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Constellations and their relationship with categories

Victoria Gould and Tim Stokes

Abstract. Constellations are partial algebras that are one-sided generalisations of
categories. Indeed, we show that a category is exactly a constellation that also satis-
fies the left-right dual axioms. Constellations have previously appeared in the context
of inductive constellations: the category of inductive constellations is known to be iso-
morphic to the category of left restriction semigroups. Here we consider constellations
in full generality, giving many examples. We characterise those small constellations
that are isomorphic to constellations of partial functions. We examine in detail the re-
lationship between constellations and categories. In particular, we characterise those
constellations that arise as (sub-)reducts of categories. We demonstrate that the no-
tion of substructure can be captured within constellations but not within categories.
We show that every constellation P gives rise to a category C(P ), its canonical ex-
tension, in a simplest possible way, and that P is a quotient of C(P ) in a natural
sense. We also show that many of the most common concrete categories may be con-
structed from simpler quotient constellations using this construction. We characterise
the canonical congruences δ on a given category K (those for which K ∼= C(K/δ)), and
show that the category of constellations is equivalent to the category of δ-categories,
that is, categories equipped with distinguished canonical congruence δ.

The main observation of this paper is that category theory as it applies to the fa-
miliar concrete categories of modern mathematics (which come equipped with natural

notions of substructures and indeed are δ-categories) may be subsumed by constella-
tion theory.

1. Introduction

The ESN Theorem establishes a correspondence between inverse semigroups

and certain types of ordered categories called inductive groupoids. In [4], this

setting is broadened in order to establish a correspondence between what in

modern terminology are called two-sided restriction semigroups and inductive

categories (in fact something more general than this is done). One-sided re-

striction semigroups are also of interest, but the lack of two unary operations

makes a correspondence with any kind of category impossible, or at least un-

natural. So in [1], a one-sided version of a category called a constellation,

and, correspondingly, a one-sided version of an inductive category called an

inductive constellation, were introduced; the latter were shown to correspond

exactly to one-sided (left) restriction semigroups.

The second section of [1] briefly concerns itself with general constellations,

but the main focus there is on inductive constellations. However, general
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constellations have interest for their own sake, being one-sided generalisations

of categories. Here we examine general constellations in detail, and especially

their relationship with categories. We begin with some motivation.

Constellations arise very naturally when one considers the possible ways of

making sense of function composition. We keep things simple for the moment

by considering only functions amongst the subsets of some fixed set X . For

any such function f : Y → Z where Y, Z are subsets of X , we say

• Y is the domain of f , Dom(f), and it is assumed that yf exists for all

y ∈ Y ;

• Z is the codomain of f , Cod(f), and it is assumed that yf ∈ Z for all

y ∈ Y for which yf exists;

• Im(f) = {xf | x ∈ Y } is the image of f , a subset of Z.

Note that we adopt the convention of writing the function on the right of the

element it acts on (so xf rather than f(x)), since this fits with our adoption

of the convention that composition of functions is to be read left-to-right (so

that fg is “first f , then g”).

We distinguish “functions amongst subsets of X” from “partial functions

on X”. The latter are functional binary relations (sets of ordered pairs) on

X , and have no pre-specified domain or codomain. However, they do have

well-defined domains and images: for such an f ,

• Dom(f) = {x ∈ X | (x, y) ∈ f for some y ∈ X};

• Im(f) = {y ∈ X | (x, y) ∈ f for some x ∈ X}.

There are three possible approaches to defining composites, as well as do-

main and range operations, in part depending on which of these viewpoints

we adopt.

(1) In the (small) category of subsets of the setX , the arrows are the functions

f : Y → Z where Y, Z are subsets of X , with Y the domain of f and f

mapping into its codomain Z. Composition of two arrows is defined if and

only if the codomain of the first equals the domain of the second. There

are unary domain and range operations which correspond to restricting

the identity map to the domain and codomain respectively of a given

function. The result is a category we call CODX , the category of cod-

functions on the non-empty set X .

(2) At the other extreme, the partial functions on X may be made into a

semigroup under composition (a subsemigroup of the semigroup of binary

relations on X under composition), so that all compositions fg are de-

fined (even if the result is the empty set). There are again domain and

range operations defined in terms of domains and images of the partial

functions (codomains now not being defined), although of course the re-

sult is not a category (and domain and range operations do not behave

symmetrically due to the asymmetric nature of partial functions). The

result is a semigroup equipped with two unary operations that we call

PX .
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(3) There is a third way, intermediate between those just discussed, although

it uses the partial function approach of (2) rather than the function with

domain and codomain approach of (1). One may require that the com-

posite f · g of two partial functions be defined if and only if the image

of f is a subset of the domain of g. This is the constellation product.

There is a natural domain operation, as in the two previous cases. In this

way, we obtain a partial algebra we call CX , having one partial binary

operation and one unary operation; this is one of the main examples of a

constellation given in [1].

(We remark in passing that there is in fact a fourth option that we do

not consider here, in which one defines the composite of two cod-functions if

and only if the codomain of the first is a subset of the domain of the second.

Such a definition gives rise to a type of structure different to the constellations

considered here.)

For approach (3), there is also a range operation as in (2) if one wishes. How-

ever, its role is not vital in the way that it is in category theory. Besides, in a

number of settings related to the above, the very notion of a range operation is

itself problematic. For example, one may consider the partial functions on an

infinite set that have infinite domains. Approach (1) can make sense, providing

one requires the specification of a (rather arbitrary) infinite codomain contain-

ing the image of a given possibly finite-image partial function. Approach (2)

does not work at all since this set of partial functions is not closed under either

the semigroup composition or the range operation. Approach (3) works and

seems the most natural: the partial functions in question are closed under the

constellation product and the domain operation, but not any obvious range

operation.

For a class C of structures in which there is a notion of structure-preserving

mapping, one usually obtains a concrete category in which the objects are

members of C and the arrows are structure-preserving mappings between mem-

bers of C (basically, one needs the composite of two structure-preserving map-

pings to be structure-preserving). Each arrow has associated with it two ob-

jects, the source and target of the mapping: the source is the domain and the

target contains its image. Then the composite of two arrows is defined if and

only if the target of the first equals the source of the second. This is along

the lines of approach (1) above. One can also obtain a constellation structure

analogous to approach (3), in which composition of structure-preserving maps

is defined whenever the image of the first mapping is contained in the domain

of the second. (On the other hand, approach (2) is difficult to make sense of

in general, and may only have a limited analog: for example if one considers

an algebra A together with all homomorphisms of its subalgebras into it, one

obtains a submonoid of the semigroup of partial mappings on A.)

In what follows we shall see that in many concrete settings, the natural cat-

egory structure can be obtained from the equally natural (yet simpler, being a
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quotient of the category) constellation structure. Constellations are expressive

enough to capture the notion of substructure where it makes sense, even when

the corresponding categories cannot. On the other hand, every category is

shown to be a constellation. So, somewhat paradoxically, constellations are

simultaneously more general, more fundamental, and yet more expressive than

categories!

In Section 2 of this article, we review the definition and basic properties

of constellations as presented in [1]. A number of examples of constellations

are given, parallelling the familiar examples of concrete categories. We then

present an equivalent definition of constellations that makes clear the fact that

constellations generalise categories; indeed categories are shown to be nothing

but “two-sided” constellations. Those constellations arising from, or embed-

dable in, categories are characterised. A Cayley-style theorem is given for

small constellations (constellations whose underlying classes are sets) satisfy-

ing a simple property we call normality. The relevant notions of subalgebra,

homomorphism (radiant) and quotient are considered.

The third section concentrates on the notion of the canonical extension

of a constellation P to a category C(P ), which satisfies a suitable universal

property. For constellations P satisfying a natural “composability” property

(satisfied by the main examples), P is shown to be a quotient of C(P ). It

is shown that many of the most familiar concrete categories of mathematics

arise as canonical extensions of corresponding (simpler) constellations. It is

shown that the notion of substructure cannot be expressed in the language of

categories, but can in the language of constellations. Those congruences δ on a

category K that give rise to a constellation P = K/δ for which K ∼= C(P ) are

described, the so-called canonical congruences (a notion definable for constel-

lations in general), and maximal such congruences are shown to always exist

and to give rise to simple (in the relevant sense) quotients. In Theorem 3.27

the category of composable constellations is shown to be equivalent to the

category of categories equipped with distinguished canonical congruence.

We conclude with some open questions. Given our thesis that category

theory as it applies to the concrete categories of modern mathematics may be

subsumed by constellation theory, it is of interest to examine how some of the

big applications of category theory to mathematical topics such as topology

appear when re-cast in the more parsimonious form of constellations. Notions

such as natural transformations, left and right adjoint functors, equalizers and

so forth all need to be formulated in the setting of constellations.

2. The basics of constellations

2.1. Defining constellations. We begin with some definitions, examples,

and basic facts concerning constellations, to some extent reprising material

in the early sections of [1]. First, we recall the definition of a constellation,

generalised to allow classes rather than sets.
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A constellation is a structure P of signature (·, D) consisting of a class P

with a partial binary operation · and unary operation D (denoted + in [1])

that maps onto the set of projections E ⊆ P , so that E = {D(x) | x ∈ P},

and such that for all e ∈ E, e · e exists and equals e, and for which, for all

x, y, z ∈ P :

(C1) if x · (y · z) exists then so does (x · y) · z, and then the two are equal;

(C2) x · (y · z) exists if and only if x · y and y · z exist;

(C3) for each x ∈ P , D(x) is the unique left identity of x in E (i.e. it

satisfies D(x) · x = x);

(C4) for a ∈ P and g ∈ E, if a · g exists then it equals a.

(Note that “D(x)” is one situation in which we write the function on the left,

but here D is an operation name, so there should be no confusion.) Because

there is an asymmetry in the definition of constellations, we should properly

call constellations as defined here left constellations, there being an obvious

right-handed version that we return to later. However, we will only rarely be

interested in anything other than the left-handed versions, and so generally

omit “left” in what follows.

We shall say that the constellation P is small if P is a set. Only small

constellations were considered in [1], although most of the results given in the

second section there carry over to the more general case considered here, with

only occasional minor changes in terminology.

Our first observation is that the axioms for constellations may be simplified

somewhat.

Proposition 2.1. In the definition of a constellation, (C2) may be replaced

by

(Const2) if x · y and y · z exist then so does x · (y · z).

Proof. Clearly (C2) implies (Const2). Conversely, if (Const2) holds, and x ·

(y · z) exists then so does (x · y) · z by (C1), whence so do both x · y and y · z,

so (C2) is satisfied. �

A result that we will make frequent use of is the following, which is Lemma

2.3 in [1].

Lemma 2.2. For s, t elements of the constellation P , s · t exists if and only

if s ·D(t) exists, and D(s · t) = D(s).

An important example of a constellation is CX (outlined in (3) above), con-

sisting of partial functions on the setX , in which s·t is the composite s followed

by t provided Im(s) ⊆ Dom(t), and undefined otherwise, and D(s) is the re-

striction of the identity map on X to Dom(s). We remark here that CX is an

example of an inductive constellation, the focus of [1]. Briefly, a constellation

is inductive if it is equipped with a partial order satisfying a number of ax-

ioms with regard to its interaction with the underlying constellation structure;

in particular, the identities form a semilattice under this partial order. The
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inductive structure on CX allows us to reconstruct the semigroup PX in (2)

above. Another constellation comes from any quasiordered set (Q,≤): simply

define e = e · f whenever e ≤ f in (Q,≤), and let D(e) = e for all e ∈ Q.

These examples were introduced in [1].

A global right identity in a constellation P is an element e ∈ P such that

s · e exists and equals s for all s ∈ P ; it follows that D(e) = D(e) · e = e, so

e ∈ D(P ). Every monoid (M, ·) is a constellation (M, ·, D) in which D(a) = 1

for all a ∈ M , as is easily checked, and 1 is a global right (indeed two-sided!)

identity.

Just as every semigroup may be enlarged to a monoid with the addition of

a new identity element, so too every constellation may be enlarged to one in

which there is a global right identity: the following may be shown by easy case

analyses.

Proposition 2.3. Let P be a constellation with 1 6∈ P . Then P can be enlarged

to a constellation P 1 = P ∪{1} with 1 a global right identity, by setting s·1 = s

for all s ∈ P , 1 · 1 = 1, and letting 1 · s not be defined for any s ∈ P .

If P is a constellation, a property an element s ∈ P may have is that of

being composable: there exists t ∈ P such that s · t exists. An element that is

not composable is called incomposable. If every element of a constellation P

is composable, we say P is composable. Note that CX is composable, as is any

monoid or quasiordered set viewed as a constellation.

The class of constellations furnishes the objects in a category whose ar-

rows are radiants, defined in [1] to be mappings ρ : P → Q (where P,Q are

constellations) for which, for all s, t ∈ P ,

• if s · t exists in P then sρ · tρ exists in Q, and then sρ · tρ = (s · t)ρ, and

• D(s)ρ = D(sρ).

(In fact a radiant is nothing but a homomorphism of partial algebras as in [2]

applied to the case of constellations.) We call this category the category of

constellations.

As in [1], we say a radiant ρ : P → Q is strong if, whenever sρ · tρ exists

in Q, then so too does s · t exist in P . It is an embedding if it is strong and

injective, and an isomorphism if it is a surjective embedding. These definitions

are all consistent with standard terminology for the theory of partial algebras

as in [2] for example.

2.2. Examples. All of the examples to follow are “concrete” in the sense that

they are set-based, and the elements are certain types of mappings amongst

them (generally structure-preserving in some sense).

Example 2.4. The constellation of sets.

Let S be the class of sets. Of course there is a familiar category structure

SET associated with S, consisting of sets as the objects and maps between

them as the arrows; equivalently, taking the “arrow only” point of view, the
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category consists of all possible maps between all possible sets, with the opera-

tions D and R given by specifying D(f) to be the identity map on the domain

of f and R(f) the identity map on its codomain, with the partial operation of

category composition defined if and only if domains and codomains coincide.

We define a constellation CSET from S by analogy with CX as above, by

taking the elements to be the surjective functions, with D defined as in the

category, but with composition of functions f ·g defined if and only if Im(f) ⊆

Dom(g). The proof that this gives a constellation is very much like the proof

that CX is a constellation. As for CX , we see CSET is also composable.

Moreover, with quotients defined in the natural way (see Section 2.7), its

quotient by the largest projection-separating congruence is the same as for

SET .

Note that the constellation of sets has rather fewer elements than the cate-

gory of sets, but more products exist amongst these fewer elements. We return

to the details of the relationship between the category and the constellation

in this and other cases in the next section.

Example 2.5. The constellation of groups.

Let G be the class of groups. Of course there is a familiar category structure

GRP associated with G: the arrows are all possible homomorphisms between

all possible groups, with the partial operation of category composition as well

as D and R defined as in SET .

We define a composable constellation structure CGRP from G as follows.

The elements are the surjective homomorphisms between groups, and again

composition and D are as in the constellation of sets CSET .

This example generalises widely, for example to any class of algebras of the

same type, such as rings, modules, semigroups and so on.

Example 2.6. The constellation of topological spaces.

The category TOP of topological spaces, in which the objects are topologi-

cal spaces and the arrows are continuous functions between them, likewise has

a composable constellation cousin CTOP , consisting of the surjective contin-

uous functions between topological spaces, equipped with the obvious domain

and composition operations. The idea generalises to other non-algebraic set-

tings in which the mappings are structure-preserving in some suitable sense

(for example, partially ordered sets equipped with surjective order-preserving

maps): in each case, there are both category and constellation structures.

Example 2.7. The constellation of partial maps with infinite domain.

Suppose X is an infinite set, and denote by C∞

X the set of all partial maps in

CX that have infinite domains. Obviously, C∞

X is a composable subconstellation

(see Section 2.5) of CX . Note that no natural type of range operation based

on image is available in this example, since images of elements of C∞

X can be

finite. A related category would consist of all cod-functions between subsets

of X having both infinite domain and codomain.
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We may replace “infinite domains” by “domains that lie in some filter of

subsets of X”, and we can even admit additional structure, for example alge-

braic. Generalising in a different way, we may consider the category SET∞

consisting of all infinite sets together with all mappings between them (noting

that images of such mappings need not be infinite), and CSET∞ consisting

of all surjective maps with infinite domain equipped with domain and con-

stellation product (under which they are closed). Similarly, we can consider

the category GROUP∞ consisting of all infinite groups with homomorphisms

between them and the associated constellation CGROUP∞ consisting of sur-

jective group homomorphisms having infinite domain.

2.3. Constellations generalise categories. We can make more precise the

notion that constellations are one-sided generalisations of categories.

Let C be a class with a partial binary operation. Recall that e ∈ C is a

right identity if it is such that, for all x ∈ C, if x · e is defined then it equals x;

left identities are defined dually. An identity is both a left and right identity.

(Note we are not assuming that e · e exists in any of these cases.)

Following [4], recall that a category is a class with a partial binary operation

satisfying the following:

(Cat1) x · (y · z) exists if and only if (x · y) · z exists, and then the two are

equal;

(Cat2) if x · y and y · z exist then so does x · (y · z);

(Cat3) for each x ∈ P , there are identities e, f such that e · x and x · f

exist.

Note that in [4], (Cat2) is given in the form

if x · y and y · z exist then so does (x · y) · z,

which is obviously equivalent to the version we give in the presence of (Cat1).

The identities e, f in (Cat3) are easily seen to be unique: for if e, e′ are

identities with e · x = x and e′ · x = x, then e · (e′ · x) exists, hence so does

(e · e′) · x, whence e · e′ does, and then e = e · e′ = e′ since both are identities.

(Hence e ·e exists and equals e.) Similarly for f . In general, we write D(x) = e

and R(x) = f . It follows then that the collection of domain elements D(x)

(equivalently, range elements R(x)) is precisely the collection of identities in

the category and does not need a priori specification: the domain and range

operations are defined once uniqueness is shown (or else uniqueness can be

redundantly assumed in (Cat3)).

The following familiar properties hold in a category.

Proposition 2.8. Let x, y be elements of a category C.

• The product x · y exists if and only if R(x) = D(y).

• If x · y exists then D(x · y) = D(x) and R(x · y) = R(y).

Constellations admit an alternative definition that is quite reminiscent of

the above way of defining categories.
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Proposition 2.9. Suppose C is a class with a partial binary operation satis-

fying the following:

(Const1) if x · (y · z) exists then (x · y) · z exists, and then the two are

equal;

(Const2) if x · y and y · z exist then so does x · (y · z);

(Const3) for each x ∈ P , there is a unique right identity e such that

e · x = x.

Then C is a constellation in which D(x) = e as in (Const3), and E is the

class of right identities of C.

Conversely, if C is a constellation with class of projections E, then the class

of right identities in C is E and the above three laws hold.

Proof. The proof of Proposition 2.1 shows that (Const1) and (Const2) are

together equivalent to (C1) plus (C2) for binary partial algebras.

Suppose C satisfies the three new laws. Now define D(x) = e as in (Const3),

and let E = {D(x) | x ∈ C}. For e ∈ E, e = D(e) · e = D(e) as e is a right

identity, so in particular e · e = e, so D(e) = e ∈ E is idempotent. We show E

is the class of all right identities. Clearly it is a subclass of them by definition.

But if e is a right identity then again e = D(e) · e = D(e), so e ∈ E. (C3) and

(C4) are now immediate.

Conversely, if C is a constellation with e a right identity, then e = D(e) ·

e = D(e), so E consists of the class of all right identities in C, so (Const3)

follows. �

In this new axiomatization for constellations, D is not specified initially,

and is determined by the class of all right identities (a class wholly determined

by the partial binary operation), parallelling the definition of a category.

The notion of radiant may be expressed in terms of the new alternative

definition also.

Proposition 2.10. The map ρ : P → Q (where P,Q are constellations) is a

radiant if and only if it satisfies, for all s, t ∈ P ,

• if s · t exists in P then sρ · tρ exists in Q, and then (sρ) · (tρ) = (s · t)ρ,

and

• eρ is a right identity in Q for every right identity e of P .

Proof. Suppose the above conditions are satisfied. The first is just the first

condition in the definition of a radiant. Now for s ∈ P we have s = D(s) · s

so that by the first condition above, sρ = D(s)ρ · sρ. By the second condition

above, D(s)ρ is a right identity in Q and so by uniqueness we have D(s)ρ =

D(sρ). Thus the second condition for ρ to be a radiant is also satisfied.

Conversely, if P is a radiant, then the first condition above is satisfied, while

if e is a right identity in P then, by the proof of Proposition 2.9, e = D(e). So

eρ = D(e)ρ = D(eρ) which is a right identity in Q, and the second condition

is satisfied. �
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Another advantage of the new formulation is that it makes clearer the fact

that constellations generalise categories.

Proposition 2.11. In a category, every right identity is an identity. Hence

every category is a constellation.

Proof. Let e be a right identity in the category C. Then e = D(e) · e = D(e),

so e is an identity, and the class of identities equals the class of right identities.

So for x ∈ C, D(x) is the unique identity, hence unique right identity, such

that D(x) · x = x. �

As noted earlier, there is an asymmetry in the axioms for constellations not

present in the axioms for categories. We gave the full title of left constellation

to an object satisfying laws (C1)–(C4) above. We call an object satisfying the

following dual axioms a right constellation: it is a structure P of signature (·, R)

consisting of a class P with a partial binary operation · and unary operation

R that maps onto the set of projections E ⊆ P , so that E = {R(x) | x ∈ P},

and such that for all e ∈ E, e · e exists and equals e, and for which, for all

x, y, z ∈ P :

(C1′) if (x · y) · z exists then so does x · (y · z), and then the two are equal;

(C2′) (x · y) · z exists if and only if x · y and y · z exist;

(C3′) for each x ∈ P , R(x) is the unique right identity of x in E (i.e. it

satisfies x ·R(x) = x);

(C4′) for a ∈ P and g ∈ E, if g · a exists then it equals a.

By the symmetry of the category axioms, there is an obvious variant of

Proposition 2.11, namely that in a category, every left identity is an identity,

and so every category is a right constellation also. There is also a dual ver-

sion of Proposition 2.9 involving right-handed versions (Const1′)–(Const3′) of

(Const1)–(Const3)

If (C, ·, D,R) is a category, then (C, ·, D) is a left constellation, (C, ·, R) is

a right constellation, and D(P ) = R(P ). Indeed there is an easy converse to

this, showing that constellations can be viewed as “one-sided categories”.

Proposition 2.12. Let the class P be equipped with a partial binary opera-

tion and two unary operations D,R such that (P, ·, D) is a left constellation,

(P, ·, R) is a right constellation and D(P ) = R(P ). Then (P, ·, D,R) is a

category.

Proof. We refer to the axioms (Const1)–(Const3) for left constellations and

their duals (Const1′)–(Const3′) for right constellations. Axioms (Const1) and

(Const1′) together imply (Cat1), and (Cat2) is nothing but (Const2). Since

D(P ) = R(P ), the left identities of (P, ·) are precisely the right identities

by Proposition 2.9 and its dual, so (Cat3) obviously holds also, on letting

e = D(x) and f = R(x). �



Vol. 00, XX Constellations and their relationship with categories 11

2.4. When a constellation arises from a category. We say a constella-

tion is categorial if it arises from a category as a reduct (obtained by dropping

R).

Proposition 2.13. Let P be a constellation. Then P is categorial if and only

if, for all s ∈ P there is a unique e ∈ D(P ) such that s · e exists, and then

R(s) = e when P is viewed as a category.

Proof. If P is categorial then for each s ∈ P , s · R(s) exists and moreover

R(s) is the unique identity (hence unique right identity by Proposition 2.11)

for which s · e exists.

Conversely, suppose that for every s ∈ P there is a unique e ∈ D(P ) such

that s · e exists. Now let t ∈ P and f ∈ D(P ), with f · t existing. Then

f · D(t) exists by Lemma 2.2, so since f · f exists, we must have f = D(t)

by the uniqueness assumption. So f · t = D(t) · t = t, and f is also a left

identity. So D(P ) consists of the identities of P , and so for every s ∈ P there

are identities e, f such that e·s and s·f both exist, establishing (Cat3). (Cat2)

is immediate. It remains to prove (Cat1).

If s, t, u ∈ P are such that s · (t · u) exists, then (s · t) · u exists also, by

(Const1), and they are equal. Conversely, suppose s, t, u ∈ P are such that

(s · t) · u exists. Then (s · t) · D(u) exists by Lemma 2.2. But there exists

(unique) e ∈ D(P ) such that t · e exists, so s · t = s · (t · e) exists, so (s · t) · e

exists by (Const1). So again by the uniqueness assumption, e = D(u), and so

t · D(u) exists, so t · u exists by Lemma 2.2. But s · t exists, so by (Const2),

s · (t · u) exists and s · (t · u) = (s · t) · u also. So (Cat1) holds. �

If f : K → L is a functor, then it is a radiant when the categories K and L

are viewed as constellations (so in particular, if ρ above is a category isomor-

phism, then it is a constellation isomorphism as well). Indeed the converse is

also true.

Proposition 2.14. If K,L are categories then ρ : K → L is a radiant if and

only if it is a functor.

Proof. If P,Q are categorial constellations and ρ : P → Q is a radiant, then

for each s ∈ P , there is a unique e ∈ D(P ) such that s · e exists (namely R(s)

when P is viewed as a category), so sρ = (s ·e)ρ = (sρ) ·(eρ) where eρ ∈ D(Q),

so by uniqueness, eρ is the unique f ∈ D(Q) such that (sρ) · f exists, that is,

R(sρ) = eρ = R(s)ρ. The converse was dealt with above. �

It follows that the the class of categorial constellations is a full subcategory

of the category of all constellations.

We next obtain a description of those constellations embeddable in cate-

gories. First note that any subconstellation of a categorial constellation must

satisfy (Cat1) rather than just (C1). For if P is a subconstellation of categorial

C, and for some s, t, u ∈ P , (s · t) · u exists in P , then it exists in C also and
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hence must equal s · (t · u); but t · u ∈ P since it is a subconstellation, whence

s · (t · u) ∈ P (where it must equal (s · t) · u).

We shall need two preliminary lemmas, the first of which is a variant of

Proposition 2.13.

Lemma 2.15. Let P be a constellation satisfying (Cat1). Let P ∗ = P ∪ {∗}

where ∗ /∈ P and extend the partial binary operation in P by putting x · ∗ = x

for all non-composable x and ∗ · ∗ = ∗. Then P ∗ is a constellation with

D(P ∗) = D(P ) ∪ {∗}.

Proof. Let x, y ∈ P ∗. If ∗·(x·y) exists, then clearly x·y = ∗, so that x = y = ∗

and (∗ · x) · y = ∗ exists and equals ∗ · (x · y).

If x · (∗ · y) exists, then y = ∗ and ∗ · y = ∗. Hence (x · ∗) · y = x and equals

x · (∗ · y).

Suppose now that x, y ∈ P . If x · (y · ∗) exists then y is non-composable and

y ·∗ = y, so that x ·y exists. It follows from (Cat1) that x ·y is non-composable

so that (x · y) · ∗ = x · y exists and equals x · (y · ∗). We have thus shown that

(Const1) holds.

A similar (but more straightforward) case-by-case analysis verifies (Const2).

Condition (Const3) is clear. �

The following is now clear from Proposition 2.13 and Lemma 2.15.

Corollary 2.16. Let P be a constellation satisfying (Cat1) in which for each

s ∈ P there is at most one e ∈ D(P ) for which s · e exists. Then P ∗ as in

Proposition 2.15 is a categorial constellation.

Proposition 2.17. The constellation P is embeddable in a category if and

only if it satisfies (Cat1) and for each s ∈ P , there is at most one e ∈ D(P )

for which s · e exists.

Proof. If P embeds in a category, then (Cat1) must hold, and for each s ∈ P

there can be at most one e ∈ D(P ) for which s · e exists. The converse is

immediate from Corollary 2.16. �

Proposition 2.13 shows that for any constellation P , (Cat1) follows on the

assumption that for all s ∈ P there is a unique e ∈ D(P ) such that s · e exists.

However, (Cat1) cannot be omitted in Proposition 2.17. Consider any set X

having non-empty proper subset Y ; then CY
X consisting of all partial functions

in CX having domain Y is easily seen to be a constellation under the same

operations as those on CX . For each s ∈ CY
X , there is obviously at most one

e ∈ D(CY
X) for which s · e exists (since |D(CY

X)| = 1). However, it does not

generally satisfy (Cat1), and hence is not generally embeddable in a category.

For example, ifX = {1, 2} and Y = {1}, let s = {(1, 1)} and t = {(1, 1), (2, 2)},

the only element of D(CY
X); it is readily verified that (s · t) · s = s but that

t · s is not defined, so nor is s · (t · s). (The latter example also arises from the

poset P = {e, f} in which e ≤ f : (e · f) · e exists but e · (f · e) does not.)
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Every small categoryC may be viewed as a bi-unary semigroup S, consisting

of ground set C ∪{0} where 0 6∈ C, in which one defines ab = a · b if a · b exists

in C, and ab = 0 otherwise. However, nothing similar can be done with

constellations, since, as we have just seen, there can be elements x, y, z of a

constellation C for which (x · y) · z is defined yet x · (y · z) is not. So a similar

approach of defining a total binary operation on a constellation augmented by

a new element 0 may not yield an associative operation, and so there is no

way to view many constellations as equivalent to any form of semigroup (even

one defined on a class rather than a set).

2.5. Subconstellations. If P is a partial algebra then non-empty Q ⊆ P is

a said to be a subalgebra if it is closed under the partial operations on P . For

a constellation P , this means that non-empty Q ⊆ P is a subalgebra if for

a, b ∈ Q, if a · b exists in P then it lies in Q, and D(a) ∈ Q for all a ∈ Q. The

following is easily shown.

Proposition 2.18. If P is a constellation with subalgebra Q, then Q is a

constellation under the restrictions of the operations of P .

For this reason, we refer to a subalgebra Q of a constellation P as a sub-

constellation. By (C4), D(P ) is a subconstellation of the constellation P .

Proposition 2.19. The constellation P is a subconstellation of P 1 as in

Proposition 2.3. Hence every constellation arises as a subconstellation of a

constellation with global right identity, and in particular of a composable con-

stellation.

Proposition 2.20. The image of a strong radiant ρ : P → Q is a subconstel-

lation of Q, isomorphic to P if ρ is an embedding.

Proof. It follows from the general theory of partial algebras as in [2] that the

image Pρ of P in Q is a subalgebra, hence a subconstellation by Proposition

2.18. �

On the other hand, if P is a subconstellation of Q then the inclusion map

i : P → Q is easily seen to be an embedding.

2.6. Normality and a Cayley theorem. There is a natural quasiordering

on the projections in a constellation P .

Proposition 2.21. If P is a constellation, define the relation . on D(P ) by

e . f if and only if e · f exists (and so, necessarily, e · f = e). Then . is a

quasiorder, and is a partial order if and only if for all e, f ∈ D(P ), if e ·f and

f · e exist, then e = f .

Proof. For e, f, g ∈ D(P ), if e . f and f . g then e = e · f and f = f · g

exist, so e · (f · g) exists by (C2), hence so does (e · f) · g = e · g by (C1).

Reflexivity is obvious, so . is a quasiorder. It is a partial order if and only if it



14 V. Gould and T. Stokes Algebra univers.

is antisymmetric, which translates into the condition that for all e, f ∈ D(P ),

if e · f and f · e exist, then e = f . �

We call the quasiorder . above the standard quasiorder on D(P ); let ≈

be the associated equivalence relation, so that e ≈ f if and only if e . f

and f . e. The condition ensuring . is a partial order (that is, ≈ is the

identity map) is called normality, and we say P is a normal constellation in

this case. A normal constellation has at most one global right identity element.

A quasiordered set is normal when viewed as a constellation if and only if it

is a poset. A subconstellation of a normal constellation is normal. Every

categorial constellation is normal since e . f if and only if e = f (where e, f

are identities).

In each example of a constellation given in Section 2.2, the standard qua-

siorder on D(P ) corresponds to the notion of being a substructure in the

appropriate sense, so all the examples given there are normal. From Theorem

2.23, every inductive constellation is normal (since each embeds as a constel-

lation in some CX), but the converse is certainly false. For example, although

CX is inductive, C∞

X is not, as D(C∞

X ) is not a semilattice and so condition (I)

for inductive constellations as in [1] fails.

If (Q,≤) is a quasiordered set, then as noted earlier, we may view it as a

constellation in which D(Q) = Q by defining e = e · f if e ≤ f in (Q,≤),

and letting D(e) = e for all e ∈ Q. Then ≤ is nothing but the standard

quasiorder on D(Q) = Q viewed as a constellation. Indeed there is an iso-

morphism between the categories of quasiordered sets and constellations Q in

which D(Q) = Q, since quasiorder-preserving maps are nothing but radiants

under this correspondence, as is easily seen. This isomorphism specialises to

one between normal constellations in which D(Q) = Q and partially ordered

sets.

The uniqueness assumption in (Const3) in our new definition of constella-

tions may be omitted in the normal case, generalising the case of categorial

constellations.

Proposition 2.22. Suppose C is a class with a partial binary operation satis-

fying (Const1) and (Const2), and for all right identities e and f , the normality

property is satisfied. Then (Const3) is equivalent to

(Const3A) for each x ∈ P , there is a right identity e such that e · x = x.

Proof. Suppose (Const3A) holds. Suppose e ·x = f ·x = x where e, f are right

identities. Then e · (f · x) is defined, hence so is (e · f) · x by (Const1), so e · f

exists. By symmetry, so does f · e. Hence e = f , and (Const3) holds. �

So (Const3A) may be used in place of (Const3) to define normal constella-

tions.

Recall the constellation of partial functions CX on the set X , defined above.

Let us say a small constellation P is functional if it embeds in CX for some

set X . In particular, inductive constellations are functional (Proposition 3.9
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of [1]). By Proposition 2.20 and the comment following it, P is functional if

and only if it is (isomorphic to) a subconstellation of CX for some set X .

Theorem 2.23. A small constellation is functional if and only if it is normal.

Proof. If the small constellation P is functional then for e, f ∈ D(P ), e . f

can be interpreted as set inclusion of the domain of e in the domain of f ; of

course, set inclusion is a partial order, proving normality.

Conversely, if the small constellation P is normal then the strong radiant

ρ : P → CP given by s 7→ ρs, where xρs = x · s if it exists and undefined

otherwise (as in Proposition 2.6 of [1]) is also injective, hence an embedding.

For suppose ρs = ρt. Then D(s) · t exists and equals s (since D(s) · s exists

and equals s), so D(s) ·D(t) exists by Lemma 2.2. Similarly, D(t) ·D(s) exists,

and so D(s) = D(t) by normality. Hence s = D(s) · t = D(t) · t = t. So P is

functional. �

There is a similar well-known Cayley-type theorem for categories: every

small category is embeddable in the small category of subsets of some set

equipped with the cod-functions between them.

2.7. Congruences, quotients and homomorphism theorems. There are

natural notions of congruence and quotient for constellations, which are again

special cases of more general notions for partial algebras as in [2].

Given a constellation C we say the equivalence relation δ is a congruence if,

whenever (s1, s2) ∈ δ and (t1, t2) ∈ δ, and both s1 · t1 and s2 · t2 are defined, it

is the case that that (s1 · t1, s2 · t2) ∈ δ, and (D(s1), D(s2)) ∈ δ; it is a strong

congruence if it has the property that s1 · t1 is defined if and only if s2 · t2 is,

for all such s1, t1, s2, t2. The kernel δ of the radiant ρ : P → Q (defined to be

an equivalence relation on P in the usual way) is a congruence but may not

be strong.

Given a congruence δ on the constellation P , let [x] denote the δ-class

containing x ∈ C. Consistent with its definition for general partial algebras,

we may define the quotient P/δ by setting [s] · [t] = [u] if s1 · t1 = u1 for some

s1 ∈ [s], t1 ∈ [t] and u1 ∈ [u]; this is easily seen to be well-defined. (If δ is a

strong congruence, we may simply define [s] · [t] = [s · t] whenever s · t exists.)

We also define D([s]) = [D(s)] for all s ∈ S.

Given a congruence δ on the constellation C, the natural map taking x to

[x] for all x ∈ C is a partial algebra homomorphism C → C/δ, strong if and

only if δ is. In important cases, the quotient C/δ is in fact a constellation also.

Indeed it is possible to write down conditions on a congruence δ defined on the

constellation P that characterise when P/δ is a constellation, based on any of

the equivalent sets of conditions that can be used to define constellations given

above. These conditions need not be met in all cases, as the following example

shows. Let P = {s, t1, t2, u} be the constellation in which all four elements are

idempotent, and s · t1 = s, t2 · u = t2, with no other products defined. (This

arises from the partial order on the set P given by s ≤ t1 and t2 ≤ u.) Then
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the equivalence relation δ with classes a = {s}, b = {t1, t2}, c = {u} is easily

seen to be a congruence, and a · b = a, b · c = b. Note that a · (b · c) = a exists

yet (a · b) · c does not, so (C1) fails.

We say the congruence δ on the constellation P is right strong if, whenever

[s] · [t] exists in P/δ, there exists s1 ∈ [s] such that s1 · t exists in P . Put

another way, δ is right strong if, whenever s · t exists in P , then for all t1 δ t

there exists s1 δ s for which s1 · t1 exists. Obviously, if δ is strong then it is

right strong.

Proposition 2.24. Let P be a constellation, δ a right strong congruence on

P . Then Q = P/δ is a constellation for which D(Q) = {[e] | e ∈ D(P )}, and

Q is composable if P is.

Proof. Suppose δ is a right strong congruence on P , with [x] the δ-class in Q

containing x ∈ P , as usual.

Suppose [a] · ([b] · [c]) exists. Then there exist b1, d such that b1 ∈ [b] and

b1 ·c exists, and also a1 ∈ [a] for which a1 ·(b1 ·c) exists. So (a1 ·b1)·c exists and

equals a1 · (b1 · c). So ([a] · [b]) · [c] exists, and since it overlaps with [a] · ([b] · [c]),

they are equal. So (C1) holds.

Suppose [a] · [b] and [b] · [c] exist. Then there is b1 ∈ P for which [b] = [b1]

and b1 · c exists, and then there is a1 ∈ P for which [a1] = [a] and a1 · b1 exists.

Hence a1 · (b1 · c) exists, so [a] · ([b] · [c]) exists as well. So (Const2) holds.

For e ∈ D(P ), [e] · [e] = [e · e] = [e], and if [s] · [e] exists then s1 · e exists

for some s1 such that [s] = [s1], so [s] · [e] = [s]. So [e] is a right identity in Q.

Conversely, if [s] is a right identity in Q, then since [D(s)] · [s] = [D(s) ·s] = [s]

exists, it must equal [D(s)], so [s] = [D(s)]. So the right identities in Q are

precisely the [e] where e is a right identity in P .

Now D([a]) · [a] = [D(a)] · [a] = [D(a) · a] = [a] since D(a) · a exists. If also

[e] · [a] exists and equals [a], then x · a exists and x · a δ a for some x ∈ [e], so

D(a) = D(x · a) = D(x) δ D(e) = e, and so [a] = [e]. Hence (Const3) holds.

So Q = P/δ is a constellation.

If P is composable then for all [s] ∈ Q (where s ∈ P ), there is t ∈ P such

that s · t exists, so [s] · [t] exists also, and so Q is composable. �

In particular, every quotient based on a right strong congruence on a constel-

lation is a constellation, although the converse is false. Consider the partially

ordered set Q = {e, f, g} in which e ≤ f is the only non-reflexive relation

between elements. Viewed as a constellation, Q has a non-right strong con-

gruence δ such that the associated partition is {e}, {f, g}, and clearly Q/δ is

a constellation even though δ is not right strong: g ∈ [f ] and e · f exists, yet

e · g does not exist.

Another important property that a congruence δ on a constellation P can

have is that it separates projections: for all e, f ∈ D(P ), if e δ f then e = f .

A congruence on a category, as it is traditionally defined, is nothing but a

projection-separating congruence on its constellation reduct that also respects
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the range operation. Note that if P is normal and δ is a strong congruence on

P then for all e, f ∈ P , if [e] = [f ] where e, f ∈ D(P ), then [e] · [f ] and [f ] · [e]

exist, so e · f and f · e exist in P , so by normality of P , e = f . Of course δ is

trivially right strong. In general we have the following.

Proposition 2.25. Let P be a constellation, δ a congruence on P that sepa-

rates projections. Then δ is right strong.

Proof. If [s] · [t] exists then there are s1 δ s and t1 δ t such that s1 · t1 exists,

so s1 ·D(t1) exists. But D(t1) δ D(t), so D(t1) = D(t), and so s1 ·D(t) exists,

so s1 · t exists. (This uses Lemma 2.2 twice.) �

We have the following useful consequence of Propositions 2.24 and 2.25.

Corollary 2.26. Let P be a constellation, δ a congruence on P that separates

projections. Then Q = P/δ is a constellation for which D(Q) = {[e] | e ∈

D(P )}, and Q is composable if P is.

The diagonal relation △ on a constellation P is a strong and projection-

separating congruence, the trivial congruence on P . Obviously P/△ ∼= P .

Consider the full congruence ▽ on the constellation P = {e, f} in which

only the products e · e and f · f exist. This is right strong but neither strong

nor projection-separating.

As noted earlier, the definition of a radiant between constellations is simply

the definition of homomorphism of partial algebras as in [2] applied to con-

stellations, and use of the term “strong” here is consistent with usage in the

general setting of [2] also. A further special type of homomorphism covered

in [2] applies to constellations as follows: a radiant ρ : P → Q is full if for all

s, t ∈ P for which (sρ) · (tρ) exists and is in the image of ρ, there are s′, t′ ∈ P

such that sρ = s′ρ, tρ = t′ρ and s′ ·t′ exists in P . The next result again follows

from the general theory of partial algebras and appears in [2].

Proposition 2.27. Suppose P is a constellation having congruence δ such

that P/δ is a constellation. Then the natural map P → P/δ is a full radiant.

There is a converse to this; see page 98 of [2], where it is noted that the

Homomorphism Theorem carries over to partial algebras in the following way.

Proposition 2.28. Let P1, P2 be constellations. If the surjective radiant

ρ : P1 → P2 is full then P1/ ker(ρ) ∼= P2.

A radiant ρ : P → Q separates projections if for all e, f ∈ D(P ), if eρ = fρ

then e = f . The following three results are clear.

Proposition 2.29. If ρ : P1 → P2 is a full surjective radiant that separates

projections then ker(ρ) separates projections. If δ is a congruence on the con-

stellation P that separates projections (whence P/δ is a constellation by Corol-

lary 2.26) then the natural map ν : P → P/δ is a full surjective radiant that

separates projections.
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Proposition 2.30. There is a largest projection-separating congruence δ on

every constellation P , given by s δ t if and only if D(s) = D(t), so that

D(P/δ) = P/δ, and [e] . [f ] in D(P/δ) if and only if there exists s ∈ P for

which D(s) = e and s · f exists (so if P is a category, there is s ∈ P such that

D(s) = e and R(s) = f).

For example, the largest projection-separating congruence on SET gives a

quotient that is the full quasiorder on all sets since for any two sets X,Y , there

is a function with domain X that maps into Y .

Corollary 2.31. The constellation P has no non-trivial projection-separating

congruences if and only if D(P ) = P .

There is a version of the correspondence theorem for constellations with

respect to projection-separating congruences. For δ an equivalence relation on

the constellation P , denote by [s]δ the δ-class containing s ∈ P (a notation

needed below since more than one relation is being considered).

Lemma 2.32. For P a constellation and δ, γ two projection-separating congru-

ences on P for which δ ⊆ γ, the mapping ρ : P/δ → P/γ given by [s]δρ = [s]γ
is a full projection-separating surjective radiant.

Proof. That ρ is a full surjective partial algebra homomorphism follows from

the general theory of partial algebras. If γ and hence δ are congruences that

are projection-separating, then they are right strong and so P/δ and P/γ are

constellations in which the domain elements are of the form [e]δ (or [e]γ) where

e ∈ D(P ) by Proposition 2.24. If [e]δρ = [f ]δρ for e, f ∈ D(P ), then [e]γ = [f ]γ
so e = f since γ is projection-separating, and so [e]δ = [f ]δ. �

Proposition 2.33. Let P be a constellation with δ a projection-separating

congruence on it, and let Q = P/δ. Then for any projection-separating con-

gruence ǫ on Q, there exists a projection-separating congruence γ on P that

contains δ and such that P/γ ∼= Q/ǫ, given by s γ t if and only if [s]δ ǫ [t]δ.

Conversely, if γ is a projection-separating congruence on P containing δ, then

there is a projection-separating congruence ǫ on Q for which P/γ ∼= Q/ǫ, given

by [s]δ ǫ [t]δ if and only if s γ t.

Proof. Let P,Q, δ be as stated.

Let ǫ be a projection-separating congruence on Q. Let ν1 : P → P/δ

and ν2 : Q → Q/ǫ be the natural maps (which are full surjective projection-

separating radiants by Proposition 2.27), and let ν : P → Q/ǫ be their com-

posite, also a full surjective radiant that separates projections. Let γ = ker(ν).

Then (s, t) ∈ γ if and only if [s]δ ǫ [t]δ, so δ ⊆ γ, γ is a congruence that sepa-

rates projections by Proposition 2.29, and P/γ ∼= Q/ǫ by Proposition 2.28.

Conversely, suppose γ is a projection-separating congruence on P , with

δ ⊆ γ. We have the natural maps ν : P → P/γ and ν1 : P → P/δ. Since

δ ⊆ γ, we may define ρ : P/δ → P/γ by setting [s]δρ = [s]γ , a full surjective
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radiant that separates projections by Lemma 2.32, so ǫ = ker(ρ) is a projection-

separating congruence on Q such that Q/ǫ ∼= P/γ by Proposition 2.28. �

3. The canonical extension of a constellation to a category

3.1. Definition and basic properties. Let P be a constellation. Let C(P )

be the structure consisting of the ordered pairs (s, e), where s ∈ P , e ∈ D(P ),

and s · e = s. On C(P ), define

(s, e) ◦ (t, f) = (s · t, f)

providing e = D(t) (in which case s · t exists since both s · e and e · t exist,

whence so does s · (e · t) = s · t). Also define D((s, e)) = (D(s), D(s)) and

R((s, e)) = (e, e).

Proposition 3.1. For any constellation P , (C(P ), ◦, D,R) is a category.

Proof. Suppose (s, e) is an identity in C(P ), and suppose x · s exists for some

x ∈ P . Hence x ·D(s) exists, and so (x,D(s)) ∈ C(P ). Now (x,D(s)) ◦ (s, e)

exists, and equals (x·s, e), which must equal (x,D(s)) since (s, e) is an identity,

so x·s = x. So s is a right identity in P , and e = D(s) = s. So (s, e) = (e, e) for

some right identity e of P . Conversely, it is easy to check that (e, e) ∈ C(P )

(where e is a right identity of P ) is a two-sided identity of C(P ), so such

elements are precisely the identities of C(P ).

For (x, e), (y, f), (z, g) ∈ C(P ), the following are equivalent: (x, e) ◦ ((y, f) ◦

(z, g)) exists; e = D(y) and f = D(z); ((x, e) ◦ (y, f)) ◦ (z, g) exists (since

D(y ·z) = D(y)). Both products are easily seen to equal (x·(y ·z), g), so (Cat1)

holds. The second condition is equivalent to (x, e) ◦ (y, f) and (y, f) ◦ (z, g)

existing, proving (Cat2). Finally, for (x, e) ∈ C(P ), note that (D(x), D(x)) ◦

(x, e) = (x, e) and (x, e) ◦ (e, e) = (x, e), establishing (Cat3). �

We call (C(P ), ◦, D,R) as in Proposition 3.1 the canonical extension of the

constellation P . It may be viewed as a generalisation of a construction given

in [3] that builds a category from an RC-semigroup satisfying the right congru-

ence condition (a certain type of unary semigroup generalising right restriction

semigroups). Note that if P is small, then C(P ) is also.

If K is a category and P its constellation reduct, then it is easy to see that

K ∼= C(P ). This is a special case of the following fact.

Proposition 3.2. For every constellation P , the mapping ρ : C(P ) → P given

by (s, e)ρ = s is a radiant. If P is composable then ρ is full and surjective,

so P is a constellation quotient of C(P ); in particular, if P is categorial, then

P ∼= C(P ).

Proof. Suppose (s, e) ◦ (t, f) exists. Then trivially (s, e)ρ · (t, f)ρ = s · t =

(s · t, f)ρ = ((s, e) ◦ (t, f))ρ exists. Moreover D((s, e))ρ = (D(s), D(s))ρ =

D(s) = D((s, e)ρ). So ρ is a radiant.
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Now if P is composable, then for x ∈ P there exists y ∈ P such that x · y

exists. Then x · D(y) exists by Lemma 2.2, and so (x,D(y)) ∈ C(P ), with

(x,D(y))ρ = x, so ρ is surjective. Suppose now that (x, e), (y, f) ∈ C(P ) with

(x, e)ρ · (y, f)ρ existing. Then x · y exists, whence so does x ·D(y) by Lemma

2.2 and so (x,D(y)) ∈ C(P ). Let u ∈ P be such that y · u exists; then y ·D(u)

exists by Lemma 2.2, and so (y, e) ∈ C(P ) where e = D(u), and (x,D(y))·(y, e)

exists, with (x,D(y))ρ = x and (y, e)ρ = y. So ρ is full. Hence by Proposition

2.28, C(P )/ ker(ρ) ∼= P . If P is categorial, then ρ is injective and hence is an

isomorphism, since there is precisely one e ∈ D(P ) for which s · e exists. �

Proposition 3.3. Let ρ : P → Q be a radiant between the constellations P

and Q. Then Fρ : C(P ) → C(Q) given by (s, e)Fρ = (sρ, eρ) is a functor.

Proof. We abbreviate Fρ to F in what follows. Suppose (s, e) ◦ (t, f) exists in

C(P ). Then D(t) = e and s · t exists in P , and indeed s · e and t · f exist. So

sρ · tρ exists in Q, as do sρ · eρ and tρ · fρ, and D(tρ) = D(t)ρ = eρ. Hence

((s, e)F ) ◦ ((t, f)F ) = (sρ, eρ) ◦ (tρ, fρ)

= ((sρ) · (tρ), fρ)

= ((s · t)ρ, fρ)

= (s · t, f)F

= ((s, e) ◦ (t, f))F

exists. Moreover,

D((s, e)F ) = D((sρ, eρ))

= (D(sρ), D(sρ))

= (D(s)ρ,D(s)ρ)

= (D(s), D(s))F

= (D((s, e))F,

so F is a radiant and hence a functor by Proposition 2.14. �

We remark that the canonical extension construction on composable con-

stellations has most of the properties of being a closure operator on a qua-

siordered set (“up to isomorphism” at least). Thus defining Q ⊳ P if there is

a full surjective radiant from composable constellation P to composable con-

stellation Q (that is, Q is isomorphic to a constellation quotient of P ), we see

that ⊳ is a quasiorder on the class of composable constellations. Moreover,

from the result above, the following are satisfied:

• P ⊳ C(P )

• P ⊳Q implies C(P )⊳ C(Q)

• C(C(P )) ∼= C(P ).

So if one works with isomorphism classes of composable constellations, one

obtains a closure operator on the resulting poset, and the closed elements are
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the (isomorphism classes of) categories. It follows that for composable P , C(P )

is the “smallest” category “above” P : so if there is a radiant K → P for some

categoryK, then there must be a functor F : K → C(P ). Indeed, the canonical

extension satisfies a universal property, even for general constellations.

Proposition 3.4. If P is a constellation, and K is a category for which

f : K → P is a radiant, then there is a unique functor F : K → C(P ) for

which Fρ = f , where ρ is as in Proposition 3.3. If f separates projections,

then F is strong.

Proof. Define aF = (af,R(a)f) for all a ∈ K. Now for all a, b ∈ K for

which a · b exists in K, we have R(a) = D(b), so R(a)f = D(b)f , and so

af · R(a)f = af ·D(b)f = (a ·D(b))f = af . Hence

(a · b)F = ((a · b)f,R(a · b)f)

= (af · bf,R(b)f)

= (af,R(a)f) ◦ (bf,R(b)f))

= aF ◦ bF, and

D(a)F = (D(a)f,R(D(a))f)

= (D(a)f,D(a)f)

= (D(af), D(af))

= D((af,R(a)f))

= D(aF ),

so F is a radiant and hence by Proposition 2.14, it is a functor.

Now for all a ∈ K, aFρ = (af,R(a)f)ρ = af , so Fρ = f . Conversely,

suppose G is a functor K → C(P ) for which Gρ = f . Then for a ∈ K, suppose

aG = (b, e) ∈ C(P ). Then af = (b, e)ρ = b, and R(a)G = R(aG) = R((b, e)) =

(e, e). So R(a)f = R(a)Gρ = (e, e)ρ = e, and so

aG = (b, e) = (af,R(a)f) = aF,

showing that F is unique.

Now assume f separates projections. Suppose that aF ◦ bF exists. Then

(af,R(a)f) ◦ (bf,R(b)f) exists, and so af · bf exists, and R(a)f = D(bf) =

D(b)f , so since f separates projections, R(a) = D(b) and so a · b exists. Hence

F is strong. �

In many categories, the notion of substructure can be captured in terms of

arrows (this is true in any category of algebras for example), but not in all.

(We here use the term “substructure” rather than “subobject”, since the latter

has an existing definition in category theory in terms of equivalence classes of

arrows that often but not always captures the intended meaning.)

Recall the constellation P = {e, f} arising from the partial order in which

e < f , so that D(P ) = P and e ·f exists but f ·e does not, so that K = C(P ) =
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{E, s, F} where E = (e, e), s = (e, f), F = (f, f) and D(K) = {E,F}. We

can concretely realise P in terms of partial mappings on the set X = {x, y}

by letting e = {(x, x)} and f = {(x, x), (y, y)} with constellation composition

and domain defined as usual in CX . It is then natural to realise C(P ) as cod-

functions on X in which E is represented as the identity map on {x}, F as the

identity map on {x, y}, and s as the map ψ : {x} → {x, y} in which xψ = x (a

subcategory of SET). This is a category in which {x} may naturally be viewed

as a substructure of {x, y}.

However, we can also realise C(P ) in a different way as a (full) subcategory

of SET, as follows: E is represented as the identity on {x}, F as the identity

on {y}, and s as ψ : {x} → {y} given by xψ = y. Of course now, {x} is not

a substructure of {y} in any natural sense. This shows that the concept of

substructure is not category-theoretic. However, it is constellation-theoretic,

being captured by the assertion “e · f exists” as in all of our earlier concrete

examples (a formulation also far simpler than the usual category-theoretic

definition of subobject, which as just shown may not yield the “right” concept

anyway). In particular, if we have a representation of a category as C(P ) for

some constellation P , then we may use the standard quasiorder on D(P ) to

induce one on D(C(P )), and this provides a notion of substructure on the

objects of C(P ).

3.2. Canonical congruences. It is possible to give an internal description

of the congruences on a category K that give constellation quotients P for

which K ∼= C(P ). Let us say that a congruence δ on a constellation P is

canonical if

• δ separates projections;

• if (a, b) ∈ δ and a · e and b · e both exist for some e ∈ D(P ), then a = b.

Proposition 3.5. An equivalence relation δ on a constellation P is a canonical

congruence if and only if it satisfies the following:

• if (a, b) ∈ δ then D(a) = D(b);

• if (a, b) ∈ δ and a · e and b · e exist for some e ∈ D(P ), then a = b.

• if (b, c) ∈ δ and a · b (and hence a · c) exists, then (a · b, a · c) ∈ δ.

Proof. Obviously a canonical congruence satisfies all of the above. Conversely,

let δ be an equivalence relation on P satisfying the above. If (e, f) ∈ δ for

some e, f ∈ D(P ), then e = D(e) = D(f) = f , so δ separates elements of

D(P ). Suppose (a, b) ∈ δ and (c, d) ∈ δ. Then D(a) = D(b) and D(c) = D(d).

Suppose a · c and b · d exist. Then a · D(c) and b · D(d) = b · D(c) exist, so

a = b by the second assumed condition. So then we have (a · c, a ·d) ∈ δ by the

third. Also, D(a) = D(b), so δ trivially respects D. Hence δ is a congruence,

which is canonical by the second law above. �

We are most interested in canonical congruences on categories.
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Corollary 3.6. If K is a category, then the congruence δ on the constellation

reduct of K is canonical if and only if

• δ separates projections;

• if (a, b) ∈ δ and R(a) = R(b) then a = b.

Proof. If the second condition above holds and a δ b with a ·e and b ·e existing,

then e = R(a) = R(b), so a = b. The converse is immediate. �

By a similar argument, we have the following consequence of Proposition

3.5.

Corollary 3.7. An equivalence relation δ on a category K is a canonical

congruence if and only if it satisfies the following:

• if (a, b) ∈ δ then D(a) = D(b);

• if (a, b) ∈ δ and R(a) = R(b), then a = b;

• if (b, c) ∈ δ and a · b (and hence a · c) exists, then (a · b, a · c) ∈ δ.

Proposition 3.8. If P is a constellation, then the relation ∼ on C(P ) given

by (a, e) ∼ (b, f) if and only if a = b is a canonical congruence, and if P is

composable, then P ∼= C(P )/∼.

Proof. Let P be a constellation, and recall the radiant ρ : C(P ) → P defined

by setting (s, e)ρ = s for all (s, e) ∈ C(P ). Clearly ker(ρ) = ∼, so the latter is

a congruence. Suppose (a, e) ∼ (b, f). Then of course a = b, so D(a) = D(b)

and so D((a, e)) = D((b, f)). If also R((a, e)) = R((b, f)) then (e, e) = (f, f),

so e = f , and so since also a = b, we have (a, e) = (b, f). So ∼ is a canonical

congruence on C(P ).

If P is composable then ρ is full and surjective by Proposition 3.2, and

C(P )/∼ = C(P )/ ker(ρ) ∼= P as constellations by Proposition 2.28. �

We have the following easy corollary of Corollary 2.26.

Proposition 3.9. Let P be a constellation, δ a canonical congruence on P .

Then Q = P/δ is a constellation for which D(Q) = {[e] | e ∈ D(P )}, which is

composable if P is.

We call the quotient Q in the above proposition a canonical quotient of P .

As noted earlier, if K is a category then K ∼= C(K) ∼= C(K/△), and the

diagonal relation △ is a canonical congruence on (the constellation reduct of)

K. More generally, we have the following.

Theorem 3.10. Let K be a category, δ a canonical congruence on (the constel-

lation reduct of) K. Letting P be the canonical quotient K/δ (a composable

constellation by Proposition 3.9), K ∼= C(P ) via the isomorphism given by

s 7→ ([s], [R(s)]) where [x] is the δ-class containing x ∈ K.

Proof. We show that the mapping ψ : K → C(P ) given by sψ = ([s], [R(s)]) is

an isomorphism of categories. (Note that [R(s)] ∈ D(P ) for any s ∈ K, so ψ

is well-defined.) Now if f : K → K/δ is the natural map, then it is full and
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separates projections by Proposition 2.29, and sψ = (sf,R(s)f) for all s ∈ K,

so by Proposition 3.4 and its proof, ψ is a strong functor.

If aψ = bψ then ([a], [R(a)]) = ([b], [R(b)]), so [a] = [b] and R(a) = R(b),

giving a = b by one of the properties of canonical congruences. Hence ψ is

one-to-one. For ([a], [e]) ∈ C(P ), we have that [a] ◦ [e] exists, so a1 · e exists

for some a1 ∈ [a] since every x ∈ [e] has D(x) = D(e) = e. So R(a1) = e

and so a1ψ = ([a1], [R(a1)]) = ([a], [e]). Hence ψ is a bijection, and so is an

isomorphism. �

Since any congruence on the constellation P contained in a canonical one

is itself canonical, it follows that the canonical congruences on P are closed

under arbitrary intersection and so form a complete semilattice, though not

necessarily a lattice (as we show below).

The full relation is a congruence on any constellation. However, it is only

rarely canonical.

Proposition 3.11. The full relation ▽ on a constellation P is a canonical

congruence if and only if |D(P )| = 1, and for all s ∈ P , the only composable

element of P is the unique element of D(P ).

Proof. If ▽ is a canonical congruence on the constellation P , then for all s, t ∈

P , D(s) = D(t), so D(P ) has only one element, e say. But also, for all s, t ∈ P ,

if s 6= t then there is no e ∈ D(P ) for which s·e and t·e exists. So in particular,

if s · t exists, then s ·D(t) = s · e exists, so because e · e exists, it must be that

s = e.

Conversely, suppose |D(P )| = 1 and s · t existing implies s = D(t). Then

D(s) = D(t) for all s, t ∈ P . Also, suppose s · e and t · e exist. Then s = t =

D(e) = e. So ▽, being a congruence, is a canonical congruence. �

Corollary 3.12. If K is a category, the congruence ▽ is canonical if and only

if K has a single element.

Proof. If K is a category on which ▽ is canonical, then for all s ∈ K, s ▽ R(s)

and R(s) = R(R(s)), and so s = R(s) ∈ D(K). The converse is immediate. �

It is possible to describe when two elements of a category can be related by

a canonical congruence.

Let K be a category. For a ∈ K, define ker(a) = {(x, y) ∈ K × K |

x · a and y · a exist and are equal}. For unequal a, b ∈ K, define the relation

δa,b on K by setting (s, t) ∈ δa,b if and only if s = t or {s, t} = {x · a, x · b} for

some x ∈ K.

Proposition 3.13. Let K be a category, with a, b ∈ K, a 6= b. Then there is

a canonical congruence δ on K for which (a, b) ∈ δ if and only if

• D(a) = D(b);

• R(a) 6= R(b); and

• ker(a) = ker(b).
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In this case, δa,b is the smallest canonical congruence relating a, b.

Proof. Suppose first that δ is a canonical congruence on K, with (a, b) ∈ δ.

Then of course D(a) = D(b) and R(a) 6= R(b). Suppose x · a and y · a

exist and are equal. Then x · b and y · b exist since D(a) = D(b), and so

x · b δ x · a = y · a δ y · b since δ is a congruence. Each has range R(b) and so

x · b = y · b since δ is canonical. So ker(a) ⊆ ker(b). Symmetry now implies the

opposite inclusion.

Conversely, suppose a, b satisfy the three conditions. Then the relation

δ = δa,b is obviously reflexive and symmetric. Suppose (s, t) ∈ δ and (t, u) ∈ δ.

If s = t or t = u, then obviously (s, u) ∈ δ, so suppose neither equality holds.

Then there are x, y ∈ K for which (without loss of generality) s = x ·a, t = x ·b

and either (i) t = y · a and u = y · b or (ii) t = y · b and u = y · a. If (i), then

t = x · b = y · a, so R(t) = R(b) = R(a), a contradiction. So (ii) holds and

t = x · b = y · b, giving s = x · a = y · a = u and so trivially (s, u) ∈ δ. So δ is

transitive and hence is an equivalence relation.

Clearly, (x, y) ∈ δ implies D(x) = D(y), and clearly R(x) = R(y) implies

x = y. Suppose s ∈ K and (u, v) ∈ δ, with s · u and hence s · v existing. If

u = v then trivially s ·u δ s ·v. If not, then without loss of generality, u = y ·a

and v = y ·b for some y ∈ K, and then s ·(y ·a) exists and equals (s ·y) ·a, while

s · (y · b) exists and equals (s · y) · b, which are related by δ by definition. So

by Corollary 3.7, δ is a canonical congruence, and (a, b) ∈ δ since a = D(a) · a

and b = D(a) · b.

If τ is another canonical congruence relating a, b and (s, t) ∈ δ, then either

s = t or s = x · a and t = x · b (or the other way around), and so s τ t also. So

δ ⊆ τ . �

Let K be a category. For unequal a, b ∈ K satisfying the conditions of

Proposition 3.13, it is appropriate to describe δa,b as the principal canonical

congruence on K generated by a, b.

Let us call a constellation with no canonical congruences except the diagonal

relation canonically simple. Every quasiordered set viewed as a constellation

is canonically simple since the only projection-separating congruence on it is

the diagonal relation.

Proposition 3.14. If the constellation P is such that for every s, t ∈ P for

which D(s) = D(t), there exists e ∈ D(P ) for which s · e and t · e exist, then

P is canonically simple.

Proof. Let P be a constellation satisfying the above conditions, with δ a canon-

ical congruence on P . Suppose s δ t. Then D(s) = D(t) by Proposition 3.5,

so by assumption, there exists e ∈ D(P ) for which s · e and t · e exist. So again

by Proposition 3.5, s = t. So δ = △ and so P is canonically simple. �

In particular, if a constellation has a global right identity element then it is

canonically simple. So CX is canonically simple for any non-empty set X .
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It follows from Proposition 3.14 that if the categoryK is such that for every

a, b ∈ K, D(a) = D(b) implies that R(a) = R(b), then K is canonically simple;

for example, every monoid is canonically simple. More generally, we have the

following consequence of Proposition 3.13.

Corollary 3.15. The category K is canonically simple if and only if for all

a, b ∈ K, if D(a) = D(b) and ker(a) = ker(b) then R(a) = R(b).

For two surjective maps f : A → B and g : A → C, there is an identity

mapping 1D : D → D for which f · 1D and g · 1D exist in CSET (for example,

let D = B ∪ C), so by Proposition 3.14, CSET is canonically simple. By

contrast, we have the following.

Proposition 3.16. CGRP is not canonically simple.

Proof. Pick two projections e, f ∈ D(CGRP ) which are the identity map on

two distinct trivial groups G,H , and define δ on CGRP as follows: s δ t if and

only if s = t or D(s) = D(t) and one of s, t maps onto G and the other onto

H . An easy case analysis shows δ is an equivalence relation. (For example,

if (s, t) ∈ δ and (t, u) ∈ δ with s 6= t and t 6= u, then D(s) = D(t) = D(u).

If without loss of generality s maps onto H , then so must u and so s = u.)

Clearly (s, t) ∈ δ implies D(s) = D(t). If s δ t and s 6= t then there is no

g ∈ D(CSET ) for which s · g and t · g exist since then the group on which

g is the identity map would have two distinct idempotent elements. Finally,

if (s, t) ∈ δ and u ∈ CSET is such that u · s and u · t exist, then obviously

(u · s, u · t) ∈ δ. So by Proposition 3.5, δ is a canonical congruence. �

Similar arguments apply to other concrete constellations arising in algebra.

A maximal canonical congruence on a constellation is a canonical congru-

ence that does not lie inside another canonical congruence.

Proposition 3.17. Every constellation has a maximal canonical congruence.

Proof. The diagonal relation on the constellation P is a canonical congruence.

The union of any chain of canonical congruences is easily seen to itself be

a canonical congruence, so the result follows by Zorn’s Lemma (for partially

ordered classes rather than sets, a strictly stronger axiom of mathematics). �

Proposition 2.33 specialises to canonical congruences. Again, for δ an equiv-

alence relation on the constellation P , denote by [s]δ the δ-class containing

s ∈ P .

Proposition 3.18. Let P be a constellation with δ a canonical congruence

on it, and let Q = P/δ. Then for any canonical congruence ǫ on Q, the

congruence γ on P that contains δ and such that P/γ ∼= Q/ǫ as in Proposition

2.33 is canonical. Conversely, if γ is a canonical congruence on P containing

δ, then the congruence ǫ on Q for which P/γ ∼= Q/ǫ as in Proposition 2.33 is

canonical.



Vol. 00, XX Constellations and their relationship with categories 27

Proof. Recall that Q is a constellation in which D(Q) = [e]δ for some e ∈

D(P ), by Corollary 2.26.

Let ǫ be a canonical congruence on Q. Define γ on P by setting (s, t) ∈ γ if

and only if [s]δ ǫ [t]δ, a projection-separating congruence by Proposition 2.33.

Suppose a γ b and there is e ∈ D(P ) for which a · e and b · e both exist. Thus,

[a]δ ǫ [b]δ, and both [a]δ ·[e]δ and [b]δ ·[e]δ exist, with [e]δ ∈ D(Q). So [a]δ = [b]δ
since ǫ is canonical, and so a = b since δ is. Hence γ is canonical.

Conversely, suppose γ is a canonical congruence on P , with δ ⊆ γ. Consider

the projection-separating congruence ǫ on Q defined by setting [s]δ ǫ [t]δ if and

only if s γ t (as in Proposition 2.33). Suppose [s]δ ǫ [t]δ and [s]δ ·[e]δ and [t]δ ·[e]δ
exist in Q for some e ∈ D(P ). that is, [e]δ ∈ D(Q). Then s γ t and s1 · e and

t1 · e exist for some s1 ∈ [s]δ and t1 ∈ [t]δ since δ separates projections and

hence is right strong by Proposition 2.25, so we have s1 δ s γ t δ t1, and so

since δ ⊆ γ, we have s1 γ t1. Since γ is canonical, s1 = t1 and so s δ s1 = t1 δ t,

so [s]δ = [t]δ. So ǫ is canonical. �

Corollary 3.19. Let P be a constellation with δ a canonical congruence on

it. Then P/δ is canonically simple if and only if δ is maximal.

Corollary 3.20. Every constellation has a canonically simple canonical quo-

tient.

Corollary 3.21. If P is a composable constellation and δ a canonical congru-

ence on P , then C(P ) ∼= C(P/δ).

Proof. If δ is a canonical congruence on P then since P is a canonical quotient

of C(P ) by Proposition 3.8, P/δ is a canonical quotient of C(P ) by Proposition

3.18, and so C(P ) ∼= C(P/δ) by Theorem 3.10. �

In particular, given a category K of interest, we seek a canonically simple

canonical quotient P of K, since such P is as “simple” as possible with the

property that K ∼= C(P ).

3.3. Some examples.

Example 3.22. The concrete constellations of Section 2.2 revisited.

Recall Example 2.4: in the category SET , if f : A → B and g : A → C,

define (f, g) ∈ δ if and only if Im(f) = Im(g), and xf = xg for all x ∈ A.

Clearly δ is an equivalence relation, and the three conditions in Proposition

3.5 are easily seen to be satisfied, so δ is a canonical congruence on K by

that result. In fact each δ-class has a unique representative having smallest

possible range: f : A → B is δ-related to f̄ : A → Im(f), defined to agree

with f on their common domain but to have codomain equal to the image of

f . This is a typical surjective function in the category, and indeed a typical

element of CSET , as we have seen. Now it is easy to see that for f, g ∈ SET ,

[f ] · [g] exists in SET/δ if and only if Im(f̄) ⊆ Dom(g) = Dom(ḡ), if and only

if f̄ · ḡ exists in CSET , and then equals [h] where h̄ = f̄ · ḡ as computed in
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CSET . It follows that SET/δ ∼= CSET via the isomorphism [s] 7→ s̄, and

so SET ∼= C(CSET ) as categories. (As noted earlier, CSET is canonically

simple.)

A simplified version of this argument shows that for any set X , defining δ

as for SET , CODX/δ ∼= CX , and so CODX
∼= C(CX) as categories. (As noted

earlier, CX is canonically simple since it has a global right identity element.)

It is of interest that for finite X having n elements, CODX generally has
∑n

m=0

(

n
m

)

(m + 1)n elements, as can be seen by adding up the number of

partial functions having domain of size n and range varying from empty to

size n, while CX has only (n+ 1)n. For n = 1, 2, 3, these two numbers are 18

and 9, 170 and 64, and 2200 and 625 respectively, and the ratio of the latter

to the former tends to zero as n increases.

A similar argument can be given for the category of groups: one can define

δ analogously, noting that Im(f) is itself a group and so f̄ as defined above

is a group homomorphism, the rest of the argument proceeding as above for

SET , leading to the conclusion that GRP ∼= C(CGRP ) as categories. The

same line of argument applies to the categories of rings, modules over a ring,

semigroups and so on.

In fact the same relationship exists between TOP and CTOP . This is

because every continuous function f : X → Y is determined by the continuous

function f̄ : X → Im(f) (where Im(f) is the subset of Y consisting of the

image of f equipped with the subspace topology), as above: indeed f is the

composite of f̄ with the obvious embedding of Im(f) into Y . As a result, we

may define a canonical congruence δ as for SET and GRP , with each δ-class in

TOP containing a unique element of CTOP , and indeed CTOP ∼= TOP/δ, so

that TOP ∼= C(CTOP ). Similarly for many other familiar concrete categories.

For the category SET∞, we may define δ as for SET . Not every δ-class has

its canonical representative within SET∞, but the restriction of δ to SET∞

is easily seen to be a canonical congruence on it (in general the restriction

of a canonical congruence on a category K to a subcategory L is a canonical

congruence on L). Then each [s] ∈ SET∞/δ may have associated with it the

surjective map s̄ ∈ CSET defined as for SET . So since the two subconstella-

tions SET∞/δ of SET/δ and CSET∞ of CSET correspond under the earlier

isomorphism [s] 7→ s̄ between SET/δ and CSET , SET∞/δ ∼= CSET∞, and

so SET∞ ∼= C(CSET∞). Similarly for GRP∞ and CGRP∞, and so on.

Example 3.23. A six-element category.

Consider the category with six elements K = {e, f, g, a, b, c}, in which

D(K) = {e, f, g}, and D(a) = D(b) = D(c) = e, R(a) = R(b) = f and

R(c) = g. The partial multiplication table for K is as follows:
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· b c e a f g

b − − − − b −

c − − − − − c

e b c e a − −

a − − − − a −

f − − − − f −

g − − − − − g

It is easy to check from Corollary 3.7 and the above that the equivalence

relations δ1 and δ2 of K giving the following partitions are canonical congru-

ences:

{b, c, e}, {a}, {f}, {g} and {b, c}, {e, a}, {f}, {g}.

Indeed both are maximal since e, f, g must be in distinct classes (since canon-

ical congruences separate projections), and a, b cannot be related by a canon-

ical congruence since their ranges are equal, so not all three can be put in a

class with e (the only projection they could be grouped with since domains of

congruent elements must agree). So the poset of canonical congruences of a

constellation (or even a category) need not be a lattice.

The constellations K/δ1 and K/δ2 are canonically simple by Corollary 3.19,

and have partial multiplication tables as follows (writing singleton sets as the

element they contain):

· [e] a f g

[e] [e] a [e] [e]

a − − a −

f − − f −

g − − − g

and

· [b] [e] f g

[b] − − [b] [b]

[e] [b] [e] [e] −

f − − f −

g − − − g

.

Then D(K/δ1) = {[e], f, g} with [e] . f, g, while D(K/δ2) = {[e], f, g} with

[e] . f only, so these constellations are not isomorphic. Note that C(K/δ1) =

{([e], f), ([e], g), ([e], [e]), (a, f), (f, f), (g, g)}, and under the isomorphism of

Theorem 3.10, b 7→ ([e], f), c 7→ ([e], g), e 7→ ([e], [e]), a 7→ (a, f), f 7→ (f, f),

and g 7→ (g, g),

Example 3.24. The category of surjective functions on a two-element set.

The maximal canonical congruences in the previous example both yield nor-

mal constellation quotients. Now let X be a set and consider the subcategory

SX of CODX consisting of the surjective non-empty cod-functions on X (so

the elements are the same as those in CX except that a codomain determined

by its range is defined for every element, the empty function is absent, and

multiplication is more restricted). It is easy to see that δ as defined earlier on

PX is the diagonal relation when restricted to SX . However, SX is not canon-

ically simple. For example, let X = {a, b}, so that SX has eight elements (the

eight non-empty partial maps on X), namely

{1, fa, fb, i, 1a, ab, 1b, ba},
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where we have 1 = {(a, a), (b, b)}, fa = {(a, a), (b, a)}, fb = {(a, b), (b, b)},

i = {(a, b), (b, a)}, ab = {(a, b)}, ba = {(b, a)}, 1a = {(a, a)}, and 1b = {(b, b)}.

D is defined in the obvious way and R in terms of images, and the partial

multiplication table is as follows:

· 1 fa fb i 1a ab 1b ba

1 1 fa fb i − − − −

fa − − − − fa fb − −

fb − − − − − − fb fa
i i fa fb 1 − − − −

1a − − − − 1a ab − −

ab − − − − − − ab 1a
1b − − − − − − 1b ba

ba − − − − ba 1b − −

By Proposition 2.30, the largest projection-separating congruence on SX

for any finite X has, for all e, f ∈ D(SX), [e] . [f ] if and only if there exist

a, b ∈ SX for which D(a) = e, D(b) = f and a · b exists in SX , that is, a · f

exists in SX . This says that the subset of X corresponding to e has at least as

many elements as that corresponding to f . So in the current case, [1] is below

both [1a] and [1b].

The equivalence relation γ that gives rise to the following partition of SX

is easily checked to be a canonical congruence using Corollary 3.7, and indeed

is the largest canonical congruence on it:

{1}, f = {fa, fb}, {i}, [1a] = {1a, ab}, [1b] = {1b, ba}.

So again identifying singletons with their unique elements, the constellation

P = SX/γ = {1, f, i, [1a], [1b]} is canonically simple, and has multiplication

table as follows.

· 1 [1a] [1b] f i

1 1 − − f i

[1a] − [1a] [1a] − −

[1b] − [1b] [1b] − −

f − f f − −

i i − − f 1

From this it can be seen that D(P ) = {1, [1a], [1b]} is the set of right identities

in P (corresponding as it must to {1, 1a, 1b} in SX), and we have that [1a] ≈ [1b]

under the standard quasiorder on D(P ), so P is not normal.

The equivalence relation in which {fa, fb} is a class and all other partition

classes are singletons is the unique non-trivial canonical congruence on SX

having normal quotient, and for this quotient, the standard quasiorder on

the projections is flat. (In general, one can prove using Zorn’s Lemma that

a maximal canonical congruence with normal quotient always exists.) So in

particular, there is no constellation quotient P of SX from which the obvious
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substructure partial order on the objects of SX derives (that is, 1a . 1, 1b . 1),

reflecting the fact that there is no suitable monic in SX having domain 1a and

codomain 1. (Of course this partial order on the projections is present in the

structure of CX .)

3.4. δ-categories and composable constellations. As we have seen, in-

formation about substructure relationships can be lost in passing from P to

C(P ), reflecting the fact that P is not determined by the category C(P ). Both

these issues can be dealt with by specifying the canonical congruence ∼ for

which C(P )/∼ ∼= P .

Let us say that the pair (K, δ), consisting of a category K equipped with a

particular canonical congruence δ on it, is a δ-category. For a δ-category (K, δ),

we often just write K if δ is understood. In particular, for P a constellation,

the category C(P ) is to be viewed as a δ-category in which the canonical

congruence is ∼ as in Proposition 3.8, unless stated otherwise.

A δ-functor ψ from the δ-category (K1, δ1) to the δ-category (K2, δ2) is a

functor from K1 to K2 which additionally respects the distinguished canoni-

cal congruences: if (f, g) ∈ δ1, then (fψ, gψ) ∈ δ2. In this way, the class of

δ-categories is itself a category in which the arrows are δ-functors. An iso-

morphism of δ-categories is therefore a δ-functor with a δ-functor inverse, so

ψ : (K1, δ1) → (K2, δ2) is an isomorphism of δ-categories if and only if is a cat-

egory isomorphism K1 → K2 for which (s, t) ∈ δ1 if and only if (sψ, tψ) ∈ δ2.

We have the following easy consequence of Theorem 3.10.

Corollary 3.25. Let (K, δ) be a δ-category. Then (K, δ) ∼= (C(K/δ),∼) as

δ-categories.

Proof. By Theorem 3.10, ψ : K → C(K/δ) given by sψ = ([s], [R(s)]) is a con-

stellation (hence category) isomorphism. Also, for all a, b ∈ K, the following

are equivalent: a δ b; [a] = [b]; ([a], [R(a)]) ∼ ([b], [R(b)]); aψ ∼ bψ. So ψ is a

δ-category isomorphism. �

From the above and Proposition 3.8, we obtain the following.

Corollary 3.26. The maps under which P 7→ C(P ) and K 7→ K/δ, where P

is a composable constellation and K is a δ-category, are mutually inverse up

to isomorphism: C(P )/∼ ∼= P , and (C(K/δ),∼) ∼= (K, δ) as δ-categories.

Theorem 3.27. The categories of composable constellations and δ-categories

are equivalent.

Proof. Let φ be the mapping that takes the radiant ρ : P → Q in the category

of constellations to the functor Fρ in the category of categories, defined in

Proposition 3.3 (where it is shown to be a functor); in particular, the object P

(represented by the identity radiant on P ) is mapped to its canonical extension

category C(P ) (again, represented by the identity functor). In fact Fρ is a δ-

functor, since if (s, e) ∼ (t, f) in C(P ), then s = t so sρ = tρ, and so

(sρ, eρ) ∼ (tρ, fρ) in C(Q).
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Conversely, let ψ be the mapping that takes the δ-functor f : K → L in

the category of δ-categories to the mapping ρf : K/δ → L/δ given by [s]ρf =

[sf ] (where [s] denotes the δ-class containing s). This is well-defined since f

respects δ. Suppose [s] · [t] exists in K/δ. Then s1 · t exists for some s1 ∈ [s]

since canonical congruences are projection-separating and hence right strong

by Proposition 2.25. So s1f · tf exists, and since (sf, s1f) ∈ δ, we have that

[sf ] · [tf ] exists, and so ([s]ρf ) · ([t]ρf ) exists. Now

([s] · [t])ρf = ([s1] · [t])ρf = [(s1 · t)f ] = [s1f · tf ] = [sf ] · [tf ] = ([s]ρf ) · ([t]ρf )

since (sf, s1f) ∈ δ. Moreover, (D([s]))ρf = [D(s)f ] = [D(sf)] = D([sf ]) =

D([s]ρf ). So ρf is a radiant.

We next show that each of φ and ψ is a functor, beginning with φ. Sup-

pose ρ : P → Q and τ : Q → R are radiants between constellations P,Q,R.

Then Fρ : C(P ) → C(Q) and Fτ : C(Q) → C(R) are functors with composite

FρFτ : C(P ) → C(R), and

(s, e)(FρFτ ) = (s, e)FρFτ

= (sρ, eρ)Fτ

= (sρτ, eρτ)

= (s(ρτ), e(ρτ))

= (s, e)Fρτ .

Also, FD(ρ) : C(P ) → C(P ) (since D(ρ) : P → P ), and

(s, e)FD(ρ) = (sD(ρ), eD(ρ)) = (s, e),

so FD(ρ) is the identity map on C(P ), the domain of Fρ, which is precisely

what D(Fρ) : C(P ) → C(P ) is. So φ is a radiant between two categories, hence

a functor by Proposition 2.14.

Now suppose (K, δ1), (L, δ2), (M, δ3) are δ-categories, with f : K → L and

g : L → M both δ-functors. Then ρf : K/δ1 → L/δ2 and ρg : L/δ2 → M/δ3
are radiants with composition ρfρg : K/δ1 →M/δ3. Then for each [s] ∈ K/δ1,

[s](ρfρg) = [s]ρfρg = [sf ]ρg = [sfg] = [s(fg)] = [s]ρfg,

and ρD(f) : K/δ1 → K/δ1 (since f : K/δ1 → K/δ2) is such that for all [s] ∈

K/δ1, [s]ρD(f) = [sD(f)] = [s], so ρD(f) is nothing but the identity map on

the domain of ρf , which is precisely what D(ρf ) is. So ψ is a radiant between

categories, hence a functor.

It remains to check that φ, ψ are mutually inverse up to isomorphism (when

acting on objects). But for a composable constellation P , Pφψ = C(P )ψ ∼= P ,

while for any δ-category (K, δ), we have (K, δ)ψφ = C(K/δ)φ = (C(K/δ),∼

) ∼= (K, δ). �

Recall that SET/δ ∼= CSET via the isomorphism [s] 7→ s̄, and so SET ∼=

C(CSET ) as categories, and indeed by the above, (SET, δ) ∼= (C(CSET ), δ)
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as δ-categories. Likewise, CODX/δ ∼= CX , and so CODX
∼= C(CX) as δ-

categories. Similarly for the other cases: GRP ∼= C(CGRP ), SET∞ ∼=

C(CSET∞), GRP∞ ∼= C(CGRP∞), and so on, not just as categories but

as δ-categories.

Because of the correspondence between composable constellations and δ-

categories via canonical extensions, the substructure notion present in a con-

stellation is also present in a δ-category: for e, f ∈ D(K), e is a substructure

of f if and only if there exists s ∈ K for which (e, s) ∈ δ and R(s) = f . (This

is because of Theorem 3.10: in the case of C(P ) where P is a constellation,

s = (e, f) (where e, f ∈ D(P ) are such that e · f exists) is the unique element

x of C(P ) such that x ∼ (e, e) and R(x) = (f, f), and exists if and only if

(e, e) ≤ (f, f).) Example 3.24 shows that some categories admit no δ-category

structure capable of capturing the natural substructure partial order on their

objects.

However, a notion of substructure is not always sufficient to specify the

distinguished canonical congruence on a δ-category. For example, consider

the constellation P = {s, e, f, g}, in which D(P ) = {e, f, g} with D(s) = g

and s · e, s · f both existing but no other products existing aside from those

that must. (For example, let X = {1, 2, 3} with P the subconstellation of

CX in which s = {(1, 2), (3, 2)}, e = {(1, 1), (2, 2)}, f = {(2, 2), (3, 3)} and

g = {(1, 1), (3, 3)}.) Then K = C(P ) = {(s, e), (s, f), (e, e), (f, f), (g, g)} is

a δ-category with respect to ∼, in which D(K) = {(e, e), (f, f), (g, g)}, and

there are four ∼-classes, namely {(s, e), (s, f)}, {(e, e)}, {(f, f)} and {(g, g)}.

However, it supports another canonical congruence △, in which the δ-classes

are just the singletons. Precisely the same notion of substructure is determined

by this latter choice of canonical congruence.

4. Open questions

For a number of familiar concrete categories K, we have described natural

associated constellations P , often consisting of the surjective morphisms in K

but equipped with the more liberal constellation product, and P has turned

out to be a canonical quotient of K, since K ∼= C(P ). In some cases such as

CSET , P is canonically simple, and so the representation ofK as C(P ) is “best

possible”. Others such as CGRP are not canonically simple. There is interest

in determining the canonical simplicity status of other such constellations, for

example CTOP , as well is in explicitly finding a maximal canonical congruence

δ on P (and hence on K ∼= C(P )) when P is not canonically simple, so as to

obtain a “best possible” representation of K as C(P ).

Given the case made for the fundamental notion of a constellation, it would

be natural to investigate analogues of the standard notions of category theory

in the context of constellations: how to build a machinery encompassing the

development of concepts such as natural transformations, adjoints, pullbacks
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and so on in this setting. Indeed even Theorem 3.27 itself may have a stronger

formulation in terms of an equivalence of suitably defined constellations.
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