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Abstract
Psychiatric disorders arise due to an interplay of genetic and environmental factors, including stress. Studies in rodents have
shown that mutants for Disrupted-In-Schizophrenia-1 (DISC1), a well-accepted genetic risk factor for mental illness, display
abnormal behaviours in response to stress, but the mechanisms through which DISC1 affects stress responses remain poorly
understood. Using two lines of zebrafish homozygous mutant for disc1, we investigated behaviour and functioning of the
hypothalamic-pituitary-interrenal (HPI) axis, the fish equivalent of the hypothalamic-pituitary-adrenal (HPA) axis. Here, we
show that the role of DISC1 in stress responses is evolutionarily conserved and that DISC1 is essential for normal functioning
of the HPI axis. Adult zebrafish homozygous mutant for disc1 show aberrant behavioural responses to stress. Our studies
reveal that in the embryo, disc1 is expressed in neural progenitor cells of the hypothalamus, a conserved region of the verte-
brate brain that centrally controls responses to environmental stressors. In disc1 mutant embryos, proliferating rx3þhypotha-
lamic progenitors are not maintained normally and neuronal differentiation is compromised: rx3-derived ff1bþneurons,
implicated in anxiety-related behaviours, and corticotrophin releasing hormone (crh) neurons, key regulators of the stress axis,
develop abnormally, and rx3-derived pomcþneurons are disorganised. Abnormal hypothalamic development is associated
with dysfunctional behavioural and neuroendocrine stress responses. In contrast to wild type siblings, disc1 mutant larvae
show altered crh levels, fail to upregulate cortisol levels when under stress and do not modulate shoal cohesion, indicative of
abnormal social behaviour. These data indicate that disc1 is essential for normal development of the hypothalamus and for
the correct functioning of the HPA/HPI axis.
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Introduction

Phenotypes are shaped throughout the life-course by a complex
interplay between genes and the environment. When homeo-
stasis is threatened by environmental stress, animals respond
adaptively by altering their metabolism, physiology and behav-
iour. These adaptive responses are co-ordinated by the
hypothalamic-pituitary-adrenal (HPA) axis (1). Activation of the
HPA axis promotes cortisol release and promotes adaptation
(2,3). Circulating cortisol in turn triggers negative feedback sys-
tems that limit HPA axis function. However, this circuit can
become reprogrammed to trigger responses that are seemingly
maladaptive (4,5): in humans, HPA hyperactivity is linked to
heightened risk for depression and anxiety disorders (6).
Maladaptive stress responses can be triggered through wide-
ranging insults, and increasing evidence suggests that insults in
developmentally-sensitive periods predispose individuals to
later heightened vulnerability to stress. For example, it is well
documented that heightened stress in early life can result in the
development of adult-onset psychiatric disorders in humans
(1,4,7–10). At the same time, the stress response is modulated
by an individual’s genetic makeup, and genotype is thought to
contribute to individual differences in susceptibility to psychiat-
ric disorders (11–14). However, whilst animal models have dem-
onstrated that ablation of individual genetic components of the
HPA axis can affect stress phenotypes and behaviour (15–18), no
study has yet shown a direct link between genetic regulation of
HPA axis development and maladaptive stress responses.

One well established genetic risk factor for human psychiat-
ric illness, Disrupted-In-Schizophrenia-1 (DISC1), was originally
identified at a chromosomal translocation breakpoint in a single
Scottish family, in which a high proportion of family members
suffered from mental illness (19). Some translocation carriers
showed a range of clinical phenotypes, including schizophrenia,
major depression and bipolar disorder, whilst other carriers had
no psychiatric diagnosis (19). Individuals carrying this translo-
cation, including those with no psychiatric condition, exhibited
a defect in their cognitive function during decision-making
processes (P300 event-related potential), a trait considered to be
a marker for risk for schizophrenia (20). The incomplete pene-
trance and range of psychiatric presentations make DISC1 a
prime candidate for understanding how environmental factors
interact with a defined genetic component to yield a variety of
behavioural phenotypes.

Studies in mice have shown that DISC1 can impact on
behaviour (21,22) and can also modulate reactivity to stress
(21,23–28). These studies have utilised either mice with Disc1
point mutations (27), mice carrying a naturally occurring 25
base-pair deletion in Disc1 (29,30), or transgenic mice expressing
a truncated form of human DISC1 (24,28,31). Depending on the
type of mutation or transgene used, varying phenotypes have
been found, with many showing an impaired response to stress
(23,24,28,31–33). Studies that have investigated the mechanism
through which DISC1 and stress interact to modulate behaviour
have revealed epigenetic modifications in dopaminergic neu-
rons that originate in the ventral tegmental area (24). However,
no study has examined whether Disc1 mutation alters develop-
ment of the HPA axis in a manner that impacts on stress
modulation.

Expression studies in primates and mice have shown that
DISC1 orthologues are prominently expressed in the hypothala-
mus (34–36), a small evolutionarily conserved part of the brain
that coordinates responses to stress. Analysis of DISC1 expres-
sion in the human brain has mainly focused on the

hippocampus, but expression patterns here correspond well
with those in the primate and rodent hippocampus, suggesting
some level of conservation (37). We previously observed strong
expression of disc1 in the ventral diencephalon of zebrafish
embryos (38). We therefore reasoned that disc1 may be required
for normal hypothalamic development and functioning of the
HPA axis or corresponding hypothalamic-pituitary-interrenal
(HPI) axis in fish.

To address this hypothesis, we utilised two lines of zebrafish
harbouring nonsense mutations in disc1 (L115X and Y472X) and
analysed baseline and stress-responsive behaviours in the
adult. We investigated the developmental origin of mutant
behavioural abnormalities, and show that disc1 is essential for
normal development of the early hypothalamus and HPI axis
function.

Results
Adult disc1 mutants exhibit anxiety-like behaviour and
aberrant behavioural stress responses

The L115X and Y472X mutations both introduce a premature
stop codon in the N-terminal head domain of DISC1 (Fig. 1A).
We have maintained both lines on a TL background and found
that homozygous mutants are born in Mendelian ratios, hatch
normally, are viable to adulthood, and fertile. Quantitative RT-
PCR demonstrated that Y472X mRNA may be subject to
nonsense-mediated decay (Fig. 1B). We first analysed whether,
as in mice, the baseline behaviour of the adult disc1 mutants, or
their response to an acute stressor, is significantly different to
wild type siblings. Adult Y472X mutants were tested for baseline
behaviours and adult L115X mutants were tested for response
to an established stress paradigm: exposure to alarm substance
(Schreckstoff: a zebrafish skin extract that induces a profound
fear response (39,40). In an open field test, adult Y472X fish
showed increased freezing and increased fast swimming com-
pared to wild type siblings (Fig. 1C–D). In a light-dark test, Y472X
fish showed no preference for the light compartment, in con-
trast to wild type siblings (Fig. 1E). In the tank diving test, L115X
mutants did not increase bottom dwell time after treatment
with alarm substance, in contrast to wild type siblings (Fig. 1F).
Abnormalities in baseline and stress-responsive behaviour
have also been described in adult Disc1 mouse models
(24,27,28,31–33). These data show that the role of DISC1 in stress
responses is evolutionarily conserved.

Hypothalamic progenitors, including rx3þprogenitors,
are not maintained normally in disc1 mutant embryos

DISC1 governs neuronal progenitor proliferation (41,42), so we
reasoned that early developmental abnormalities may underlie
the observed adult phenotypes. Studies in mice have shown
that cellular homeostasis is disrupted in the cortex of disc1
mutants where cortical progenitors differentiate prematurely
due to compromised Wnt/GSK3 signaling (41,42). Similarly, in
zebrafish, zDisc1 promotes brain neurogenesis by promoting
Wnt signaling (43), while a study in human induced pluripotent
stem cells linked disruption of DISC1 with altered Wnt signaling
and neural progenitor cell differentiation (44). To date, however,
no study has analysed progenitor cells or differentiating neu-
rons in the hypothalamus.

Analysis of disc1 in embryonic zebrafish (24–55 h post-
fertilisation (hpf)/2–3 days post-fertilisation (dpf)) revealed that
expression is most prominent in the basal part of the brain, in
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particular the hypothalamus (Fig. 2A–C,F–H). Transverse sec-
tions through the 55 hpf hypothalamus show that disc1 is
restricted to cells around the lateral recesses and posterior
tuberal 3rd ventricle (Fig. 2J–M,O), neurogenic zones that harbour
proliferating progenitors (45–50). Throughout this period, the
expression of disc1 is largely adjacent to that of retinal homeobox
3 (rx3) a conserved paired-like homeodomain transcription fac-
tor (Fig. 2D,I,N), which, in the tuberal hypothalamus, demar-
cates progenitor cells that give rise to specific hypothalamic
neuronal populations, including neurons of the ventromedial
nucleus (VMN) and arcuate nucleus (Arc) (51,52).

To address whether, similar to its role in the mouse cortex,
DISC1 maintains hypothalamic progenitor cells, we compared
rx3 expression in wild type and disc1 mutant embryos and post-

hatched (5 dpf) larvae. In both lines, rx3 is altered in disc1
mutants in comparison to wild type siblings (Fig. 3A–L;
Supplementary Material, Fig. S1). In Y472X fish, rx3 is reduced in
mutant fish compared to wild type siblings at all stages exam-
ined (24 hpf-5 dpf) (Fig. 3A,C,F,G,I,L). In L115X mutant fish, rx3
transcripts are detected at higher levels at 24 hpf than in wild
type siblings (Fig. 3B and H), but from 3 dpf, L115X mutants
show a similar reduction to that detected in Y472X mutants
(Fig. 3D,E,J,K). Transverse sections show that rx3 is expressed in
the 3rd ventricle up to 3 dpf and in the lateral recesses up to 5
dpf in wild-type fish (Fig. 3C–F,Q). By contrast, from 2 dpf, both
L115X and Y472X mutant larvae show a significant reduction in
rx3 expression in the lateral recesses, and no expression can be
detected in the 3rd ventricle (Fig. 3I–L,W and Fig. 3 legend). This

Figure 1. Abnormal behaviour in adult disc1 zebrafish. (A) DISC1 protein schematic in human (upper) and zebrafish (lower). The predicted human DISC1 protein is 854

amino acids long, consisting of a globular N-terminal domain and C terminal domain with predicted coiled coil regions (19). The breakpoint observed in the original

Scottish pedigree is shown at 598 amino acids. The predicted zebrafish disc1 protein is 994 amino acids long, similarly consisting of a globular N-terminal domain and

C-terminal domain with predicted coiled coil regions (38). The L115X and Y472X stop codons, as well as the predicted equivalent site for the human translocation

breakpoint are illustrated. (B) Quantitative RT-PCR for disc1 in 2 dpf larvae shows a significant reduction in disc1 mRNA in Y472X mutants (t test; t¼ 7.59, df¼9.63,

P¼<0.0001). N¼ 6 each. (C) Adult Y472X mutants show a significant increase in freezing in the open field test (t test; t¼�2.44, df¼12.01, P¼0.031). N¼10–13 each. (D)

Adult Y472X mutants show a significant increase in high speed swimming in the open field test (t test; t¼�2.55, df¼13.63, P¼0.024). N¼10–13 each. (E) Adult Y472X

mutants have a significantly reduced preference for the light compartment of the light-dark test (repeated measures ANOVA; Genotype, F¼ 11.79, df¼1,20, P¼0.003;

time, F¼45.29, df¼1,196, P�0.0001; Genotype: time, F¼0.41, df¼ 1,196, P¼0.522). N¼9–13 each. (F) Alarm substance increases bottom dwell of L115X wild types in the

tank diving test (P¼0.027), but has no effect on mutants (P¼0.99) (two-way ANOVA; Genotype: alarm interaction, F¼4.47, df¼1,35, P¼0.042). N¼9–12 each.
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suggests that DISC1 is required to maintain progenitor cells and
predicts that disc1 mutants will show a premature decline in
hypothalamic expression of phosphorylated histone H3
(phosH3), an M-phase marker whose expression correlates with
proliferating progenitors in the embryonic zebrafish hypothala-
mus (45). At 24 hpf, a significant increase in phosH3þ cells is
detected in the hypothalamus of disc1 mutant embryos com-
pared to wild type siblings (Fig. 3M,N,R–T). At 3 dpf, however,
significantly fewer phosH3þ cells are detected in the hypothala-
mus of both disc1 mutant strains compared to wild type siblings
(Fig. 3O–Q,U–X). Together our analyses suggest that hypothala-
mic progenitors, including rx3þprogenitors, form, but are not
maintained normally in disc1 mutant embryos.

Abnormal neuroendocrine differentiation and activity in
disc1 mutant embryos

We extended these experiments to determine whether the
changes in progenitor proliferation lead to alterations in neuro-
nal differentiation. Lineage-tracing studies show that rx3þpro-
genitors in the tuberal hypothalamus give rise to VMN neurons
that express the nuclear receptor, ff1b (also termed nr5a1a; an
orthologue of mammalian SF1/NR5A1 (53)) and to Arc neurons
that express pro-opiomelanocortin (pomc) (45,54). We therefore
first determined if disc1 mutant fish showed alterations in ff1b
and pomc. We analysed both embryos at 2–3 dpf, a time when
neuroendocrine cells are being born, and larvae at 5 dpf, a time
when the neuroendocrine system begins to respond dynami-
cally to external and internal cues (55).

In wild type embryos, ff1b is first detected in the developing
hypothalamus at 24 hpf (56). The role of ff1b in the zebrafish

hypothalamus has not been determined, but in mice, hypo-
thalamic Sf1 governs anxiety behaviours (57). In both embryos
and larvae, expression of ff1b was significantly more pro-
nounced in the hypothalamus of L115X and Y472X mutants
compared to wild type siblings (Figs. 4A–D, 5A–D;
Supplementary Material, Fig. S2A–D) and was detected in
greater numbers of cells (Figs. 4E and 5E). Thus, the failure to
maintain rx3þprogenitors appears to correlate with an
enhanced differentiation of hypothalamic ff1bþ cells. ff1b is also
expressed in steroidogenic cells of the interrenal gland, and is
essential for proper development of this tissue (58). We
observed normal expression of ff1b in this region of disc1
mutants (Supplementary Material, Fig. S2M–P).

The precursor peptide, proopiomelanocortin (pomc) defines
Arc-like neurons in the hypothalamus. In wild type zebrafish,
hypothalamic pomcþneurons are detected from 32 hpf, i.e. some
hours after ff1bþ cells (59). Analysis over 2–3 dpf revealed no signif-
icant difference in number of hypothalamic pomcþ cells at each
time (Fig. 4F–J; Supplementary Material, Fig. S2E–H, K), but at 5 dpf,
significantly fewer pomcþneurons were detected in L115X mutants
(Fig. 5J). In both L115X and Y472X mutants, pomcþneurons
appeared disorganised, and were not detected in the characteristic
horseshoe pattern found in the wild type animals (Fig. 5F–I).

We next examined whether disc1 affects corticotropin releasing
hormone (crhb)-expressing neurons, a population that is specified
in an rx3-independent manner (60), but that plays an instru-
mental role in the stress response. Analysis of crhb in Y472X
mutants revealed embryonic expression in both the preoptic
and tuberal hypothalamus, as shown in previous studies
(61,62). At 2–3 dpf, increased numbers of crhbþneurons were
detected in mutant embryos, compared to wild types, in both
domains (Fig. 4K–O, Supplementary Material, Fig. 2I–J, L). By

Figure 2. Expression of disc1 in the larval zebrafish brain. (A–J) 24 hpf or 55 hpf embryos after in situ hybridization for disc1 (A–C, F–H) or rx3 (D, I) shown in ventral

whole-mount view (A–D) or side view (F–I). Anterior to left. (B,H) show high power views of boxed regions in (A,G). (E,J) show schematic ventral and side views. Arrows

point to expression of disc1 in hypothalamus. Lines in side views (H–J) indicate planes of sections shown in (K–N). (K–N) Transverse sections taken through 55 hpf

embryos after in situ hybridization for disc1 (K-M) or rx3 (N). Schematic (O) shows position of 3rd ventricle and lateral recesses. Abbreviations: 3V, 3rd ventricle; Ant, ante-

rior; DT, dorsal thalamus; H, hypothalamus; LR, lateral recess; MO, medulla oblongata; OB, olfactory bulb; PO, preoptic region; PTv, ventral posterior tuberculum; TeO,

tectum opticum; Tub, tuberal. N¼6 each. Scale bar: 50 lm.
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contrast, at 5 dpf, a time when neuroendocrine-responsive tran-
scriptional programmes adapt dynamically to the supply and
demand for neuropeptides, significantly fewer crhbþneurons
could be detected in mutant larvae (Fig. 5O), and where expres-
sion was detected, it was weak, relative to that in wild type sib-
lings, particularly in tuberal regions (Fig. 5K–S).

Taken together, our results suggest that DISC1 is required to
determine appropriate numbers of hypothalamic progenitors,
including rx3þprogenitors, and appropriate numbers/position of
differentiated neurons, including ff1bþ, pomcþand crhþneurons.

disc1 mutant larvae show impaired behavioural
responses to stress

ff1b orthologues are implicated in anxiety-like behaviours in mice
(57) and depression and anxiety in humans (63), whilst crh

orthologues are implicated in anxiety-like behaviours in mice
(15,64) and primates (65), and in depression in humans (66). The
altered differentiation (and, potentially activity) of ff1bþand
crhbþneurons, together with the altered stress reactivity in disc1
adult mutants, led us to ask whether altered behavioural
responses to stress in disc1 mutants are established early in devel-
opment. We analysed each mutant strain for behavioural
responses to two established stress paradigms, osmotic stress (67)
and exposure to alarm substance (39,40). At 3 dpf embryos already
exhibit increased cortisol levels in response to severe stress (61),
while at 5 dpf, larvae display anxiety-related behaviours such as
thigmotaxis and dark avoidance (68). Acute exposure to either
alarm substance or sodium chloride at 5 dpf resulted in a signifi-
cant increase in the nearest neighbour distance (NND, a measure
of shoal cohesion) in wild type larvae, but did not affect NND in
either L115X or Y472X mutants (Fig. 6A,C,E,G). By contrast,

Figure 4. Abnormal neuronal differentiation in the hypothalamus of disc1 L115X and Y472X embryos. (A–D,F–I) Transverse sections through posterior tuberal hypothal-

amus at 52 hpf after in situ hybridisation with ff1b (nr5a1a) (A–D) or pomc (F-I). ff1b is expressed more strongly in both L115X (B) and Y472X (D) mutant larvae, compared

to wild types (A and C). (E,J) Quantitative analyses of ff1b and pomc cell number at 52hpf. ff1b cell count was not different in L115X embryos (t test, t¼�2.45, df¼ 3.86,

P¼0.073, N¼ 3), but was significantly increased in Y472X mutants compared to wild types (t test, t¼ -3.13, df¼14.06, P¼0.007, N¼9–10). pomc cell count was not signifi-

cantly altered in L115X (t test, t¼1.10, df¼ 5.56, P¼0.318, N¼3–5) or Y472X (t test, t¼0.54, df¼25.38, P¼0.593, N¼13–16) embryos (J). (K-O) Transverse sections through

preoptic (K,L) or posterior tuberal hypothalamus (M,N) at 52 hpf after in situ hybridisation with crhb in the Y472X line. Quantitative analysis (O) shows significantly

more crhbþ cells in the preoptic and tuberal hypothalamus of mutant larvae (t test, t¼�2.53, df¼7.83, P¼0.036). N¼5 each. Abbreviations: 3V, 3rd ventricle of the hypo-

thalamus; LR, lateral recess of the hypothalamus; WT, wild type larvae; mutant, homozygous mutant larvae. Scale bar: 50 lm.
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exposure to the stressors caused a significant reduction in swim-
ming speed of both wild type and mutant disc1 larvae (Fig.
6B,D,F,H). L115X mutant swimming speed was not different to that
of wild types, but Y472X mutants swam more slowly than wild
types (Fig. 6D). To summarise, whilst both wild type and mutant
larvae swam more slowly when under stress, only wild type larvae
modulated shoal cohesion in response to stressors.

The failure to modulate shoaling behaviour in response to
stress by disc1 mutants could be due to abnormalities in lateral line
development or the visual system, either of which could impact on
shoaling behaviour (69,70). However, when exposed to a short
pulse of darkness, both wild type and mutant larvae exhibit a star-
tle response (Supplementary Material, Fig. S3A). Furthermore, anal-
ysis of FM1-43, a marker of neuromasts of the lateral line, likewise
showed similar numbers in both wild type and mutant larvae
(Supplementary Material, Fig. S3B). Thus, gross defects in two sen-
sory systems - the visual system and the lateral line – do not
appear to account for the impaired shoaling behaviour.

Environmental stress fails to trigger the HPI axis in disc1
mutant larvae

The altered behavioural reactivity to stress in the disc1
mutant larvae led us to postulate that endocrine responses
might be impaired. We therefore measured cortisol levels
with and without stress exposure. As anticipated (67), expo-
sure to either alarm substance or sodium chloride led to a
significant increase in whole body cortisol levels in wild type
larvae. By contrast, exposure to either alarm substance or
sodium chloride had no significant effect on whole body cor-
tisol levels of either disc1 L115X mutant larvae (Fig. 7A and C)
or Y472X mutant larvae (Fig. 7B and D). No significant differ-
ences were observed in baseline cortisol levels between wild
type and disc1 mutant larvae. Together, these results show
that mutations in disc1 prevent the normal functioning of
the HPI axis, in particular, the cortisol-mediated stress
response.

Figure 5. Abnormal neuronal differentiation in the hypothalamus of disc1 L115X and Y472X larvae. (A–E) Transverse sections (A–D) through posterior tuberal hypothal-

amus at 5 dpf after in situ hybridisation with ff1b. ff1b is expressed more strongly in both L115X and Y472X mutant larvae, and in more cells (E) compared to wild types

(L115X, t test, t¼�2.20, df¼ 11.64, P¼0.049, Y472X, t test, t¼�2.70, df¼12.91, P¼0.018). N¼8–10 each. (F–J) Ventral whole-mount views at 5 dpf after in situ hybridisation

with pomc. pomcþ cells are disorganised in the hypothalamus of mutant larvae (G,I) compared to wild type siblings (F,H). (J) Quantitative analysis at 5 dpf shows signifi-

cantly fewer hypothalamic pomcþ cells in L115X (t test, t¼ 2.24, df¼21.52, P¼0.036, N¼16) mutants compared to wild types, but no significant difference in the Y472X

line (t test, t¼1.63, df¼8.79, P¼0.139, N¼5–6). (K–O) Transverse sections through preoptic (K, L) or posterior tuberal hypothalamus (M,N) at 5 dpf after in situ hybridisa-

tion with crhb in the Y472X line. High power views of boxed regions show weaker expression in mutant particularly in the tuberal region (P–S). Quantitative analysis (O)

shows significantly fewer crhbþ cells can be detected in the preoptic and tuberal hypothalamus of both lines mutant larvae (L115X: t test, t¼�2.47, df¼21.95, P¼0.022;

Y472X: t test, t¼�2.08, df¼23.85, P¼0.049. N¼11–14 each. Abbreviations: 3V, 3rd ventricle of the hypothalamus; LR, lateral recess of the hypothalamus; WT, wild type

larvae; mutant, homozygous mutant larvae. Scale bar: 50 lm.
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Discussion
Humans that carry a mutation in DISC1 present with a variety of
psychiatric conditions, including depression, schizophrenia and
bipolar disorder (19). Mouse disc1 mutant models similarly exhibit
behavioural abnormalities (21,22,27). Our studies reveal behaviou-
ral abnormalities in adult disc1 mutant zebrafish that include freez-
ing in the open field and a reduced preference for the light
compartment in the light-dark test. What might these behaviours
represent, and are they relevant to understanding the pathobiology
of psychiatric disorders? Freezing behaviour is commonly observed
in zebrafish after exposure to stressors such as alarm substance
and is typically accompanied by darting and erratic movements
(39). This combination of behaviours has been considered an
anxiety-like behaviour in zebrafish (71). Moreover, freezing in the
open field test is a characteristic behaviour of the zebrafish gluco-
corticoid receptor mutant (16), where, unaccompanied by darting,
it is considered to represent a depressive-like behaviour. Since, in
the open field, disc1 mutant zebrafish exhibit increased freezing,
and high speed darting in between freezing periods, we believe
that behaviour in this test indicates increased anxiety. Further sup-
port for this conclusion comes through analysis of the response to
the light-dark test. Wild type zebrafish strongly prefer the light
compartment, a behaviour that is likely to be advantageous, in
that the light allows for easier detection of food, mates and preda-
tors (68); the light compartment is also more familiar, due to its
similarity to the home tank. A reduction or reversal of preference
for the light compartment has previously been detected in zebra-
fish that have been stressed (72,73). Further, preference for the light
compartment is exacerbated by exposure to anxiolytic drugs (74).
Together, the decreased preference for the light compartment
shown by the disc1 Y472X mutants supports the notion that they
exhibit increased anxiety-like behaviour.

DISC1 is known to interact via its N-terminal globular
domain with PDE4B, mutation of which has previously been
implicated in neurodevelopmental disorders such as schizo-
phrenia (75). A recent study revealed that treatment of zebrafish
larvae with the PDE4-specific small molecule inhibitor Rolipram
elicited robust, anxiety-like and hyperactive behaviours (76).
Taken together with our findings, these results suggest that
Disc1-PDE4 protein complexes may perform anxiolytic func-
tions in the zebrafish brain, disruption of which could increase
the risk of developing a psychiatric disorder. Interestingly, anal-
ysis of pde4d homozygous mutant zebrafish indicates that pde4d
performs an anxiogenic function in wild-type fish (76). Thus, it
seems likely that Disc1 protein might interact with a PDE4
orthologue other than Pde4d, such as Pde4b, to limit anxiogenic
behaviour in zebrafish. Future biochemical studies of the forma-
tion of Disc1-Pde4 complexes in zebrafish may help to address
this question.

The diversity of psychiatric conditions presented in the
DISC1 pedigree, suggests that DISC1 function, or downstream
effectors, might be modulated by environmental signals.
Indeed, mouse models of DISC1 display abnormal stress
responses (21,23–28). We found that acute exposure to alarm
substance increased bottom dwell time in wild type zebrafish,
as previously described (39,77), but had no effect on disc1
mutants. Increased bottom dwell is generally considered to be
indicative of increased anxiety, and, indeed, this measure is
sensitive to anxiolytic drugs (74). By this logic, a failure to
increase bottom dwell duration by disc1 L115X mutants could be
considered as reduced anxiety, but this explanation seems at
odds with the previously discussed anxiety-like behaviours that
were detected in the Y472X mutants in the open field and light-
dark tests. We therefore hypothesise that disc1 mutants may

Figure 6. Shoaling behaviour of 5 dpf disc1 L115X and Y472X larvae is modulated by chemical stressors. (A–D) Effect of alarm substance on disc1 L115X and Y472X larval

behaviour. Exposure to alarm substance caused an increase in NND of L115X (P¼ 0.009) and Y472X (P¼0.0001) wild type larvae but not mutants (L115X, P¼0.985; Y472X,

P¼0.228) (A, C). Exposure resulted in a decrease in swim speed of both wild type and mutant L115X (two-way ANOVA, F¼ 29.63, df¼1, 64, P¼<0.0001, N¼17) and

Y472X (two-way ANOVA, F¼ 10.06, df¼1,32, P¼0.003, N¼9) larvae (B, D). Y472X mutants swam slower than wild types (two-way ANOVA, F¼5.98, df¼1,32, P¼0.020,

N¼9) (D). (E–H) Effect of osmotic shock on disc1 L115X and Y472X larval behaviour. Exposure to sodium chloride caused an increase in NND of L115X (P¼0.010) and

Y472X (P¼0.003) wild type larvae but not mutants (L115X, P¼0.968; Y472X, P¼0.996) (E,G). Exposure resulted in a decrease in swim speed of both wild type and mutant

L115X (two-way ANOVA, F¼18.49, df¼ 1, 64, P¼0.0002, N¼ 9) and Y472X larvae (two-way ANOVA, F¼ 12.32, df¼1,32, P¼0.001, N¼9) (F,H).
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have an impairment in their detection or processing of stressful
stimuli.

The observed anxiety-like behaviours and failure to activate
appropriate stress responses in the adult disc1 mutant zebrafish
led us to question whether disc1 functions in the hypothalamus,
the key regulator of the stress axis, and whether the observed
behavioural defects have a developmental origin. We found
that disc1 is expressed in the developing hypothalamus in pro-
liferating progenitor cells that line the posterior part of the 3rd

ventricle and lateral recesses (45,51). Studies in mice have
shown that in Disc1 mutants, progenitor cells in the cortex exit
the cell cycle, and differentiate, prematurely (41). Our studies
suggest that disc1 may play a similar role in the embryonic
zebrafish hypothalamus: proliferation is initially enhanced,
then prematurely reduced, in mutant embryos compared to
wild type siblings. Likewise, in situ hybridisation reveals reduced
expression of rx3, a marker of anterior/tuberal hypothalamic
progenitors, in disc1 mutants. Previous studies have shown that
rx3 is required for specification of ff1b-positive (the zebrafish
homologue of SF1/NR5A1) and pomc-positive neurons (51), and
we find that alterations in rx3þprogenitor cells in disc1 mutants
have downstream effects on each of these neuronal classes:
ff1b-positive cells, which differentiate early, increase in number,
while later-born pomc-positive neurons are disorganised, and, in
the L115X line, reduced in number. In mice and zebrafish, a
complete loss of Rax/rx3 function leads to loss of Sf1/ff1b-posi-
tive cells (45,51), and so at first glance it is surprising that the
reduced rx3 expression observed in disc1 mutants correlates
with enhanced ff1b expression. However, studies in fish show
that rx3 must be downregulated in progenitor cells for them to
realize their differentiation programme (45). This further sup-
ports the idea that disc1 mutants show a premature differentia-
tion of rx3-positive progenitor cells, and suggests that ff1b-
positive neurons (which normally differentiate early) are

preferentially increased in number in disc1 mutant fish. In sum-
mary, our studies suggest that in zebrafish, disc1 is required for
proliferation of rx3-positive progenitors, with loss of disc1 func-
tion leading to premature differentiation and early excessive
production of ff1b-positive neurons.

Several studies have linked SF1/NR5A1 to anxiety. Central
nervous system-specific knockout of Sf1 in mice leads to
increased anxiety-like behaviours (57), whilst more recently,
down-regulation of glutamatergic output from the VMN, which
harbours Sf1-positive neurons, was shown to have an anxiety-
reducing effect (78). NR5A1 mutations have also been linked
with anxiety and depression in humans (63). Therefore,
increased ff1b/nr5a1a expression in disc1 mutants might indeed
be expected to have behavioural consequences. Further studies
are needed to determine whether upregulated expression of ff1b
in the hypothalamus plays a direct role in the impaired stress
response in disc1 mutant larvae.

An additional possibility is that the impaired stress response
that we detect in disc1 mutant fish reflects a broader altered
hypothalamic development. Expression of disc1 is not restricted
to rx3-positive progenitor cells, suggesting that other neuronal
subsets, whose differentiation occurs independently of rx3, may
develop abnormally in the mutant fish. In support of this idea,
we detected a significant increase in the number of crh-positive
neurons in disc1 mutant embryos, followed by a significant
reduction in crhb in disc1 mutant larvae. These results are con-
sistent with a model in which inappropriately high crh levels in
embryos lead to unspent neuropeptide cargo, that feeds back to
reduce transcription in larval neuropeptidergic cells just as they
become functionally required (55). Mouse models suggest a vital
role for appropriate Crh levels in normal stress regulation.
Under stress, Crh knockout mice have impaired production of
corticosterone, suggesting that Crh is essential for the normal
adrenal response to stress (79). These studies raise the

Figure 7. Effect of exposure to chemical stressors on whole body cortisol levels of 5 dpf disc1 L115X and Y472X zebrafish larvae. (A,B) Exposure to alarm substance

increased cortisol level in wild type L115X (A) (P¼0.024, N¼15–17) and Y472X (B) (P¼0.008, N¼ 8–11) larvae, but not mutants (P¼0.999 and 0.960 respectively). *Different

to all other groups at P<0.05. (C,D) Exposure to sodium chloride increased cortisol level in wild type L115X (C) (P¼0.026, N¼9) and Y472X (D) (P¼0.0003, N¼8) larvae, but

not mutants (P¼0.987 and 0.769, respectively). *Different to all other groups at P<0.05.
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possibility, therefore, that alterations in crh in disc1 mutant lar-
vae could play a direct role in aberrant stress responses.

Our studies reveal that disc1 mutant larvae display altered
behavioural and endocrine responsiveness to acute stress.
Zebrafish are a shoaling fish species, in which individuals aggre-
gate, often with a common direction. Shoaling behaviour has
been reported in larvae, soon after hatching (80). When exposed
to alarm substance or NaCl, wild type larvae reduce shoal cohe-
sion, likely a stimulus avoidance response, which, in the case of
alarm exposure, would confuse the predator (81). In contrast,
mutant larvae appear to have a defect in this behaviour: when
stressed, disc1 mutant larvae fail to modulate shoal cohesion.
Defects in brain and muscle development were previously
reported in L115X mutant zebrafish (43). We did not observe
morphological abnormalities in L115X homozygotes and their
baseline swimming speed was normal (Fig. 6). These differences
in phenotype may reflect differences in the genetic backgrounds
on which the mutants were maintained (AB vs. TL).
Furthermore, our studies indicate normal locomotor behaviour
in response to light stimulus, and normal numbers of lateral
line neuromasts, arguing against the possibility that the failure
to modulate shoal cohesion is underlain by a defect in vision or
mechanoreception. Instead, it raises the possibility that failure
to modulate shoal cohesion indicates a reduced social interac-
tion, as has been demonstrated in a DISC1 mouse model (28).
Such changes are likely to impact negatively on the fitness of an
animal, and in humans may manifest in psychiatric disease.

In support of this idea, both disc1 mutants failed to upregu-
late cortisol when stressed. Under basal conditions, cortisol lev-
els were not significantly different between mutant and wild
type larvae, indicating that the differences observed in response
to stress represent a failure to activate the HPI axis, rather than
an inability to synthesise cortisol. Reduced corticosterone
release in response to an acute stressor was seen in DISC1
transgenic mice after maternal prenatal immune activation,
compared with control mice (28). In contrast, a different trans-
genic DISC1 mouse model showed hyper-responsivity to stress
(24). In this gene-environment interaction model, isolation
stress did not lead to increased corticosterone levels in wild
type mice, but did lead to increased corticosterone levels in
DISC1 transgenics. While these mouse models vary in the pro-
moters used to drive DISC1 expression and the stress paradigms
used, both studies, as well as our studies with zebrafish, support
the conclusion that DISC1 interacts with the HPA axis, and that
aberrant DISC1 function results in altered responses to stress.

In conclusion, our data suggest that disc1 is essential for ena-
bling normal stress responses, including stress-sensitive social
behaviour, which is likely mediated, at least in part, by altered
hypothalamic development. Future studies aimed at evaluating
stress responses in adults may provide insight into the dynamic
action of disc1 in the HPA axis throughout the life-course. Our
studies demonstrate that the disc1 mutant zebrafish is a valua-
ble system in which to study gene-environment interactions
and the molecular pathways underlying psychiatric disorders.

Materials and Methods
Zebrafish husbandry

Adult zebrafish were maintained with a 14 h light/10 h dark
cycle at 28�C according to standard protocols and were mated in
groups using spawning tanks or paired using individual cross
tanks (82). Both lines of disc1 mutant zebrafish were identified in
an ENU mutagenesis-based screening programme and have

been reported elsewhere (43). We obtained them as an F3 out-
cross from Dr Cecilia Moens (Fred Hutchison Cancer Research
Center, Seattle, WA) and all fish used in this study were out-
crossed with the TL strain to F7/F8 generations prior to in-
crossing. We refer to the disc1fh291 allele as L115X and the
disc1fh292 allele as Y472X throughout. Larvae were obtained from
in-crosses of disc1 wild type and in-crosses of disc1 homozygous
mutant adult siblings. For behavioural analysis, 21 larvae were
maintained per petri dish in E3 medium at 28.5 �C and staged
according to Kimmel’s guide (83). All procedures involving
experimental animals were performed in compliance with local
and national animal welfare laws, guidelines and policies.

Quantitative RT-PCR

Pools of 40 whole larvae were snap frozen at 2.5 dpf. RNA
extraction, cDNA synthesis and qRT-PCR were carried out as
previously described in Boyd et al. 2015 (84).

Behavioural analysis

Zebrafish were transferred to the behavioural analysis room
and left to acclimatise for 1 h prior to analysis. Alarm substance,
the osmotic stressor (250 mM NaCl) or a control solution (water)
were pipetted into the centre of the fish container and move-
ments were tracked for 10 min. Alarm substance was extracted
according to the method of Schirmer and colleagues (85) and
used at a concentration of 200 ll/l swimming medium. Zebralab
software (Viewpoint, France) was used to track the movement
of larval and adult zebrafish and provide quantitative measures
of their behaviour.

Adult behaviour
The open field and dark-light test tank was 25 x 15 x 15 cm and
filled to 4.1 L, whilst the trapezoid tank diving test tank was 23.5
x 6.2 x 13.5 cm and filled maximally. The open field and tank
diving tanks were bare, whilst the light-dark tank was half cov-
ered in a black opaque material on all sides. Fish were accli-
mated to the open field tank for 1 h prior to filming, whilst
filming in the light-dark and tank diving tests began immedi-
ately after the fish was transferred to the tank. Light time is the
percentage of time each fish spends in the light compartment,
whilst bottom dwell is the percentage of time a fish spends in
the lower half of the tank diving test tank.

Larval behaviour
Nearest-neighbour distance (NND) was quantified based on the
formula provided by Miller & Gerlai (86). Briefly, NND is the
mean distance of each larva to the nearest larva and is a meas-
ure of shoal cohesion, with lower values indicating greater
cohesion. Swimming speed, the mean velocity of all larvae, was
also measured in order to determine the motor response of lar-
vae to the stressor.

Whole-body cortisol assay
Immediately following behavioural analysis, the larvae in a sin-
gle petri dish were pooled in to a single tube and snap frozen in
liquid nitrogen. Whole-body cortisol was extracted and meas-
ured according to the ELISA-based method developed by Yeh
et al. (67). Cortisol standards were analysed in triplicate.
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Whole-mount in situ hybridisation
Whole-mount in situ hybridisation was performed according to
standard protocols (87). The following riboprobes that mark
hypothalamic regions were used: rx3 (88); disc1 (38); ff1b/nr5a1a
(provided by V. Laudet, Pierre and Marie Curie University, Paris,
France), pomc (45), crhb (provided by W. Norton, Leicester
University, UK). For analysis of disc1, eyes were removed after
fixation. After staining, larvae were re-fixed then transferred to
30% sucrose for cryosectioning. Specimens were mounted in
OCT and 12 lm thick transverse sections through the entire
forebrain, were serially collected. Sense probes were routinely
used as controls.

Section analysis
Section position was determined on the basis of serial number,
and relative to defined morphological landmarks (optic com-
missure, optic vesicles, lateral ventricle, posterior hypothala-
mus and adenohypophysis). This enabled accurate matching of
sections from wild type and mutant siblings. Note that in some
cases, optic vesicles were displaced upon cryosectioning. Width
across the lateral recess, in which rx3 was expressed, was quan-
tified manually by measuring the distance from the end point of
the lateral recess, to the point where it joins the 3rd ventricle,
for each section of the mid hypothalamus. The number of
labeled cells in the hypothalamus was manually counted in cry-
osections after labeling via whole-mount in situ hybridization.
The total number of labeled cells for each individual was
counted using all hypothalamic sections, identified using mor-
phological landmarks as described above.

Immunohistochemistry
Fixed embryos or sections were labeled using anti-phosH3 (06-
570, Millipore) at 1:1000, as described by Muthu et al. (45), and
mounted in VectaShield.

Image acquisition
Images of whole-mount and sectioned zebrafish were acquired
using an Olympus BX60 microscope using Q Capture Pro 7.0
(QImaging). Images were processed using Adobe Photoshop CC
2014.

Statistical analysis
Statistical analysis and graphics were created in ‘R’ Version
3.3.0 (89). Data were tested for equal variance and normality
prior to analysis. Statistical significance was tested using
unpaired t tests, for comparisons between two samples, whilst
samples classified by two or more different types of treatment
were analysed by Analysis of Variance (ANOVA) and post hoc
analysis via Tukey’s test. For quantitative RT-PCR, DCT values
for disc1 were calculated relative to ef1a for each sample. Fold
change was calculated for each sample relative to the mean of
the control group (wild type). Absorbance readings of cortisol
standards were used to create a standard curve. Cortisol con-
centrations of experimental samples were determined by inter-
polation using a 4-parameter non-linear regression curve fit. In
all cases, standard error of the mean is reported and *P< 0.05,
**P< 0.01, ***P< 0.001.

Supplementary Material
Supplementary Material is available at HMG online.
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