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Abstract

We investigate the effect of nonlinear interaction on the geometric structure of a non-equilibrium

process. Specifically, by considering a driven-dissipative system where a stochastic variable x is

damped either linearly (∝ x) or nonlinearly (∝ x3) while driven by a white noise, we compute the

time-dependent probability density functions (PDFs) during the relaxation towards equilibrium

from an initial non-equilibrium state. From these PDFs, we quantify the information change by

the information length L, which is the total number of statistically distinguishable states which

the system passes through from the initial state to the final state. By exploiting different initial

PDFs and the strength D of the white noise forcing, we show that for a linear system, L increases

essentially linearly with an initial mean value y0 of x as L ∝ y0, demonstrating the preservation

of a linear geometry. In comparison, in the case of a cubic damping, L has a power-law scaling as

L ∝ ym
0 , with the exponent m depending on D and the width of the initial PDF. The rate at which

information changes also exhibits a robust power-law scaling with time for the cubic damping.
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I. INTRODUCTION

Many important phenomena in nature are stochastic and exhibit seemingly complex

temporal behaviour, nevertheless often manifesting a remarkable universal property of the

emergence of order (the so-called self-organisation) [1–4]. For a proper understanding of such

phenomena, it is essential to utilize a probabilistic methodology such as a (time-dependent)

Probability Density Function (PDF). Furthermore, in order to compare different systems,

it is invaluable to utilize a measure which is independent of any particular realization

of a system. This can very conveniently be achieved by using a geometric measure in a

statistical space by assigning a metric between PDFs. There has in fact been a significant

interest in defining a metric on probability (e.g. [5–10]) from theoretical and practical

considerations. For instance, the Wasserstein metric which provides an exact solution to

the Fokker-Planck equation [11] for a gradient flow subject to the minimisation of the

energy functional (the sum of entropy and potential energy) [6] has been extensively used

in the optimal transport problem [9]. Unlike the Wasserstein metric which has the unit of

a physical length, a statistical distance based on the Fisher metric [12, 13] is dimensionless

and represents the number of distinguishable states between two PDFs. For example, for

a Gaussian distribution, statistically distinguishable states are determined by the standard

deviation, which increases with the level of fluctuations; two PDFs which have the same

standard deviation and differ in peak positions by less than one standard deviation are

statistically indistinguishable. Previously, this fluctuation-based metric has been used

mostly in equilibrium or near-equilibrium of classical systems and quite extensively in

quantum systems [14–22].

Compared with a metric defined for any given two PDFs, significantly much less work has

been done in the case of a time-dependent PDF in non-equilibrium systems. A continuous

change in PDFs in this case necessitates defining a distance at any time by comparing

two PDFs at times infinitesimally apart and the summation of these distances over time

(see Section II). In our recent work [23–26], we proposed information length L(t) (see §2)

as such a metric, which can quantify the total number of different states that the system

undergoes in time. This information length was invoked as a new way of mapping out an

attractor structure and a useful measure that can link stochastic processes and geometry.
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For instance, by considering the relaxation of an initially non-equilibrium state localised

around some state x = y0 towards the equilibrium, we showed that in a stable attractor,

the information length takes its minimum value for a stable equilibrium point [25] while

in a chaotic attractor, it takes its minimum value for a unstable equilibrium point [23].

Interestingly, in a chaotic attractor, the property like the Lyapunov exponent was captured

by a sensitive dependence of L on the initial condition [23]. Furthermore, [26] investigated

a geodesic along which a system undergoes the minimum change in L and demonstrated its

utility as an optimal protocol for controlling population [26]. We note that the information

length is an extension of the concept of the thermodynamic length [20] to any arbitrary

time-dependent PDF (which often does not take the canonical forms) in non-equilibrium

systems where thermodynamic state in a strict sense does not exist. An important case of

non-equilibrium processes is classical music analyzed in [24] where the information length

was calculated by using time-dependent (very intermittent) PDFs that were constructed

from the music MIDI file.

The purpose of this paper is to investigate how nonlinear interaction affects the time-

scale of information change and geometric structure of an attractor by using information

length. In order to isolate the key effect of nonlinear interaction, we consider stochastic

driven-dissipative systems with linear and nonlinear damping, respectively, which corre-

spond to the Ornstein-Uhlenbeck (O-U) process and a nonlinear diffusion model with a

cubic damping [27–31] and investigate similarities and differences during their relaxation

processes in statistical space. Specifically, we quantify the change in time-dependent PDFs

during relaxation by using the information length [23–26] and examine the difference in

geometric structure associated with the linear O-U process and nonlinear processes. In

particular, we demonstrate how the information length L depends on the (mean) location

y0 of a narrow initial PDF and explore its scaling relation L ∝ ym
0 with the exponent

m. Interestingly, m is shown to be 1 for the O-U process regardless of the strength of a

stochastic noise (diffusion coefficient) and the width of the initial PDF while m depends on

the latter for the cubic process, with a power-law scaling relation.

The remainder of the paper is organized as follows. §II discusses information length

and §III introduces our model. §IV and §V present analytical linear results and nonlinear
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solutions. §VI and §VII provide the time evolution of the information length and attractor

structure. Conclusions are found in §VIII.

II. INFORMATION LENGTH

We consider a stochastic variable x and suppose that we can compute its time-dependent

PDFs p(x, t) either analytically or numerically in the case where its governing equation is

known, or construct p(x, t) from experimental/observational data. Defining the information

length involves two steps [23–26]: First we need to compute the dynamic time unit τ(t),

which is the characteristic timescale over which p(x, t) temporally changes on average at

time t. Second, we need to compute the total elapsed time in units of this τ(t). As done in

[23–26], we compute τ by utilising the following second moment E :

E ≡ 1

[τ(t)]2
=

∫

dx
1

p(x, t)

[

∂p(x, t)

∂t

]2

. (1)

We note that E is the root-mean-square fluctuating energy for a Gaussian PDF (see Appendix

A and [26]). As defined in Eq. (1), τ has dimensions of time, and quantifies the correlation

time over which p(x, t) changes, thereby serving as the time unit in statistical space (see

also Appendix B). Alternatively, 1/τ quantifies the (average) rate of change of information

in time. We recall that τ(t) in Eq. (8) is related to the second derivative of the relative

entropy (or Kullback-Leibler divergence) [25]. To show this, we consider p1 = p(x, t1) and

p2 = p(x, t2) and the relative entropy D(p1, p2) =
∫

dx p2 ln (p2/p1). To expand D(p1, p2) for

an infinitesimally small |t2 − t1|, we compute

∂

∂t1
D(p1, p2) = −

∫

dx p2
∂t1p1

p1
, (2)

∂2

∂t21
D(p1, p2) =

∫

dx p2

[

(∂t1p1)
2

p2
1

− ∂2
t1p1

p1

]

, (3)

∂

∂t2
D(p1, p2) =

∫

dx [∂t2p2 + ∂t2p2(ln p2 − ln p1)] , (4)

∂2

∂t22
D(p1, p2) =

∫

dx

[

∂2
t2
p2 +

(∂t2p2)
2

p2

+ ∂2
t2
p2(ln p2 − ln p1)

]

. (5)

By taking the limit where t2 → t1 = t (p2 → p1 = p) and by using the total probability

conservation (e.g.
∫

dx∂tp = 0), Eqs. (2) and (4) above lead to

lim
t2→t1=t

∂

∂t1
D(p1, p2) = lim

t2→t1=t

∂

∂t2
D(p1, p2) =

∫

dx∂tp = 0, (6)
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while Eqs. (3) and (5) give

lim
t2→t1=t

∂2

∂t21
D(p1, p2) = lim

t2→t1=t

∂2

∂t22
D(p1, p2) =

∫

dx
(∂tp)

2

p
=

1

τ(t)2
. (7)

See also [20] for similar derivation. Thus, the second derivative of the relative entropy gives

E , the inverse of the square of the characteristic time over which PDF changes in time.

The total accumulated change in information between the initial and final times, 0 and t

respectively, is defined by measuring the total elapsed time in units of τ as:

L(t) =

∫ t

0

dt1
τ(t1)

=

∫ t

0

dt1

√

∫

dx
1

p(x, t1)

[

∂p(x, t1)

∂t1

]2

. (8)

To relate Eq. (8) to the relative entropy, we expand D(p1, p2) for small dt = t2 − t1 by using

Eqs. (6)-(7) and D(p1, p1) = 0 as

D(p1, p2) =
1

2

[
∫

dx
(∂t1p(x, t1))

2

p(x, t1)

]

(dt)2 +O((dt)3), (9)

where O((dt)3) is higher order term in dt. We can then define the infinitesimal distance

dl(t1) between t1 and t1 + dt by

dl(t1) =
√

D(p1, p2) =
1√
2

√

∫

dx
(∂tp(x, t1))2

p(x, t1)
dt+O((dt)3/2). (10)

We sum dt(t1) at different times t1 = 0, dt, ...t−dt by using Eq. (10) and then take the limit

of dt→ 0 as

l(t) = lim
dt→0

[dl(0) + dl(dt) + dl(2dt) + dl(3dt) + · · ·dl(t− dt)]

= lim
dt→0

[

√

D(p(x, 0), p(x, dt)) +
√

D(p(x, dt), p(x, 2dt)) + · · ·
√

D(p(x, t− dt), p(x, t))
]

∝
∫ t

0

dt1

√

∫

dx
(∂t1p(x, t1))

2

p(x, t1)
= L(t). (11)

Thus, the sum of relative entropy calculated at times infinitesimally apart is the same

as L up to a numerical factor. It is important to note that Eq. (11) or L depends not

only on initial p(x, 0) and final PDF p(x, t), but also on a particular path that a system

takes. Thus, in general, l(t)2 in Eq. (11) is not simply proportional to the relative entropy

D(p(x, 0), p(x, t)), which depends only on p(x, 0) and p(x, t). See Appendix C for an

example. That is, the relative entropy does not uniquely determine L as it can take the
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same value for two different paths.

Eq. (8) provides the total number of different states that a system passes through from

the initial state with the PDF p(x, t = 0) at time t = 0 to the final state with the PDF

p(x, t) at time t, establishing a distance between the initial and final PDFs in the statistical

space. For example, in equilibrium where ∂p
∂t

= 0, E = 0 and hence τ(t1) → ∞ for all time

t1. Measuring dt1 in units of this infinite τ(t1) at any t1, dt1/τ(t1) = 0 in Eq. (8), and

thus
∫ t

0
dt1/τ(t1) = 0. This can be viewed as that in statistical space there is no flow of

time in equilibrium. In the opposite limit, large E corresponds to small τ , meaning that

information changes very quickly in dimensional time.

III. MODEL

The particular model that we will explore using these information length ideas is the

following Langevin equation for over-damped oscillators:

dx

dt
= F (x) + ξ. (12)

Here, x is a random variable of interest, and ξ is a white noise with a short correlation time

with the following property:

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′). (13)

Here, D is the strength of the forcing. We can easily check that the dimension of D is

length2/time by using that the dimensions of ξ and δ(t − t′) are length/time and 1/time,

respectively. F (x) is a deterministic force, which can be interpreted as the gradient of the

potential U(x) as F (x) = −∂U(x)
∂x

. We compare the linear F = −γx (U = γ
2
x2) and the cubic

F = −µx3 (U = µ
4
x4), where γ and µ have dimensions of 1/time and 1/(time × length2),

respectively. The linear system is the familiar Ornstein-Uhlenbeck (O-U) process, which has

been widely used as a model for a noisy relaxation system in many areas of physical science

and financial mathematics (e.g. [32]). Numerically, instead of solving Eq. (12) directly, we

will consider the equivalent Fokker-Planck equation [11]

∂

∂t
p(x, t) =

∂

∂x

[

−F (x) +D
∂

∂x

]

p(x, t). (14)
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IV. ANALYTIC LINEAR RESULTS

In this section, we provide main results for the (linear) O-U process, where we find exact

analytic expressions for all quantities of interest. If the initial PDF is taken as Gaussian

with the inverse temperature β0 as

p(x0, 0) =

√

β0

π
exp[−β0(x0 − y0)

2], (15)

then the solution at any later time is [25, 26]

p(x, t) =

√

β(t)

π
exp[−β(t)(x− y(t))2], (16)

where

y(t) = y0e
−γt, (17)

1

β(t)
=

1

β1(t)
+
e−2γt

β0
, (18)

1

β1(t)
=

2D(1 − e−2γt)

γ
. (19)

Here y(t) = 〈x(t)〉 is the mean position of the Gaussian profile, and y0 is its initial value.

Similarly, β(t) is the inverse temperature, and β0 is its initial value. As t tends to infinity,

y(t) → 0 and β(t) → γ
2D

≡ β∗. To compare initial and final equilibrium states, it is

convenient also to introduce D0 = γ
2β0

. The variance at t = 0 and t → ∞ is then given by

〈(x0 − y0)
2〉 = 1

2β0

= D0

γ
and 〈x2〉 = 1

2β∗

= D
γ
, respectively. We note from Eqs. (18)-(19) that

when D = D0, β(t) = β0 = γ
2D

for all time. In this case, the Gaussian simply moves from

y0 to 0 without changing its shape at all. If D is greater (lesser) than D0, it also broadens

(narrows) as it moves.

Given Eqs. (16)-(19), one can compute Eq. (1) by carrying out the analysis in Appendix

D as follows:

E =
1

τ 2
=

1

2β2

(

dβ

dt

)2

+ 2β

(

dy

dt

)2

=
2γ2

T 2
(r2 + qT ). (20)

In Eq. (20), q = β0γy0
2, r = 2β0D − γ, and T = 2β0D(e2γt − 1) + γ, following the same

notation as in [25]. Note that q is due to the difference in y0 and y(t→ ∞) while r is due to

the difference in D0 and D. Thus, the first term in E involving r represents the information
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change due to the change in PDF width when D0 6= 0 while the second term is due to the

movement of the PDF (or the mean value of x). Recalling D0 = γ
2β0

, we can recast r, q and

T in Eq. (20) as

q =
γ2y2

0

2D0
, r = γ

(

D

D0
− 1

)

, T = γ

[

D

D0
(e2γt − 1) + 1

]

. (21)

From Eq. (21), we can see that the dimension of q, r and T is the inverse of time. Thus,

E and subsequently L are invariant under the rescaling γ → α2γ, D0 → αD0, D → αD

and t → α−2 t. In particular, in the long time limit t → ∞, L(t → ∞) becomes invariant

under the rescaling γ → α2γ, D0 → αD0, D → αD. From Eqs. (20) and (8), we show in

Appendix E that for r 6= 0

L =
1√
2

[

ln

(

Y − r

y + r

)]Yf

Yi

+

√
2

r
H. (22)

Here Ti and Tf are T evaluated at ti and tf respectively; Yi and Yf are Y =
√

r2 + qT

evaluated at Ti and Tf , and H is defined as

H =















√

qr − r2 tan−1

(

Y√
qr−r2

)

if qr − r2 > 0,

−
√

r2−rq

2
ln

(

Y −
√

r2−rq

Y +
√

r2−rq

)

if qr − r2 < 0.
(23)

In Eq. (22), the contribution from the difference in PDF width through r 6= 0 and that from

the difference in mean value of x (e.g. PDF peaks) through q 6= 0 appear in both first and

second terms. Thus, in order to separate their effects, it is simpler to use Eq. (20), take the

limit of q = 0, and calculate Eq. (8)

L =
1√
2

∫ Tf

Ti

{

1

T

1

T + r
|r|
}

dT =
1√
2

|r|
r

ln

[

T

T + r

]

. (24)

Note that as a metric, L is a non-negative quantity. Eq. (24) is the information length solely

due to the change in the width of PDFs. To simplify Eq. (24), we use T + r = 2β0De
2γt

and β(t) = γβ0e2γt

T
(Eq. (D4)) to obtain

T + r

T
= β(t)

2D

γ
. (25)

Using Eq. (25) in Eq. (24) with t0 = 0 and tf = t and β(t = 0) = β0 gives us

L =
1√
2

∣

∣

∣

∣

ln
β(t)

β0

∣

∣

∣

∣

. (26)
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We note that Eq. (26) can directly be computed from the first term in Eq. (20). Then, by

calculating the differential entropy S(t) = −
∫

dx p(x, t) ln p(x, t) = 1
2

[

1 + ln π
β(t)

]

(with the

Boltzmann constant KB = 1) for p(x, t) given in Eq. (16), we obtain the following entropy

difference:

S(t) − S(0) =
1

2
ln

β0

β(t)
. (27)

Thus, L in Eq. (26) solely due to the change in PDF width is the same as the magnitude

of the change in entropy in Eq. (27) up to a constant numerical factor. In Appendix C, the

relative entropy between the initial and final PDF is shown to take the form different from

Eqs. (26)-(27).

In the opposite case of r = 0 where the initial and final PDFs have the same width,

β(t) = β0 for all time, and Eqs. (20) and (8) give us

L =
1√
2

∫ Tf

Ti

√
q

T
3

2

dT = −
√

2q

[

1√
T

]Tf

Ti

. (28)

We use that for r = 0, T = γe2γt, Ti = γ at t = 0 and simplify Eq. (28) as

L(t) =

√
γy0√
D

[

1 − e−γt
]

=
1

√

D/γ
[y0 − y] , (29)

where y = y0e
−γt = 〈x〉 is the mean position. Thus, L in Eq. (29) is the change in the

mean position y0 − y between initial and time t measured in unit of the resolution
√

D
γ
.

Interestingly, this resolution
√

D
γ

is the standard deviation, which is the square root of the

variance 〈(x− 〈x〉)2〉 = D
γ

= 1
2β

= 1
2β0

. In general when q 6= 0 and r 6= 0, L results from the

mixed contribution from the entropy change (r 6= 0) and the change in y (q 6= 0) measured

in unit of the resolution. In a more technical term, β and y in Eq. (20) constitute hyperbolic

geometry upon a suitable change of variables (e.g. see [26]).

V. NONLINEAR SOLUTION

For the cubic system, exact numerical solutions together with approximate analytical

solutions were reported in [31]. One of the interesting results is that starting from a narrow

PDF centred about y0, a rapid initial evolution of the PDF is dominated by the O-U process

with the effective friction coefficient γe given by

γe ∼ ζµ〈x〉2, (30)
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where ζ is an O(1) constant, and 〈x〉 = y0/
√

1 + 2µy2
0t. This thus gives β1(t) in Eq. (19)

as follows:

1

β1(t)
=

2D(1 − e−2γet)

γe
, (31)

with γe given by Eq. (30). This will be utilised below in understanding exact numerical

results.

For a numerical solution of Eq. (14), we begin by noting that without any loss of

generality any finite interval in x can always be rescaled to x ∈ [−1, 1]. If the initial

condition is also restricted away from the boundaries, then solving (14) on this finite

interval (with boundary conditions p = 0 at x = ±1) is an excellent match to an unbounded

interval. By rescaling t and D, we can similarly fix µ = 1, thereby reducing the number

of parameters that need to be varied numerically. The numerical procedure then involves

second-order finite-differencing in both space and time, using O(106) grid-points in x, and

time-steps as small as O(10−7).

Starting from the same initial condition as before,

p(x0, 0) =
1√

2D0π
exp[−(x0 − y0)

2/2D0], (32)

we numerically solve for p(x, t) at later times, and evaluate E and L. The system was solved

for D and D0 in the range 10−3 to 10−7, and y0 ∈ [0, 0.75]. In total 25 combinations of D

and D0 were considered, with ∼ 20 y0 values for each. In the next section, we present the

resulting E and L and compare with the equivalent γ = 1 linear results (obtained either

analytically, or numerically as a useful check of the code).

VI. TIME EVOLUTION OF E AND L

Fig. 1 shows the results for E when starting with a very narrow peak (D0 = 10−8) that

is very far from the origin (y0 = 0.7). D = 10−3, 10−5 and 10−7, and the two cases linear

and cubic are considered. Starting with the behaviour for small times (t ≤ 10−4), called

stage (i), there are two features that stand out. First, the two D = 10−3 cases are far above
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D = 10−5 and 10−7, and linear and cubic are the same. Second, for D = 10−5 and 10−7

the two different D values follow the same curves, but the linear and cubic cases are now

different, with linear being approximately four times greater than cubic. Also, at least for

these early times, these four curves are all essentially independent of t.

To understand these results, we recall that E is a measure of (∂p
∂t

)2, which in turn consists

of two parts, the movement of the PDF (advection) by the damping force F (x) and the

change in width of the PDF due to diffusion D > D0. Since F is different in the linear and

cubic processes while D is the same, E would evolve similarly for both processes if domi-

nated by diffusion (diffusion-dominated) while evolving differently if dominated by advection

(advection-dominated) due to the damping force. We need to combine this knowledge with

the fact that the initial evolution of E in stage (i) is dominated for small D by advection

while for large D by diffusion. To show this in the linear case, we examine Eq. (20) at t = 0:

E = 2γ2

(

D

D0
− 1

)2

+
γ3y2

0

D0
, (33)

where the first and second terms represent the effect of the diffusion and advection,

respectively. Inserting γ = 1, D0 = 10−8 and y0 = 0.7, D = 10−3 yields E = 2 ·1010, whereas

D = 10−5 and 10−7 both yield E = 5 · 107, as in Fig. 1. Thus, in stage (i), E exhibits

10
−6

10
−4

10
−2

10
0

10
2

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

t

D = 10−3

D = 10−7

FIG. 1: E as functions of time t for the linear (dashed lines) and cubic (solid lines)

processes. D = 10−3, 10−5 and 10−7, as labelled. The initial condition in each case was

D0 = 10−8, y0 = 0.7.
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the transition from diffusion-dominated to advection-dominated as D is reduced. Similar

conclusion can be obtained for the cubic case by replacing in Eq. (33) by γe ∼ ζµ〈x〉2 (Eq.

(30)). The transition point, where the two terms in Eq. (33) are comparable, occurs when

D ∼ y0

√

D0/2 = 5 · 10−5.

This predicted transition from advection-dominated to diffusion-dominated occurring

around D ∼ y0

√

D0/2 = 5 · 10−5 is indeed observed in Fig. 1. Specifically, for D = 10−3, E
is dominated by diffusion and takes the same (large) value for linear and cubic. In contrast,

for D = 10−5 and 10−7, E is dominated by the advection, and different evolutions are

observed in linear and cubic processes. We can even understand why the linear curves are

above the cubic curves by this factor of four: If the positions of the peaks are expected

to evolve as y0e
−t and y0/

√

1 + 2y2
0t in the two cases (setting γ = µ = 1 in the general

formulas), then the speeds at which they initially move are y0 and y3
0 respectively (obtained

by evaluating | d
dt
〈x〉| at t = 0 in the two cases). For y0 = 0.7 the linear peak thus moves

roughly twice as fast as the cubic peak, hence a factor of four in E . Finally, the reason

these curves remain independent of time up to t ≈ 10−4 is that the speeds of the peaks are

essentially unchanged up to that time with constant F (x) ∼ −γx0 and −µx3
0 for linear and

cubic, respectively; diffusion is also not yet playing an important role and β(t) = β0.

For the linear case, for somewhat larger times in stage (ii), up to t < O(1), E exhibits

a power-law decrease in time. This can also be inferred from Eq. (20) by keeping the

first-order correction T ∼ γ
[

D
D0

2γt+ 1
]

∼ γ
[

D
D0

2γt
]

for D0

2γD
≪ t≪ 1 (recall D ≫ D0):

E ∼ 2γ2

[

1

2t2
+
y2

0

Dt

]

. (34)

The second term in Eq. (34) is due to the peak with the variance 〈(x− 〈x〉)2〉 ∝= 1/2β ∝ t

(see Eq. (17)) and F (x) = −γx ∼ −γy0 for t < O(1), which gives E ∝ t−1. In compari-

son, the final stage (iii) is due to the adjustment to the stationary PDF. This involves an

exponential decrease in E since

T ∼ γDe2γt

D0

≪ T 2,

as t→ ∞, and thus

E =
2γ2

T 2
(r2 + qT ) ∼ 2γ2q

T
∝ 1

T
∝ e−2γt → 0,

12



exponentially decreasing in time as t → ∞. This is physically due to the exponential

decrease in peak position y = y0e
−γt while β ∼ γ

2D
. This last stage occurs around t ≈ O(1),

independent of D.

To summarize the O-U process, for a sufficiently small D < y0

√

D0

2
, the relaxation of the

O-U process undergoes three scaling regimes of E with t: i) constant, ii) power-law, and iii)

exponential. The stage i) is due to the movement of the PDF; the stage ii) is due to the

diffusion with 1/β ∝ 〈(x−〈x〉)2〉 (see Eq. (17)) [e.g. due to the Brownian motion where the

rms displacement increase as t1/2]; the stage iii) is due to the exponential adjustment of the

peak position as y = y0e
−γt in settling into the equilibrium PDF. These scalings and leading

contribution from F (x) and β responsible for such scalings are summarised in Table 1.

Since τ = E−1/2 is the time unit or correlation time (over which the physical time is to be

measured), our results imply three stages of i) constant, ii) power-law and iii) exponential

scalings of the time unit τ . Furthermore, in the O-U process, the final stage starts at

t = O(1), the same for all D, suggesting the independence of the relaxation time on D.

Alternately, this can be viewed as the independence of x and t in linear processes since D

only affects x (dependence of PDFs).

Compared to the O-U process, the time evolution of E for the cubic process occurs over

TABLE I: Scalings of E in stages (i), (ii) and (iii) for advection-dominated case for

sufficiently small D < y0

√

D0

2
(D0 = 10−8) and physical origins of such scaling behaviour

(F (x) and β(t)); 3 < n < 4.

Process scaling/contribution stage (i) stage (ii) stage (iii)

Linear

E constant t−1 e−γt

F (x) −γx0 −γx0 ∝ e−γt

β β0 ∝ t−1 γ
2D

cubic

E constant t−1 t−n

F (x) −µx3
0 −µx3

0 ∝ t−1

β β0 ∝ t−1 —
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a much longer timescale, as seen in Fig. 1. This is due to the fact that with a cubic

nonlinear damping, the equilibration of a PDF to the final equilibrium quartic exponential

PDF requires the time t≫ tc where [31]

tc ∼
√

1

Dµ
. (35)

As tc ∝ D−1/2, the relaxation time becomes longer for smaller D, as previously noted

also by [31]. To understand the evolution of E(t), it is useful to utilise the effective γe in

Eq. (30). Specifically, at small and intermediate times, γe is almost independent of t as

γe ∝ µy2
0, and thus the behaviour of E for the cubic process is quite similar to that of the

O-U process. For stage (iii), the prediction based on Eq. (20) becomes questionable due to

large fluctuations. It suffices for the purpose of this paper to conclude from Fig. 1 that E
in stage (iii) follows power-law as E ∝ t−n (3 < n < 4). To summarize, for a sufficiently

small D, the relaxation of the cubic process undergoes three scaling regimes of E with t: i)

constant, ii) power-law, and iii) power-law. The stage i) is due to the movement of the PDF,

similarly to linear case; the stage ii) is due to the diffusion, similar to linear case. The last

stage with the power-law scaling is different from the exponential scalings in the O-U pro-

cess. The scalings are summarised in Table I together with leading behaviour of F (x) and β.

Our results demonstrate that nonlinear interaction promotes power-law scalings of

statistical measures E (τ) with respect to time. Making an analogy to power-law scaling

often observed in self-organising system which ensures scale-invariance, we speculate that

power-law scale of statistical measures may also be induced in self-organising systems

through non-linear interaction. This issue will need to be explored further in future.

Furthermore, compared with the O-U process, nonlinear interaction in the cubic process

results in E which varies much less rapidly. [That is to say, a power-law evolves much slower

than exponential.] Recalling that a geodesic is a particular path with a constant E along

the path [26] which minimizes the total L between given two times, we infer that the cubic

process follows a path which is closer to a geodesic compared to the O-U process. Thus, we

expect a smaller L in the cubic process than in the O-U process, and this will shortly be

shown to be observed in our numerical results.

Furthermore, in comparison with the linear case where the relaxation time to the
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FIG. 2: L as functions of time t for the linear (dashed lines) and cubic (solid lines)

processes. All parameter values as in Fig. 1.

equilibrium is independent of D, the dependence of tc in Eq. (35) on D reflects that

the diffusion affects not only x but also key transition timescale (e.g. tc in Eq. (35)),

implying a close link between x and t through non-linear interaction. We note that [31]

showed that the cubic system can be linearised by introducing a nonlinear time which de-

pends on x, which is most likely why tc is affected by D (i.e. through x which depends on D).

Finally, Fig. 2 shows L for the six cases corresponding to Fig. 1. Since E in Fig. 1

monotonically decreases in time, the largest contribution to L comes from E at small times.

The most prominent difference between the O-U and cubic processes is that the relaxation

time tc to converge to the stationary state is much longer for the cubic process and depends

on D. Furthermore, L tends to be smaller for the cubic process, confirming our expectation

above.

VII. ATTRACTOR STRUCTURE: L VS y0

In the absence of a stochastic forcing, a system with either linear or cubic damping

has one stable equilibrium point x = 0, to which all initial positions approach in the long

time limit. The proximity of different x to the equilibrium point x = 0 can be quantified

by the difference in the potential V (x) (= γ
2
x2 and µ

4
x4 for the linear and cubic processes,
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respectively), or its gradient F (x). In the presence of the stochastic forcing ξ, any initial

value of x always tends to approach x = 0 for sufficiently large time, and fluctuates around

it, forming an equilibrium distribution. In this case, V (x) from the deterministic force does

not provide an accurate measure of the difference between different initial points due to ξ.

Motivated by this, [23] considered the relaxation of an initial non-equilibrium state

strongly localised around x = y0 [i.e. modelled by p(x, 0) ∝ δ(x− y0)] into the final equilib-

rium state around x = 0 and defined the distance between the point y0 and x = 0 by the

total L between the initial localised PDF and the final equilibrium PDF. This L provides a

metric which quantifies the distance between x = y0 and the equilibrium, serving as a useful

measure to differentiate different x’s in view of the proximity to the equilibrium point x = 0

[35]. As L measures different states along a path that a system passes through, it can be

viewed as a ‘Lagrangian/dynamic’ measure of a metric. In general, when an initial PDF has

a finite width [24–26], the total L between an initial PDF with the mean value y0 and final

equilibrium PDF was used as the distance between y0 (mean value of x at t = 0) and x = 0

(mean value of x at t → ∞). This metric consequently depends on both the strength D

of the stochastic noise (which determines the width of the final equilibrium PDF) and the

width of the initial PDF.

In order to elucidate the effect of nonlinear interaction on the geometric structure, we

now present how this metric depends on y0 for different D and D0 for the O-U and cubic

processes. Fig. 3 shows the results of the total L (in the limit t→ ∞) as a function of y0, for

D0 and D equal to 10−3, 10−5 and 10−7. Focusing on the linear case first, the dependence

on y0 is clearly linear, except for small regions near y0 = 0, where a sufficiently large

mismatch between D and D0 yields results dominated by diffusion rather than movement

of the peak from y0 to 0. Table 1 summarizes the slopes of these straight lines (including

also additional D and D0 values). For the simplest D = D0 cases, where Fig. 3 indicates

an exactly linear relationship for all y0, the slopes clearly scale as D− 1

2 . Above the diagonal

in Fig. 3 or Table 1 (D < D0) yields a greater slope than below the diagonal (D > D0).

To understand these results, we examine Eqs. (22), (23) and (28). When y0 6= 0, Eqs.

(22) and (23) imply that L in general has a complex dependence on y0, D0 and D. Some
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FIG. 3: L as functions of y0 for the linear (dashed lines) and cubic (solid lines) processes.

The nine panels (a3)-(c7) are labelled such that rows (a,b,c) correspond to D0 = 10−3,

10−5 and 10−7 respectively, and columns (3,5,7) correspond to D = 10−3, 10−5 and 10−7

respectively.

simple scaling relations are however obtained when D = D0, or when y0 is sufficiently large.

First, when D = D0, r = 0; so using Ti = γ and Tf → ∞ (since tf → ∞), q = β0γy
2
0 and

2β0 = γ/D0 in Eq. (28) gives us

L =

√

2q

γ
=

√
γy0√
D0

. (36)

Thus, when D = D0, L has an exact linear scaling with y0, with slope
√

γ
D

, as seen also in

Table 1 (where γ = 1).

Second, for a sufficiently large y0 such that q ≫ 1, a clear linear relation between L and

y0 is obtained, with different slopes for D > D0 and D < D0. When D > D0 and q ≫ 1
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(0 < r < q), the leading order contribution to L comes from H in Eq. (23) as (see Appendix

F for details)
[

tan−1

(

Y
√

qr − r2

)]Yf

Yi

∼ π

2
− 1√

r0
,

where r0 = D
D0

− 1 and thus (see again Appendix F),

L ∼
(

π

2
−
√

D0

D

) √
γy0√

D −D0

∼
(

π

2
−
√

D0

D

) √
γy0√
D
, (37)

where r ∼ D
D0

is used for D ≫ D0. Thus, when D > D0, L is determined by measuring the

change in the mean position y0 in units of
√
D to leading order, and takes its maximum

value
π
√

γ

2
y0√
D

for a very narrow initial distribution (as D0

D
→ 0). These scalings can also be

confirmed above the diagonals in Table 1.

When D < D0 and q ≫ 1 (r < 0), the leading order contribution to L comes from H in

Eq. (23) as
[

ln

(

Y −
√

r2 − rq

Y +
√

r2 − rq

)]Yf

Yi

∼ ln
2

1 −
√

|r0|
∼ ln

4D0

D
,

where |r0| = 1 − D
D0

and thus,

L ∼
√
γy0

2
√
D0

ln
4D0

D
∼
(

ln 2 + ln

√

D0

D

) √
γy0√
D0

. (38)

Thus, when D0 > D, L is given by y0 measured in units of
√
D0/ln

√

D
D0

, increasing as

D0

D
→ ∞. It is interesting to see the logarithmic correction factor ln

√

D0

D
to y0 measured in

units of
√
D0, which is due to the narrowing of the PDF. Again, these values are quite close

to the exact results in Table 1. We have checked similar results with L ∝ y0 for different

initial PDFs (quartic exponential PDFs).

In sharp contrast to the linear case, Fig. 3 shows that for the cubic case, L is clearly

not linearly dependent on y0. However, plotting the same data on a log-log scale, Fig.

4 shows that for sufficiently large y0 clear power-law scalings emerge. For y0 < O(D1/4)

L is dominated by diffusion, and hence largely independent of y0. For y0 > O(D1/4)

though, in the regime dominated by the advection by damping force F , all nine panels

exhibit power-law behaviour. For sufficiently small values of D, the power-law regime
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TABLE II: Slopes of L versus y0 for the linear process, for different D and D0 as indicated.

@
@

@
@@

D0

D
10−3 10−4 10−5 10−6 10−7

10−3 31.6 60.5 95.0 131 167

10−4 41.5 100 192 301 415

10−5 46.1 132 316 606 951

10−6 47.3 148 416 1000 1917

10−7 47.5 153 467 1317 3162

TABLE III: Slopes of log10 L versus log10 y0 for the cubic process, for different D and D0

as indicated.

@
@

@
@@

D0

D
10−3 10−4 10−5 10−6 10−7

10−3 1.69 1.62 1.56 1.53 1.60

10−4 1.77 1.74 1.64 1.58 1.56

10−5 1.74 1.85 1.76 1.70 1.59

10−6 1.63 1.91 1.88 1.80 1.66

10−7 1.52 1.91 1.96 1.88 1.78

O(D1/4) < y0 < O(1) would also extend over arbitrarily many orders of magnitude. The

slopes – that is, the power-law exponents – of these straight line portions at large y0 are

presented in Table 2. We infer asymptotic scalings L ∼ (y0)
m with the exponent m around

1.5 to 1.9. This suggests that geometry is curved by the nonlinear interaction in the

statistical space. What is more interesting is that this scaling of L ∝ ym
0 has no resemblance

to either the quartic potential V (x) ∝ x4 or its gradient F ∝ x3. That is, the combined

action of the deterministic force and stochastic force results in a unique characteristic of

the geometry of the attractor, governed by a power-law with index m = m(D,D0) < 2. In

comparison, L ∝ y0 for the O-U process manifests the preservation of a linear geometry
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FIG. 4: As in Fig. 3, but now showing log10(L) as functions of log10(y0), and for the cubic

process only.

both by the linear damping force and the white-noise stochastic force.

To trace the origin of this power-law scaling, we again utilise the result that the dominant

contribution to L comes from the initial/intermediate stages, where the effect of damping can

be approximated by a linear friction constant γe in Eq. (30). Thus, we can get an estimate

on the upper bound on m by replacing γ by γe in Eqs. (22)-(23) and taking 〈x〉 ∼ y0 as

follows:

L ∼











ψ
√

µ√
D
y2

0 if D > D0, 0 < r < q,

φ
√

µ√
D0

y2
0 if D < D0, r < 0 ,

(39)

for q ≫ 1. Here ψ and φ are O(1) constants. Eqs. (39) thus show that the power-law scaling

has the upper bound as L ∼ ym
0 where m ≤ 2. We have checked similar power-scalings for
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different initial PDFs (quartic exponential PDFs).

VIII. CONCLUSION

We investigated the effect of nonlinear interaction on a metric structure in a non-

equilibrium process. By considering linear and nonlinear (cubic) damping, we computed

the information change in the relaxation of an initial non-equilibrium state to a final

equilibrium state and measured by the information length L the number of distinguishable

states that a system undergoes during the relaxation. We explored scalings of statistical

quantities of τ (the inverse of the rate of change of L) and L. Specifically, we illustrated

that nonlinear interactions promoted temporal power-law scaling of τ ∝ tn. By varying

D0 and D, we also demonstrated power-law scalings of L with the mean position y0 of

the initial PDF. For a linear damping, an underlying linear geometry was captured in

L ∝ y0. In comparison, the cubic damping supports a power-law relation L ∝ ym
0 , with

a varying power-index m ∼ 1.5 − 1.9, depending on D and D0. This has to be con-

trasted with m = 1 in the linear case. This demonstrates that nonlinear interaction tends

to change geometric structure of a non-equilibrium process from linear to power-law scalings.

We emphasize that L is path-specific and is a dynamical measure of the metric, capturing

the actual statistical change that occurs during time evolution. This path-specificity would

be crucial when it is desirable to control certain quantities according to the state of the

system (e.g. time-dependent PDF) at any given time. An interesting example would be

the treatment of large population (e.g. of bacteria, tumour cells) where the treatment

should be adjusted according to the status of the population to optimize desirable outcomes

while avoiding undesirable side-effects (e.g. resistance). A toy optimization problem

was addressed in terms of a geodesic solution in [26]. Due to the generality of our

methodology, we envision a large scope for further applications to natural phenomena

to characterize non-equilibrium processes (e.g. relaxation processes). Beyond analyti-

cal/numerically solvable models, L can be applied to any data as long as time-dependent

PDFs can be constructed from data (e.g. see [24]). Such application of L to data (EGG,

EKG) is currently underway. Exploration of different metrics would also be of great interest.
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Appendix A: Fluctuating Hamiltonian E

To appreciate the relation between E and fluctuating energy, we express the PDF p(x, t)

as

p(x, t) =

√

β

π
e−SA ≡ e−SA+F . (A1)

Here, F = 1
2
ln β

π
is the free energy; SA is the effective action which can be related to the

Hamiltonian H of the stochastic system (see [33]) as

H = −∂SA

∂t
, (A2)

which is a stochastic analogy to the Hamilton-Jacobi relation [33, 34]. Specifically, it was

shown in [33] by a path integral formulation that H is given in terms of

H(t) = −∂SA

∂t
=
D

2
Π2 − µΠx

where Π is the conjugate momentum. Note that Π stems from the stochastic noise. Taking

the time derivative of Eq. (A1) gives us

∂p(x, t)

∂t
= (Ḟ +H)p(x, t) , (A3)

where Ḟ = dF
dt

. First, we integrate both sides of Eq. (A3) over x and use the conservation

of the total probability as follows:

0 =

∫

dx
∂p

∂t
=

∫

dx(Ḟ +H)p(x, t) = Ḟ + 〈H〉, (A4)

where 〈H〉 is the mean (average) value of the Hamiltonian. Therefore,

Ḟ = −〈H〉. (A5)

That is, the mean value of the Hamiltonian compensates for the change in free energy to

conserve the total probability. We now compute the second moment which is related to E
in Eq. (20) as

E =

∫

dx
1

p

(

∂p

∂t

)2

=

∫

dx(H + Ḟ)2p(x, t)

= 〈(H + Ḟ)2〉 = 〈(δH)2〉, (A6)

where δH = H − 〈H〉 = H + Ḟ is the fluctuating Hamiltonian. By using Eq. (A5), it is

interesting to observe that

〈(δH)2〉 = 〈H2〉 + 2〈H〉Ḟ + Ḟ2 = 〈H2〉 − 〈H〉2.
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Appendix B: Physical meaning of L

In this Appendix, we make an analogy to a deterministic system to elucidate the key

concepts of τ and L in Eqs. (1) and (8). Specifically, we consider the case where an object

is not moving but its length changes according to the time-dependent function l(t). For this

deterministic function l(t), the easiest way of extracting the characteristic timescale τ(t) of

l(t) is by computing

1

τ(t)
=

1

l

(

dl

dt

)

. (B1)

By using Eq. (B1) in Eq. (8), we can then measure the total time between initial t = 0 and

final time t in unit of τ(t) as

L(t) =

∫ t

0

dt1
τ(t1)

. (B2)

For example, if we take l(t) = Aeλt where A > 0 and λ > 0 are constant, then τ(t) = λ−1,

thus Eq. (B2) gives

L(t) =

∫ t

0

dt1
τ(t1)

=

∫ t

0

dt1λ = λt = ln

(

Aeλt

A

)

= ln

(

l(t)

l(0)

)

(B3)

We realise that l(t)
l(0)

in Eq. (B3) is just the total number of a segment of (initial) length l(0)

within the final length l(t) and that Eq. (B3) is nothing more than the entropy (by using

kB = 1). Thus, L(t) characterises the change in entropy (amount of disorder) over time t

when the object has no mean motion.

Switching back to the stochastic case with the time-dependent PDF p(x, t), we now

consider the rate at which p(x, t) changes in time to extract the timescale of p(x, t) as

1

τ (x, t)
=

1

p(x, t)

∂p(x, t)

∂t
. (B4)

As can clearly be seen from Eq. (9), the characteristic timescale τ (x, t) depends not only

on t but also x. To obtain the dynamic time-unit τ(t) independent of x, we can take an

average of Eq. (B4) over x as

1

τ(t)
≡
∫

dx p(x, t)
1

τ(x, t)
=

∫

dx p(x, t)
1

p(x, t)

∂p(x, t)

∂t
=

∫

dx
∂p(x, t)

∂t
= 0, (B5)
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where the last equality follows from the total probability conservation. Therefore, in order

to obtain a non-zero τ(t), we can consider squaring Eq. (B4) before taking the average over

x:

1

(τ(t))2
≡
∫

dx p(x, t)
1

(τ (x, t))2
=

∫

dx p(x, t)
1

p(x, t)2

(

∂p(x, t)

∂t

)2

=

∫

dx
1

p(x, t)

(

∂p(x, t)

∂t

)2

, (B6)

obtaining Eq. (1) in the main text. We note that Eq. (B6) corresponds to the second time

derivative of relative entropy (or Kullback-Leibler divergence), as shown in Eq. (7).

Appendix C: Comparison between L in Eq. (26) [(27)] and entropy.

To demonstrate that L take the form different form from the relative entropy, it is valuable

to consider p1 = p(x, t1) and p2 = p(x, t2) that have the same zero mean value but different

width with inverse temperature β1 and β2

p1 =

√

β1

π
e−β1x2

, p2 =

√

β2

π
e−β2x2

. (C1)

We can then easily compute the relative entropy between p1 and p2 as

D(p1, p2) =

∫

dx p2 ln (p2/p1)

=

∫

dx p2 ln (p2) −
∫

dx p2 ln (p1)

=

∫

dx p2

[

ln

√

β2

π
− β2x

2

]

−
∫

dx p2

[

ln

√

β1

π
− β1x

2

]

= ln

√

β2

π
− β2〈x2〉2 −

[

ln

√

β1

π
+ β1〈x2〉2

]

=
1

2
ln
β2

β1
− 1

2

[

1 − β1

β2

]

. (C2)

Here, 〈x2〉2 =
∫

dx p2x
2 = 1

2β2

was used. While the first term in Eq. (C2) appears to be

similar to Eqs. (26) or (27), the second term inside the square brackets takes different form.

We can now show that the integral of the square root of Eq. (C2) for small |t2− t1| becomes
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similar to Eqs. (26) or (27). To this end, we expand terms in Eq. (C2) by letting β2 = β1+δ:

D(p1, p2) =
1

2
ln

[

1 +
δ

β1

]

− 1

2

[

1 − β1

β1 + δ

]

=
1

2

[

δ

β1
− 1

2

δ2

β2
1

]

− 1

2

[

δ

β1
− δ2

β2
1

]

+O(
δ3

β3
1

)

=
1

4

δ2

β2
1

+O(
δ3

β3
1

), (C3)

where ln (1 + x) = x− 1
2
x2 +O(x3) was used. By taking a square root of Eq. (C3), writing

δ = β̇1dt, and then summing over time in the limit δt→ 0, we obtain
∫ t

0

dt
1

2

β̇1

β1
=

1

2
ln
β(t)

β(0)
, (C4)

which is the same as the entropy change in Eq. (27).

Appendix D: Derivation of Eq. (20)

From p(x, t) in Eq. (13), we obtain

∂p

∂t
=

[

β̇

(

1

2β
− (x− y)2

)

+ 2β(x− y)ẏ

]

p, (D1)

where we recall y = 〈x〉 = y0e
−γt. Using Eq. (D1) in Eq. (1) gives us

1

[τ(t)]2
=

∫

dx

[(

1

2β
− (x− y)2

)

β̇ + 2β(x− y)ẏ

]2

p

= β̇2

[

(

1

2β

)2

− 1

β
〈(x− y)2〉 + 〈(x− y)4〉

]

+ 4β2〈(x− y)2〉ẏ2

=
1

2β(t)2

(

dβ

dt

)2

+ 2β

(

dy

dt

)2

. (D2)

Here, β̇ = dβ
dt

and ẏ = dy
dt

; we used 〈(x− y)2〉 = 1
2β

and 〈(x− y)4〉 = 3
(

1
2β

)2

. To obtain the

last equation in Eq. (20), it is useful to express β in Eq. (18) in the following form:

β =
1

1
β1

+ 1
β0

e−2γt
=

1
2D(1−e−2γt)

γ
+ 1

β0

e−2γt
(D3)

=
γβ0e

2γt

T
. (D4)

where we used T = 2β0D(e2γt − 1) + γ . By differentiating Eq. (D3), we then obtain

β̇ = −2γβ2e−2γt

[

2D

γ
− 1

β0

]

= −2β2e−2γt [2β0D − γ]
1

β0
, (D5)
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Eqs. (D4)-(D5) and r = 2β0D − γ then give us

β̇2

2β2
= 2γ2r2 1

T 2
. (D6)

Similarly, using ẏ = d
dt

(y0e
−γt) = −γy0e

−γt, T = 2β0D(e2γt − 1) + γ and q = β0γy0
2, we

obtain

2βẏ2 = 2qγ2 1

T
. (D7)

Finally, using Eqs. (D6)-(D7) in Eq. (D2) gives us Eq. (20).

Appendix E: Derivation of Eqs. (22) and (23)

By using Eqs. (20) and (21) in Eq. (8), we obtain

L =
1√
2

∫ Tf

Ti

{

1

T

1

T + r

√

r2 + qT

}

dT, (E1)

To compute Eq. (E1), we let Y =
√

r2 + qT and recast it as

L =

√
2

r

∫ Yf

Yi

{

r2

Y 2 − r2
+

qr − r2

Y 2 + qr − r2

}

dY

=
1√
2

[

ln

(

Y − r

Y + r

)]Yf

Yi

+

√
2

r
H, (E2)

where Yi and Yf are Y evaluated at Ti and Tf , and H is defined as

H =

∫ Yf

Yi

qr − r2

Y 2 + qr − r2
dY. (E3)

Eq. (E3) is to be evaluated separately for two cases: q ≥ r and q < r. First, for q ≥ r, we

use Y =
√

qr − r2 tan θ in Eq. (E3) to obtain

H =
√

qr − r2

∫

sec2 θ

tan2 θ + 1
dθ (E4)

=
√

qr − r2

[

tan−1

(

Y
√

qr − r2

)]Yf

Yi

. (E5)

Secondly, in the q < r case, we let Y =
√

|qr − r2| sec θ =
√

r2 − qr sec θ (cos θ =

√
r2−qr

Y
)

to obtain

H = −
√

r2 − qr

∫

1

sin θ
dθ

= −
√

r2 − qr

2

[

ln

(

Y −
√

r2 − qr

Y +
√

r2 − qr

)]Yf

Yi

. (E6)
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We note that Eq. (E2) is continuous across q = r. In summary, Eqs. (E5) and (E6) lead to

Eq. (23) in the text; Eq. (E2) gives Eq. (22) in the text.

Appendix F: Derivation of Eq. (37)

In this Appendix, we show the main steps leading to Eq. (37) when D > D0, q ≫ 1, and

0 < r < q. In this case, we note that H in Eq. (22) is given by the first line in Eq. (23) and

thus
H

r
=

√

q

r
− 1 tan−1

(

Y
√

qr − r2

)

, (F1)

where

Y =
√

qT + r2, q =
γ2y2

0

2D0
, r = γ

(

D

D0
− 1

)

, T = γ

[

D

D0
(e2γt − 1) + 1

]

.

We evaluate Eq. (F1) at t = 0 and t → ∞ to compute the second term on the right-hand

side of Eq. (22). To this end, first, we approximate the argument of the arctan function in

Eq. (F1) for large q ≫ 1 as

Y
√

qr − r2
=

√

qT
r2 + 1
q
r
− 1

∼
√

T

r
∼
√

D0

D −D0

[

D

D0

(e2γt − 1) + 1

]

. (F2)

In the long time limit as t→ ∞, we let φ ≡ D0

D−D0

[

D
D0

(e2γt − 1)
]

(→ ∞), and evaluate Eq.

(F2) as

Y
√

qr − r2

∣

∣

∣

∣

t→∞
∼
√

φ+
D0

D −D0

. (F3)

On the other hand, at t = 0, Eq. (F2) is simplified as

Y
√

qr − r2

∣

∣

∣

∣

t=0

∼
√

D0

D −D0
. (F4)

We now evaluate
√

q
r
− 1 in front of the arctan function in Eq. (F1) at t = 0 and t → ∞,

which in both limits becomes:
√

q

r
− 1 ∼

√

γy2
0

2D
− 1 ∼

√

γ

2D
y0. (F5)

Thus, by putting Eqs. (F3)-(F5) in Eq. (F1), we obtain

[

H

r

]∞

t=0

∼ y0

√

γ

2D

[

tan−1

√

φ+
D0

D −D0
− tan−1

√

D0

D −D0

]

∼ y0

√

γ

2D

(

π

2
−
√

D0

D

)

,

(F6)
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by using φ→ ∞, D0 ≪ D, and tan−1 x ∼ x for x≪ 1. In comparison with the contribution

from the second term involving H on the right-hand side of Eq. (22), the contribution from

the first term involving the logarithmic function can be shown to be negligible by following

similar analysis as above. Therefore, multiplying Eq. (F6) by
√

2 gives Eq. (37) in the main

text.
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