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Abstract Simultaneous Diophantine approximation is concerned with the approxi-

mation of a point x ∈ Rd by points r ∈ Qd , with a view towards jointly minimizing

the quantities ‖x − r‖ and H(r). Here H(r) is the so-called “standard height” of the

rational point r. In this paper the authors ask: What changes if we replace the standard

height function by a different one? As it turns out, this change leads to dramatic dif-

ferences from the classical theory and requires the development of new methods. We

discuss three examples of nonstandard height functions, computing their exponents

of irrationality as well as giving more precise results. A list of open questions is also

given.
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578 L. Fishman, D. Simmons

Fix d ≥ 1, and for each function � : Nd → N let H� : Qd → N be defined by the

formula

H�

(
p1

q1
, . . . ,

pd

qd

)
= �(q1, . . . , qd).

Here we assume that p1/q1, . . . , pd/qd ∈ Q are given in reduced form. The func-

tion H� will be called a height function on Qd .

Classical simultaneous Diophantine approximation is concerned with the standard

height function Hlcm, where lcm : Nd → N is the least common multiple function.

Historically, this height function and its variations and generalizations (see e.g. [6,

§VIII.5-6]) have played a major role in modern mathematics, not only in Diophantine

approximation but also in the theories of projective varieties and elliptic curves.1 The

standard height function has been treated as the natural choice for a height function

on Qd , to the point where no other choices were even considered. One reason for

the historical emphasis on the standard height function is its connection to the lattice

Zd ; specifically; given r ∈ Qd , Hlcm(r) is the smallest number q such that r = p/q

for some p ∈ Zd . This way of interpreting Hlcm lends itself more easily to general-

izations to projective varieties and algebraic number fields; cf. [6, Remark VIII.5.5].

The connection to lattices also induces a connection between the Diophantine approx-

imation based on this height function and the dynamics of the homogeneous space

SLd+1(R)/ SLd+1(Z); cf. [5, Theorem 8.5].

The aim of this paper is to broaden the viewpoint of simultaneous Diophantine

approximation by considering alternative height functions. Specifically, we will con-

sider the height functions Hmax, Hmin, and Hprod defined by the maximum, minimum,

and product functions max,min,prod : Nd → N.2 Although these height functions

are not as related to the lattice Zd (but see the Remark after Theorem 1.2 for a relation

between the height functions Hprod and Hlcm based on the Segre embedding), in a

certain sense they are more natural than Hlcm, since the functions max, min, and

prod are monotonic whereas lcm is not. Thus the study of these alternative height

functions will be based not as much on the study of lattices, but will take a more

“component-wise” approach.

The authors devote a section to analyzing a certain class of functions, the class of

recursively integrable functions (denoted R), which is used in the proof of one of the

1 Although what we call here the “standard height function” is the most commonly considered height

function in the field of Diophantine approximation, a slightly different height function is considered to

be standard in other areas of number theory. Namely, if a rational p/q ∈ Qd is in reduced form, then

many number theorists, motivated by projective geometry, define the height of p/q to be the number

max(|p1|, . . . , |pd |, q) rather than q. The two height functions agree on rationals in the unit cube [0, 1]d ,

as well as agreeing up to a multiplicative error term on bounded subsets of Rd , so the difference is rarely

significant.

2 It has been pointed out to us that there are definitions of the term “height function” according to which

Hmin is not a height function, since its sublevelsets {Hmin ≤ q} (q ∈ N) are not discrete (i.e. it does not

satisfy the Northcott property on compact sets). However, for our purposes it is not important (except for

one place where we must be slightly careful, see Footnote below) whether the sublevelsets of Hmin are

discrete, and we feel that the role played by Hmin in this paper is sufficiently “height-function-like” (in a

Diophantine approximation sense) to justify the use of the terminology.
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Unconventional height functions in simultaneous Diophantine… 579

main theorems. The class R is contained in the class of integrable functions, and is

similar to it in some ways. However, unlike the class of integrable functions, the class

R is not closed under either addition or scalar multiplication. Nevertheless, there are

many functions f2 with the property that for every f1 ∈ R, we have f1 + f2 ∈ R.

Convention 1. For α ≥ 0, we let ψα(q) = q−α .

Convention 2. Given � : Nd → N and (qi )
d
i=1 ∈ Nd , we will write

�d
i=1qi := �(q1, . . . , qd).

Convention 3. The symbols �, �, and ≍ will denote multiplicative asymptotics. For

example, A �K B means that there exists a constant C > 0 (the implied constant),

depending only on K , such that A ≤ C B.

Convention 4. In this paper “increasing” means “nondecreasing” and “decreasing”

means “nonincreasing”, unless the word “strictly” is added.

Convention 5. The symbol ⊳ will be used to indicate the end of a nested proof.

1 Main results

Throughout, d ≥ 1 is fixed, and ‖ · ‖ denotes the max norm on Rd . Note that if d = 1,

then Hlcm = Hmax = Hmin = Hprod = H0, where H0(p/q) = q.

We begin by recalling Dirichlet’s theorem:

Theorem (Dirichlet’s Approximation Theorem) For each x ∈ Rd , and for any Q ∈ N,

there exists p/q ∈ Qd with 1 ≤ q ≤ Qd such that

∥∥∥∥x −
p

q

∥∥∥∥ <
1

q Q
·

Corollary (Dirichlet’s Corollary) For every x ∈ Rd\Qd ,

∥∥∥∥x −
p

q

∥∥∥∥ <
1

q1+1/d
for infinitely many

p

q
∈ Qd .

Equivalently3,

‖x − rn‖ < ψ1+1/d ◦ Hlcm(rn) for some sequence Qd ∋ rn → x. (1.1)

In what follows, we consider analogues of Dirichlet’s Corollary when Hlcm is

replaced by one of the three height functions Hmax, Hmin, and Hprod.

3 There is a subtle distinction here: the existence of infinitely many rational points satisfying a given

inequality, versus the existence of a sequence of rational points satisfying the given inequality and tending

to the given point x. This distinction is important in what follows because otherwise the function Hmin

would behave pathologically, since there exists a bounded region containing infinitely many points r ∈ Qd

satisfying Hmin(r) = 1. But we do not want to say that such a sequence is a sequence of “approximations”

of a given point x unless the sequence actually converges to the point x (which could only happen if x has

an integer coordinate).
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580 L. Fishman, D. Simmons

1.1 Exponents of irrationality

Before getting down to the details of our main theorems, we first consider “coarse”

analogues of Dirichlet’s Corollary. Specifically, we determine what the appropriate

analogue of the exponent 1 + 1/d which appears in the formula (1.1) should be for

our nonstandard height functions. More precisely:

Definition Given a height function H : Qd → N and a point x ∈ Rd\Qd , the

exponent of irrationality of x is

ωH (x) = lim inf
r∈Qd

r→x

− log ‖x − r‖

log H(r)
= lim

ε→0
inf

r∈Qd

‖x−r‖≤ε

− log ‖x − r‖

log H(r)
·

Equivalently, ωH (x) is the supremum of all α ≥ 0 such that

‖x − rn‖ < ψα ◦ H(rn) for some sequence Qd ∋ rn → x.

The exponent of irrationality of the height function H is the number

ωd(H) = inf
x∈Rd\Qd

ωH (x).

We observe that Dirichlet’s Corollary implies that ωd(Hlcm) ≥ 1 + 1/d. In fact,

the reverse inequality is true (and well-known):

ωd(Hlcm) = 1 + 1/d.

This means that 1 + 1/d is the “best exponent” that can be put into formula (1.1).

We are now ready to state the following theorem regarding exponents of

irrationality:

Theorem 1.1 (Exponents of irrationality of Hmax, Hmin, and Hprod)

ωd(Hmax) =
d

(d − 1)(d−1)/d
if d ≥ 2 (1.2)

ωd(Hmin) = 2 (1.3)

ωd(Hprod) =
2

d
· (1.4)

Remark The inequalities min ≤ prod1/d ≤ max ≤ lcm ≤ prod automatically

imply that

ωd(Hprod) ≤ ωd(Hlcm) ≤ ωd(Hmax) ≤ d ωd(Hprod) ≤ ωd(Hmin).

Theorem 1.1 shows that when d ≥ 3, all inequalities are strict except the last.

(When d = 2, the third inequality is also not strict.) It is also interesting to note that
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Unconventional height functions in simultaneous Diophantine… 581

limd→∞ ωd(Hmax) = 1 = limd→∞ ωd(Hlcm), so the second inequality is asymptot-

ically an equality.

1.2 More precise results

We now prepare to state our main theorems. These theorems will answer the question

of what the appropriate analogue of the function ψ1+1/d should be for our nonstandard

height functions. More precisely:

Definition Given a height function H : Qd → N, a function ψ : N → (0,∞), and a

point x ∈ Rd , let

CH,ψ (x) = lim inf
r∈Qd

r→x

‖x − r‖

ψ ◦ H(r)
· (1.5)

Equivalently, CH,ψ (x) is the infimum of all C ≥ 0 such that

‖x − rn‖ < Cψ ◦ H(rn) for some sequenceQd ∋ rn → x.

A function ψ will be called Dirichlet on Rd with respect to the height function H if

CH,ψ (x) < ∞ for all x ∈ Rd\Qd , uniformly Dirichlet if supRd\Qd CH,ψ < ∞, and

optimally Dirichlet if ψ is Dirichlet and CH,ψ (x) > 0 for at least one x ∈ Rd\Qd .

(This terminology originally appeared in [2].)

We observe that Dirichlet’s Corollary implies that the function ψ1+1/d is uniformly

Dirichlet on Rd with respect to the height function Hlcm, and in fact that

CHlcm,ψ1+1/d
(x) ≤ 1 ∀x ∈ Rd\Qd .

In fact, the function ψ1+1/d is optimally Dirichlet on Rd with respect to the height

function Hlcm, due to the existence of so-called badly approximable vectors, i.e.

vectors x ∈ Rd\Qd for which CHlcm,ψ1+1/d
(x) > 0. Roughly, the statement that

ψ1+1/d is optimally Dirichlet should be interpreted as meaning that in formula (1.1),

the function ψ1+1/d cannot be improved by more than a multiplicative constant. This

interpretation was made rigorous in [2, Theorem 2.6 and Proposition 2.7].

Example The function ψ2(q) = q−2 is uniformly and optimally Dirichlet on R with

respect to the height function H0. This fact may be equivalently expressed as follows:

(i) (ψ2 is uniformly Dirichlet) There exists C > 0 such that for all x ∈ R, there exist

infinitely many p/q ∈ Q such that |x − p/q| ≤ Cq−2.

(ii) (Optimality) There exist x ∈ R and ε > 0 such that |x − p/q| ≥ εq−2 for all but

finitely many p/q ∈ Q.

Remark We will sometimes deal with functions ψ which are not defined for all natural

numbers, but only for sufficiently large numbers. In this case, the formula (1.5) may

be interpreted as referring to an arbitrary extension of ψ to N; it is clear that the precise

nature of the extension does not matter.
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582 L. Fishman, D. Simmons

Given a height function H ∈ {Hmax, Hmin, Hprod} and d ≥ 1, we may now ask

the following questions:

1. Is there an optimally Dirichlet function on Rd with respect to H?

2. If so, what is it?4

3. If not, can one give a criterion for determining whether or not a given function is

Dirichlet?

It turns out that to answer these questions, we must consider two cases. The first case

is when either H ∈ {Hmin, Hprod} or d ≤ 2. In this case, the situation is similar to

the situation for the height function Hlcm: there is a uniformly and optimally Dirichlet

function, and it comes from the class of power law functions (ψα)α≥0. Precisely:

Theorem 1.2 Fix � ∈ {max,min,prod}, and if � = max assume that d ≤ 2. Then

the function

ψωd (H�)(q) =

{
q−2 � = max,min

q−2/d � = prod

is uniformly and optimally Dirichlet on Rd with respect to the height function H�.

Remark The case � = prod of Theorem 1.2 can be reformulated as a theorem about

intrinsic Diophantine approximation (see e.g. [1]) using the standard height function

Hlcm on the variety Md = �d(Rd) ⊂ R2d−1, where

�d(x1, . . . , xd) =
(∏

i∈S
xi

)
∅�=S⊂{1,...,d}

is (the affinization of) the Segre embedding. This is because for every rational r ∈ Qd ,

we have Hprod(r) = Hlcm ◦ �d(r). In the terminology of [1], the reformulated

theorem states that the function ψ(q) = q−2/d is an optimal Dirichlet function for the

Diophantine triple (Md , Q2d−1 ∩ Md , Hlcm). (It is uniformly Dirichlet on compact

subsets of this triple.) The special case d = 2 follows from [1, Theorems 4.5 and 5.1]

using the fact that M2 is a quadric hypersurface; cf. [1, Remark 8.1].

In the second case, namely when H = Hmax and d ≥ 3, the situation is much differ-

ent. Specifically, when d ≥ 3 the height function Hmax has the following unexpected

property: It possesses no “reasonable” optimally Dirichlet function. To state this pre-

cisely, we need to define the class of functions that we consider to be reasonable. A

Hardy L-function is a function which can be expressed using only the elementary

arithmetic operations +,−,×,÷, exponents, logarithms, and real-valued constants,

4 Technically, there may be more than one optimally Dirichlet function, as shown in [2, Remark 2.11].

However, in this paper we are really only interested in Hardy L-functions (which will be defined shortly),

and for these functions, there is up to a multiplicative constant at most one optimally Dirichlet function

(again see [2, Remark 2.11]).
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Unconventional height functions in simultaneous Diophantine… 583

and which is well-defined on some interval of the form (t0,∞).5 For example, for any

C, α ≥ 0 the function

ψ(q) = q−α+C/ log2 log(q)

is a Hardy L-function. We have the following:

Theorem 1.3 Suppose d ≥ 3. Then no Hardy L-function is optimally Dirichlet on

Rd with respect to the height function Hmax.

Remark The class of Hardy L-functions includes almost all functions that one natu-

rally encounters in dealing with “analysis at infinity”, except for those with oscillatory

behavior.

This answers question 1 above, so we would like next to answer question 3. Namely,

given d ≥ 3 and a Hardy L-function ψ , how does one determine whether or not ψ

is Dirichlet on Rd with respect to Hmax? Our final theorem (Theorem 1.4) will be a

complete answer to this question. However, since it is complicated to state, we approach

this theorem by degrees. As a first approximation we give the following corollary,

which considers the case of a single error term added to the function ψωd (Hmax):

Corollary (of Theorem 1.4) Suppose d ≥ 3. For each C > 0 let

ψ(q) = q−ωd (Hmax)+C/ log2 log(q). (1.6)

Then ψ is (non-optimally) Dirichlet on Rd with respect to Hmax if and only if

C >
dγd log2(γd)

8
, (1.7)

where γd = (d − 1)1/d > 1.

In particular, letting C = 0, we see that the function ψωd (Hmax) is not Dirichlet on

Rd with respect to Hmax.

This corollary now provides us with motivation to state our final theorem. Let

ψ be the function defined by (1.6) when C = dγd log2(γd)/8. We know that ψ is

not Dirichlet (on Rd with respect to Hmax), but that for any function of the form

φε(q) = qε/ log2 log(q), the product φεψ is Dirichlet. This suggests that there is a

function φ which grows more slowly than any φε such that the product φψ is still

Dirichlet. What function can we multiply by? As it turns out, if

φ(q) = qC/[log2 log(q) log2 log log(q)],

5 Hardy L-functions were defined by Hardy and were originally called logarithmico-exponential functions;

see [3, §3].
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584 L. Fishman, D. Simmons

then φψ is Dirichlet if and only if (1.7) holds. At this point it is clear that this line of

questioning can be pursued ad infinitum, leading to the following:

Theorem 1.4 Suppose that d ≥ 3. Then for each N ≥ 1 and C ≥ 0, the function

ψN ,C (q) = q ∧

(
−ωd(Hmax)+

dγd log2(γd)

8

[
N∑

n=2

n∏

i=2

(
1

log(i)(q)

)2

+ C

N+1∏

i=2

(
1

log(i)(q)

)2
])

is (non-optimally) Dirichlet on Rd with respect to Hmax if and only if C > 1. Here

γd = (d − 1)1/d as before, and log(i) denotes the i th iterate of the logarithm function.

If N = 1, then the first summation is equal to 0 by convention.

The earlier corollary is precisely the special case N = 1 of Theorem 1.4.

Remark It may not be entirely obvious that Theorem 1.4 is a complete answer to

question 3 in the case of Hardy L-functions. Nevertheless, it is. Precisely: If ψ is a

Hardy L-function, then there exist N ≥ 1 and C ≥ 0 such that comparing ψ with

ψN ,C together with Theorem 1.4 allow one to determine whether or not ψ is Dirichlet

on Rd with respect to Hmax. For a proof of this, see Proposition 5.7.

For a version of Theorem 1.4 which goes slightly beyond Hardy L-functions, allow-

ing ψ to be a member of any Hardy field which contains the exponential and logarithm

functions and is closed under composition, see Proposition 6.1.

1.3 Techniques

The main technique of this paper is to generalize the correspondence between the

continued fraction expansion of an irrational number and its Diophantine properties

into higher dimensions. This is done by introducing the notion of a data progression

corresponding to an irrational vector x, which is a mathematical object that encodes

information about the continued fraction expansions of all of the coordinates of x. The

Diophantine properties of x can then be related to properties of the corresponding data

progression. For more details see 2.2.

In the case of the height function Hmax, this correspondence translates the question

of which functions are Dirichlet into a question about whether data progressions satis-

fying certain inequalities exist. We answer this question by converting it into a question

about whether certain differential equations have nonnegative solutions, leading to the

concept of a recursively integrable function. This concept is interesting in its own right

and we study it in detail in Sect. 5. In particular we give a complete characterization of

which Hardy L-functions are recursively integrable (Proposition 5.7), which leads to

the characterization of which functions are Dirichlet described above in Theorem 1.4.
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1.4 Summary of the paper

Section 2 contains preliminary results which are used in the proofs of our main theo-

rems. In Sect. 3 we prove Theorem 1.2, as well as demonstrating formulas (1.3) and

(1.4). Section 4 provides a motivation for the first formula of Theorem 1.1 without

giving a rigorous proof. Section 5 is devoted to defining and analyzing the class of

recursively integrable functions, a class which is used in the proof of Theorems 1.3

and 1.4. In Sect. 6 we prove Theorems 1.3 and 1.4, as well as demonstrating formula

(1.2). Finally, a list of open questions is given in Sect. 7.

2 Preliminaries

2.1 Lemmas concerning continued fractions

We begin our preliminaries with two lemmas concerning continued fractions. The

first states that for x ∈ R, the convergents of the continued fraction expansion of x

provide the best approximations to x as long as one is willing to accept a multiplicative

error term.6 Hence the Diophantine properties of x essentially depend only on the

denominators of these convergents. The second states that given any sequence of

numbers increasing fast enough, there is a number x such that the denominators of the

convergents of the continued fraction expansion of x are equal up to an asymptotic to

the elements of this sequence. Together, the two lemmas say that from a (sufficiently

coarse) Diophantine point of view, the properties of a number can be encoded by an

increasing sequence of integers.

Remark This section is mostly interesting if x is an irrational number. However, since

the implied constants are supposed to be independent of x , the results are nontrivial

even when x is rational.

Lemma 2.1 Fix x ∈ R, and let (pn/qn)N
0 be the convergents of the continued fraction

expansion of x (so that N = ∞ if and only if x /∈ Q). Then for every p/q ∈ Q, there

exists n ∈ N so that

q � qn and

∣∣∣∣x −
p

q

∣∣∣∣ �

∣∣∣∣x −
pn

qn

∣∣∣∣

(cf. Convention 3).

Before we begin the proof, we recall [4, Theorem 1] that if (an)N
0 are the partial

quotients of the continued fraction expansion of x , then

pn = an pn−1 + pn−2 (2.1)

qn = anqn−1 + qn−2 (2.2)

6 Here “best approximations” means “best approximations of the first kind” in the language of [4, p. 24].

Note that if no error term is allowed, then best approximations of the first kind must be intermediate fractions

(cf. (2.4)), but they are not necessarily convergents.
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586 L. Fishman, D. Simmons

for all n ≥ 1. Here we use the convention that p−1 = 1 and q−1 = 0. In particular,

the sequence (qn)N
0 is strictly increasing and satisfies qn ≍ anqn−1. We recall also [4,

Theorems 9 and 13] that for all 0 ≤ n < N ,

∣∣∣∣x −
pn

qn

∣∣∣∣ ≍
1

qnqn+1
· (2.3)

Proof Consider the set S = {p′/q ′ ∈ Q : q ′ ≤ q}, and let p′/q ′ ∈ S be chosen to

minimize |x − p′/q ′|. Then q ′ ≤ q and |x − p′/q ′| ≤ |x − p/q|, so we may without

loss of generality assume that p/q = p′/q ′. In this case, p/q is a best approximation

of the first kind in the sense of [4, p. 24]. By [4, Theorem 15], p/q is an intermediate

fraction in the sense of [4, p. 14], i.e.

p

q
=

apn−1 + pn−2

aqn−1 + qn−2
(2.4)

for some 1 ≤ n ≤ N and 1 ≤ a ≤ an . We consider two cases separately:

• Case 1: a ≥ an/2. In this case,

2q ≥ anqn−1 + qn−2 = qn .

On the other hand, by [4, Theorem 17], pn/qn is a best approximation of the second

kind, and thus also a best approximation of the first kind. Since q ≤ qn , this gives

∣∣∣∣x −
p

q

∣∣∣∣ >

∣∣∣∣x −
pn

qn

∣∣∣∣ ,

completing the proof in this case.

• Case 2: 1 ≤ a < an/2. In this case, since p/q lies on the same side of x as pn/qn

(cf. [4, Theorem 4] and [4, Lemma on p.14]), we have

∣∣∣∣x −
p

q

∣∣∣∣ ≥

∣∣∣∣
pn

qn

−
p

q

∣∣∣∣

=

∣∣∣∣
an pn−1 + pn−2

anqn−1 + qn−2
−

apn−1 + pn−2

aqn−1 + qn−2

∣∣∣∣

=
an − a

[anqn−1 + qn−2][aqn−1 + qn−2]
(cf. [4, Theorem 2])

≥
an/2

q2
n

≍
1

qn−1qn

≍

∣∣∣∣x −
pn−1

qn−1

∣∣∣∣ .

Since q ≥ qn−1, this completes the proof in this case. ⊓⊔

Lemma 2.2 Let (q̃n)N
0 be a (finite or infinite) sequence satisfying q̃n+1 ≥ 2q̃n and

q̃0 = 1. Then there exists x ∈ R so that if (pn/qn)N
0 are the convergents of the
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Unconventional height functions in simultaneous Diophantine… 587

continued fraction expansion of x, then

1

2
q̃n ≤ qn ≤ q̃n ∀n ∈ N. (2.5)

Proof The proof will proceed by recursively defining a sequence of integers (an)N
1

and then letting x be the unique number in (0, 1) whose partial quotients are given

by (an)N
1 . Note that once this process is completed, for every 1 ≤ M ≤ N the value

of qM can be computed from (2.2) using only the data points (an)M
1 together with

the initial values q−1 = 0, q0 = 1. Thus in our recursive step, once we have defined

(an)M
1 , we may treat (qn)M

1 as also defined.

Fix 1 ≤ M ≤ N , and suppose that the values (an)M−1
1 have been fixed, and that the

resulting values (qn)M−1
1 all satisfy (2.5). In particular, when n = M − 1, (2.5) holds.

(If M = 1, this is due to the assumption on q̃0 rather than to the induction hypothesis.)

Let aM be the largest integer a ≥ 1 such that aqM−1 + qM−2 ≤ q̃M . Such an integer

exists because

q̃M ≥ 2q̃M−1 ≥ 2qM−1 ≥ qM−1 + qM−2.

Let qM be given by (2.2). Then

qM ≤ q̃M ≤ (aM + 1)qM−1 + qM−2 ≤ 2(aMqM−1 + qM−2) = 2qM ,

i.e. (2.5) holds when n = M . This completes the recursive step. ⊓⊔

2.2 Data progressions

Fix d ≥ 1. In the previous section, we learned how the Diophantine properties of an

irrational number x are encoded in the sequence of denominators of the convergents of

the continued fraction expansion of x . Continuing with this theme, given an irrational

point x ∈ Rd\Qd we would like to find a structure which encodes the Diophantine

properties of x. It turns out that the appropriate structure for this encoding is given by

the following definition:

Definition 2.3 Let 
 = (Ak, ik)
∞
k=1 be a pair of sequences, so that Ak ∈ R and

ik ∈ {1, . . . , d} for all k ∈ N. Assume that {ik : k ∈ N} = {1, . . . , d}. For each

i = 1, . . . , d and k sufficiently large, let

ℓ(i, k) := max{k′ < k : ik′ = i}

b
(i)
k := Aℓ(i,k)+1.

Equivalently, the sequence (
k := (b
(i)
k )d

i=1)
∞
k=1 may be defined via the recursive

formula

b
(i)
k+1 =

{
Ak+1 if i = ik

b
(i)
k if i �= ik

. (2.6)
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We say that 
 is a d-dimensional data progression if the following hold:

(I) For all k sufficiently large,

b
(ik )
k+1 > b

(ik )
k . (2.7)

(II) The sequence (max(
k))
∞
k=1 is unbounded.

Given � : [0,∞)d → [0,∞) and 
 : [0,∞) → R we write

C�,
(
) = lim inf
k→∞

(



(
�d

i=1b
(i)
k

)
− b

(ik )
k − b

(ik )
k+1

)
.

Remark In the sequel, the notation introduced in this definition will be used without

comment.

Remark A pair of sequences 
 = (Ak, ik)
∞
k=1 is a one-dimensional data progression if

and only if ik = 1 for all k, and the sequence (Ak)
∞
k=1 is increasing and tends to infinity.

The canonical example is the sequence (qk)
∞
k=1 of denominators of convergents of an

irrational number x ∈ R\Q.

Lemma 2.4 Fix � : [1,∞)d → [1,∞) and ψ : [1,∞) → (0,∞). Let � =

log � exp and let 
 = − log ψ exp. Suppose that � and 
 are uniformly continuous

and coordinatewise increasing.

(i) For each x ∈ Rd\Qd , there exists a d-dimensional data progression 
 such that

CH�,ψ (x) � exp C�,
(
). (2.8)

(ii) Conversely, for each d-dimensional data progression 
, there exists x ∈ Rd\Qd

such that

CH�,ψ (x) �ψ,� exp C�,
(
). (2.9)

In particular

sup
Rd\Qd

CH�,ψ ≍ψ,� exp sup



C�,
(
),

where the supremum is taken over all d-dimensional data progressions 
.

Remark The maps x �→ 
 and 
 �→ x implicitly described in parts (i) and (ii) of

Lemma 2.4, respectively, are in fact independent of � and ψ , as can be easily seen

from the proof of Lemma 2.4. On an intuitive level these maps are “rough inverses”

of each other, but we do not make this rigorous.

Remark 2.5 If � ∈ {max,min,prod}, then � ∈ {max,min,sum} is uniformly

continuous and coordinatewise increasing. If ψ is a Hardy L-function whose decay

is no faster than polynomial, then 
 is uniformly continuous and increasing (Lemma

A.4). Thus for the situations considered in this paper, the hypotheses of Lemma 2.4

will be immediately satisfied.
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Proof of (i). Fix x ∈ Rd\Qd , and for each i = 1, . . . , d, let
(

p
(i)
n /q

(i)
n

)Ni

n=1
be the

convergents of the continued fraction expansion of xi . Here Ni ∈ N ∪ {∞}, with

Ni = ∞ for at least one i . Let Ei = {1, . . . , Ni − 1} if Ni ∈ N, and Ei = N if

Ni = ∞. Let E = {(n, i) : i = 1, . . . , d, n ∈ Ei }, and define a map f : E → N by

letting f (n, i) = q
(i)
n q

(i)
n+1. Let

(
(mk, ik)

)∞
k=1

be an indexing of E such that the map

k �→ f (mk, ik) is increasing. Then for each k ∈ N, let

Ak+1 = log(q
(ik )
mk+1),

and let 
 = (Ak, ik)
∞
k=1. Then b

(ik )
k = log(q

(ik )
mk

) and b
(ik )
k+1 = log(q

(ik )
mk+1). It follows

immediately that 
 is a d-dimensional data progression. To demonstrate (2.8), let

L(i, k) = min{k′ ∈ N : k′ ≥ k, ik′ = i}

n(i, k) = mL(i,k) = mℓ(i,k) + 1,

so that

b
(i)
k = log(q

(i)
n(i,k)

).

Now

d

min
i=1

(
q

(i)
n(i,k)

q
(i)
n(i,k)+1

)
=

d

min
i=1

f (n(i, k), i)

=
d

min
i=1

f (mL(i,k), iL(i,k))

= f (mk, ik)(sinceL(ik, k) = k, andL(i, k) ≥ kfor alli

= q(ik )
mk

q
(ik )
mk+1

= exp(b
(ik )
k + b

(ik )
k+1).

Let rk =
(

p
(i)
n(i,k)

/q
(i)
n(i,k)

)d

i=1
. Then

CH�,ψ (x) ≤ lim inf
k→∞

‖x − rk‖

ψ ◦ H�(rk)

≍ lim inf
k→∞

d
max
i=1

1

q
(i)
n(i,k)

q
(i)
n(i,k)+1

1

ψ ◦ H�(rk)
(by(2.3))

= lim inf
k→∞

1

exp(b
(ik )
k + b

(ik )
k+1)

1

ψ

(
�d

i=1q
(i)
n(i,k)

) = exp C�,
(
).

⊓⊔

Proof of (ii). Let 
 = (Ak, ik)
∞
k=1 be a d-dimensional data progression. For each

i = 1, . . . , d, define an increasing sequence (k(i, n))
Ni

n=0 recursively: Let k(i, 0) be
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large enough so that b
(i)
k(i,0)

is defined. Now fix n ≥ 0, and suppose that k(i, n) has

been defined. Let k(i, n + 1) be the smallest value of k such that

b
(i)
k ≥ b

(i)
k(i,n)

+ log(2)

if such a value exists; otherwise let Ni = n. Then by Lemma 2.2, there exists xi ∈ R

satisfying

q(i)
n ≍ exp(b

(i)
k(i,n)

) ∀1 ≤ n ≤ Ni ,

where (p
(i)
n /q

(i)
n )

Ni

n=1 are the convergents of the continued fraction expansion of xi .

By (II) of the definition of a data progression, we have Ni = ∞ for at least one i

and thus x := (x1, . . . , xd) /∈ Qd . We will demonstrate (2.9). Fix r ∈ Qd . For each

i = 1, . . . , d, by Lemma 2.1 there exists ni = ni (r) such that H0(ri ) � q
(i)
ni

and

|xi − ri | � |x − p
(i)
ni

/q
(i)
ni

|. Let

ki = ki (r) = k(i, ni (r) + 1) − 1

k = k(r) =
d

min
i=1

ki (r),

so that

b
(i)
k(i,ni )

≤ b
(i)
ki

≤ b
(i)
k(i,ni )

+ log(2).

Here the understanding is that if ni = Ni , then ki = ∞ and b
(i)
ki

= limk→∞ b
(i)
k . Then

H0(ri ) � q(i)
ni

≍ exp(b
(i)
k(i,ni )

) ≍ exp(b
(i)
ki

) ≥ exp(b
(i)
k ).

Using the fact that � and 
 are uniformly continuous and coordinatewise increasing,

we deduce that

ψ ◦ H�(r) = ψ

(
�d

i=1 H0(ri )

)
�ψ,� ψ

(
�d

i=1 exp(b
(i)
k )

)
.

On the other hand, for each i such that ki �= ∞ we have

|xi − ri | �

∣∣∣∣∣xi −
p

(i)
ni

q
(i)
ni

∣∣∣∣∣ ≍
1

q
(i)
ni

q
(i)
ni +1

≍
1

exp(b
(i)
k(i,ni )

+ b
(i)
k(i,ni +1)

)
≍

1

exp(b
(i)
ki

+ b
(i)
ki +1)

·

Since iki
= i ∀i , we have kik

= k. Thus

‖x − r‖ ≥ |xik
− rik

| �
1

exp(b
(ik )
k + b

(ik )
k+1)

·
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Combining, we have

‖x − r‖

ψ ◦ H�(r)
�ψ,�

1

exp(b
(ik )
k + b

(ik )
k+1)

1

ψ

(
�d

i=1 exp(b
(i)
k )

) ·

Let (r j )
∞
1 be a sequence in Qd along which the liminf in (1.5) is achieved. Since

‖x − r j‖ → 0, it follows that for all i = 1, . . . , d, we have ni (r j ) → ∞ and thus

ki (r j ) → ∞. So k(r j ) → ∞, and thus

CH�,ψ (x) = lim
j→∞

‖x − r j‖

ψ ◦ H�(r j )

�ψ,� lim inf
k→∞

1

exp(b
(ik )
k + b

(ik )
k+1)

1

ψ

(
�d

i=1 exp(b
(i)
k )

) = exp C�,
(
).

⊓⊔

3 Proof of Theorem 1.2 and formulas (1.3), (1.4)

We begin by reformulating Theorem 1.2 using Theorem 1.1:

Proposition 3.1 Fix d ≥ 1 and � ∈ {max,min,prod}, and if � = max assume

that d ≤ 2. Let

βd =

{
2 � = max,min

2/d � = prod
· (3.1)

Then ψβd
is uniformly and optimally Dirichlet on Rd with respect to the height function

H�.

Proving this reformulation is sufficient to prove Theorem 1.2. Indeed, Proposition

3.1 immediately implies that ωd(H�) = βd ; replacing βd by ωd(H�) in Proposition

3.1 yields Theorem 1.2.

Proposition 3.1 also implies (1.3) and (1.4), and the case d = 2 of (1.2).

Remark The case d = 1 of Proposition 3.1 merely states that ψ2 is uniformly and

optimally Dirichlet on R with respect to the standard height function H0. Thus, in the

proof we may assume d ≥ 2.

Proof of Uniform Dirichletness. By Lemma 2.4, it suffices to show that

sup



C�,
(
) ≤ 1,

where � = log � exp, 
 = − log ψβd
exp, and the supremum is taken over d-

dimensional data progressions 
. By contradiction suppose that C�,
(
) > 1 for
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some d-dimensional data progression 
 = (Ak, ik)
∞
k=1. Then for all k sufficiently

large, we have

b
(ik )
k + b

(ik )
k+1 ≤ βd�d

i=1b
(i)
k − 1. (3.2)

Let Var(
) and Av(
) denote the variance and mean (average) of a d-tuple 
, respec-

tively. Let K = {k ∈ N : max(
k+1) > max(
k)}. ⊓⊔

Claim 3.2 We have

Var(
k+1) ≤ Var(
k) ∀k ∈ N (3.3)

Var(
k+1) ≤ Var(
k) − 1/ max(4, d) ∀k ∈ K . (3.4)

The proof is divided into two cases: either � ∈ {min,prod}, or � = max and d = 2.

Proof if � ∈ {min,prod}. To begin with, we observe that

Var(
k+1) − Var(
k) ≤
1

d

d∑

i=1

(
b

(i)
k+1 − Av(
k)

)2
− Var(
k)

=
1

d

[(
b

(ik )
k+1 − Av(
k)

)2
−
(

b
(ik )
k − Av(
k)

)2
]

. (3.5)

Now by (3.2), we have

b
(ik )
k + b

(ik )
k+1 ≤ 2Av(
k) − 1.

(If � = prod, then this equation is simply a reformulation of (3.2); if � = min, it

follows from the fact that min(
k) ≤ Av(
k).) Rearranging gives

Av(
k) ≥
b

(ik )
k + b

(ik )
k+1

2
+

1

2
· (3.6)

By (2.7), the above equation implies that

|b
(ik )
k+1 − Av(
k)| ≤ |b

(ik )
k − Av(
k)|.

Combining with (3.5) completes the proof of (3.3). Now suppose that k ∈ K , and

observe that Av(
k) ≤ max(
k) < max(
k+1) = b
(ik )
k+1. Combining with (3.6)

yields

|b
(ik )
k+1 − Av(
k)| ≤ |b

(ik )
k − Av(
k)| − 1,

and thus

|b
(ik )
k+1 − Av(
k)|

2 ≤ |b
(ik )
k − Av(
k)|

2 − 1.

Combining with (3.5) gives (3.4).
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Proof if � = max and d = 2. In this case, (3.2) becomes

b
(ik )
k + b

(ik )
k+1 ≤ 2 max(b

(ik )
k , b

( jk )
k ) − 1,

where jk satisfies {ik, jk} = {1, 2}. Combining with (2.7) gives b
(ik )
k < b

( jk )
k , and so

rearranging gives

b
( jk )
k+1 = b

( jk )
k ≥

b
(ik )
k + b

(ik )
k+1

2
+

1

2
. (3.7)

By (2.7), the above equation implies that

|b
(ik )
k+1 − b

( jk )
k+1| = |b

(ik )
k+1 − b

( jk )
k | ≤ |b

(ik )
k − b

( jk )
k |,

demonstrating (3.3). Now suppose that k ∈ K , and observe that b
( jk )

k = max(
k) <

max(
k+1) = b
(ik )
k+1. Combining with (3.7) gives

|b
(ik )
k+1 − b

( jk )
k+1| ≤ |b

(ik )
k − b

( jk )
k | − 1,

and thus

|b
(ik )
k+1 − b

( jk )
k+1|

2 ≤ |b
(ik )
k − b

( jk )
k |2 − 1.

Since Var(
k) = (1/4)|b
(ik )
k −b

( jk )
k |2, this equation is equivalent to (3.4). To complete

the proof of Proposition 3.1, observe that K is infinite by (II) of Definition 2.3. Thus,

it follows from Claim 3.2 that Var(
k) → −∞. But this contradicts the fact that the

variance of a data set is always nonnegative.

Proof of Optimality. Let x1, . . . , xd ∈ R be badly approximable numbers, and let

x = (x1, . . . , xd). We claim that CH�,ψβd
(x) > 0, demonstrating the optimality of

ψβd
. Indeed, for each r ∈ Qd ,

‖x − r‖ =
d

max
i=1

|xi − ri | �x
d

max
i=1

1

H2(ri )
=

1

H2
min

(r)
≥

1

H
2/d
prod(r)

≥
1

H2
max(r)

·

Thus ‖x − r‖ �x ψβd
◦ H�(r), which implies the desired result. ⊓⊔

4 Interlude: Motivation for the value of ωd(Hmax)

Before jumping into the proof of Theorems 1.3 and 1.4, in this section we try to motivate

the formula (1.2). Our approach is as follows: The notion of a “data progression” is

very broad, but it is natural to expect that “worst-case-scenario” data progressions will

behave somewhat regularly. In fact, we will prove a rigorous version of this assertion

in Sect. 6. But for now, let’s just see what happens if we restrict our attention to data

progressions which behave regularly.
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Definition A data progression 
 is periodic if the map k �→ ik is periodic of order d,

and geometric if Ak = γ k for some γ > 1. The number γ is called the mutliplier.

Remark If a data progression is periodic, then the map {1, . . . , d} ∋ k �→ ik must be

a permutation.

Remark It is shown in Sect. 6 that to determine which functions ψ are Dirichlet on Rd

with respect to Hmax, it is sufficient to consider data progressions which are eventually

periodic (Claim 6.6) and asymptotically geometric (Claim 6.5).

Lemma 4.1 Let 
 be a periodic geometric d-dimensional data progression of multi-

plier γ . Fix α ≥ 0, and let 
α(b) = αb. Then

Cmax,
α (
) =

⎧
⎪⎨
⎪⎩

−∞ if γ + γ −(d−1) > α

0 if γ + γ −(d−1) = α

∞ if γ + γ −(d−1) < α

.

Proof Since 
 is periodic, we have {b
(i)
k : i = 1, . . . , d} = {Ak− j : j = 0, . . . , d−1},

b
(ik )
k = Ak−d+1, and b

(ik )
k+1 = Ak+1. Thus

Cmax,
α (
) = lim inf
k→∞

(
α

d−1
max
j=0

Ak− j − Ak−d+1 − Ak+1

)

= lim inf
k→∞

(
αγ k − γ k−d+1 − γ k+1

)

= lim inf
k→∞

(
α − γ −(d−1) − γ

)
γ k .

Since γ k → ∞, this completes the proof. ⊓⊔

Fix α ≥ 0. From Lemma 2.4, we know that ψα is Dirichlet on Rd with respect

to Hmax if and only if Cmax,
α (
) < ∞ for every d-dimensional data progression


. Now comes the heuristic part: let’s figure out what happens if we consider only

periodic geometric data progressions, rather than all data progressions.

Proposition 4.2 The following are equivalent:

(A) Cmax,
α (
) < ∞ for every periodic geometric d-dimensional data progression


.

(B) α ≤ αd := d(d − 1)−(d−1)/d .

In light of Lemma 4.1, it suffices to prove the following:

Lemma 4.3 The unique minimum of the function

f (γ ) = γ + γ −(d−1)

is attained at the value γd = (d − 1)1/d , where it achieves the value f (γd) = αd .
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The proof of this lemma is a calculus exercise which is left to the reader.

Note that γd > 1 if and only if d ≥ 3. If d = 2, we still have supγ>1 f (γ ) = αd

which is sufficient to deduce Proposition 4.2 from Lemma 4.1.

In the sequel, the following corollary will be useful:

Corollary 4.4 The unique maximum of the function

fd(γ ) = (αd − γ )γ d−1

is attained at the value γd , where it acheives the value fd(γd) = 1.

Proof We have

γ + γ −(d−1) ≥ αd ,

with equality if and only if γ = γd ; rearranging gives the desired result. ⊓⊔

5 The class of recursively integrable functions

In this section we introduce a class of functions to be used in the proof of Theorem

1.4, the class of recursively integrable functions.

Definition 5.1 Fix t0 ≥ 0, and let f : [t0,∞) → [0,∞) be a continuous function.

We say that f is recursively integrable if for some t1 ≥ t0 the differential equation

− g′(x) = g2(x) + f (x) (5.1)

has a solution g : [t1,∞) → [0,∞). The class of recursively integrable functions

will be denoted R. A solution g of (5.1) will be called a recursive antiderivative of f

(regardless of its domain and range).

Note that if f ∈ R, then f is integrable, since

∫ ∞

t1

f (x)dx ≤

∫ ∞

t1

[g2(x) + f (x)]dx

= −

∫ ∞

t1

g′(x)dx = g(t1) − lim
t→∞

g(t) ≤ g(t1) < ∞.

Like the class of integrable functions, the class R is closed under ≤:

Lemma 5.2 If 0 ≤ f1 ≤ f2 and if f2 ∈ R, then f1 ∈ R.

Proof Let g2 : [t1,∞) → [0,∞) be a recursive antiderivative of f2. Let g1 :

[t1, t2) → R be a recursive antiderivative of f1 satisfying g1(t1) = g2(t1). Such

a function g1 exists by the fundamental theorem of ordinary differential equations;

moreover, t2 may be chosen so that either t2 = ∞ or limt→t2 g1(t) = ±∞. It is

clear that g1 ≥ g2. In particular g1 ≥ 0. On the other hand, g1 is decreasing so

limt→t2 g1(t) �= +∞. Thus t2 = ∞ and g1 : [t1,∞) → [0,∞). ⊓⊔
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Remark 5.3 Equivalently, Lemma 5.2 says that if the differential inequality

−g′(x) ≥ g2(x) + f (x)

has a solution g : [t1,∞) → [0,∞), then f is recursively integrable.

However, unlike the class of integrable functions, the class R is not closed under

scalar multiplication, Indeed, we have:

Lemma 5.4 Fix C > 0. The function f (x) = C/x2 is recursively integrable if and

only if C ≤ 1/4.

Proof Suppose that C ≤ 1/4. Then there exists c > 0 such that C = c − c2. The

function g(x) = c/x is a recursive antiderivative of f , and thus f ∈ R.

Conversely, suppose that C > 1/4, and by contradiction suppose that g : [t1,∞) →

[0,∞) is a recursive antiderivative of f . Letting h(x) = xg(x), we have

h(x)

x2
−

h′(x)

x
=

h2(x)

x2
+

C

x2
,

or

−h′(x) =
1

x

[
h2(x) − h(x) + C

]
.

But since C > 1/4, there exists ε > 0 such that y2 − y + C ≥ ε for all y ∈ R. Thus

−h′(x) ≥
ε

x
·

It follows that h(x) → −∞ as x → ∞, contradicting that g : [t0,∞) → [0,∞). ⊓⊔

If f is a function such that the limit limx→∞ x2 f (x) exists and is not equal to 1/4,

then Lemmas 5.4 and 5.2 can be used to determine whether or not f ∈ R. This leads

to the question: what if limx→∞ x2 f (x) = 1/4? The following lemma provides us

with a tool to deal with such functions:

Lemma 5.5 Let f : [t0,∞) → [0,∞). Then f ∈ R if and only if F ∈ R, where

F(x) :=
1

x2

[
1

4
+ f (log(x))

]
.

Proof For any function g : [t1,∞) → [0,∞), let

G(x) :=
1

x

[
1

2
+ g(log(x))

]
. (5.2)

123



Unconventional height functions in simultaneous Diophantine… 597

We have

−G ′(x) = G2(x) + F(x)

⇔ xG(x) − x(d/dx)[xG(x)] = (xG(x))2 + x2 F(x)

⇔ −x(d/dx)[xG(x)] = (xG(x) − 1/2)2 + x2 F(x) − 1/4

⇔ −g′(log(x)) = g2(log(x)) + f (log(x)),

i.e. G is a recursive antiderivative of F if and only if g is a recursive antiderivative

of f .

If g : [t1,∞) → [0,∞) is a recursive antiderivative of f , let G be defined by (5.2).

Since G : [et1 ,∞) → [0,∞), F is recursively integrable.

Conversely, suppose that G : [t1,∞) → [0,∞) is a recursive antiderivative of

F , with t1 > 0. Let g : [log(t1),∞) → [−1/2,∞) be defined by (5.2); then g

is a recursive antiderivative of f . To complete the proof we must show that g is

nonnegative. But (5.1) together with the inequality f ≥ 0 show that

− g′(x) ≥ g2(x) ≥ 0. (5.3)

In particular g is decreasing. Since g is bounded from below, it follows that

limx→∞ g(x) exists. Applying (5.3) again, we see that this limit must equal 0. Since

g is decreasing, this implies that g(x) ≥ 0 for all x . ⊓⊔

Remark An alternative proof of Lemma 5.4 may be given by applying Lemma 5.5 to

the class of constant functions.

Applying Lemma 5.5 repeatedly to Lemma 5.4 yields the following:

Corollary 5.6 For each N ≥ −1 and C ≥ 0, the function

fN ,C (x) =
1

4

N∑

n=0

n∏

i=0

(
1

log(i)(x)

)2

+ C

N+1∏

i=0

(
1

log(i)(x)

)2

=
1

x2

[
1

4
+

1

log2(x)

[
1

4
+· · ·+

(
1

log(N )(x)

)2
[

1

4
+C

(
1

log(N+1)(x)

)2
]

· · ·

]]

is recursively integrable if and only if C ≤ 1/4. (If N = −1, then the first summation

is equal to 0 by convention.)

Remark There is a resemblance between Corollary 5.6 and the following well-known

theorem: For each N ≥ −1 and α ≥ 0, the function
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f (x) =

(
N∏

i=0

1

log(i)(x)

)(
1

log(N+1)(x)

)α

=
1

x log(x) · · · log(N )(x)
(
log(N+1)(x)

)α

is integrable on an interval of the form [t0,∞) if and only if α > 1.

We next show that Corollary 5.6 can be used to determine whether or not f ∈ R

whenever f is a Hardy L-function.

Proposition 5.7 If f is a Hardy L-function, then there exist N ∈ N and C ≥ 0 such

that

f (x) ≤ fN ,C (x) for all x sufficiently large if C ≤ 1/4 (5.4)

and

f (x) ≥ fN ,C (x) for all x sufficiently large if C > 1/4. (5.5)

We have f ∈ R or f /∈ R according to whether the former or the latter holds.

The second assertion is of course a direct consequence of Corollary 5.6 and Lemma

5.2.

Proof Let N be the order of f as defined in [3, §4], and consider the function

g(x) =

N∏

i=0

(
log(i)(x)

)2
[

4 f (x) −

N∑

n=0

n∏

i=0

(
1

log(i)(x)

)2
]

.

Note that for each C ≥ 0, we have f (x) ≤ fN ,C (x) if and only if g(x) ≤

4C(log(n+1)(x))−2. On the other hand, it is readily seen that g is a Hardy L-function

of order ≤ N . So by [3, Theorem 3], there exists ε > 0 such that either

g(x) ≤
(

log(N )(x)

)−ε

for all x sufficiently large,

or

g(x) ≥ ε for all x sufficiently large.

In the first case, we have g(x) ≤ (log(n+1)(x))−2 for all x sufficiently large, so (5.4)

holds with C = 1/4. In the second case, we have g(x) ≥ 2(log(n+1)(x))−2 for all x

sufficiently large, so (5.5) holds with C = 1/2. ⊓⊔

One more fact about transformations preserving recursive integrability will turn out

to be useful:
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Lemma 5.8 Fix λ > 0. A function f : [t0,∞) → [0,∞) is recursively integrable if

and only if the function

fλ(x) = λ2 f (λx)

is recursively integrable.

Proof If g is a recursive antiderivative of f , then gλ(x) = λg(λx) is a recursive

antiderivative of fλ. Since f = ( fλ)1/λ, the backwards direction follows from the

forwards direction. ⊓⊔

We next discuss the robustness of the concept of recursive integrability. As we have

seen, it is not preserved under scalar multiplication. In particular, the sum of two recur-

sively integrable functions is not necessarily recursively integrable. However, there

are certain functions which can be safely added to a recursively integrable function

without affecting its recursive integrability.

In what follows, H denotes a Hardy field (cf. Appendix 1) which contains the

exponential and logarithm functions and is closed under composition. For example, H

can be (and must contain) the class of Hardy L-functions described in the introduction.

Definition 5.9 A nonnegative function f2 ∈ H is ignorable if for every function

f1 ∈ R ∩ H, we have f1 + f2 ∈ R.

Note that the sum of any two ignorable functions is ignorable. Moreover, if f2 is

ignorable and 0 ≤ f1 ≤ f2, then f1 is ignorable (assuming f1 ∈ H). By Archimedes’

principle, it follows that the class of ignorable functions is closed under (nonnegative)

scalar multiplication.

Lemma 5.10 For every ε > 0, the function f2(x) = 1/x2+ε is ignorable.

Proof Fix f1 ∈ R ∩ H, and let g1 : [t1,∞) → [0,∞) be a recursive antiderivative

of f1. Fix C > 1/ε, and let

g(x) := g1(x) +
C

x1+ε
·

Then

−g′(x) − g2(x) = −

(
g′

1(x) −
C(1 + ε)

x2+ε

)
−

(
g2

1(x) +
2Cg1(x)

x1+ε
+

C2

x2+2ε

)

= f1(x) +
C

x2+ε

[
1 + ε − 2xg1(x) −

C

xε

]
.

Since f1 ∈ H, we have either

f1(x) ≤
1

4x2
for all sufficiently large x, (5.6)
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or

f1(x) ≥
1

4x2
for all sufficiently large x (5.7)

(Lemma A.2). If (5.6) holds, then Lemmas 5.4 and 5.5 automatically show that f1 +

f2 ∈ R. So we suppose that (5.7) holds. Let f3, g3 be defined by the equations

f1(x) =
1

x2

[
1

4
+ f3(log(x))

]

g1(x) =
1

x

[
1

2
+ g3(log(x))

]
.

Then g3 : [et1,∞) → [−1/2,∞) is a recursive antiderivative of f3. But by (5.7), we

have f3 ≥ 0. By the argument used at the end of the proof of Lemma 5.5, the limit

limx→∞ g3(x) exists and is equal to zero. Equivalently, this means that xg1(x) → 1/2

as x → ∞. Thus

lim
x→∞

[
1 + ε − 2xg1(x) −

C

xε

]
= ε.

Since C > 1/ε, this implies that

−g′(x) − g2(x) ≥ f1(x) + f2(x) for all sufficiently largex .

By Remark 5.3, we have f1 + f2 ∈ R. ⊓⊔

Remark Applying Lemma 5.5 repeatedly shows that for all N ≥ −1 and ε > 0 the

function

f (x) =

(
N∏

i=0

1

log(i)(x)

)2 (
1

log(N+1)(x)

)2+ε

=
1

x2 log2(x) · · ·
(
log(N )(x)

)2 (
log(N+1)(x)

)2+ε

is ignorable.

We finish this section by providing a number of equivalent conditions to the

recursive integrability of a function f ∈ H. The following proposition should be

thought of as an analogue of the Integral Test which says that a increasing function

f : [0,∞) → [0,∞) is integrable if and only if the series
∑∞

k=1 f (k) is summable.

It should be noted that as with the Integral Test, the motivation here is not to deter-

mine whether a function is recursively integrable by using an equivalent condition, but

rather to determine whether one of the equivalent conditions is true by determining

whether the function in question is recursively integrable.

123



Unconventional height functions in simultaneous Diophantine… 601

Proposition 5.11 Suppose f ∈ H is nonnegative. Then for any t ∈ R, the following

are equivalent:

(A) f ∈ R.

(B1) There exists a nonnegative sequence (Sk)k≥k0 satisfying

Sk − Sk+1 ≥ S2
k+1 + f (k). (5.8)

(B2) There exists a nonnegative sequence (Sk)k≥k0 satisfying

Sk − Sk+1 = S2
k+1 + f (k). (5.9)

(C1) There exists a nonnegative sequence (Sk)k≥k0 satisfying Sk → 0 and

Sk − Sk+1 ≥ S2
k + t S3

k + f (k). (5.10)

(C2) There exists a nonnegative sequence (Sk)k≥k0 satisfying Sk → 0 and

Sk − Sk+1 = S2
k + t S3

k + f (k). (5.11)

Remark Suppose that f satisfies any of the conditions (B1)–(C2). Plugging the for-

mula Sk → 0 into the appropriate Eqs. (5.8) or (5.10) shows that lim supk→∞ f (k) ≤

0. Since f ∈ H and f ≥ 0, it follows that f (x) → 0 as f → ∞. Again using the

facts that f ∈ H and f ≥ 0, we deduce that f is decreasing for sufficiently large x .

Similar reasoning applies if we assume that f satisfies (A).

Thus in the proof of Proposition 5.11, we may assume that f is decreasing on its

domain of definition.

Remark 5.12 Conditions (A), (B1), and (C1) all have the property that when f2 sat-

isfies the condition and 0 ≤ f1 ≤ f2, then f1 also satisfies the condition. Thus in

proving the equivalences (A) ⇔ (B1) ⇔ (C1), it suffices to consider the case where

1

4x2
≤ f (x) ≤

1

x2
for all sufficiently large x . (5.12)

Indeed, suppose that Proposition 5.11 holds whenever f satisfies (5.12). Then by

Lemma 5.4, the function f−(x) = 1/(4x2) satisfies (A), (B1), and (C1) while the

function f+(x) = 1/x2 fails to satisfy them. Now let f ∈ H be arbitrary. If f does

not satisfy (5.12), then by Lemma A.2 either f (x) ≤ f−(x) for all x sufficiently large

or f (x) ≥ f+(x) for all x sufficiently large. In the first case, (A), (B1), and (C1) hold

while in the second case, (A), (B1), and (C1) fail to hold.

Proof of (A) ⇒ (B1). If g : [t1,∞) → [0,∞) is a recursive antiderivative of f ,

then the sequence Sk = g(k − 1) satisfies (5.8).

Proof of (B1) ⇒ (B2). Suppose that the sequence (Sk)k≥k0 satisfies (5.8). For each

N ≥ k0, let (S
(N )
k )N

k=k0
be the unique sequence satisfying (5.9) for k = k0, . . . , N − 1
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and such that S
(N )
N = 0. Backwards induction shows that for each k, the sequence

(S
(N )
k )N≥k is increasing, and S

(N )
k ≤ Sk for all N ≥ k. Let

S̃k = lim
N→∞

S
(N )
k ∈ [0,∞).

Then the nonnegative sequence (S̃k)k≥k0 satisfies (5.9).

Proof of (B2) ⇒ (C1). Suppose that (Sk)k≥k0 satisfies (5.9), and that (5.12) holds.

Claim 5.13 kSk → 1/2.

Proof By (5.9) and (5.12), we have

Sk − Sk+1 ≥ S2
k+1 +

1

4k2
for all k sufficiently large. (5.13)

In analogy with the proof of Lemma 5.10, for each k let Tk ≥ −1/2 satisfy

Sk =
1

k

[
1

2
+ Tk

]
.

Plugging into (5.13) gives

1

k
(Tk − Tk+1) +

1

k(k + 1)

[
1

2
+ Tk+1

]
≥

1

(k + 1)2

[
T 2

k+1 + Tk+1 +
1

4

]
+

1

4k2

and thus

1

k
(Tk − Tk+1) ≥

T 2
k+1

(k + 1)2
·

It follows that the sequence (Tk)
∞
1 is decreasing and bounded from below. Thus the

limit limk→∞ Tk exists, and

∞ >
∑

k

(Tk − Tk+1) ≥
∑

k

k

(k + 1)2
T 2

k+1 ≍
∑

k

1

k
T 2

k+1,

which implies that limk→∞ Tk = 0. Equivalently, limk→∞ kSk = 1/2. ⊓⊔

In particular, Sk → 0. Fix C > 0, and let

S̃k = Sk +
C

k2
·
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Then S̃k → 0 as well. So to complete the proof, we need to show that (5.10) holds for

the sequence (S̃k)k≥k0 . We have

S̃k − S̃k+1 ≥ Sk − Sk+1 +
2C

(k + 1)3

= S2
k+1 + f (k) +

2C

(k + 1)3

= S̃2
k + f (k) +

2C

(k + 1)3
− (S̃k + Sk+1)(S̃k − Sk+1)

≥ S̃2
k + f (k) +

2C

(k + 1)3
− 2

(
Sk +

C

k2

)(
S2

k+1 + f (k) +
C

k2

)
.

Let

Ek =
2C

(k + 1)3
− 2

(
Sk +

C

k2

)(
S2

k+1 + f (k) +
C

k2

)
− t S̃3

k ,

so that

S̃k − S̃k+1 ≥ S̃2
k + f (k) + t S̃3

k + Ek .

So to complete the proof, it suffices to show that if C is large enough, then Ek ≥ 0 for

all k sufficiently large. And indeed,

lim inf
k→∞

k3 Ek = 2C − 2 lim sup
k→∞

[(
kSk +

C

k

)(
k2S2

k+1 + k2 f (k) + C
)]

− t

(
lim sup

k→∞

k S̃k

)3

≥ 2C − 2(1/2)(1/4 + 1 + C) − t/8 = C − t/8 − 5/4.

Thus by choosing C > t/8 + 5/4, we complete the proof.

Proof of (C1) ⇒ (C2). Suppose that the sequence (Sk)k≥k0 satisfies Sk → 0 and

(5.10). Fix k1 ≥ k0 large enough so that

Sk1 ≤
1

max(5, |t | + 1)
·

Then for all 0 < x ≤ Sk1 , we have x2 + t x3 > 0 and (d/dx)[x − x2 − t x3] ≥ 0.

Let (S̃k)k≥k1 be the unique sequence satisfying (5.11) and S̃k1 = Sk1 . An induction

argument shows that for all k ≥ k1, Sk ≤ S̃k ≤ Sk1 and S̃k+1 ≤ S̃k . In particular

the sequence (S̃k)k≥k0 is nonnegative. To complete the proof we need to show that

S̃k → 0. Since (S̃k)k is decreasing, the limit L = limk→∞ S̃k exists. Taking the limit

of (5.11) we find that
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L − L = L2 + t L3.

Since 0 ≤ L ≤ Sk1 , this implies that L = 0.

Proof of (C1) ⇒ (A). First suppose t = 0. If (Sk)k≥k0 satisfies Sk → 0 and (5.10),

then let g be the linear interpolation of (Sk)k≥k0 , i.e.

g(x) = Sk + (x − k)(Sk+1 − Sk) for k ≤ x ≤ k + 1.

Then

−g′(x) = Sk+1 − Sk ≥ S2
k + f (k) ≥ g2(x) + f (x) ∀k < x < k + 1,

so by Remark 5.3 f ∈ R.

Now suppose t �= 0 and that (Sk)k≥k0 satisfies Sk → 0 and (5.10). Let ℓ be large

enough so that

2

k
−

(
2

k

)2

− t

(
2

k

)3

≤
2

k + 1
∀k ≥ ℓ,

and let k1 ≥ k0 be large enough so that Sk1+ℓ ≤ 2/ℓ. Then an induction argument

shows that

Sk ≤
2

k − k1
∀k ≥ k1 + ℓ. (5.14)

In particular, there exists C > 0 such that Sk ≤ C/k for all k ≥ k0. Then

Sk − Sk+1 ≥ S2
k + f (k) −

|t |C3

k3
,

and so by the t = 0 case of (C1) ⇒ (A), the function x �→ f (x) − |t |C3/x3 is

recursively integrable. Since the function x �→ |t |C3/x3 is ignorable (Lemma 5.10),

f is also recursively integrable.

6 Proof of Theorems 1.3 and 1.4 and formula (1.2)

As in Sect. 5, H denotes a Hardy field which contains the exponential and logarithm

functions and is closed under composition, for example the field of Hardy L-functions.

As in Sect. 4, we write

γd = (d − 1)1/d > 1(if d ≥ 3)

αd = γd + γ
−(d−1)
d = d(d − 1)−(d−1)/d .

Theorems 1.3 and 1.4 and formula (1.2) will all follow from the following result:
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Proposition 6.1 Suppose that d ≥ 3, and fix ψ ∈ H. Then the following are equiva-

lent:

(A) ψ is Dirichlet on Rd with respect to Hmax.

(B) ψ is uniformly Dirichlet on Rd with respect to Hmax.

(C) CHmax,ψ (x) = 0 for all x ∈ Rd , i.e. ψ is non-optimally Dirichlet on Rd with

respect to Hmax.

(D) The function

fψ (x) =
2

dγd

[
αd +

log ψ(eγ x
d )

γ x
d

]

is nonnegative for large values of x and satisfies fψ /∈ R.

In particular, no function ψ ∈ H is optimally Dirichlet on Rd with respect to the

height function Hmax.

Proof of Theorems 1.3 and 1.4 and formula 1.2 assuming Proposition 6.1. Suppose that

Proposition 6.1 is true. Then for all α ≥ 0, ψα is Dirichlet on Rd with respect to Hmax

if and only if α < αd . It follows that ωd(Hmax) = αd , demonstrating the formula

(1.2).

Since Theorem 1.3 is a restatement of the equivalence of (A) and (C) of Proposition

6.1, to complete the proof it suffices to prove Theorem 1.4. Specifically, given N ≥

1 and C ≥ 0, we must show that the function ψN ,C of Theorem 1.4 satisfies the

equivalent conditions (A)-(D) of Proposition 6.1 if and only if C > 1. Considering

condition (D), we must show that fψN ,C
∈ R if and only if C ≤ 1. But

fψN ,C
(x) = log2(γd) fN−2,C/4(x log(γd)),

so this follows from Corollary 5.6 and Lemma 5.8. ⊓⊔

The proof of Proposition 6.1 will be divided into three parts: the proof of (D) ⇒ (B),

which constitutes the hardest part of the argument; the proof of (C) ⇒ (D), which is

essentially the proof of (D) ⇒ (B) in reverse, but made easier due to the explicitness

of the data structure in question; and finally, the reduction of the theorem to those two

implications, which is essentially a corollary of Lemma 5.10.

Remark Throughout the proof we will assume that

1

4x2
≤ fψ (x) ≤

1

x2
for all x sufficiently large. (6.1)

The justification of this assumption follows along the same lines as Remark 5.12.

Specifically, suppose that Proposition 6.1 holds whenever ψ satisfies (6.1). Let ψ− and

ψ+ denote the functions for which equality holds in the left and right hand inequalities

of (6.1), respectively. Then by Lemma 5.4, ψ+ satisfies (A)-(D) of Proposition 6.1

while ψ− fails to satisfy them. Now let ψ ∈ H be arbitrary. If ψ does not satisfy (6.1),

then by Lemma A.2 either ψ(q) ≥ ψ+(q) for all q sufficiently large or ψ(q) ≤ ψ−(q)
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for all q sufficiently large. In the first case, we have CHmax,ψ ≤ CHmax,ψ+ and so (A)-

(D) of Proposition 6.1 hold. In the second case, we have CHmax,ψ ≥ CHmax,ψ− and so

(A)-(D) of Proposition 6.1 fail to hold.

Remark 6.2 When reading the proof of (D) ⇒ (B), one should check that the impli-

cations (6.3) ⇒ (6.4) ⇒ (6.5) ⇒ (6.10) are all invertible if one assumes the following

facts about 
: max(
k) = Ak for all k ∈ N, and 
 is eventually periodic in the sense

of Claim 6.6. The converse directions will be used in the proof of (C) ⇒ (D).

Notation The following notations will be used in the course of the proof:


(b) = − log ψ(eb)

�(b) = αd −

(b)

b
·

Note that according to these notations,

fψ (x) =
2

dγd

�(γ x
d ). (6.2)

6.1 Proof of (D) ⇒ (B)

We prove the contrapositive. Suppose that supRd\Qd CHmax,ψ = ∞, and we will show

that fψ ∈ R. By Lemma 2.4, we have sup
 Cmax,
(
) = ∞, where the supre-

mum is taken over d-dimensional data progressions 
. In particular, there exists a

d-dimensional data progression 
 = (Ak, ik)
∞
k=1 such that Cmax,
(
) > 0. It fol-

lows that

b
(ik )
k + b

(ik )
k+1 ≤ 
(max(
k)) (6.3)

for all k sufficiently large.

Claim 6.3 We may suppose without loss of generality that max(
k) = Ak for all

k ∈ N.

Proof Consider the set K = {k ∈ N : max(
k+1) > max(
k)}. The set K is infinite

by part (II) of the definition of a data progression. Let (kℓ)
∞
1 be the unique increasing

indexing of K , and consider the data progression 
̃ = (max(
kℓ
), ikℓ

)∞ℓ=1. Note that

for all ℓ ∈ N and i = 1, . . . , d,

b̃
(i)
ℓ ≤ b

(i)
kℓ

max(
̃ℓ) = Ãℓ = max(
kℓ
).

Moreover, if k = kℓ, then

b
(ik )
k+1 = max(
k+1) = max(
kℓ+1

) = Aℓ+1 = b̃
(̃iℓ)
ℓ+1.
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Plugging all these into (6.3) gives

b̃
(̃iℓ)
ℓ + b̃

(̃iℓ)
ℓ+1 ≤ 
(max(
̃ℓ)),

i.e. (6.3) holds for the data progression 
̃. ⊓⊔

So in what follows, we assume that max(
k) = Ak for all k ∈ N. Using this fact

together with (2.6), (6.3) becomes

b
(ik )
k ≤ 
(Ak) − Ak+1.

Letting tk = Ak+1/Ak , we may rewrite the above equation as

b
(ik )
k ≤ Ak(αd − �(Ak) − tk). (6.4)

For each k ∈ N let

fk =

∏d
i=1 b

(i)
k

(Ak)d
;

using (2.6), (6.4) then becomes

fk

fk+1
≤ (αd − �(Ak) − tk)t

d−1
k . (6.5)

Claim 6.4 For some k1 ∈ N, the sequence ( fk)
∞
k1

is increasing.

Proof By (6.1), we have �(b) ≥ 0 for all b sufficiently large. Thus by Corollary 4.4,

fk

fk+1
≤ (αd − tk)t

d−1
k ≤ 1 (6.6)

for all k sufficiently large. ⊓⊔

Claim 6.5 tk → γd as k → ∞.

Proof We clearly have fk ≤ 1 for all k, so by Claim 6.4, the sequence ( fk)
∞
1 con-

verges to a positive number. Thus
fk

fk+1
→ 1. Combining with (6.6), we see that

(αd − tk)t
d−1
k → 1. Applying Corollary 4.4 again, we get tk → γd . ⊓⊔

Claim 6.6 
 is eventually periodic in the following sense: there exists a permutation

σ : {1, . . . , d} → {1, . . . , d} such that for all k sufficiently large,

ik = σ( jk) where jk = k (mod d). (6.7)
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Proof Combining (6.4) and Claim 6.5, we see that

lim sup
k→∞

b
(ik )
k

Ak

≤ αd − γd = γ
−(d−1)
d .

On the other hand, for each j = 0, . . . , d − 2, by Claim 6.5 we have

lim
k→∞

Ak− j

Ak

= γ
− j
d > γ

−(d−1)
d .

It follows that b
(ik )
k = Aℓ(ik ,k)+1 �= Ak− j for all k sufficiently large. In particular

ℓ(ik, k) �= k − j −1. Now fix k2 ∈ N such that for all k ≥ k2 and j = 0, . . . , d −2, we

have ℓ(ik, k) �= k − j −1. Then ℓ(ik, k) ≤ k −d, so ik− j �= ik for all j = 1, . . . , d −1.

In particular, the sets

{ik, . . . , ik+d−1} and {ik+1, . . . , ik+d}

both contain d distinct elements. It follows that ik = ik+d , so the sequence (ik)k≥k2 is

periodic of period d. At this point, it is clear that (6.7) holds for some permutation σ .

⊓⊔

Corollary 6.7 For all sufficiently large k,

fk =

d−1∏

j=1

Ak− j

Ak

=

d−1∏

j=1

1

t
d− j
k− j

· (6.8)

Proof Fix k large enough such that the set {ik−d , . . . , ik−1} contains d distinct ele-

ments; this is possible by Claim 6.6. It follows that

{ℓ(i, k) : i = 1, . . . , d} = {k − 1, . . . , k − d}

and thus

d∏

i=1

b
(i)
k =

d∏

i=1

Aℓ(i,k)+1 =

d∏

j=1

Ak− j+1.

Dividing both sides by (Ak)
d finishes the proof.

Corollary 6.8 For all k,

Ak � γ k
d . (6.9)

Proof By Claim 6.5,

fk −→
k

d−1∏

j=1

1

γ
d− j
d

= γ
−(d

2)
d .
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By Claim 6.4, it follows that fk ≤ γ
−(d

2)
d for all k sufficiently large. Let k3 be large

enough so that (6.8) holds for all k ≥ k3; then

γ
−k(d

2)
d �

k−1∏

ℓ=k3

fℓ =

d−1∏

j=1

k−1∏

ℓ=k3

1

t
d− j

ℓ− j

=

d−1∏

j=1

(
Ak3− j

Ak− j

)d− j

,

and thus

A
(d

2)
k ≥

d−1∏

j=1

(Ak− j )
d− j � γ

k(d
2)

d .

Taking
(

d
2

)
th roots completes the proof. ⊓⊔

Using Corollary (6.7), (6.5) becomes

d−1∏

j=1

tk

tk− j

≤ (αd − �(Ak) − tk)t
d−1
k ,

or equivalently

tk ≤ αd − �(Ak) −

d−1∏

j=1

1

tk− j

·

Writing sk = tk/γd − 1, a few arithmetic calculations show that the above inequality

is equivalent to

sk ≤
1

d − 1

⎡
⎣1 −

d−1∏

j=1

1

1 + sk− j

⎤
⎦−

�(Ak)

γd

· (6.10)

Consequently, it becomes important to study behavior the function

f (x1, . . . , xd−1) = 1 −

d−1∏

j=1

1

1 + x j
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near the origin. We calculate the gradient and Hessian of f at 0:

f ′(0) =

d−1∑

j=1

e j

f ′′(0) = −

⎡
⎢⎣

d−1∑

j=1

e2
j +

⎛
⎝

d−1∑

j=1

e j

⎞
⎠

2
⎤
⎥⎦

Since f (0) = 0, this means that f can be estimated in a neighborhood of the origin

by the formula

f (x) =

d−1∑

j=1

x j −
1

2

⎡
⎢⎣

d−1∑

j=1

x2
j +

⎛
⎝

d−1∑

j=1

x j

⎞
⎠

2
⎤
⎥⎦+ O(‖x‖3). (6.11)

In fact, we can be explicit: (6.11) holds whenever ‖x‖ ≤ 1/2.

Continuing with the proof, for k ∈ N let

φk =
2

dγd

�(Ak)

(cf. (6.2)).

Claim 6.9 For all k sufficiently large,

|φk+1 − φk | �
1

k3
·

Proof Since fψ ∈ H, we may differentiate the inequalities (6.1) (cf. Lemma A.3) to

get

| f ′
ψ (x)| ≤

∣∣∣∣
d

dx

[
1

x2

]∣∣∣∣ =
2

x3
for all x sufficiently large. (6.12)

Using (6.2) and applying the fundamental theorem of calculus, we have

|φk+1 − φk | = | fψ (logγd
(Ak+1)) − fψ (logγd

(Ak))|

≤
2

log3
γd

(Ak)
logγd

(tk)

�
1

k3
· (by Claim 6.5 and Corollary 6.8)

⊓⊔
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Now fix C1 > 0 large to be determined, then fix δ > 0 small to be determined

(possibly depending on C1), and finally fix k0 ∈ N large to be determined (possibly

depending on both δ and C1). Let (Sk)
∞
k=k0

be the unique sequence defined by the

equations

Sk+1 = Sk − S2
k − φk +

C1

k3
+ C1|Sk |

3, Sk0 = δ. (6.13)

The following claim is the heart of the proof:

Claim 6.10 If k0 and C1 are sufficiently large and δ is sufficiently small (with k0

allowed to depend on δ, which is in turn allowed to depend on C1), then

−
1

max(2, C1)
≤ sk ≤ Sk ≤ δ ≤

1

max(2, C1)
(6.14)

for all k ≥ k0.

Proof Throughout the proof, we will assume that δ < 1/ max(2, C1) and that k0 ≥

4C1. Since δ and k0 are both allowed to depend on C1, these assumptions are justified.

In particular, the rightmost inequality of (6.14) requires no proof.

By Claim 6.5, we have sk → 0. Thus, the leftmost inequality of (6.14) can be

achieved simply by an appropriate choice of k0.

The proof of the two middle inequalities of (6.14) is by strong induction on k.

Base Case: k = k0, . . . , k0 +d −2. For this part of the proof, we’ll think of C1, δ > 0

as being fixed. Define the sequence (T j )
d−2
j=0 via the formula

T j+1 = T j − T 2
j + C1|T j |

3, T0 = δ.

Since δ < 1/ max(2, C1), the sequence (T j )
d−2
j=0 is strictly decreasing and strictly

positive. Note that for each j = 0, . . . , d − 2,

S
(k0)
k0+ j −→

k0

T j ,

where the superscript of k0 is merely making explicit the fact that the sequence (Sk)k≥k0

depends on k0. On the other hand,

sk0+ j −→
k0

0 < T j .

So if k0 is sufficiently large, then (6.14) holds for k = k0 + j .

Inductive Step: Fix ℓ ≥ k0 + d − 1, and suppose that (6.14) holds for k = ℓ − d +

1, . . . , ℓ − 1. We claim that (6.14) holds for k = ℓ. ⊓⊔

Subclaim 6.11 For j = 1, . . . , d − 1,

Sℓ− j+1 ≤ Sℓ− j .
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Proof By (6.1), we have

φk ≥
1

4k2
·

Since k0 ≥ 4C1, combining with (6.13) gives

Sk+1 ≤ Sk − S2
k + C1|Sk |

3 ∀k ≥ k0. (6.15)

Plugging in k = ℓ − j , we have |Sk | ≤ 1/C1 by the induction hypothesis. Thus

Sk+1 ≤ Sk .

In particular, plugging in j = 1 and using the induction hypothesis, we see that the

third inequality of (6.14) holds for k = ℓ. So to complete the proof, we need only to

demonstrate that the second inequality of (6.14) holds for k = ℓ.

Subclaim 6.12 For j = 1, . . . , d − 1,

|Sℓ− j | � max(1/ℓ2, |Sℓ− j+1|)

|Sℓ− j+1| � max(1/ℓ2, |Sℓ− j |)

Remark We emphasize that here and below, the implied constants of asymptotics may

not depend on C1, δ, or k0.

Proof By (6.1), we have

φk ≤
1

k2
·

On the other hand, since k0 ≥ C1 we have C1/k3 ≤ 1/k2 for all k ≥ k0. Letting

k = ℓ − j , combining with (6.13), and writing x = Sℓ− j , y = Sℓ− j+1, we have

∣∣∣x − x2 + C1|x |3 − y

∣∣∣ �
1

(ℓ − j)2
≍

1

ℓ2
·

By the induction hypothesis, we have

|x | ≤ 1/ max(2, C1). (6.16)

It follows that

|y| � max(1/ℓ2, |x − x2 + C1|x |3|) � max(1/ℓ2, |x |).

On the other hand, (6.16) also implies that x − x2 + C1|x |3 ≤ x . In particular, if x is

negative then

|x | ≤

∣∣∣x − x2 + C1|x |3
∣∣∣ � max(1/ℓ2, |y|).
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Finally, if x is positive, then we have

|x | = x ≍ x − x2 ≤ x − x2 + C1|x |3 � max(1/ℓ2, |y|).

⊓⊔

Subclaim 6.13 Let

aℓ = max

(
1

ℓ
, |Sℓ|

)
.

Then aℓ � 1/C1.

Proof Since ℓ ≥ k0 ≥ C1, we have 1/ℓ ≤ 1/C1. On the other hand, by Subclaim

6.12 and the induction hypothesis we have

|Sℓ| � max

(
1

ℓ2
, |Sℓ−1|

)
≤

1

C1
·

⊓⊔

Definition 6.14 For the purposes of this proof, an expression will be called negligible

if its absolute value is less than a constant times a3
ℓ . (The constant must be independent

of C1, δ, and k0.) We’ll write A ∼ B if the difference between two expressions A and

B is negligible.

Note that by Subclaim 6.12, we have |Sℓ− j | � aℓ for all j = 0, . . . , d − 1. It

follows from this and (6.13) (keeping in mind Subclaim 6.13 and Claim 6.9) that

|Sℓ− j+1 − Sℓ− j | � a2
ℓ , and thus that

Sℓ− j1(Sℓ− j2 − Sℓ− j2+1) ∼ 0

for all j1 = 0, . . . , d − 1 and j2 = 1, . . . , d − 1. It follows that

Sℓ− j1 Sℓ− j2 ∼ S2
ℓ

for all j1, j2 = 0, . . . , d − 1.

We are now ready to continue our calculation:

sℓ ≤
1

d − 1
f (Sℓ−d+1, . . . , Sℓ−1) −

d

2
φℓ (by (6.10))

∼
1

d − 1

⎡
⎢⎣

d−1∑

j=1

Sℓ− j −
1

2

⎡
⎢⎣

d−1∑

j=1

S2
ℓ +

⎛
⎝

d−1∑

j=1

Sℓ

⎞
⎠

2
⎤
⎥⎦

⎤
⎥⎦−

d

2
φℓ (by (6.11))

=
1

d − 1

⎡
⎣

d−1∑

j=1

Sℓ− j −

(
d

2

)
S2
ℓ

⎤
⎦−

d

2
φℓ
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d−1∑

j=1

[Sℓ− j − Sℓ] =

d−1∑

j=1

j∑

i=1

[
S2
ℓ−i + φℓ−i − C1

[
1

(ℓ − i)3
+ S3

ℓ−i

]]
(by (6.13))

∼

d−1∑

j=1

j∑

i=1

[
S2
ℓ + φℓ − C1

[
1

ℓ3
+ |Sℓ|

3

]]

=

(
d

2

)[
S2
ℓ + φℓ − C1

[
1

ℓ3
+ |Sℓ|

3

]]

sℓ − Sℓ ≤
1

d − 1
f (Sℓ−d+1, . . . , Sℓ−1) −

d

2
φℓ − Sℓ

∼
d

2

[
φℓ − C1

[
1

ℓ3
+ |Sℓ|

3

]]
−

d

2
φℓ

= −
d

2
C1

[
1

ℓ3
+ |Sℓ|

3

]
≤ −

d

2
C1a3

ℓ

By the definition of negligibility, we have

sℓ − Sℓ ≤ C2a3
ℓ −

d

2
C1a3

ℓ

for some constant C2 independent of C1, δ, and k0. By letting C1 = (2/d)C2, we have

sℓ ≤ Sℓ, completing the proof.

Having finished the proof of Claim 6.10, we continue with the proof of Proposition

6.1 (D) ⇒ (B). Since Sk ≥ sk → 0 and since the sequence (Sk)k≥k0 is decreasing by

Subclaim 6.11, we have Sk ≥ 0 for all k ≥ k0. The proof of Proposition 5.11 (C1)

⇒ (A) now shows that there exists C3 > 0 such that Sk ≤ C3/k for all k ≥ k0 (cf.

(5.14)). Combining with (6.14), we see that

Ak = Ak0

k−1∏

ℓ=k0

γd(1 + sℓ) ≤ Ak0γ
k−k0

d

k−1∏

ℓ=k0

(1 + C3/ℓ) = Ak0γ
k−k0

d

k−1∏

ℓ=k0

ℓ + C3

ℓ

≤ C4γ
k
d kn,

where n = ⌈C3⌉ and C4 > 0. So for all sufficiently large k,

φk ≥
2

dγd

�(C4γ
k
d kn).

Applying the fundamental theorem of calculus to (6.12) gives

fψ (k) − φk ≤ fψ (k) −
2

dγd

�(C4γ
k
d kn)

= fψ (k) − fψ
(
k + logγd

(C4kn)
)
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≤
2

k3
logγd

(C4kn) ≍
log(k)

k3
·

Let C5 > 0 be the implied constant. Combining with (6.13) shows that

Sk − Sk+1 ≥ S2
k − C1S3

k + fψ (k) −
C1

k3
−

C5 log(k)

k3

for all sufficiently large k. By Proposition 5.11, the function

x �→ fψ (x) −
C1

x3
−

C5 log(x)

x3

is recursively integrable. By Lemma 5.10, it follows that fψ ∈ R.

6.2 Proof of (C) ⇒ (D)

As before, we will prove the contrapositive. Suppose that fψ ∈ R, and we will show

that supRd\Qd CHmax,ψ > 0. Fix C1 > 0 large to be determined. By Lemma 5.10, the

function x �→ fψ (x) + C1/x3 is recursively integrable. Thus by Proposition 5.11,

there exists a nonnegative sequence (Sk)k≥k0 satisfying

Sk+1 = Sk − S2
k − C1S3

k − fψ (k) −
C1

k3
∀k ≥ k0. (6.17)

For k ≥ k0, let sk = Sk , tk = γd(1 + sk), and

Ak = γ
k0

d

k−1∏

j=k0

t j = γ k
d

k−1∏

j=k0

(1 + s j ).

Let ik = k (mod d), and consider the d-dimensional data progression 
 =

(Ak, ik)
∞
k=k0

. Since the sequence (Ak)
∞
k0

is increasing, Remark 6.2 applies and we

have the implication (6.10) ⇒ (6.3). Note that if (6.3) holds for all k sufficiently

large, then we are done, as Cmax,
(
) ≥ 0 and then Lemma 2.4 completes the proof.

Let us proceed to demonstrate (6.10). We begin by reproving Subclaims 6.11, 6.12,

and 6.13 in our new context. Fix k ∈ N. The inequality Sk+1 ≤ Sk is immediate from

(6.17). If k is sufficiently large, then fψ (k) ≤ 1/k2, k ≥ C1, and Sk ≤ 1/C1, so

Sk − 2S2
k ≤ Sk+1 +

2

k2
·

This implies that Sk � max(1/k2, Sk+1), completing the proof of the analogue of

Subclaim 6.12. Finally, let ak = max(1/k, Sk); it is immediate that ak ≤ 1/C1 if k is

sufficiently large.

As in the proof of Claim 6.10 we call an expression A negligible if |A| � a3
k , and

write A ∼ B if A − B is negligible. The argument following Definition 6.14 shows
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that Sk− j1 Sk− j2 ∼ S2
k for all j1, j2 = 0, . . . , d − 1. Finally, the calculations on pages

25-26 can be modified to show that

1

d − 1
f (sk−d+1, . . . , sk−1) −

d

2
fψ (k) − sk ∼

d

2
C1

[
1

k3
+ S3

k

]
≥

d

2
C1a3

k .

(Just multiply C1 by −1 in each corresponding expression, and use fψ (k) in place of

φk .) By the definition of negligibility, we have

1

d − 1
f (sk−d+1, . . . , sk−1) −

d

2
fψ (k) − sk ≥

d

2
C1a3

k − C2a3
k

for some constant C2 > 0 independent of C1. Letting C1 = (2/d)C2, we have

sk ≤
1

d − 1
f (sk−d+1, . . . , sk−1) −

d

2
fψ (k).

But since Ak ≥ γ k
d , we have fψ (k) ≥ 2

dγd
�(Ak) for all sufficiently large k. Combining

this inequality with the equation on the previous line gives (6.10), completing the proof.

6.3 Completion of the proof of Proposition 6.1

Using the implications (C) ⇒ (D) ⇒ (B), we now complete the proof of Proposition

6.1. As the implications (C) ⇒ (B) ⇒ (A) are obvious, it suffices to prove that (A)

⇒ (D) ⇒ (C). Let

φ(q) = q1/ log3 log(q)

gφ(x) =
2

dγd

log φ(eγ x
d )

γ x
d

=
2

dγd log3(γd)

1

x3
,

so that

fφψ = fψ + gφ

fψ/φ = fψ − gφ .

Since the function gφ is ignorable, we have fφψ ∈ R ⇔ fψ ∈ R ⇔ fψ/φ ∈ R. On

the other hand, φ(q) → ∞ as q → ∞. Thus

(A) ⇒ (C)ψ=φψ ⇒ (D)ψ=φψ ⇔ (D) ⇔ (D)ψ=ψ/φ ⇒ (B)ψ=ψ/φ ⇒ (C).

7 Open questions

In this paper, we consider only “everywhere” questions—that is, we are interested

in functions ψ for which CH,ψ (x) < ∞ for every point x ∈ Rd\Qd . The same
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questions can be asked if “every” is replaced by “almost every”—with respect to

Lebesgue measure or even with respect to some fractal measure. Once we know what

“almost every” point does, it can be asked what is the Hausdorff dimension of the set

of exceptions, i.e. the set of x which behave differently from almost every point. In the

case of the height function Hlcm, such questions have been extensively studied. Thus,

the next step in producing a Diophantine theory of the height functions Hmax, Hmin,

and Hprod similar to that for Hlcm would be to answer the following questions:

Question 7.1 (Analogue of Khinchin’s theorem) Fix � ∈ {max,min,prod}, and

let ψ be a Hardy L-function. Must the sets {x ∈ Rd : CH�,ψ (x) = 0} and {x ∈ Rd :

CH�,ψ (x) < ∞} be either null sets or full measure sets? If so, which one? Can the

same theorem be proven with a weaker assumption than ψ being a Hardy L-function

(for example, assuming only that ψ is decreasing)?

Question 7.2 (Analogue of the Jarník–Besicovitch theorem) With � and ψ as before,

what is the Hausdorff dimension of the set {x ∈ Rd : CH�,ψ (x) = 0}?

Question 7.3 (Analogue of the Jarník–Schmidt theorem) With � and ψ as before,

what is the Hausdorff dimension of the set {x ∈ Rd : CH�,ψ (x) > 0}? Does this set

have large intersections with nice fractals?
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Appendix A: Hardy fields

In this appendix we briefly recall the definition of a Hardy field and its basic properties.

Given f : (t0,∞) → R and g : (t1,∞) → R, we write f ∼ g if f (x) = g(x) for

all sufficiently large x .

Definition A.1 A Hardy field is a collection of continuous functions7 H with the

following properties:

(I) For each f ∈ H, there exists t0 ∈ R such that f : (t0,∞) → R.

(II) Given f, g ∈ H, there exist h1, h2, h3, h4, h5 ∈ H such that f + g ∼ h1,

f − g ∼ h2, f g ∼ h3, f/g ∼ h4, and f ′ ∼ h5.

The two primary examples of Hardy fields are the field of rational functions and the

field of Hardy L-functions, described in the introduction. The fact that the collection

of Hardy L-functions forms a Hardy field was proven by Hardy [3, Theorem 1].

7 Hardy fields are usually defined as collections of germs at infinity rather than as collections of functions,

but this distinction makes little difference in practice.
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The most important fact about Hardy fields follows almost directly from the defi-

nition:

Lemma A.2 If f, g ∈ H then either

f (x) ≥ g(x) for all x sufficiently large

or

f (x) ≤ g(x) for all x sufficiently large.

Proof Write h ∼ g − f for some h ∈ H. Then there exists a function j ∈ H such that

j ∼ 1/h. It follows that h(x) �= 0 for all sufficiently large x . Since h is continuous,

the conclusion follows. ⊓⊔

The following well-known lemma says that in a Hardy field, we can take the deriv-

ative of an inequality.

Lemma A.3 If f, g ∈ H, 0 ≤ f (x) ≤ g(x) for all x sufficiently large, and g(x) → 0,

then

| f ′(x)| ≤ |g′(x)| for all x sufficiently large.

Proof Write h ∼ g − f for some h ∈ H; then 0 ≤ f (x), h(x) for all x sufficiently

large, and f (x), h(x) → 0. It follows that f and h are eventually decreasing, i.e.

f ′(x), h′(x) ≤ 0 for all x sufficiently large. Rearranging completes the proof. ⊓⊔

One last lemma which we needed in verifying the hypotheses of Lemma 2.4 (cf.

Remark 2.5):

Lemma A.4 If f ∈ H satisfies Cx ≥ f (x) → ∞ for some C > 0, then f is

uniformly continuous and increasing.

Proof By Lemma A.3, we have | f ′(x)| ≤ C , i.e. | f ′| is uniformly bounded. This

implies that f is uniformly continuous. On the other hand, by Lemma A.3 we have

either f ′(x) ≥ 0 for all sufficiently large x , or f ′(x) ≤ 0 for all sufficiently large x .

The second case is ruled out since f (x) → ∞, so f is increasing.
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