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RATIONAL APPROXIMATION OF AFFINE COORDINATE SUBSPACES
OF EUCLIDEAN SPACE

FELIPE A. RAMÍREZ, DAVID S. SIMMONS, AND FABIAN SÜESS

Abstract. We show that affine coordinate subspaces of dimension at least two in Euclidean
space are of Khintchine type for divergence. For affine coordinate subspaces of dimension
one, we prove a result which depends on the dual Diophantine type of the basepoint of
the subspace. These results provide evidence for the conjecture that all affine subspaces of
Euclidean space are of Khintchine type for divergence.
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1. Introduction and results

The field of simultaneous Diophantine approximation is concerned with how well points
in Rd can be approximated by points in Qd. One way in which the quality of approximation
is measured is via some function ψ : N → R+ ∪ {0} which we often think of as a rate
of approximation. Specifically, a vector x ∈ Rd is said to be ψ-approximable if there are
infinitely many q ∈ N such that ‖qx‖ < ψ(q), where ‖·‖ denotes sup-norm distance to the
nearest integer point. Given ψ, it is natural to wonder about the size of the set of all ψ-
approximable vectors. Khintchine’s theorem [Khi26] answers this question when ‘size’ means
Lebesgue measure. It is the foundational result of metric Diophantine approximation, and it
states that if ψ is nonincreasing, then the set of ψ-approximable vectors in Rd has either zero
measure or full measure, depending on whether the series

∑

q∈N ψ(q)
d converges or diverges,

respectively. Gallagher [Gal65] proved that if d ≥ 2 then one can remove the monotonicity
assumption on ψ.

While Khintchine’s theorem gives us a means to determine the measure of ψ-approximable
vectors, it leaves us completely in the dark regarding approximation within sets of zero
measure. Such problems arise very naturally. For instance, in two dimensions, Khintchine’s
theorem tells us that if

∑

q∈N ψ(q)
2 diverges, then for almost every x ∈ R the set {y ∈ R :

(x, y) is ψ-approximable} ⊆ R has full Lebesgue measure. However, a priori, any given value
of x, for example x =

√
2, may be an exception to this almost everywhere statement. Ideally,

we would like to obtain a statement of the following form: Let ℓ and k be positive integers
with ℓ+k = d, and let ψ be a nonincreasing approximating function. Then, for x ∈ Rℓ, the set

1
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of ψ-approximable vectors in {x} × Rk ⊆ Rd has either zero or full k-dimensional Lebesgue
measure, depending on whether the sum

∑

q∈N ψ(q)
d converges or diverges, respectively.

However, upon choosing a rational vector x, it is easily established that the convergence
part of the above statement cannot be true. Hence, it is worth treating the different sides
of the problem separately. The convergence side has previously been addressed in greater
generality by Ghosh [Gho05] (and will not be visited in this paper). There, he shows that
whether an affine subspace enjoys the convergence property depends on the Diophantine
type of the matrix used to define the subspace.

An affine coordinate subspace {x}×Rk ⊆ Rd is said to be of Khintchine type for divergence
if for any nonincreasing function ψ : N → R+ such that

∑

q∈N ψ(q)
d diverges, almost every

point on {x}×Rk is ψ-approximable. Intuitively, {x}×Rk is of Khintchine type for divergence
if its typical points behave like the typical points of Lebesgue measure with respect to the
divergence case of Khintchine’s theorem. The recent article [Ram15] addresses the issue for
certain affine coordinate hyperplanes in Rd, where d ≥ 3. There, sufficient conditions are
given for a hyperplane to be of Khintchine type for divergence. In this note we settle the
case of affine coordinate subspaces of dimension at least two and make vast progress on the
one-dimensional case.

Remark. It is worth noting that the notions of Khintchine types for convergence and diver-
gence can be analogously defined for general manifolds. It has been proved by Beresnevich–
Dickinson–Velani [BDV07] and Beresnevich [Ber12] that analytic nondegenerate submani-
folds of Rd are of Khintchine type for divergence. Here, an analytic submanifold of Rd is said
to be nondegenerate if it is not contained in any affine hyperplane.

In fact, it is conjectured that nondegenerate submanifolds of Rd are also of Khintchine
type for convergence, and this is known in several cases [BVVZ, Sim]. This contrasts with
the situation for degenerate manifolds (e.g. affine subspaces), as the aforementioned results
of Ghosh indicate. So it is interesting that in the divergence case, it does not seem to matter
whether a manifold is degenerate or not.

Coming back to the present problem, we prove the following:

Theorem 1. Every affine coordinate subspace of Euclidean space of dimension at least two
is of Khintchine type for divergence.

Remark. Combining Theorem 1 with Fubini’s theorem shows that every submanifold of
Euclidean space which is foliated by affine coordinate subspaces of dimension at least two
is of Khintchine type for divergence. For example, given a, b, c ∈ R with (a, b) 6= (0, 0), the
three-dimensional affine subspace

{(x, y, z, w) : ax+ by = c} ⊆ R4

is of Khintchine type for divergence, being foliated by the two-dimensional affine coordinate
subspaces (x, y)× R2 (x, y ∈ R, ax+ by = c).

The reason for the restriction to subspaces of dimension at least two is that Gallagher’s
theorem is used in the proof, and it is only true in dimensions at least two. Regarding
one-dimensional affine coordinate subspaces, we have the following weaker theorem:

Theorem 2. Consider a one-dimensional affine coordinate subspace {x} × R ⊆ Rd, where
x ∈ Rd−1.
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(i) If the dual Diophantine type of x is strictly greater than d, then {x}×R is contained
in the set of very well approximable vectors

VWAd = {y : ∃ε > 0 ∃∞q ∈ N ‖qy‖ < q−1/d−ε}.
(ii) If the dual Diophantine type of x is strictly less than d, then {x}×R is of Khintchine

type for divergence.

Here the dual Diophantine type of a point x ∈ Rℓ is the number

(1) sup
{

τ ∈ R+ : ‖〈n,x〉‖ < |n|−τ∞ for i.m. n ∈ Zℓ\{0}
}

.

Remark. The inclusion {x}×R ⊆ VWAd in part (i) is philosophically “almost as good” as
being of Khintchine type for divergence, since it implies that for sufficiently “nice” functions
ψ : N → R+ such that

∑

q∈N ψ(q)
d diverges, almost every point on {x}×R is ψ-approximable.

For example, call a function ψ good if for each c > 0, we have either ψ(q) ≥ q−c for all q
sufficiently large or ψ(q) ≤ q−c for all q sufficiently large. Then by the comparison test, if ψ is
a good function such that

∑

q∈N ψ(q)
d diverges, then for all ε > 0, we have ψ(q) ≥ q−1/d−ε for

all q sufficiently large, and thus by Theorem 2(i), every point of {x}×R is ψ-approximable.
The class of good functions includes the class of Hardy L-functions (those that can be
written using the symbols +,−,×,÷, exp, and log together with the constants and the
identity function) [Har71, Chapter III]; cf. [AvdD05] for further discussion and examples.

Taken together, parts (i) and (ii) of Theorem 2 imply that if ψ is a Hardy L-function
such that

∑

q∈N ψ(q)
d diverges, and if x ∈ R is a vector whose dual Diophantine type is not

exactly equal to d, then almost every point of {x}×R ⊆ Rd is ψ-approximable. This situation
is somewhat frustrating, since it seems strange that points in Rd−1 with dual Diophantine
type exactly equal to d should have any special properties (as opposed to those with dual
Diophantine type (d − 1), which are the “not very well approximable” points). However, it
seems to be impossible to handle these points using our techniques.

Acknowledgements. The authors were supported in part by the EPSRC Programme
Grant EP/J018260/1. We thank Victor Beresnevich, Jon Chaika, and Sanju Velani for helpful
discussions and advice.

2. Proof of Theorem 1: Subspaces of dimension at least two

Consider an affine coordinate subspace {x} × Rk, where x ∈ Rℓ and ℓ + k = d. Given a
nonincreasing function ψ : N → R+, for each M,N with M < N let

Q(M,N) := Qx,ψ(M,N) = |{M < q ≤ N : ‖qx‖ < ψ(N)}| ,
and write Q(N) := Q(0, N). Since any real number δ > 0 may be thought of as a constant
function, the expression Qδ(M,N) makes sense. Note that Qψ(M,N) = Qψ(N)(M,N).

Lemma 3. For all N ∈ N,

Qδ(N) = |{q ∈ N : ‖qx‖ < δ, q ≤ N}| ≥ Nδℓ − 1.

Proof. Let Qδ(N) = {q ∈ N : ‖qx‖ < δ, q ≤ N}, so that Qδ = |Qδ|.
We first claim that Qδ(N) ≥ Q δ

2
,γ(N)− 1 for any γ ∈ Rℓ and N ∈ N, where

Qδ,γ := {q ∈ N : ‖qx+ γ‖ < δ, q ≤ N}
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and Qδ,γ(N) = |Qδ,γ(N)|. Simply notice that if q1 < q2 ∈ Q δ
2
,γ(N), then by the triangle

inequality, q2 − q1 ∈ Qδ(N). Therefore, letting q0 = minQ δ
2
,γ(N), we have Q δ

2
,γ(N) − q0 ⊆

Qδ(N) ∪ {0}, which implies that Qδ(N) ≥ Qδ/2,γ(N)− 1.
Now we show that for any N ∈ N there is some γ such that Q δ

2
,γ(N) ≥ Nδℓ. Notice that

∫

Tℓ

Q δ
2
,γ(N) dγ =

∫

Tℓ

N
∑

q=1

1
(− δ

2
, δ
2)

ℓ(qx+ γ) dγ = Nδℓ.

Therefore, Q δ
2
,γ(N) must take some value≥ Nδℓ at some γ. Combining this with the previous

paragraph proves the lemma. �

Lemma 4. Suppose that
∑

q∈N ψ(q)
d diverges. Then

(2)
∑

‖qx‖<ψ(q)

ψ(q)k = ∞.

Proof. We may assume without loss of generality that ψ(q) = 2−mq where mq ∈ N. (Indeed,
given any ψ as in the theorem statement, we can let mq = ⌈− log2 ψ(q)⌉ and replace ψ(q)
with 2−mq . We will have changed ψ by no more than a factor of 1

2
, preserving the divergence

of the series
∑

q∈N ψ(q)
d, but since the new ψ is less than the old ψ, divergence of (2) for the

new ψ implies divergence of (2) for the old ψ.) Now,

∑

‖qx‖<ψ(q)

ψ(q)k ≥
∑

m∈N

ψ(2m)k
∣

∣

{

2m−1 < q ≤ 2m : ‖qx‖ < ψ(2m)
}∣

∣

=
∑

m∈N

ψ(2m)kQ(2m−1, 2m)

=
∑

m∈N

∑

n≥m

(

ψ(2n)k − ψ(2n+1)k
)

Q(2m−1, 2m)

=
∑

n∈N

(

ψ(2n)k − ψ(2n+1)k
)

n
∑

m=1

Q(2m−1, 2m)

≥
∑

n∈N

(

ψ(2n)k − ψ(2n+1)k
)

Q(2n)

≥
∑

n∈N

(

ψ(2n)k − ψ(2n+1)k
)

[2nψ(2n)ℓ − 1] (Lemma 3)

= −ψ(1)k +
∑

n∈N

(

ψ(2n)k − ψ(2n+1)k
)

2nψ(2n)ℓ.
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Now, let (nj)
∞
j=1 be the sequence indexing the set {n ∈ N : m2n 6= m2n+1} in increasing order.

Then we have ψ(2nj)k − ψ(2nj+1)k ≫ ψ(2nj)k, where ≫ is the Vinogradov symbol. So

∑

n∈N

(

ψ(2n)k − ψ(2n+1)k
)

2nψ(2n)ℓ ≫
∑

j∈N

2njψ(2nj)k+ℓ

≫
∑

j∈N





nj
∑

m=nj−1+1

2m



ψ(2nj)d

=
∑

m∈N

2mψ(2m)d,

which diverges by Cauchy’s condensation test. �

Proof of Theorem 1. Suppose that k ≥ 2. Then by Lemma 4, we can apply Gallagher’s
extension of Khintchine’s theorem [Gal65] to the function

(3) ψx(q) =

{

ψ(q) ‖qx‖ < ψ(q)

0 otherwise

and get that {x} × Rk is of Khintchine type for divergence. But x ∈ Rℓ was arbitrary, and
applying permutation matrices does not affect whether a manifold is of Khintchine type for
divergence. This completes the proof. �

3. Proof of Theorem 2(i): Base points of high Diophantine type

The proof of Theorem 2(i) is based on the following standard fact, which can be found for
example in [Cas57, Theorem V.IV]:

Khintchine’s transference principle. Let x ∈ Rd and define the numbers

ωD := ωD(x) = sup
{

ω ∈ R+ : ‖〈n,x〉‖ ≤ |n|−(d+ω)
∞ for i.m. n ∈ Zd\{0}

}

.

and

ωS := ωS(x) = sup
{

ω ∈ R+ : ‖qx‖ ≤ q−(1+ω)/d for i.m. q ∈ N
}

.

Then
ωD

d2 + (d− 1)ωD
≤ ωS ≤ ωD

where the cases ωD = ∞ and ωS = ∞ should be interpreted in the obvious way.

Note that ωD is related to the dual Diophantine type τD defined in (1) via the formula
τD(x) = ωD(x) + d.

Proof of Theorem 2(i). We fix x = (x1, . . . , xd−1) ∈ Rd−1 such that τD(x) > d, and we
consider a point (x, y) ∈ {x}×R. It is clear from (1) that τD(x, y) ≥ τD(x), so τD(x, y) > d
and thus ωD(x, y) > 0. Thus by Khintchine’s transference principle, ωS(x, y) > 0, i.e.
(x, y) ∈ VWAd. �
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4. Proof of Theorem 2(ii): Base points of low Diophantine type

Let ψ : N → R+ be nonincreasing and such that
∑

q∈N ψ(q)
d diverges. Our goal here is

to use the ideas of ubiquity theory to show that almost every point on {x} × R ⊆ Rd is
ψ-approximable, where x ∈ Rd−1 has been fixed with dual Diophantine type strictly less
than d. The ubiquity approach begins with the fact that for any N ∈ N such that

(4) N−1/(d−1) < ψ(N) < 1,

we have

(5) [0, 1] ⊆
⋃

q≤N
‖qx‖<ψ(N)

q
⋃

p=0

B

(

p

q
,

2

qNψ(N)d−1

)

,

which is a simple consequence of Minkowski’s theorem. The basic aim is to show that a
significant proportion of the measure of the above double-union set is represented by qs that
are closer to N than to 0. Specifically, we must show that for some k ≥ 2, the following three
things hold:

(U) The pair (R, β) forms a (global) ubiquitous system with respect to the triple
(ρ, l, u), where

J = {p/q ∈ Q : ‖qx‖ < ψ(q)}, Rp/q = {p/q} (p/q ∈ J),

R = {Rp/q : p/q ∈ J}, βp/q = q (p/q ∈ J),

lj = kj−1 (j ∈ N), uj = kj (j ∈ N),

ρ(q) =
c

q2ψ(q)d−1
(q ∈ N),

and c > 0 will be chosen later. This means that there is some κ > 0 such that

λ









[0, 1] ∩
⋃

kj−1<q≤kj

‖qx‖<ψ(kj)

q
⋃

p=0

B

(

p

q
,

c

k2jψ(kj)d−1

)









≥ κ

for all j sufficiently large.
(R) The function Ψ(q) := ψ(q)/q is u-regular, meaning that there is some constant κ < 1

such that Ψ(kj+1) ≤ κΨ(kj) for all j sufficiently large.

(D) The sum
∑

j∈N
Ψ(kj)
ρ(kj)

diverges.

Then [BDV06, Corollary 2] will imply that the set of ψx-approximable numbers (see (3)) in
R has positive measure, and Cassels’ “0-1 law” [Cas50] will imply that it has full measure.
Since the set of ψx-approximable numbers is just the set of y ∈ R for which (x, y) is ψ-
approximable, this will show that the set of ψ-approximable points on the line {x}×R ⊆ Rd

has full (one-dimensional Lebesgue) measure.
The following lemma shows that (R) and (D) are easy.

Lemma 5. If ψ : N → R+ is nonincreasing, then (R) holds. Furthermore, if
∑

q∈N ψ(q)
d

diverges, then (D) holds.
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Proof. In the first place, we have

Ψ(kj+1)

Ψ(kj)
=
ψ(kj+1)

kψ(kj)
≤ 1

k
,

which proves (R). For (D),
∑

j∈N

Ψ(kj)

ρ(kj)
=

∑

j∈N

kjψ(kj)d,

which diverges by Cauchy’s condensation test. �

The challenge then is to establish (U).

Lemma 6. Let ψ : N → R+ be nonincreasing such that (4) holds for all sufficiently large
N , and assume that for all k ≥ 2, there exists jk ≥ 1 such that for all j ≥ jk,

∣

∣

{

0 < q ≤ kj−1 : ‖qx‖ < ψ(kj)
}∣

∣ ≪ kj−1ψ(kj)d−1,

where ≪ is the Vinogradov symbol, whose implied constant is assumed to be independent of
k. Then (U) holds for some k ≥ 2.

Proof. For all k ≥ 2 and j ≥ jk, we have

λ









[0, 1] ∩
⋃

q≤kj−1

‖qx‖<ψ(kj)

q
⋃

p=0

B

(

p

q
,

2

qkjψ(kj)d−1

)









≤
∑

q≤kj−1

‖qx‖<ψ(kj)

4

kjψ(kj)d−1
≪ 1

k
·

After choosing k to be larger than the implied constant in the “≪” comparison, we see that
the left hand side is ≤ 1− κ < 1 for some κ > 0.

Combining with (5), we see that for all j ≥ jk large enough so that (4) holds for N = kj ,
we have

λ









[0, 1] ∩
⋃

kj−1<q≤kj

‖qx‖<ψ(kj)

q
⋃

p=0

B

(

p

q
,

2

qkjψ(kj)d−1

)









≥ κ > 0,

and this implies (U) with c = 2k. �

The one-dimensional case of the following lemma was originally proven by Beresnevich,
Haynes, and Velani using a continued fraction argument. This argument will appear in a
forthcoming paper of theirs, currently in preparation [BHV].

Lemma 7. Fix x ∈ Rℓ and τ > τD(x). Then for all N sufficiently large and for all δ ≥
N−1/τ , we have

(6) |{q ∈ N : ‖qx‖ < δ, q ≤ N}| ≤ 4ℓ+1Nδℓ.

Proof. Consider the lattice Λ = gtuxZ
ℓ+1, where

gt =

[

et/ℓIℓ
e−t

]

ux =

[

Iℓ −x

1

]

,
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where t is chosen so that R := et/ℓδ = e−tN , i.e. t = log(N/δ)/(1 + 1/ℓ). Then (6) can be
rewritten as

|{r ∈ Λ : |r|∞ < R}| ≤ (4R)ℓ+1.

Now let D be the Dirichlet fundamental domain for Λ centered at 0, i.e.

D = {r ∈ Rℓ+1 : dist(r,Λ) = dist(r, 0) = |r|∞}.
Since Λ is unimodular, D is of volume 1, so

|{r ∈ Λ : |r|∞ < R}| = λ









⋃

r∈Λ
|r|∞<R

(r +D)









≤∗ λ(Bℓ+1(0, 2R)) = (4R)ℓ+1,

where the starred inequality is true as long as D ⊆ Bℓ+1(0, R). So we need to show that
D ⊆ Bℓ+1(0, R) assuming that N is large enough.

Suppose that D 6⊆ Bℓ+1(0, R). Then the last successive minimum of Λ is ≫ R, so by
[Cas97, Theorem VIII.5.VI], some point s in the dual lattice Λ∗ = {s ∈ Rℓ+1 : 〈r, s〉 ∈ Z}
satisfies 0 < |s|∞ ≪ R−1. Write s = g′tu

′
x
(q, p) for some p ∈ Z, q ∈ Zℓ, where g′t and u′

x

denote the inverse transposes of gt and ux, respectively. Then the inequality |s|∞ ≪ R−1

becomes

e−t/ℓ|q|∞ ≪ R−1

et|〈q,x〉+ p| ≪ R−1
i.e.

|q|∞ ≪ δ−1

|〈q,x〉+ p| ≪ N−1.

Since δ ≥ N−1/τ we get

(7) |〈q,x〉+ p| ≪ δτ ≪ |q|−τ∞ .

Since τ > τD(x), there are only finitely many pairs (p, q) satisfying (7). Thus for all suffi-
ciently large N , we have D ⊆ Bℓ+1(0, R) and thus (6) holds. �

From this we can deduce the following consequence.

Corollary 8. Let x ∈ Rd−1 be of dual Diophantine type τD(x) < d and suppose that for all
ε > 0, we have ψ(q) ≥ q−1/d−ε for all q sufficiently large. Then for any k ≥ 2 and ℓ ∈ Z, we
have

∣

∣

{

0 < q ≤ kj+ℓ : ‖qx‖ < ψ(kj)
}∣

∣ ≪ kj+ℓψ(kj)d−1

for j large enough.

Proof. We show that for large enough j we are in a situation where we can apply Lemma 7,
with N = kj+ℓ and δ = ψ(kj). Since τD < d we can choose τ ∈ (τD, d) and then for all large
enough j,

N−1/τ = k−(j+ℓ)/τ < ψ(kj);

hence Lemma 7 applies. �

We are now ready for the last proof of this paper.

Proof of Theorem 2(ii). Let x ∈ Rd−1 be a point whose dual Diophantine type is strictly
less than d, and let ψ : N → R+ be a nonincreasing function such that

∑

q∈N ψ(q)
d diverges.

Furthermore, assume that for every ε > 0, the inequality 1 > ψ(q) ≥ q−1/d−ε holds for
all sufficiently large q. Then by Corollary 8, we satisfy all the parts of Lemma 6, so there
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exists k ≥ 2 such that (U) holds. Thus by the argument given earlier, we can use [BDV06,
Corollary 2] to conclude that almost every point on the line {x}×R ⊆ Rd is ψ-approximable.

We now show that that the assumption that 1 > ψ(q) ≥ q−1/d−ε (for large enough q) can
be made without losing generality. If ψ(q) ≥ 1 for all q, then all points are ψ-approximable
and the theorem is trivial, and if ψ(q) < 1 for some q, then by monotonicity ψ(q) < 1
for all q sufficiently large. So we just need to show that the assumption ψ(q) ≥ q−1/d−ε

can be made without loss of generality. Let φ(q) = (q(log(q))2)−1/d and define the function
ψ(q) = max{ψ(q), φ(q)}. Then ψ satisfies our assumptions, and therefore almost every point
on {x} × R is ψ-approximable. But

∑

‖qx‖<φ(q)

φ(q) ≤
∑

j∈N

φ(2j)
∣

∣

{

0 < q ≤ 2j+1 : ‖qx‖ < φ(2j)
}∣

∣

Cor. 8≪
∑

j∈N

2j+1φ(2j)d,

which converges because
∑

q∈N φ(q)
d does, and therefore almost every point on {x} × R

is not φ-approximable. But every ψ-approximable point which is not φ-approximable is ψ-
approximable. Therefore, the set of ψ-approximable points on the line {x} × R ⊆ Rd is of
full measure, and the theorem is proved. �
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