫ1

ǫ2

)

, n = 0,N. (114)

Example 1. (A generalized KiSS model).

Our first example is a generalized critical patch model for plankton concentration where the population is assumed

to inhabit a finite region with a lethal exterior, named KiSS which is an acronym for Kierstead and Slobodkin [22]

and Skellam [28] for their independent pioneering studies. The model predicts the size of nutrient patches needed to

sustain phytoplankton blooms for which an exponentially growing population disperses intrinsically within and out

of a patch into lethal habitat. Here its generalization takes the form

ut = D (ℓ0 (u) (t)) uxx + cu + F (x, t) , (x, t) ∈ Ω × (0, T ) , (115)

where F is an external source, the intrinsic growth rate of the population is c and the diffusion coefficient D is given

by

D (ℓ0 (u) (t)) = ω +

∫

Ω

u (x, t) dx, f ≡ 1, D(ξ) = ω + ξ, (116)

where ω is a given positive constant. Comparing equations (115) and (1) one can identify the reaction term as

R(x, t, u) = cu + F (x, t) which is a global Lipschitz function in u.

What we shall compute is uǫ , approximation of the population density u from data (112) that has been corrupted

by noise. For implementation, we take ω = 3, c = 1, g(x) = e−T cos x (here T = 1 and Ω = (0, π)) and external source

F (x, t) = e−t cos x. The exact solution is then given by uex (x, t) = e−t cos x.

Observe that from (105), with p = 1 in (104), the approximate solution uǫ
[m]

(x, t) can be step by step found, as

follows:

uǫ[1](x, t) =















Aǫ exp
(

λ
(ǫ)

1
ω (T − t) − T

)

− 1

λ
(ǫ)

1
ω − 1

(

exp
(

λ
(ǫ)

1
ω (T − t) − T

)

− exp (−t)
)















cos x

= U1 (t) cos x, (117)

uǫ[2](x, t) = −c





























Aǫ −
1

λ
(ǫ)

1
ω − 1















(T − t) exp
(

λ
(ǫ)

1
ω (T − t) − T

)

+
1

(

λ
(ǫ)

1
ω − 1

)2

(

exp
(

λǫ1ω (T − t) − T
)

− exp (−t)
)





















cos x = −U2 (t) cos x, (118)

uǫ[3](x, t) = c2





























Aǫ −
1

λ
(ǫ)

1
ω − 1















(T − t)2

2
exp

(

λ
(ǫ)

1
ω (T − t) − T

)

+
T − t

(

λ
(ǫ)

1
ω − 1

)2
exp

(

λ
(ǫ)

1
ω (T − t) − T

)

− 1
(

λ
(ǫ)

1
ω − 1

)3

(

exp
(

λ
(ǫ)

1
ω (T − t) − T

)

− exp (−t)
)





















cos x

= U3 (t) cos x. (119)
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Figure 1: The exact solution uex(x, t) = e−t cos(x) and the regularized solution S(x, t) at t = 1/2, for various amounts of noise ǫ ∈
{0.001, 0.01, 0.1}, for Example 1.

Now we simply stop at m = 3 and consider numerical results when ǫ goes smaller and smaller. The series obtained

by (117)-(119) is

S (x, t) = (U1 (t) − U2 (t) + U3 (t)) cos x. (120)

We take the regularization parameter β (ǫ) = ǫ in (93), for which we expect the order of error estimate to be

O
(

ǫt/T
)

. From (58), we obtain λ
(ǫ)

1
= − 1

η2T
ln

(

β + e−η2Tλ1

)

= − 1
3

ln
(

ǫ + e−3
)

for T = 1, β(ǫ) = ǫ, η2 = ω = 3 and

λ1 = 1. We also take K = N = 30 in (113).

The numerical results for the solution (120) for various amounts of noise ǫ ∈ {0.001, 0.01, 0.1} are compared with

the exact solution uex(x, t) = e−t cos(x) at a selected time t = T/2 = 1/2 in Figure 1. From this figure it can be seen

that the numerical results are accurate and stable for ǫ ∈ {0.001, 0.01}, but for the larger amount of noise ǫ = 0.1 they

seem to deteriorate and start deviating significantly from the exact solution uex(x, 1/2) = e−1/2 cos(x).

Table 1 shows the ℓ2-error (113) at various times t ∈ {1/3, 1/2, 2/3}, for various amounts of noise ǫ ∈ {0.001, 0.01, 0.1}.
The numerical rates of convergence (defined in (114)) for two consecutive amounts of noise 0.01 > 0.001 and

0.1 > 0.01 are also included. From Table 1 the following conclusions can be drawn:

(i) E(tn) decreases as n increases, i.e. the error increases as t decreases from t = T to t = 0. Also, as expected, E(t)

decreases as the amount of noise ǫ decreases;

(ii) the rate/speed of convergence for u(x, 2/3) is very good for the relatively low amount of noise ǫ = 0.001 and it

does decrease as t decreases from t = 2/3 to t = 1/2 and then to t = 1/3, as predicted by the theoretical results.

However, for the medium amount of noise ǫ = 0.01, the rate changes its monotonic behaviour with respect to t, by

increasing as t decreases.

Example 2. (Fisher’s model).

The second example is the classical reaction-diffusion model of ecological import which is modelled by the logistic

population growth plus Brownian random dispersal, [28],

ut = Duxx + r1u

(

1 − u

C

)

+ F (x, t), (x, t) ∈ Ω × (0, T ), (121)

where r1 ≥ 0 is the population intrinsic rate of growth and C > 0 is the carrying capacity. Fisher’s model has been

used to make predictions of range expansion using microscale data on individual movement for a variety of animals,
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Table 1: The error (113) and the rate (114) at various times t ∈ {1/3, 1/2, 2/3}, for various amounts of noise ǫ ∈ {0.001, 0.01, 0.1}, for Example

1.

ǫ E(1/3) Rate E(1/2) Rate E(2/3) Rate

0.001 0.1132 0.11 0.0208 0.79 0.0027 1.46

0.01 0.1487 0.66 0.1314 0.54 0.0799 0.51

0.1 0.6856 — 0.4662 — 0.2617 —

working well with cabbage butterflies, muskrats, grey squirrels and neolithic farmers.

Here we implement the model with constant diffusion D = D0 = 1/8, the growth rate r1 = 1/4 and the capacity

C = 2. We take g(x) = T cos(4x) (here Ω = (0, π)) and the external source F (x, t) =
(

t2

8
cos(4x) + 7t

4
+ 1

)

cos(4x).

Then the exact solution is given by uex(x, t) = t cos(4x).

In (121), the nonlinearity R(x, t, u) = r1u
(

1 − u
C

)

+F (x, t) represents a locally Lipschitz reaction with the Lipschitz

constant K(M) = r1

(

1 + 2M
C

)

. Then (108) implies (taking β(ǫ) = ǫ and m = 0.49 ∈ (0, 1/2)) that we can choose

Mǫ =
C

2

(

1

r1T
ln

(

ln0.49

(

1

ǫ

))

− 1

)

, (122)

as the truncation level in (106).

We compute the regularized solution up to p = 10 and only retain uǫ
[1]

(x, t). As in the previous example, from

(105) and (112), the form of the obtained series can be presented as

S(x, t) = (U1(t) + U2(t)) cos(4x) + (U3(t) − U4(t)) cos(8x), (123)

where

U1(t) = AǫTeD0(T−t)λ
(ǫ)

4 ,

U2(t) = −eD0(T−t)λ
(ǫ)

4















r1AǫT (T − t) +
1

(D0λ
(ǫ)

4
)2

(

7

4
(D0λ

(ǫ)

4
T − 1) +D0λ

(ǫ)

4

)















+
1

(D0λ
(ǫ)

4
)2

(

7

4
(D0λ

(ǫ)

4
t − 1) +D0λ

(ǫ)

4

)

,

U3(t) =
r1A2
ǫT

2

2CD0(λ
(ǫ)

8
− 2λ

(ǫ)

4
)

(

eD0(T−t)λ
(ǫ)

8 − e2D0(T−t)λ
(ǫ)

4

)

,

U4(t) =
1

16(D0λ
(ǫ)

8
)3

[

eD0(T−t)λ
(ǫ)

8

(

(D0λ
(ǫ)

8
T − 1)2 + 1

)

− (D0λ
(ǫ)

8
t − 1)2 − 1

]

.

From (58), we obtain λ
(ǫ)

4
= − 1

η2T
ln

(

β + e−η2Tλ4

)

= −2 ln
(

ǫ + e−1/2
)

and λ
(ǫ)

8
= − 1

η2T
ln

(

β + e−η2Tλ8

)

= −2 ln
(

ǫ + e−2
)

for T = 1/4, β(ǫ) = ǫ, η2 = D0 = 1/8, λ4 = 16 and λ8 = 64. We also take K = 60 and N = 30 in (113).

The numerical solution (123) for various amounts of noise ǫ ∈ {0.001, 0.01, 0.1} are compared in Figure 2 with

the exact solution uex = t cos(4x) at a selected time t = 3T/4 = 3/16. From this figure it can be seen that the

numerical approximations become more accurate as ǫ decreases. Graphically, there is excellent agreement between

the numerical and exact solutions for ǫ ∈ {0.001, 0.01} and moreover, we report that the errors (113) are decreasing

from 0.0535 for ǫ = 0.1 to 0.0052 for ǫ = 0.01 and then to 0.0005 for ǫ = 0.001. From these errors one can also

easily calculate the rates (114) to be Rate(0.01 > 0.001; 3/16) = 1.02 and Rate(0.1 > 0.01; 3/16) = 1.00. We also

report that for the small amount of noise ǫ = 0.001 we obtain that the errors (113) are 0.0005 = E(3/16) < E(1/8) =

0.0037 < E(1/16) = 0.0101, showing that, as expected, the errors increase with decreasing the time t from the final

time t = T = 1/4, i.e. the problem looses its stability as we proceed backwards in time.
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Figure 2: Exact solution uex(x, t) = t cos(4x) and the regularized solutions S(x, t) at t = 3/16, for various amounts of noise ǫ ∈ {0.001, 0.01, 0.1},
for Example 2.

Other significant models which are not illustrated in this section but which can be investigated using the analysis

of this paper include catalist models describing chemical reactions in cells, [29], with

D (ℓ0 (u) (t)) = ω +

∫

Ω

exp

(

− x

|Ω|

)

u (x, t) dx, R(x, t, u) = F (x, t) − u(u − 0.5)(u − 1),

and many other models of molecural interactions with power-law reaction rates, [26].

5. Conclusions

The ill-posed backward continuation in time for the nonlinear parabolic equation (1) with nonlocal diffusion (2)

giving the population density of a species has been investigated. The governing partial differential equation (1) also

incorporates a source term R(x, t, u) which models a global or local Lipschitz reaction.

The quasi-reversibility regularized solutions that has been proposed has been shown to depend continuously on

the measured final data (4) and to strongly converge in the L2-norm to the exact solution, if it exists. Throughout the

paper, novel and new error estimates together with stability results have been obtained.

Furthermore, a computational tool for symbolic based solution has been developed, followed by the Picard-type

iteration. It is worth noting that this algorithm is led by the fixed-point argument which applies for proving the ex-

istence and uniqueness of the approximate solutions. In cases where the complexity of the truncated series such as

(120) or (123) increases beyong purpose, standard numerical discretisation methods would be preferable. Numerical

results presented and discussed for a couple of physical models illustrate the convergence and stability of the regular-

ized solution for the backward parabolic problem with nonlocal diffusion and nonlinear reaction term.
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