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Abstract 
World production of rice exceeds 750 million tonnes per year of which a fifth is removed in the form of 
rice husk during the milling process. The use of rice husks as a source of sustainable and renewable 
energy is often hindered by lack of capital and a poor understanding of rice husk combustion 
characteristics.  This results in the selection of poor quality technology which generates significant 
quantities of harmful crystalline silica waste. Despite previous work in the area, detailed 
characterisation of the combustion of rice husk ash in a TORBED reactor across a wide temperature 
range has not yet been attempted and little effort has been directed towards assessing the economic 
viability of generating quality rice husk ashes. The use of a TORBED reactor enables low residual 
carbon after combustion without the generation of harmful crystalline material. Rice husk was 
combusted in a 400mm reactor at temperatures between 700-950°C. In the subsequent 
characterisation studies the resulting materials were shown to be fully amorphous high purity silica (> 
95%) and were readily digested in a series of alkaline digestion experiments. Complete silica 
conversion was only possible using uneconomic Na2O/SiO2 ratios and further optimisation of the 
combustion process to generate higher surface area material is necessary to increase the digestion 
rates further. Provisional economic analysis suggests that sales of the by-product enhance the returns 
from rice husk based power generation. TORBED reactors enable the combustion of rice husk with 
considerable operating flexibility and they generate products that could be used to displace resource 
intensive products and processes thus, added value from the by-products can be obtained by using 
TORBED reactor technology. 

1. Introduction 

Rice husk (RH) represents a globally significant source of biomass material that can be used to 
generate electricity in some of the world’s poorest regions. To be a truly sustainable method of energy 
generation the following points must be addressed: (1) there must be meaningful quantities available; 
(2) the biomass source must not compete with food sources for land usage; and (3) the energy 
generation process must not emit harmful substances to the environment. 

The world paddy rice production has been estimated to be 750 MT in 2015. This will generate 
approximately 150 MT of RH. Each tonne of RH can produce approximately 800 kWh of electricity. 
For a country such as Cambodia, which generates 1.85 MT of RH each year, this is sufficient to meet 
almost half of the annual electricity consumption of 3.1 TWh [1, 2]. However, even for their more 
prosperous and energy hungry neighbour, Thailand, the RH generated each year has the potential to 
meet around 3% of the annual electricity demand.  

RH, as a non-edible waste material generated in the cultivation of food, does not compete with land 
for food production. However, when energy generation technologies are used that do not control the 
temperature of combustion of the RH, potentially carcinogenic ash (RHA) is produced and released to 
the environment. This is a result of the chemical composition of the inorganic fraction of the RH which 
is usually between 95-98 wt% silica [3]. Under uncontrolled burning conditions, the temperatures can 
reach over 800°C, at which point, given sufficient residence time, the amorphous silica starts  to 
transform into the crystalline cristoballite. Crystalline silica is well recognised as a lung carcinogen in 



 
 

addition to causing the debilitating lung condition silicosis [4]. RHA is generally generated in the form 
of a fine powder which is easily entrained into the air. The avoidance of the inhalation of this powder 
is a vital health and safety issue, not only to plant operators, but also to local inhabitants. 

There is also an economic gain to be made from production of amorphous silica during a combustion 
process. Naturally occurring crystalline silica of high purity is plentiful in the form of sand. It is a low 
value product. When considering the valorisation of RH, the value of the residual ash is often 
neglected. However, the inorganic fraction of the RH can comprise up to 20%. Significant quantities of 
it are generated during combustion. In crystalline form this RHA poses a potential hazard and has 
zero, or even negative residual value. However, amorphous silica is a highly desirable product for a 
wide range of applications [1]. It is also much easier to digest in alkaline medium than crystalline silica 
and this potentially represents a gentler route for the production of sodium silicates and/or synthetic 
zeolites [5]. 

 

Figure 1 Schematic of the 400mm pilot EBR reactor located in Ontario, Canada. 

Although RH is easy to combust, the current technologies available for combustion do not control the 
temperature in the precise manner which is required to avoid the formation of crystalline silica. In 
recent years, a new reactor technology has been used to combust RH. In Cambodia a 2MWe 
TORBED combustor is operating in the service of controlled combustion of RH [6]. Although the 
technology has been demonstrated at a commercial scale, there has so far been little interest in the 
academic literature. A previous paper investigated the use of RHA generated by a TORBED reactor 
as an admixture in concrete [7]. Three different RHAs were produced but they only covered two 
temperature ranges. The current paper documents the use of a TORBED reactor to combust a 
parboiled RH from Arkansas, US at a series of six temperatures ranging from 700-950°C . The RHA 
generated at these temperatures is characterised and its susceptibility to digestion by alkaline 
medium at low temperatures and pressures is investigated. 

2. Materials and Methods 

2.1. Combustion 
Rice husk was obtained from Riceland Foods, Arkansas in the US. The rice husk provided was 
parboiled and dried prior to shipping. Trials of RH combustion were performed on a pilot scale at the 
Torftech pilot plant in Ontario, Canada configured as per Figure 1. Unlike some fluidised bed 
combustors, no bed material is used to aid heat transfer during combustion. Before feed was started, 
the temperature of T3 was brought to 600-700°C. The plenum temperature, T1, was set to around 



 
 

400°C via modulation of the burner. The feeder was then started and was modulated to maintain the 
desired temperature set-point at T3.  

The test samples that were analysed in this study were produced at the conditions outlined in Table 1. 
The reactor used was 400mm in diameter and of the expanded bed type (EBR) as shown in Figure 2. 
The particles are introduced into a high velocity central vortex. The particles are entrained into this 
cyclonic gas stream and move radially from the centre of the reactor to the walls. The particles then 
detach from the central gas stream and are transferred downwards to the base of the reactor from 
where they are re-entrained into the central stream [8]. Because of the recirculating action of the EBR, 
the gas velocities that can be passed through are extremely high relative to a fluidised bed. This has 
several benefits but pertinent to RH combustion is the small load in the reactor, which enables a very 
fine temperature control. In addition to this, the high gas and particle velocities result in attrition of the 
particles, which increases the surface area for reaction, and so enables very efficient burning of the 
RH. 

 

Figure 2 Circulating flow pattern (left) and 3d model (right).of the EBR . 

Table 1 – Trial summary data. Average husk feed rate was 26.5 kg/hr and ash recovery was 
circa 15% 

Sample 
Identifier  

Duration 

(mins)  

Inlet 
Temp 
(°C) 

Target 
Temp 
(°C) 

Air 
Flow 

(kg/hr)  

Approx Ash 
production rate 

(kg/hr)  

RHA700 15 500 700 580 2.8 

RHA750 20 500 750 560 3.1 

RHA800 20 500 800 580 3.5 

RHA850 15 525 850 570 4.1 

RHA900 20 575 900 560 3.8 

RHA950 20 640 950 550 3.6 



 
 

2.2. Characterisation 
The particle size distribution was analysed using a Malvern Mastersizer 2000. Samples were 
dispersed in distilled water using a Hydro 2000SM dispersion unit. Bulk solid phase chemical analysis 
was conducted using a Bruker S8 Tiger wavelength dispersive X-ray fluorescence (XRF) 
spectrometer. Samples were formed into pressed pellets for XRF using 0.50 g of RHA and 0.10g of 
Chemplex SpectroBlend binder. Loss-on-ignition (LOI) was conducted on 2.00 g samples in a 
Carbolite ELF furnace for 2 hours at 900°C or for 4 hours at 500°C. Mineralogical analysis was 
conducted using a Bruker D8 reflection x-ray diffractometer (XRD). Samples were ground in a pestle 
and mortar and analysed for 1 hour each. Samples were coated with gold in an Emscope SC500 
sputter coater and analysed with a Jeol JSM-6060LV scanning electron microscope (SEM). Liquid 
phase chemical analysis of alkaline leachate was conducted by atomic absorption spectroscopy 
(AAS) using a Perkin Elmer AAnalyst 800. 

2.3. Digestion 

RHA samples were leached under reflux conditions in 2 M sodium hydroxide for 6 hours. 80 g of 
sodium hydroxide and 800 ml of distilled water were brought to boiling point in a 1L round bottomed 
borosilicate reaction flask with a heating mantle and coil condenser. The vessel was stirred at 300 
rpm using a PTFE coated stirrer shaft via a stirrer gland. Upon reaching boiling point, 50 g of RHA 
was added to the sodium hydroxide solution and washed into the vessel with 200ml of distilled water. 
25 ml samples were taken via a syringe and flexible tube. These samples were filtered using a 25-50 
ȝm sintered glass Büchner funnel, and the leachate retained for AAS analysis. This method was 
repeated with 8 M sodium hydroxide using 12.5 g RHA on the RHA700 sample for 1 hour. Two further 
experiments were conducted using 25 and 12.5 g of RHA700 with 2 M sodium hydroxide for 1 hour.  

3. Results and Discussion 

3.1. Combustion 

 

Figure 3 Stability of the TORBED processing chamber temperature over a pilot scale test of 2 
hours. 

In general, the combustion of the rice husk ash in the TORBED EBR reactor was quite well controlled. 
Figure 3 illustrates the process chamber temperature of a 2 hour trial with a target temperature of 
800°C. Although the chamber temperature periodically cycles above and below the target 
temperature, the average temperature is maintained at the set-point. The control of the temperature is 
applied using an on/off controller on the vibratory feeder. For these trials the control loop had not 



 
 

been tuned and so it is likely that further optimisation can be made in temperature control. It should 
also be noted that during short run trials, the reactor and its surrounding refractory does not have time 
to reach full steady state conditions; experience has shown on full scale operating plants that tight 
reactor temperature control is possible to ±2°C. 

3.2. Particle size 

 

Figure 4 Particle size distribution of RHA generated at 700°C ( Ɣ), 750°C ( ), 800°C ( ), 850°C 
(), 900°C ( ), and 950°C ( ż). 

The feed rice husk particles are boat shaped particles that are 8-10 mm long and around 2 mm in 
width. It is clear from Figure 4 that there is a large amount of attrition occurring in the combustion 
process. The ashes that are obtained from all of the different combustion temperatures have median 
particle sizes in the range 30-35 µm. The particles are slightly finer than those reported by Nehdi et al. 
[7] of 44-46 µm who also used a TORBED combustor. However, the particles are considerably finer 
than those that are normally reported for fluidised beds of 107 µm [7] and < 375 µm [9]. This is likely 
to be caused by the relatively higher gas velocities employed in the TORBED combustor allied to the 
recirculating flow patterns compared to fluidised beds. This is of potential economic benefit in 
utilisation of the ash, as it minimises the grinding that might be required by a particular application. 

Figure 4 indicates no definitive correlation between particle size and combustion temperature. The 
ash produced at 700°C contained the finest particles while the ash produced at 950°C produced th e 
coarsest. In the intermediate temperatures the particle sizes were very similar which makes it difficult 
to draw any meaningful conclusions from the data. It is possible that the reason the 950°C as h is the 
coarsest is that at this temperature some of the ash particles begin to adhere to each other. However, 
this conclusion is not fully borne out by the data and so further investigation is required to confirm its 
validity. 

3.3. Chemical Analysis 
Table 2 Bulk chemical analysis of RHA generated at different processing temperature. 

Sample  LOI SiO2 K2O P2O5 CaO Fe2O3 MgO MnO Cr2O3 Others 

RHA700 1.8% 95.2% 0.8% 0.5% 0.5% 0.3% 0.3% 0.1% 0.2% 0.3% 

RHA750 1.1% 96.3% 0.3% 0.6% 0.5% 0.3% 0.3% 0.1% 0.1% 0.4% 

RHA800 1.0% 96.0% 0.3% 0.7% 0.6% 0.2% 0.4% 0.2% 0.0% 0.5% 

RHA850 0.8% 96.0% 1.1% 0.6% 0.6% 0.2% 0.4% 0.2% 0.0% 0.2% 

RHA900 1.0% 95.7% 1.0% 0.7% 0.6% 0.2% 0.4% 0.2% 0.0% 0.3% 



 
 

RHA950 0.8% 96.7% 0.4% 0.7% 0.6% 0.2% 0.3% 0.2% 0.0% 0.1% 

Combustion at all of the experimental temperatures yielded ash with a high purity of silica (95.2-96.7 
wt%). The impurities present in the greatest quantity were oxides of potassium and phosphorous. 
These results are consistent with other studies in which the residual carbon in the ash reached similar 
levels [3, 7, 10]. The high purity of the ash in terms of silica makes the material very attractive for the 
purposes of silica extraction. 

The residual carbon was measured by loss-on-ignition at two temperatures: 900°C and 550°C. The 
results are compared in Figure 5 which shows that there is no difference between the two 
temperatures of analysis. This means that it is unlikely that any mineral carbonates are decomposing 
at the higher temperature and causing misleading results. The LOI data is very similar for 
experimental combustion temperatures of 750-950°C. Values of < 1wt% indicate that extremely  high 
combustion efficiencies are occurring in the TORBED reactor. The best value for LOI reported from a 
real world fluidised bed furnace in Brazil was 3 wt% [3]. 

 

Figure 5 Loss- on-ignition measurements performed at two analysis temperatures, 550°C ( ) 
and 900°C ( Ɣ), of RHA generated at different TORBED processing temperatures. 

3.4. Mineralogy 
The XRD patterns of the six RHA are displayed in Figure 6. Ashes obtained over the whole 
temperature range exhibit the broad band centred at 22° (2 ɽ) that is typical of amorphous silica. 
Interestingly, the only evidence of cristoballite formation occurs when the ash is combusted at 950°C 
at which point some small sharp reflections are observed on top of the broad amorphous background.  

Reported optimal temperatures for limiting the crystallisation of silica within the literature vary widely: 
< 725°C [10]; limited crystallisation at 700°C [11]; and < 900°C [12]. Crystal lisation is not merely a 
function of temperature. In reports cited by Nehdi et al., [7] silica remains amorphous up to 680°C 
provided the residence time is less than one minute. Alternatively, RHA silica can remain in 
amorphous form if temperature is < 900°C and residence time is < 1 hour or it crystallises if th e 
temperature > 1000°C and residence time is > 5 min. 

The current findings are consistent with the concept that, with reactor residence time of < 10 min, 
combustion temperatures may reach 900°C with no evidence of crystalline silica f ormation, and at 
950°C some limited cristoballite is formed. This is also entirely consistent with th e observations of 
Fernandes et al. [3] that, when comparing 3 types of RH combustor, a moving grate system had a 
much higher crystalline silica content than a fluidised bed or entrained flow system. The authors of 
that study ascribe this to be due to an uneven temperature profile in the moving grate system relative 



 
 

to the fluidised bed and the entrained flow reactor. Although this is quite conceivable, it might also be 
due to the longer residence time of the moving grate system. 

.  

Figure 6 XRD patterns of RHA samples generated at different processing temperatures. 

 

Figure 7 Morphology of raw rice husk by SEM imaging. 

3.5. Morphology 
Figure 7 shows images of raw RH. The morphology of the surface of the raw RH exhibits all the 
characteristic features that have been observed previously [13]. The outer surface is highly ridged; the 
ridges are arranged in a near linear profile and are punctuated by prominent conical protrusions. 
Underlying the outer epidermis are layers of thick walled fibres which are evident in the images of the 
fractured hulls.  Park et al., [13] performed elemental mapping and EDS analysis on RH specimens 
and concluded that the silica in the RH is concentrated in the outer layers of the epidermis and is 
especially concentrated in the dome like protrusions that are apparent. The fact that the silica is 
present at the surface of the RH is relevant to combustion in a TORBED reactor because it means 
that the silica particles are subject to attrition forces within the reactor ash as they are recirculated. 
This is the reason that the creation of much finer particles sizes than other technology is possible. 

Images of the RHA (Figure 8) show very similar features across all of the temperature ranges 
samples studied. It is obvious that the original RH structure has been broken into much smaller 
discrete particles. The outer surface of these particles appears relatively smooth and glassy, whereas 
the particle interior retains much of the fibrous porosity of the parent RH. There is no evidence of 



 
 

crystal structures in the images which provides secondary confirmation of the XRD results. The 
images suggest two things: (1) the silica in the parent RH has not melted into a structure of sufficiently 
low viscosity to form spherical ash particles as often observed in fly ash originating from coal [14]; and 
(2) the silica has instead fused together in its original morphological form to provide the network of 
very large pores (1-10 µm) that are dominant.  

Contrary to images published by other researchers [15], there is no evidence of an extensive network 
of smaller pores (<1 µm). However, the major difference between the current work and that study, is 
that the smaller pore network was found in ash generated at 500°C which had a significant 
component of carbon that did not combust (~12%). Under the conditions of combustion, this carbon is 
likely to have been activated to a certain extent which might explain the differences. 

 

Figure 8 Morphology of RHA generated at different processing temperatures: 700°C (top le ft); 
750°C (top centre); 800°C (top right); 850°C (bottom right); 900°C (bottom centre); and 95 0°C 

(bottom right). 

3.6. Surface Area 
The surface area of the ash is an important parameter for assessing suitable applications. Figure 9 
shows the effect of the processing temperature on the BET surface area of the residual ash. The 
surface area is the highest at the lowest temperature and shows non-monotonic reduction with 
increasing temperature. Three potential explanations for this behaviour can be postulated: (1) at 
higher temperatures, gasification reactions explode the internal structure of the RH leading to a 
decrease in pore volume [16]; (2) the adhesion of the silica particles to each other increases as the 
temperature increases; and (3) that the carbon content of the lower temperature ashes is providing 
most of the porosity.  

There is a slight suggestion in the particle size data of Figure 4 that some agglomeration occurs in the 
higher temperature material and this would support hypothesis (2). Additionally, the LOI data 
presented in Figure 5 shows a trend of similar appearance to Figure 9 which would support 
hypothesis (3). However, if the carbon in the samples was hypothetically 500 m²/g across all 
temperatures then a reduction from 1.8 to 0.8 wt% LOI would not adequately explain the reduction in 
surface area of 35 to 5 m²/g. In this case, it would require the residual carbon of the higher 
temperature runs to have a surface area lower than 500 m²/g which could only come about by the 
gasification mechanism of hypothesis (1). Table 3 shows that the decline in surface area as the 
combustion temperature increases is concomitant with a decrease in the average pore radius. This 
suggests that the larger pores are collapsing at higher temperatures leaving a small volume of small 



 
 

radius pores. Given that all of the mechanisms are partially supported by the data, the current study 
provides no conclusive explanation for the observed relationship between temperature and surface 
area. 

The surface area range (5-35 m²/g) is entirely consistent with some reports in the literature [3, 7] but 
is substantially lower than others; Liou [16], reported surface areas of up to 185-235 m²/g while Bie et 
al. [17] reported surface areas of 27-86 m²/g. These two specific examples are important because 
they are from low carbon ashes and so the effect of carbon is controlled for. In both these studies the 
higher temperature runs produced the lower surface area RHA. Indeed Bie et al. [17] reported surface 
areas of 27 m²/g for husk combusted at 700°C for 1 hour and 86 m²/g for husk combusted at 600 °C  
for one hour; the LOI for each sample was 1.5 and 3.2 wt% respectively. This would suggest that 
carbon content may not be the overriding factor and that ash adhesion is more important. 

Potassium appears to play an important role in the development of the surface area of RHA. This has 
been shown by researchers who have treated RH samples with HCl prior to combustion and have 
found that surface areas of the RHA are dramatically increased relative to the RH that has been 
combusted without treatment [18, 19]. The melting point of the silica is governed by the extent of 
potassium component in the husk. The potassium decreases the melting point of the glass. Real, 
Alcalá [18] attributed this result to the fact that washing with HCl removes K+ cations from the ash 
which interact with the silica to form a potassium silicate or short range tridymite rather than a high 
surface area silica gel. The RH in the current study has been parboiled and so it is somewhat 
unexpected that the surface areas are relatively low. It might be expected that parboiling would 
remove the majority of potassium [20]; Table 2 shows that residual potassium is between 0.3-1.1 wt% 
and exhibits no trend with temperature. Although this value is relatively low, it is still considerably 
higher than that in the ash that resulted from the combustion of acid washed RH in the Real, Alcalá 
[18] study (0.01 wt%). It is possible, that at the temperatures used in the current study, that the 
potassium content was sufficient to react with silica locally to form potassium silicates which melt and 
cause particle adhesion and potentially fill pores. 

 

Figure 9 RHA silica dissolution in 2M NaOH at a solids loading rate of 50 g/L for RHA 
generated at 700°C ( ), 750°C ( ), 800°C ( ), and 950°C ( Ɣ). 

Table 3 Surface area and pore size characteristics of raw RH and RHA generated at different 
processing temperatures. 

Sample Husk 700 750 800 850 900 950 
BET Surface Area (m²/g) 0.8 37.2 17.9 10.2 5.8 6.2 4.7 
BJH Pore Volume (cm³/g) 0.005 0.106 0.067 0.046 0.031 0.019 0.014 
BJH Pore Radius (nm) 0.84 1.92 1.90 1.09 0.96 1.22 0.96 



 
 

3.7. Silica dissolution 
The rate of silica dissolution for different ashes that have been processed at different temperatures is 
shown in Figure 10. It is apparent, that in the initial stages of reaction, the rate is in the order 700°C > 
750°C > 800°C > 950°C. This is consistent with the measured BET surface areas of the samples 
which follow the same order. It is likely that the greater surface area of the samples produced at lower 
temperatures increases the silica exposure to the reacting sodium hydroxide. Also, to consider is the 
greater degree of ordering of the high temperature sample. XRD data has shown that a small amount 
of cristoballite is present in the sample 950°C which would confer greater resistance to attac k by 
alkaline solution. The effect of surface area and silica structure in this paper is in agreement with 
published literature using porous amorphous silicas [21]. 

However, once the conversion of silica reaches 60%, the rate for all samples slows significantly, and 
there is little difference between them. It is possible that this is an effect of the hydroxide ion 
concentration decreasing as silica is converted to sodium silicate. Alternatively, as the reaction 
proceeds, the ash become less porous, and the surface available for reaction becomes limiting. 

Jendoubi, Mgaidi [22] state that because the reaction between sodium hydroxide and silica is a 
surface reaction, only a small proportion of the solid is in contact with the liquid. Therefore, the OH is 
always in excess of the solids independently of the initial Na2O/SiO2 ration used. This is only true at 
the beginning of the reaction and we may assume in this case that the reaction proceeds according to 
the following equation: 

SiO2(s) + 2OH- ĺ H2SiO42-  

The Na2O/SiO2 ratio for the experiments conducted in Figure 10 is 2.5 which means that on a global 
basis, the OH is in excess of that required for stoichiometric conversion. However, as the reaction 
proceeds, OH is consumed and it is possible that the concentration of OH ions is not sufficient to 
maintain initial reaction rate.  

 

Figure 10 RHA silica dissolution in 2M NaOH at a solids loading rate of 50 g/L for RHA 
generated at 700°C ( ), 750°C ( ), 800°C ( ), and 950°C ( Ɣ). 

To assess the effect of the Na2O/SiO2 ratio the quantity of RHA in each batch reaction was varied. 
Figure 11 highlights that the results to not conform to any distinct pattern. Initially, the lowest 
concentration of silica (12.5 g RHA /l) reacted the most slowly, however, after 20 minutes this then 
proceeded to react faster than both the 25 g/l and the 50 g/l sample. It is likely that, because the ratio 
of Na2O/SiO2 ratio increases at lower solids loadings, the OH ion concentration is not depleted as 
quickly, which enables faster reaction at longer reaction times.  



 
 

 

Figure 11 RHA generated at 700°C silica dissolution in 2M NaOH at solids loading rates of 12.5 
g/L (Ɣ), 25 g/L () and 50 g/L ( ). 

To test this, the effect of using a higher initial concentration of sodium hydroxide is shown in Figure 
12. The reaction proceeds at a greater rate using 8M sodium hydroxide relative to 2M. The total 
extent of silica dissolution reaches almost 95% after 130 minutes of reaction. To obtain total 
conversion of the silica in the RHA, it appears that using 2M sodium hydroxide is insufficient at the 
reaction conditions studied herein. Other researchers have also documented that increasing the 
sodium hydroxide concentration increases the yield of silica extracted from RHA; however in that case 
the no improvement was seen on increasing the concentration to more than 1M sodium hydroxide 
[23]. The overall yield was 91% vs the 95% in the current study. These differences are likely to be a 
result of the relatively low surface areas of the material in this study.  

 

Figure 12 RHA generated at 700°C silica dissolution at solids loading rates of 12.5 g/L in 2M 
NaOH () and 8M NaOH (Ɣ). 

3.8. Process Economics 
The economic evaluation of a hypothetical power plant fired by RH was carried out using a discounted 
cash flow method over a period of a 30 year project life span. The total plant cost for a 10 MWe plant 
was varied between $0.5-3.5m per MWe. The operating costs for the plant were set at 5% of the 
capital requirement. The fuel cost of $8/T including transportation, was taken from a previous 
economic analysis of power generation in the Mekong Delta [24]. The corporate profit tax rate 
applicable to the project was assumed to be 20% and capital expenditure was depreciated over a 
twenty-year period, these rates both being reasonable proxies for the various tax systems applied in 



 
 

practice. The power price was set to $54/MWh which is equal to that of a recent decision by the 
Vietnamese government on feed-in-tariffs for biomass combined heat and power plants [25]. This 
price is low relative to the feed-in-tariff of another rice producing south east Asian country Thailand, 
for which the tariff is $110/MWh for biomass plants greater than 3MWe in capacity [26]. 

The ash sales value was varied between $0-200/T. These prices compare to values provided by 
Bergqvist et al. [24] of $40-160/T although they noted that high amounts of residual carbon in the ash 
reduced this to below $1/T. It is also useful to consider the prices of the potential products that the 
ash may replace. RHA can be used a supplementary cementitious material in cement if the LOI is low 
enough and fineness specifications are met. Cement is currently selling in the US for an average of 
$105.5/T [27]. RHA has been shown to improve the durability of concrete and has been used for high 
performance cement [12]. It is reasonable to suggest that this being the case, a price similar to 
concrete may be obtained. In the manufacture of sodium silicate, high purity silica sand is used as a 
raw material. Industrial sand is currently selling in the US for an average of $87/T [28]. Traditionally 
sodium silicate is made by fusing silica sand and sodium carbonate together at 1400°C which i s 
highly energy intensive. Another process route exists which relies on alkaline digestion which has a 
lower energy demand but higher raw material costs. However, this relies on digestion at high pressure 
in an autoclave. Use of the current material would remove the requirement to operate at temperatures 
above 100°C. It is again reasonable to suggest that a value of RHA would reach parity or excee d that 
of industrial sand. 

Two different plant price regimes were considered: $0.5-1.5m per MWe was considered to be low 
cost technology not capable of generating ash of sufficiently good quality to sell, it operates for 5000 
hours per year, and of low efficiency (1.4 tonne of feed per MWe) $1.75-3.5m per MWe is considered 
to be high performance technology, it is capable of generating high quality ash, it operates for 8000 
hours per year, and is of high efficiency (1.1 tonne of feed per MWe). These values are broadly 
consistent with the techno economic analysis performed in 2008 [24]. 

Ignoring the effect of how the plant is financed, the post-tax project IRRs were calculated for a 
different range of ash sales values and the results are depicted in Figure 13. A nominal target of 10% 
is shown on the graph although this is only appropriate for an availability based project without 
significant mechanical or process risk. The hurdle rate IRR is project specific and would reflect the 
cost of the sovereign risk that investors were comfortable with taking e.g. a higher return would be 
expected in Vietnam than in the Unites States; returns in the range of 10-15% would probably indicate 
an economic project. 

Figure 13 highlights how important the ash sale value is to any power project based on RH. For the 
low-cost technology options, good returns are only made when the cost of the plant is less than $0.9m 
per MWe. It must be noted that even if these conditions could be met, it is possible that in the future, 
the proper costing or capture of environmental externalities would not allow projects such as these to 
proceed. For the high-performance technology, the ash sales price is extremely important. With no 
residual value the projects are unlikely to be economic even for the lowest cost considered here. 
However, when applying a value of > 50 $/T, the projects become increasingly economically 
attractive.  

Figure 14 depicts a one-way deterministic sensitivity analysis surrounding a plant of 10MWe that 
requires $20m of total investment to build with an ash price of $100/T. Investment cost and power 
price have significant impact on the profitability of the project. An increase in the power price that may 
come about via government intervention, market forces or geographical factors, will increase the 
return on investment significantly. The return on investment is also sensitive to the operating costs but 
it is insensitive to the fuel price because of the low cost of RH considered in the base case scenario. 

At the 10 MWe scale considered in this case, a power plant utilising a TORBED reactor would cost 
between $1.75-2.25m per MWe. Given that it has been shown that the RHA that is generated from 
TORBED combustion is completely amorphous, of high purity, and lends itself to alkaline digestion, it 



 
 

can reasonably be expected to have a value somewhere in the region that would realise good 
economic returns. 

 

Figure 13 Project economics of rice husk power generation using both low cost and high cost 
technology. Low cost technology is assumed to generate no ash of resale value and high sot 

technology examines the economics for 5 different ash values. 

 

 
Figure 14 One-way deterministic sensitivity analysis examining the effect of investment cost, 

operating expenditure, fuel price, and power price. Base case plant is 10MWe, $20m total 
investment and an ash price of $100/T. 

4. Conclusion 

For the first time, it has been shown that it is possible to combust RH at the temperatures of 700-
900°C using a TORBED reactor without generating crystalline silica. Even when com busting at the 
highest temperature studied (950°C), there is evidence of only a small amount of cristoballite i n the 
XRD pattern. In general, burn-out efficiency of the RH was good across all temperatures and silica 
purity of > 95% was achieved. In contrast to other technologies employed at pilot scale, fully 
amorphous RHA was generated with residual carbons of < 1wt%.  

We have shown that there is a correlation between process temperature and surface area with the 
highest temperatures generating the lowest surface areas; however, the evidence for the driving 
mechanisms of this correlation are inconclusive. In terms of digestion of the RHA in sodium 
hydroxide, the sample generated at 700°C, with the highest surface area, showed the fastest initial  



 
 

rate of reaction. When using a Na2O/SiO2 ratio of 2.5, digestion slowed at around 60% and did not 
reach 100% conversion. Using higher Na2O/SiO2 ratios did allow for ~95% conversion in around 2 
hours but these are unlikely to be economic. Further optimisation of the combustion process to 
generate higher surface area material might be necessary to increase the digestion rates further. 

An economic analysis of an integrated energy generation RHA production facility showed that sales of 
the by-product enhance the returns from rice husk based power generation. The sales price range at 
which this occurs is comparative to both cement and industrial sand prices for which RHA could 
plausibly substitute. 

We have shown in this paper that utilising a high performing technology for the generation of energy 
from RH can compete on an economic basis with cheaper technology, if the use of RHA in higher 
value applications can be established. 
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