

This is a repository copy of $D \rightarrow f$ energy transfer in heteronuclear Ir(III)/Ln(III) near-infrared luminescent complexes.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/112735/

Version: Accepted Version

Article:

Jana, A., Pope, S.J.A. and Ward, M.D. (2017) $D \rightarrow f$ energy transfer in heteronuclear Ir(III)/Ln(III) near-infrared luminescent complexes. Polyhedron, 127. pp. 390-395. ISSN 0277-5387

https://doi.org/10.1016/j.poly.2017.02.016

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Accepted Manuscript

 $D \rightarrow f$ energy transfer in heteronuclear Ir(III)/Ln(III) near-infrared luminescent complexes

Atanu Jana, Simon J.A. Pope, Michael D. Ward

 PII:
 S0277-5387(17)30126-2

 DOI:
 http://dx.doi.org/10.1016/j.poly.2017.02.016

 Reference:
 POLY 12483

To appear in: Polyhedron

Received Date:20 January 2017Accepted Date:12 February 2017

Please cite this article as: A. Jana, S.J.A. Pope, M.D. Ward, $D \rightarrow f$ energy transfer in heteronuclear Ir(III)/Ln(III) near-infrared luminescent complexes, *Polyhedron* (2017), doi: http://dx.doi.org/10.1016/j.poly.2017.02.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

D→f energy transfer in heteronuclear Ir(III)/Ln(III) near-infrared luminescent complexes

Atanu Jana,^a Simon J. A. Pope^b and Michael D. Ward^{a*}

^a Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK. .rdifa ^b School of Chemistry, Cardiff University, Main building, Park Place, Cardiff CF10 3AT. E-mail: m.d.ward@sheffield.ac.uk

Abstract

A series of d/f dinuclear complexes $Ir \bullet Ln$ [where Ln = Eu(III), Gd(III), Yb(III) and Nd(III)] are reported. The core structure consists of a rigid skeleton containing two different types of receptor site in a single molecular motif designed to combine a transition metal ion [Ir(III)] and a lanthanide ion [Ln(III)] in different binding sites at either end of fully conjugated bridge to facilitate $d \rightarrow f$ energy-transfer following photoexcitation of the Ir(III)-based antenna unit. Steady state and time-resolved photophysical experiments on these compounds revealed that the energy-transfer is feasible only in case of Ir•Yb and Ir•Nd systems, affording sensitized emission from the Yb(III) or Nd(III) centres. Such EnT is not possible in the Ir•Eu dyad as the excited state energy of the Ir(III) unit is insufficient to sensitise the excited state of the Eu(III) centre.

Introduction

In recent years significant attempts have been made to develop new luminophores which are potentially useful for two-photon induced fluorescence microscopy (TPFM) [1], in vivo fluorescence lifetime imaging microscopy (FLIM) [2] and dual modal imaging [3]. In this context, phosphorescent metal complexes with long-lived triplet excited states are of particular interest [4-6] because they offer substantial advantages compared to the more traditional organic fluorophores. These advantages include tunability of absorption and emission maxima over a wide range by using simple ligand substitutions for the metal coordination site, and long-lived (>10⁻⁷ s) luminescence which allows rejection of short-lived autofluorescence and also provides large, easy to detect variations in emission lifetime for lifetime-based imaging.

In parallel, the use of transition metal luminophores to sensitize luminescence from lanthanide ions in heterometallic d/f complexes has attracted recent attention from various groups [3b,7,8] with such complexes having potential applications in areas from white-light emission for lighting devices [7a] to dual-luminescent probes for imaging purposes [7b]. This activity has resulted in the preparation of a wide range of d/f complexes in which one or more phosphorescent d-block antennae is/are connected to one or more lanthanide units [3b,7]. The long-lived excited states typical of d-block antenna units with triplet excited states make them excellent energy donors whose excited-state energy can be tuned by proper substituents, and Several straightforward synthetic methods exist to combine d-block and f-block units in ligand skeletons which provide the distinct binding sites that these different types of metal ion require [8].

In particular, amongst such d/f hybrids the extensive family of cyclometallated Ir^{3+} complexes with their high energy and long-lived triplet excited states, that often afford blue or
green luminescence [9], have proven to be effective energy-donors for sensitisation of the
luminescent excited states of lanthanides such as Eu(III), Tb(III), Yb(III) and Nd(III) in
Ir•Ln dyads [10,11]. Ir•Ln dyads have potential value in phosphorescence lifetime imaging
microscopy (PLIM) for cell imaging applications [3g, 3h, 5a, 6a, 7b]. Moreover, use of
Gd(III) as a highly paramagnetic partner for an Ir(III) luminophore provides a basis for
developing probes for dual modal imaging (phosphorescence + MRI) [3g].

We report herein a new series of rigid Ir(III)/Ln(III) dyads based on a fully conjugated framework connecting the two metal centres [3g], providing the necessary through-bond coupling for $d\rightarrow f$ Dexter energy-transfer which is the main energy-process that operates in

such dyads [8c]. Steady-state and time-resolved photophysical studies have been performed to evaluate the inter-component $d \rightarrow f$ energy-transfer in these systems.

Results and Discussion

(i) Synthesis

The chemical structures of the compounds under study are given in Chart 1. The bridging ligand skeleton is based on that reported in previous papers [3g,3h]; it contains a phenanthroline binding site for the Ir(III) ion and a heptadentate poly(amino)carboxylate binding site for the Ln(III) ions, with the two sites connected by an alkynyl spacer. The **Ir**•**Ln** complexes containing Ir(III) and Ln(III) were then synthesized by following the stepwise methodology summarised in Scheme 1 [3g,3h]; Scheme 1 also depicts related compounds of interest which are referred to in this paper. The novel features of the complexes in this work are that (i) the $\{Ir(ppy)_2\}^+$ unit, coordinated to the phenanthroline terminus of the bridging ligand, is different from the one used before in that the ppy ligands are not fluorinated, resulting in a lower-energy excited state which will accordingly have different energy-transfer capabilities; and (ii) the lanthanide ions include members of the near-IR emitting type [Yb(III) and Nd(III)].

(ii) Steady-state absorption spectra and associated computational studies.

The **Ir**•**Ln** dyads all have similar absorption spectra to one another, whose main features are those associated with the Ir(III) core, viz. ligand-centred π - π * transitions in the UV region and a weaker transition which appears as a shoulder at ca. 400 nm. Cyclometallated Ir(III) complexes of this class can have excited states displaying different proportions of ligand-centred and MLCT character according to the ligand substituents, so to clarify the nature of the lowest-excited state (and hence the absorption and luminescence properties) we performed DFT calculations on the precursor Ir(III) complex **Ir**•**A** using the Gaussian 09 program suite [12]. For simplicity we used the mononuclear Ir(III) complex for these calculations with no lanthanide centre present.

The calculations revealed that the conjugated phenanthroline-based ligand with an alkyne substituent in **Ir**•**A** is planar, as would be expected. Moreover, there is a moderate (0.053 eV) reduction of energy gap (ΔE) between the HOMO and LUMO on moving from corresponding fluorinated derivative ^F**Ir**•**A** ($\Delta E = 2.630$ eV) [3h] to the nonfluorinated

derivative $Ir \bullet A$, ($\Delta E = 2.577 \text{ eV}$). This can be attributed to the stabilization of the HOMO of $^{F}Ir \bullet A$ that results from the inductive effect of the four highly electronegative 'F' atoms. This finding is fully in agreement with the observed red shift of the $\pi \rightarrow \pi^*$ absorption bands of $Ir \bullet A$ in the UV-Vis region, in comparison to $^{F}Ir \bullet A$.

Molecular orbital energy-level diagrams from HOMO–10 to LUMO+10 were constructed to explain the spectroscopic features. In the case of **Ir**•**A**, the HOMO is mainly concentrated on the Ir(III) ion as well as the two anionic, cyclometallating phenylpyridine ligands. In contrast the LUMO is located throughout the phenanthroline/alkyne based conjugated fragment ligand (Fig. 4). On this basis, we assign the lowest-energy absorption band observed in the visible region of **Ir**•**A** as having a combination of Ir→phen MLCT and phenylpyridine→phen LLCT character. Time-dependent DFT simulations of the electronic spectra of **Ir**•**A** were also carried out; the TD-DFT stick spectrum obtained from this analysis are in good agreement with the experimental spectrum (cf. Fig. S16, Table S1 in ESI) in the frontier orbital region.

(iii) Luminescence spectra and photoinduced energy-transfer.

The complexes $Ir \bullet Gd$ and $Ir \bullet Eu$ show very similar luminescence spectra, with a broad and featureless emission band in MeCN at 640 nm which corresponds to emission from the ³MLCT/³LLCT excited state of the Ir(III) centre [9]. The luminescence lifetimes (main component, ca. 55 ns) and quantum yields (ca. 0.15) are likewise similar for the two complexes.

The similarity between these two emission spectra, and in particular their lifetimes and quantum yields, implies that no Ir \rightarrow Eu energy-transfer is occurring in **Ir**•Eu: this must be a consequence of the relatively low excited-state energy of the {Ir(N^C)₂(phen)}⁺ unit, which is unable to effect photoinduced energy-transfer to the Eu(III) centre whose emissive ⁵D₀ excited state lies at ca. 17500 cm⁻¹. For such energy-transfer to be complete at room temperature the excited state energy of the {Ir(N^C)₂(phen)}⁺ unit would have to be ca. 19500 cm⁻¹ to give a sufficient energy-transfer gradient, [13] corresponding to onset of luminescence at ca. 510 nm for the Ir(III) unit which is clearly not the case here. Thus, in **Ir**•**Gd** and **Ir**•**Eu** the Gd(III) and Eu(III) centres act in the same way, as triply-charged substituents that are otherwise photophysically innocent with respect to their effect on the Ir(III) core. This is illustrated in Fig. 3 which emphasises the different behaviour of these two **Ir**•**Ln** dyads compared to the previously-studied examples ^F**Ir**•**Ln**, which have a much higher-energy Ir-

based excited state (luminescence at 560 nm in solution) arising from use of fluorinated phenylpyridine ligands [3g]. The result of this was that in ^FIr•Eu the occurrence of Ir \rightarrow Eu energy-transfer resulted in partial quenching of Ir-based emission and appearance of sensitised Eu-based emission [3g], neither of which occurs in Ir•Eu.

The relatively low excited-state energy of Ir•Gd and Ir•Eu compared to ^FIr•Gd and ^FIr•Eu however does not prevent them from sensitising Nd(III) and Yb(III), which have much lower energy excited states with luminescence in the near-IR region. In Ir•Nd and Ir•Yb we can see again the main Ir-based ³MLCT/³LLCT emission band at 640 nm. For Ir•Yb there is no detectable loss of intensity compared to the control compound Ir•Gd indicating that any quenching of the Ir-based emission component by $Ir \rightarrow Yb$ energy-transfer is small. This is confirmed by time-resolved measurements which show that this emission component has a lifetime of 63 ns: the same, within experimental error, of the lifetimes measured for luminescence from Ir•Gd and Ir•Eu (ca. 55 ns each). However, the fact that Ir \rightarrow Yb energy-transfer does occur to some extent is apparent from the presence of a weak luminescence feature at 980 nm: this is the ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ luminescence from Yb(III), which can only have arisen from $Ir \rightarrow Yb$ energy-transfer as the excitation at 355 nm was into the Irbased absorption band. Time-resolved measurements at 980 nm revealed a short-lived decay component with a lifetime of 66 ns which is the long-wavelength tail of residual Ir-based emission, and a much longer-lived component with a lifetime of 7.4 µs which is characteristic of Yb-based decay; this lifetime corresponds to a quantum yield of 3.7×10^{-3} for the Ybbased emission based on a natural radiative lifetime of 2 ms [14].

In **Ir**•Nd the quenching of the Ir-based luminescence component is greater, with a lifetime for residual Ir-based emission of 33 ns, significantly smaller than for the control complex **Ir**•Gd (54 ns). From this difference, using eq. 1 [where τ and τ_q are the unquenched (in **Ir**•Gd) and partially quenched (in **Ir**•Nd) lifetimes, respectively], we can calculate the rate of Ir→Nd energy-transfer to be 1×10^7 sec⁻¹.

$$k_{\rm EnT} = 1/\tau_{\rm q} - 1/\tau \tag{1}$$

The observation that this is clearly much faster than the rate of $Ir \rightarrow Yb$ energy-transfer in Ir•Yb arises from the fact that the Nd(III) ion has a large number of f-f absorptions in the visible region which overlap with the region where the Ir-based luminescence is intense; in

contrast, the Yb(III) ion has a solitary f-f absorption at 980 nm in the region where the Irbased emission has almost decayed to the baseline. Thus, the spectroscopic overlap (between the emission from the donor and absorption of the acceptor) that is necessary for energytransfer is inevitably much higher in the Nd(III)-containing dyad, and this is consistent with other examples of d/f dyads in which energy-transfer to Nd(III) is faster than it is to Yb(III) for the same reason [15].

The sensitised Nd(III)-based emission arising from Ir \rightarrow Nd energy-transfer can be seen in the form of weak signals at 1060 and 1330 nm in the near-IR region, superimposed on the low-energy tail of the residual Ir-based emission decay. These three signals correspond to the ${}^{4}F_{3/2} \rightarrow {}^{4}I_{n}$ transitions (n = 11/2, 13/2) respectively. Of these the 1060 nm peak (${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$) is the more intense. Time-resolved emission measurements at this wavelength reveal two decay components of ca. 25 ns (minor) and 170 ns (major); the former corresponds to a trace of residual Ir-based emission and corresponds approximately with the figure of 33 ns that was measured for the 640 nm emission maximum in the visible region. To avoid this interference from the Ir-based emission which still has non-zero intensity by 1060 nm, the luminescence decay was also measured at 1340 nm giving a single decay component, again of 170 ns, corresponding to the Nd-based decay. The much smaller value of this luminescence lifetime compared to what we observed for Yb in **Ir**•**Yb** (7.4 µs) is characteristic of Nd(III) for which the lower-energy luminescence is more easily quenched by molecular vibrations compared to Yb(III) [16]. The Nd(III) emission lifetime of 170 ns corresponds to a quantum yield of 6.8 x 10⁻⁴ for the Nd-based emission, based on a natural radiative lifetime of 0.25 ms [14].

Conclusions

In a set of d/f dyads based on a fully conjugated ligand skeleton connecting the two metal centres, photoinduced energy-transfer was observed from an $\{Ir(N^{C})_{2}(phen)\}^{+}$ unit (where 'N^C' denotes a cyclometallating phenylpyridine ligand) to Yb(III) and Nd(III) centres which demonstrated sensitised luminescence in MeCN. The energy of the excited state of the $\{Ir(N^{C})_{2}(phen)\}^{+}$ unit was, however, too low to permit sensitisation of luminescence from Eu(III) – in contrast to the situation when fluorinated $\{Ir(N^{C})_{2}(phen)\}^{+}$ units with higher-energy excited states were used [3g].

Experimental

Materials and instrumentation.

¹H NMR spectra (400 MHz) and ¹³C NMR spectra (100 MHz) were recorded on a Bruker Avance-3 spectrometer at 298 K using residual solvent signals as internal standards. ESI mass spectra were recorded with a Micromass LCT instrument. UV-Vis-NIR spectra were recorded on a Varian Cary 50 spectrophotometer in anhydrous MeCN at room temperature. Luminescence spectra were measured on a Jobin Yvon Fluoromax 4 fluorimeter in MeCN at room temperature. The Ir(III)-based emission lifetimes were measured using the time correlated single photon counting (TCSPC) technique with an Edinburgh Instruments "Mini τ " luminescence lifetime spectrometer, equipped with a 410 nm pulsed diode laser as an excitation source and a Hamamatsu H577303 photomultiplier tube (PMT) detector. The lifetimes were calculated from the measured data using the supplied software. All near-IR photophysical data were obtained on a JobinYvon-Horiba Fluorolog-3 spectrometer fitted with a Hamamatsu R5509-73 detector (cooled to -80 °C using a C9940 housing). For the near-IR lifetimes the pulsed laser source was a Continuum Minilite Nd:YAG configured for 355 nm output. Near-IR luminescence lifetime profiles were obtained using the JobinYvon-Horiba FluoroHub single photon counting module and the data fits yielded the lifetime values using the provided DAS6 deconvolution software.

All calculations were performed using Gaussian 09 [12] with the density functional theory (DFT) method, using the Becke three-parameter hybrid exchange functional and the Lee-Yang-Parr correlation functional (B3LYP) [17], employing a basis set of 6-31G* for non-metals and LanL2DZ [18] for Ir(III) ions.

Synthesis of *Ir*•*E*.

A mixture of the ligand **L** (see Scheme 1; 0.398 g, 0.5 mmol) and $[Ir(ppy)_2(\mu-Cl)_2]$ (ppy = cyclometallating anion of 2-phenylpyridine) (0.268 g, 0.25 mmol) was heated to reflux in dry degassed CH₂Cl₂ / MeOH (50 cm³; 4:1, v/v) for 16 hours. After cooling the reaction mixture, NH₄PF₆ (1.22 g, 7.5 mmol) was slowly to the reaction mixture whilst stirring was continued. After 6 h this reaction mixture was evaporated near to dryness and CH₂Cl₂ (5 cm³) was added to it to completely dissolve the organic substances. Residual NH₄PF₆ was removed by filtration and the dark organic solution was concentrated under vacuum. The crude reaction mixture was then subjected to column chromatography on Al₂O₃ [Eluent: (1) CH₂Cl₂, (2) 2% MeOH in CH₂Cl₂] to furnish 0.475 g of the title compound as a deep yellow

crystalline material in 60% yield. ¹H NMR (500 MHz, CDCl₃, 298 K): δ = 1.48 (36 H, s); 3.50 (8H, s); 4.06 (4H, s); 6.38 (1H, d, J = 8 Hz); 6.42 (1H, d, J = 8 Hz); 6.97-7.01 (4H, m); 7.08–7.13 (2H, m); 7.37 (1H, d; J = 6 Hz); 7.43 (1H, d, J = 6 Hz); 7.68 (2H, m); 7.73-7.78 (4H, m); 7.87-7.90 (1H, m); 7.95-7.98 (2H, m); 8.17 (1H, d, J = 8 Hz); 8.26 (1H, d, J = 4 Hz); 8.30 (1H, s); 8.37 (1H, d, J = 8 Hz); 8.67 (1H, br s); 8.78 (1H, d, J = 8 Hz). ¹³C NMR (125 MHz, CDCl₃, 298 K): δ = 28.2, 55.9, 59.5, 81.2, 87.0, 94.6, 119.7, 122.9, 123.3, 123.6, 124.8, 125.0, 127.2, 127.8, 130.2, 130.7, 130.9, 131.8, 132.2, 134.5, 138.3, 139.4, 140.8, 143.4, 143.6, 145.7, 146.3, 148.5, 148.8, 151.2, 151.9, 159.5, 167.7, 170.4. ESI-MS: m/z calcd. for C₆₇H₇₃N₇O₈Ir, 1296.5. Found: 1296.0 (100%, M)⁺.

Synthesis of Ir•A

A sample of **Ir**•**E** (0.130 g, 0.1 mmol) was dissolved in CH₂Cl₂ (2 cm³) and placed in an ice bath under an atmosphere of argon. An excess of cold trifluoroacetic acid (3 cm³) was added dropwise to this cold solution. The resulting mixture was kept in an ice bath and stirred for 12 h under argon. The solvents and other volatile substances were removed under vacuum without heating. The residue was triturated with ether (3 × 5 cm³) and finally filtered to afford the tetracarboxylic acid **Ir**•**A** as a yellow mass. The compound was then dried under high vacuum for overnight before characterization. Yield: 80%. ¹H NMR (500 MHz, CD₃OD, 298 K): $\delta = 3.80$ (8H, s); 4.37 (4H, s); 6.41 (1H, d, J = 8 Hz), 6.43 (1H, d, J = 8 Hz), 6.93-7.00 (4H, m); 7.07-7.13 (2H, m), 7.48 (1H, d, J = 5 Hz), 7.58 (1H, d, J = 5 Hz); 7.79-7.97 (7H, m); 8.15-8.18 (2H, m); 8.33-8.41 (4H, m); 8.81 (1H, d, J = 8 Hz); 9.04 (1H, s). ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta = 56.5$, 58.3, 79.5, 92.5, 121.2, 122.4, 124.0, 124.6, 126.1, 126.4, 128.5, 128.9, 129.3, 130.0, 130.8, 131.8, 132.2, 132.8, 133.1, 133.8, 136.2, 139.9, 140.1, 143.2, 145.5, 147.7, 150.1, 150.3, 150.5, 152.7, 153.2, 156.7, 169.2, 173.6. ESI-MS: m/z calcd for C₅₁H₄₁N₇O₈Ir, 1072.1. Found: 1072 (100%, M⁺).

Synthesis of *Ir*•*Ln* complexes.

These were all prepared in the same way: the example given for $Ir \cdot Eu$ is typical. A mixture of $Ir \cdot A$ (0.043 g, 0.04 mmol) and $Eu(OTf)_3$ (0.024 g, 0.04 mmol) in anhydrous MeOH under Ar was stirred for 30 minutes. To this was slowly added a solution of NaOH (1M in MeOH) such that the apparent pH was maintained at 5. The reaction mixture was then heated to 50 °C with constant stirring for 48 h. After cooling the reaction mixture the solvent was evaporated under reduced pressure. The residue was dissolved in minimum amount of

MeOH and re-precipitated by the gradual addition of ether. This dissolution / re-precipitation process was repeated several times and the light yellow solid mass was collected by filtration to give $Ir \cdot Eu$ in 60 – 70% yield. ESI-MS: m/z calcd. for $C_{51}H_{37}N_7O_8IrEu$, 1220.1. Found: m/z 1220.0 (10%, M⁺) and 634 (100%; M/2 + Na)⁺. Purity of the compound was confirmed by the presence of a single peak in analytical HPLC trace (see ESI). For mass spectra and HPLC traces of the other $Ir \cdot Ln$ dyads (Ln = Gd, Yb, Nd), see ESI.

Acknowledgements. This research was supported by a Marie Curie Incoming International Fellowship to A. J.

References

[1]	(a) H. M. Kim, C. Jung, B. R. Kim, SY. Jung, J. H. Hong, YG. Ko, K. J. Lee, B.
	R. Cho, Angew. Chem. Int. Ed. 46 (2007) 3460–3463;
	(b) H. M. Kim, M. J. An, J. H. Hong, B. H. Jeong, O. Kwon, JY. Hyon, SC.
	Hong, K. J. Lee, B. R. Cho, Angew. Chem. Int. Ed. 47 (2008) 2231–2234;
	(c) M. K. Kim, C. S. Lim, J. T. Hong, J. H. Han, HY. Jang, H. M. Kim, B. R. Cho,
	Angew. Chem. Int. Ed. 49 (2010) 364–367;
	(d) H. J. Kim, J. H. Han, M. K. Kim, C. S. Lim, H. M. Kim, B. R. Cho, Angew.
	Chem. Int. Ed. 49 (2010) 6786–6789;
	(e) G. Masanta, C. S. Lim, H. J. Kim, J. H. Han, H. M. Kim, B. R. Cho, J. Am.
	Chem. Soc. 133 (2011) 5698–5700;
	(f) C. S. Lim, G. Masanta, H. J. Kim, J. H. Han, H. M. Kim, B. R. Cho, J. Am.
	Chem. Soc. 133 (2011) 11132–11135;
	(g) H. J. Park, C. S. Lim, E. S. Kim, J. H. Han, T. H. Lee, H. J. Chun, B. R. Cho,
	Angew. Chem. Int. Ed. 51 (2012) 2673 –2676;
	(h) S. K. Bae, C. H. Heo, D. J. Choi, D. Sen, EH. Joe, B. R. Cho, H. M. Kim, J.
	Am. Chem. Soc. 135 (2013) 9915–9923;
	(i) M. Khan, C. R. Goldsmith, Z. Huang, J. Georgiou, T. T. Luyben, J. C. Roder, S. J.
	Lippard, K. Okamoto, Proc. Natl. Acad. Sci. USA 111 (2014) 6786-6791;
	(j) L. Kong, YP. Tian, QY. Chen, Q. Zhang, H. Wang, DQ. Tan, ZM. Xue, J
	Y. Wu, HP. Zhou, JX. Yang, J. Mater. Chem. C 3 (2015) 570–581.
[2]	(a) G. Zhou, D. Wang, X. Wang, X. Xu, Z. Shao, M. Jiang, Opt. Commun. 202
	(2002) 221–225;
	(b) QD. Chen, HH. Fang, B. Xu, J. Yang, H. Xia, FP. Chen, WJ. Tian, HB.
	Sun, Appl. Phys. Lett. 94 (2009) 201113-1–201113-3;
	(c) Y. Wang, T. Liu, L. Bu, J. Li, C. Yang, X. Li, Y. Tao, W. Yang, J. Phys. Chem.
	C 116 (2012) 15576–15583.
[3]	(a) T. Koullourou, L. S. Natrajan, H. Bhavsar, S. J. A. Pope, J. H. Feng, J.
	Narvainen, R. Shaw, E. Scales, R. Kauppinen, A. M. Kenwright, S. Faulkner, J. Am.
	Chem. Soc. 130 (2008) 2178–2179;
	(b) P. Verwilst, S. V. Eliseeva, L. Vander Elst, C. Burtea, S. Laurent, S. Petoud, R.
	N. Muller, T. N. Parac-Vogt, W. M. De Borggraeve, Inorg. Chem. 51 (2012) 6405-
	6411;

(c) M. Tropiano, C. J. Record, E. Morris, H. S. Rai, C. Allain, S. Faulkner, Organometallics 31 (2012) 5673–5676;

(d) J. Luo, W.-S. Li, P. Xu, L.-Y. Zhang, Z.-N. Chen, Inorg. Chem. 51 (2012) 9508– 9516;

(e) X. Zhang, X. Jing, T. Liu, G. Han, H. Li, C. Duan, Inorg. Chem. 51 (2012) 2325–2331;

(f) G. J. Stasiuk, F. Minuzzi, M. Sae-Heng, C. Rivas, H.-S. Juretschke, L. Piemonti,P. R. Allegrini, D. Laurent, A. R. Duckworth, A. Beeby, G. A. Rutter, N. J. Long,Chem. Eur. J. 21 (2015) 5023–5033;

(g) A. Jana, E. Baggaley, A. Amoroso and M. D. Ward, Chem. Commun. 51 (2015) 8833–8836;

(h) A. Jana, B. J. Crowston, J. Shewring, L. K. McKenzie, H. E. Bryant, S. W. Botchway, A. J. Amoroso, E. Baggaley and M. D. Ward, Inorg. Chem. 55 (2016) 5623–5633.

(i) C. Rivas, G. J. Stasiuk, J. Gallo, F. Minuzzi, G. A. Rutter, N. J. Long, Inorg. Chem. 52 (2013) 14284–14293;

(j) J. Luo, L.-F. Chen, P. Hu, Z.-N. Chen, Inorg. Chem. 53 (2014) 4184–4191;

[4] (a) J.-C. G. Bünzli, Chem. Rev. 110 (2010) 2729–2755;
(b) E. J. New, D. Parker, D. G. Smith and J. W. Walton, Curr. Opin. Chem. Biol. 14 (2010) 238–246;

(c) Q. Zhao, C. Huang and F. Li, Chem. Soc. Rev. 40 (2011) 2508–2524;

(d) E. Baggaley, J. A. Weinstein and J. A. G. Williams, Coord. Chem. Rev. 256 (2012) 1762–1785;

(e) M. P. Coogan and V. Fernández-Moreira, Chem. Commun. 50 (2014) 384–399.

[5] (a) S. W. Botchway, M. Charnley, J. W. Haycock, A. W. Parker, D. L. Rochester, J.
A. Weinstein and J. A. G. Williams, Proc. Natl. Acad. Sci. USA 105 (2008) 16071– 16076;

(b) V. Fernández-Moreira, M. L. Ortego, C. F. Williams, M. P. Coogan, M. D.

Villacampa and M. C. Gimeno, Organometallics, 31 (2012) 5950–5957;

(c) G. Li, Y. Chen, J. Wu, L. Ji and H. Chao, Chem. Commun. 49 (2013) 2040–2042;

(d) S. J. Butler, L. Lamarque, R. Pal and D. Parker, Chem. Sci. 5 (2014) 1750–1756;

(e) E. Baggaley, M. R. Gill, N. H. Green, D. Turton, I. V. Sazanovich, S. W.Botchway, C. Smythe, J. W. Haycock, J. A. Weinstein and J. A. Thomas, Angew.Chem., Int. Ed. 53 (2014) 3367–3371.

- [6] (a) E. Baggaley, S. W. Botchway, J. W. Haycock, H. Morris, I. V. Sazanovich, J. A. G. Williams and J. A. Weinstein, Chem. Sci. 5 (2014) 879–886;
 (b) E. Baggaley, M. R. Gill, N. H. Green, D. Turton, I. V. Sazanovich, S. W. Botchway, C. Smythe, J. W. Haycock, J. A. Weinstein and J. A. Thomas, Angew. Chem. 53 (2014) 3367–3371.
- [7] (a) P. Coppo, M. Duati, V. N. Kozhevnikov, J. W. Hofstraat and L. De Cola, Angew. Chem., Int. Ed. 44 (2005) 1806–1810;
 (b) E. Baggaley, D.-K. Cao, D. Sykes, S. W. Botchway, J. A. Weinstein and M. D. Ward, Chem. Eur. J. 20 (2014) 8898–8903.
- [8] (a) M. D. Ward, Coord. Chem. Rev. 251 (2007) 1663–1677;
 (b) S. Faulkner, L. S. Natrajan, W. S. Perry, D. Sykes, Dalton Trans. 2009, 3890–3899;
 (c) M. D. Ward, Coord. Chem. Rev. 254 (2010) 2634–2642;
 (d) F.-F. Chen, Z.-Q. Chen, Z.-Q. Bian, C.-H. Huang, Coord. Chem. Rev. 254 (2010) 991–1010;
 (e) L. Aboshyan-Sorgho, M. Cantuel, S. Petoud, A. Hauser, C. Piguet, Coord. Chem. Rev. 256 (2012) 1644–1663;

(f) L.-J. Xu, G.-T. Xu, Z.-N. Chen, Coord. Chem. Rev. 273 (2014) 47-62.

- [9] Flamigni, L.; Barbieri, A.; Sabatini, C.; Ventura, B.; Barigelletti, F. Top. Curr. Chem. 281 (2007) 143–203.
- [10] (a) N. M. Tart, D. Sykes, I. Sazanovich, I. S. Tidmarsh, M. D. Ward, Photochem. Photobiol. Sci. 9 (2010) 886–889;
 (b) D. Sykes, I. S. Tidmarsh, A. Barbieri, I. V. Sazanovich, J. A. Weinstein, M. D. Ward, Inorg. Chem. 50 (2011) 11323–11339;
 (c) D. Sykes, M. D. Ward, Chem. Commun. 47 (2011) 2279–2281;
 (d) D. Sykes, S. C. Parker, I. V. Sazanovich, A. Stephenson, J. A. Weinstein, M. D. Ward, Inorg. Chem. 52 (2013) 10500–10511;
 (e) D. Sykes, A. J. Cankut, N. Mohd Ali, A. Stephenson, S. J. P. Spall, S. C. Parker, J. A. Weinstein, M. D. Ward, Dalton Trans. 43 (2014) 6414–6428.
- [11] (a) F.-F. Chen, Z.-Q. Bian, Z.-W. Liu, D.-B. Nie, Z.-Q. Chen, C.-H. Huang, Inorg. Chem. 47 (2008) 2507–2513;

(b) W. Jiang, B. Lou, J. Wang, H. Lv, Z. Bian, C. Huang, Dalton Trans. 40 (2011) 11410–11418;

(c) J. E. Jones, R. L. Jenkins, R. S. Hicks, A. J. Hallett, S. J. A. Pope, Dalton Trans. 41 (2012) 10372–10381;

(d) G. Yu, Y. Xing, F. Chen, R. Han, J. Wang, Z. Bian, L. Fu, Z. Liu, X. Ai, J. Zhang, C. Huang, ChemPlusChem 78 (2013) 852–859;

(e) F.-F. Chen, H.-B. Wei, Z.-Q. Bian, Z.-W. Liu, E. Ma, Z.-N. Chen, C.-H. Huang, Organometallics 33 (2014) 3275–3282;

(f) L. Li, S. Zhang, L. Xu, Z.-N. Chen, J. Luo, J. Mater. Chem. C 2 (2014) 1698– 1703;

(g) Q. Zhao, Y. Liu, Y. Cao, W. Lv, Q. Yu, S. Liu, X. Liu, M. Shi, W. Huang, Adv. Opt. Mater. 3 (2015) 233–240.

[12] Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

- [13] (a) S. Sato and M. Wada, Bull. Chem. Soc. Jpn. 43 (1970) 1955;
 (b) D. Parker, Coord. Chem. Rev. 205 (2000) 109.
- [14] (a) S. I. Klink, L. Grave, D. N. Reinhoudt, F. C. J. M. van Veggel, M. H. V. Werts, F. A. J. Geurts, J. W. Hofstraat, J. Phys. Chem. A 104 (2000) 5457–5468;
 (b) G. A. Hebbink, D. N. Reinhoudt, F. C. J. M. van Veggel, Eur. J. Org. Chem. (2001) 4101–4106;
 (c) S. I. Klink, G. A. Hebbink, L. Grave, F. C. J. M. van Veggel, D. N. Reinhoudt, L. H. Slooff, A. Polman, J. W. Hofstraat, J. Appl. Phys. 86 (1999) 1181–1185.

- [15] (a) G. M. Davies, S. J. A. Pope, H. Adams, S. Faulkner, M. D. Ward, Inorg. Chem. 44 (2005) 4656–4665.
 (b) T. K. Ronson, T. Lazarides, H. Adams, S. J. A. Pope, D. Sykes, S. Faulkner, S. J. Coles, M. B. Hursthouse, W. Clegg, R. W. Harrington, M. D. Ward, Chem. Eur. J. 12 (2006) 9299–9313.
 (c) S. I. Klink, H. Keizer, F. C. J. M. van Veggel, Angew. Chem., Int. Ed. 39 (2000) 4319–4321.
- [16] A. Beeby, S. Faulkner, Chem. Phys. Lett. 266 (1997) 116–122.
- [17] (a) A. D. Becke, J. Chem. Phys. 98 (1993) 5648–5652;
 (b) Ò. Rubio-Pons, Y. Luo, H. Ågren, J. Chem. Phys. 124 (2006) 094310, 1–5.
- [18] (a) P. J. Hay, W. R. Wadt, J. Chem. Phys. 82 (1985) 270–283;

- (b) W. R. Wadt, P. J. Hay, J. Chem. Phys. 82 (1985) 284–298;
- (c) P. J. Hay, W. R. Wadt, J. Chem. Phys. 82 (1985) 299–310.

Compound	2 /		
	λ_{em} / nm	τ	
Ir•Gd	620	54 ns ^a	
Ir•Eu	620	55 ns ^a	
Ir•Nd	620	33 ns ^a	
	1060	25 ns (9%), ^a 170 ns (95%) ^b	
	1340	170 ns ^b	
Ir•Yb	620	63 ns ^a	
	980	66 ns, ^a 7.4 μs ^b	6
a Ir-based	d luminescence	e	
b lanthan	ide-based lumi	inescence	
	0		

Table 1. Summary of steady-state and time-resolved luminescence data in MeCN at 298 K

Scheme 1. Preparation and structures of the new complexes **Ir**•**Ln** (this work) and their fluorinated analogues ^FIr•Ln (ref. 3g).

Figure 1. UV/Vis absorption spectra of the Ir•Ln complexes in MeCN solution.

Figure 2. (a) Luminescence spectra in MeCN of some complexes in the visible region showing the Ir-based luminescence; (b) luminescence spectra in the near-IR region showing sensitised lanthanide-based emission from Ir•Yb and Ir•Nd.

Figure 3. Comparison of luminescence spectra of **Ir•Gd** and **Ir•Eu** (this work) with those of ^F**Ir•Gd** and ^F**Ir•Eu** (ref. 3g).

Figure 4. Frontier molecular orbitals of Ir•A

D→f energy transfer in heteronuclear Ir(III)/Ln(III) near-infrared luminescent complexes

Atanu Jana, Simon J. A. Pope and Michael D. Ward

R C C C C

In a series of Ir(III)/Ln(III) dinuclear complexes, photoinduced energy-transfer from the emissive Ir(III) unit to the lanthanide unit occurs when Ln = Yb or Nd, generating sensitised near-infrared luminescence, but not when Ln = Eu.

