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A NOTE ON BADLY APPROXIMABLE LINEAR

FORMS ON MANIFOLDS

PALOMA BENGOECHEA†, NIKOLAY MOSHCHEVITIN∗,
AND NATALIA STEPANOVA∗

Abstract. This paper is motivated by Davenport’s problem and
the subsequent work regarding badly approximable points in sub-
manifolds of a Euclidian space. We study the problem in the area
of twisted Diophantine approximation and present two different
approaches. The first approach shows that, under a certain restric-
tion, any countable intersection of the sets of weighted badly ap-
proximable points on any non-degenerate C1 submanifold of Rn has
full dimension. In the second approach we introduce the property
of isotropically winning and show that the sets of weighted badly
approximable points are isotropically winning under the same re-
striction as above.

1. Introduction

In [17] Khintchine proved that there exists an absolute constant
γ > 0 such that for any θ ∈ R there exists x ∈ R satisfying

(1) inf
q∈N

q · ‖qθ − x‖ ≥ γ.

The best known value of γ is probably due to H. Godwin [10]. More
than 50 years later, Tseng [28] showed that, for every θ ∈ R, the set of
all x for which there exists a positive constant γ = γ(θ, x) such that (1)
is true is 1/8-winning for the standard Schmidt game (in particular it
has maximal Hausdorff dimension). Now we usually refer to such sets,
denoted by Badθ as sets of twisted badly approximable numbers.

In the other direction, Kim [16] proved that Badθ has 0 Lebesgue
measure if θ ∈ R\Q.

The study of twisted badly approximable numbers has been pursued
to higher dimension as the classical approximation by rationnals. Var-
ious multidimensional generalizations of Khinchine’s result were due
to Khinchine [18,19], Jarník [14,15], Kleinbock [20], Bugeaud, Harrap,
Kristensen, Velani [7], Moschevitin [21], Einsiedler and Tseng [8] and
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others. In the classical case, Schmidt introduced the weighted simul-
taneously badly approximable numbers

Bad(i, j) =

{
(x1, x2) ∈ R2 : inf

q∈N
max(qi‖qx1‖, qj‖qx2‖) > 0

}
,

where i, j are real positive numbers satisfying i+ j = 1.
It is well-known that Bad(i, j) has Lebesgue measure 0 and it was

shown to have full Hausdorff dimension by Pollington and Velani [22]
only in 2002. A few years later, Badziahin, Pollington and Velani made
a breakthrough [4] by settling a famous conjecture of Schmidt. They
proved that any countable intersection with a certain restriction of sets
Bad(i, j) for different weights (i, j) has full Hausdorff dimension. This
result was significantly improved by An in [1], where he proved that
Bad(i, j) is winning for the standard Schmidt game and thus obtained
the full dimension result for countable intersections unconditionally.

Moreover, Badziahin, Pollington and Velani’s work settled the foun-
dations for the study of the dimension of Bad(i, j) on planar curves.
In 1964, Davenport asked the question: is the intersection of Bad(1

2
, 1
2
)

with the parabola uncountable? Badziahin and Velani [3] answered
positively this question and proved the more general result: the set
Bad(i, j) on any C(2) non-degenerate planar curve has full dimension.
This is false in general if we replace non-degenerate curves by straight
lines. Recently Badziahin and Velani’s result has been improved to
winning in [2] and generalized to higher dimension by Beresnevich [6].
In higher dimension, we fix an n-tuple k = (k1, . . . , kn) of real numbers
satisfying

(2) k1, . . . , kn > 0 and
n∑

i=1

ki = 1,

and define

Bad(k, n,m) =

{
Θ ∈ Matn×m(R) : inf

q∈Zm

6=0

max
1≤i≤n

(|q|mki‖Θi(q)‖) > 0

}
.

Here, | · | denotes the supremum norm, Θ = (Θij) and Θi(q) is the
product of the i-th line of Θ with the vector q, i.e.

Θi(q) =
m∑

j=1

qjΘij.

Beresnevich proved that any countable intersection with a certain re-
striction of sets Bad(k, n, 1) for different weights k (and same dimension
of approximation n× 1) with any analytic non-degenerate manifold in
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Rn has full dimension. Thus he also settled a generalization to higher
dimension of Schmidt’s conjecture.

In twisted Diophantine approximation, much less is known. Given
Θ ∈ Matn×m(R), we define

BadΘ(k, n,m) =

{
x ∈ Rn : inf

q∈Zm

6=0

max
1≤i≤n

(|q|mki‖Θi(q)− xi‖) > 0

}
.

The Lebesgue measure of BadΘ(k, n, 1) is zero for almost all Θ ∈ Rn

and its Hausdorff dimension is always maximal (see [5]). The win-
ning property in n × m dimension has been proved by Harrap and
Moshchevitin [11] provided that Θ ∈ Bad(k, n,m). The general prob-
lem remains open even for n = 2,m = 1.

In this note, we keep the condition Θ ∈ Bad(k, n,m) and study
the Hausdorff dimension and winning property of BadΘ(k, n,m) on
manifolds of Rn.

2. Statement and discussion of results

There are different definitions for a set to be winning in a Euclidian
space E . In this paper we consider classical Schmidt’s definition. So
when we say that a set is winning in the Euclidean space E we mean
that it is α-winning in E for some 0 < α ≤ 1

2
in the sense of Schmidt’s

game [24], [25], [26]. One of the reasons is that we apply a lemma
from [21] that was formulated for classical Schmidt’s games. However,
it is clear that Theorems 2.1 and 2.4 will be true for the hyperplane
absolute game (for the definition see [23]).

A C(1) curve C in Rn can be written in the form

(3) C = {(f1(x), . . . , fn(x)), x ∈ I}
where f = (f1, . . . , fn) : I → Rn is a C(1) map defined on a compact
interval I ⊂ R. We call C non-degenerate (respectively everywhere
non-degenerate) if for all i = 1, . . . , n we have f ′

i(x) 6= 0 for some x ∈ I
(resp. for all x ∈ I). We call a C(1) submanifold of Rn non-degenerate
if it can be foliated by non-degenerate C(1) curves.

Theorem 2.1. Let k = (k1, . . . , kn) be an n-tuple of positive real num-
bers satisfying

∑n
i=1 ki = 1. Let Θ ∈ Bad(k, n,m) and C ⊂ Rn be an

everywhere non-degenerate C(1) curve. Then the set BadΘ(k, n,m)∩ C
is winning.

In view of the fact that the intersection of countably many winning
sets is winning and that a winning set has full dimension, given any
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countable collection (kt)t≥1 of n-tuples kt = (k1,t, . . . , kn,t) of positive
real numbers satisfying

∑n
i=1 ki,t = 1, Theorem 2.1 implies that

(4) dim
(⋂

t≥1

BadΘ(kt, n,m) ∩ C
)
= 1

for any Θ ∈ ⋂
t≥1 Bad(kt, n,m) and any everywhere non-degenerate

C(1) curve C ⊂ Rn. If we require that C is non-degenerate only for some
x ∈ I instead of everywhere, we can still choose an interval I0 ⊂ I small
enough so that the shorter curve C∗ = {(f1(x), . . . , fn(x)), x ∈ I0}
clearly is everywhere non-degenerate. Then we have equation (4) for
C∗ and of course also for C. The fibering technique (see [27] p. 9-10,
or also [6] section 2.1) establishes the generalization of (4) to non-
degenerate C(1) manifolds.

Corollary 2.2. Let (kt)t≥1 be a countable collection of n-tuples kt =
(k1,t, . . . , kn,t) of positive real numbers satisfying

∑n
i=1 ki,t = 1. Let Θ ∈⋂

t≥1 Bad(kt, n,m) and M ⊂ Rn be a non-degenerate C(1) manifold.
Then

dim
(⋂

t≥1

BadΘ(kt, n,m) ∩M
)
= dim(M).

The proofs of Theorem 2.1 and Corollary 2.2 are given in Section 3.
The arguments used there do not provide winning on everywhere non-
degenerate C(1) manifolds unless the manifold is a curve. However, a
different strategy can be adopted to prove winning on affine subspaces.

Definition 2.3. We call a set N ⊂ Rn isotropically winning if for
each d ≤ n and for each d-dimensional affine subspace A ⊂ Rn the
intersection N ∩A is 1/2-winning.

Here we should note that the isotropically winning property is really
a very strong property. For example, the set Bad(1

2
, 1
2
) is 1/2-winning

in Schmidt’s sense, however it is not isotropically winning.

Theorem 2.4. If Θ ∈ Bad(k, n,m), then BadΘ(k, n,m) is isotropi-
cally winning.

Section 4 is devoted to the proof of Theorem 2.4. We give an outline
of the proof in the subsection 4.1.

3. Proof of Theorem 2.1

Let C ⊂ Rn be an everywhere non-degenerate C(1) curve as in (3).
Let k = (k1, . . . , kn) be an n-tuple of real numbers satisfying (2). With-
out loss of generality assume that k1 = max1≤i≤n(ki). Let π : Rn → R
be the projection map onto the first coordinate.
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Theorem 3.1. If Θ ∈ Bad(k, n,m), the set π(BadΘ(k, n,m) ∩ C) is
1/4-winning.

If max1≤i≤n(ki) = kt 6= k1, then we consider the projection onto the
t-th coordinate rather than the first.

Since f ′
i(x) 6= 0 for all x ∈ I by hypothesis, the projection map π is

bi-Lipschitz on C. Now the image of a winning set under a bi-Lipschitz
map is again winning (see [13] Proposition 5.3), so Theorem 2.1 follows
from Theorem 3.1.

Proof. Since f ′
1(x) 6= 0 for all x ∈ I, the function f1 is monotone on

I, so there exists a constant κ ≥ 1 such that

(5) |fi(x)− fi(x
′)| ≤ κ|f1(x)− f1(x

′)| (i = 1, . . . , n)

for all x, x′ ∈ I.
Since Θ ∈ Bad(k, n,m), there exists a constant 0 < c < 1 satisfying

(6) max
1≤i≤n

(|q|mki‖Θi(q)‖) > c ∀q ∈ Zm
6=0.

Alice and Bob play a Schmidt game on the interval f1(I). A Schmidt
game involves two real numbers α, β ∈ (0, 1) and starts with Bob choos-
ing a closed interval B0 ⊂ f1(I). Next, Alice chooses a closed interval
A0 ⊂ B0 of length α|B0|. Then, Bob chooses at will a closed interval
B1 ⊂ A0 of length βα|B0|. Alice and Bob keep playing alternately in
this way, generating a nested sequence of closed intervals in f1(I):

B0 ⊃ A0 ⊃ B1 ⊃ A1 ⊃ . . . ⊃ Bs ⊃ As ⊃ . . .

with lengths

|As| = α|Bs| and |Bs| = β|As−1| = (αβ)s|B0|.
The subset π(BadΘ(k, n,m) ∩ C) is called α-winning if Alice can play
so that the unique point of intersection

∞⋂

s=0

Bs =
∞⋂

s=0

As

lies in π(BadΘ(k, n,m) ∩ C) whatever the value of β is. The goal is to
describe a 1/4-winning strategy for Alice.

Suppose Bob has chosen a closed interval B0 ⊂ f1(I). We can assume
|B0| to be of length as small as we want. In particular, we assume

(7) |B0| <
c

2κ
.

Let

R =

(
4

β

)1/mk1

,
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and fix ǫ > 0 such that

(8) ǫ <
|B0|
4Rmk1

.

By the definition of the game, for each s ≥ 0,

(9) |Bs| = R−smk1 |B0|.
For each (p, q) ∈ Zn × Zm, let

∆(p, q) =

{
f1(x) : x ∈ I, max

1≤i≤n
(|q|mki |Θi(q)− fi(x)− pi|) < ǫ

}
.

The interval ∆(p, q) is the projection of the points in C lying in a
hyperrectangle centred at (Θ1(q)−p1, . . . ,Θn(q)−pn) of size ǫ|q|−mk1×
. . .× ǫ|q|−mkn . Clearly

f1(I)\
⋃

(p,q)∈Zn×Zm

∆(p, q) ⊂ π(BadΘ(k, n,m) ∩ C).

We define a partition of Zn × Zm by letting

(10) Ps =
{
(p, q) ∈ Zn × Zm : Rs−1 < |q| ≤ Rs

}
(s ≥ 0).

We prove that, for every s ≥ 0, Alice can play such that

(11) As ⊂ f1(I)\
⋃

(p,q)∈Ps

∆(p, q).

Thus we will have

(12)
∞⋂

s=0

Bs =
∞⋂

s=0

As ⊂ π(BadΘ(k, n,m) ∩ C),

and this will prove the theorem.

Fact 1. For each (p, q) ∈ Ps, we have that

|∆(p, q)| ≤ 2ǫ

|q|mk1

(10)
<

2ǫ

R(s−1)mk1

(8)
<

|B0|
2Rsmk1

(9)
=

1

2
|Bs|.

Fact 2. Suppose (p, q) and (p′, q′) are two points in Ps such that
∆(p, q) ∩ Bs 6= ∅ and ∆(p′, q′) ∩ Bs 6= ∅, i.e. suppose that there exist
x, x′ ∈ I such that for all i = 1, . . . , n,

|Θi(q)− fi(x)− pi| <
ǫ

|q|mki
, |Θi(q

′)− fi(x
′)− p′i| <

ǫ

|q′|mki

and

|f1(x)− f1(x
′)| ≤ |Bs|.
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Next we show that (p, q) = (p′, q′). Indeed, the inequality (5) implies
that, for all i = 1, . . . , n,

|Θi(q − q′)− (pi − p′i)| ≤ |Θi(q)− fi(x)− pi|+|Θi(q
′)− fi(x

′)− p′i|
+ κ|f1(x)− f1(x

′)|.
Hence

|Θi(q − q′)− (pi − p′i)|
(10),(9)
<

2ǫ

R(s−1)mki
+
κ|B0|
Rsmk1

(8),(7)
<

c

2Rsmki
+

c

2Rsmki

(10)

≤ c

|q − q′|mki

if q 6= q′. Now the condition (6) implies that the last inequality cannot
hold for all i = 1, . . . , n and hence q = q′. Then, from the second-to-last
inequality it follows that, for all i = 1, . . . , n,

|pi − p′i| < 1,

so pi = p′i. Thus we conclude that p = p′.

A straightforward consequence of the above two facts is that Alice
can choose an interval As ⊂ Bs of length 1

4
|Bs| that avoids ∆(p, q) for

all (p, q) ∈ Ps. This completes the proof of (11).

�

4. Proof of Theorem 2.4

Our exposition is organized as follows. In the subsection 4.1 we
briefly explain the strategy of the proof. In the subsections 4.2 and
4.6 we use transference arguments. In the subsections 4.3, 4.4, 4.5 we
explore the geometry of auxiliary subspaces.

Throughout this section we denote by | · |e the Euclidian norm.

4.1. Outline of the proof. Let 1 ≤ d ≤ n. Let A be a d-dimensional
affine subspace and L be the corresponding d-dimensional linear sub-
space (so L is the translation of A which contains the origin).

We briefly explain the main construction of our proof. We construct a
special sequence Λ of integer vectors ur = ur(L) = (ur,1, . . . , ur,n) ∈ Zn

which is useful for Khintchine’s type of inhomogeneous transference
argument (see Ch. V from Cassels’s book [12]). For the sequence Λ of
integer vectors ur we define the set

N(Λ) = {x ∈ A : inf
r≥1

‖x1ur,1 + . . .+ xnur,n‖ > 0}.
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To establish the result of Theorem 2.4 it is enough to prove the following
two facts:

Fact A. N(Λ) ⊂ BadΘ(k, n,m),
Fact B. N(Λ) is winning.
Fact A will follow from the inhomogeneous transference argument;

we give a detailed exposition in the subsection 4.6. Fact B will follow
from the construction of Λ and from Lemma 1 from [21]. This lemma
establishes the winning property of any set of the form N(Λ) in the
special case when d = n and so A = Rn, under the condition that
the Euclidian norms of the elements of the sequence Λ are lacunary.
Only a minor modification is needed in order to deduce the winning
property for the intersection N(Λ) ∩ A for an arbitrary d-dimensional
subspace A ⊂ Rn, under the condition that the Euclidian norms of the
projections uL

r of ur onto L are lacunary, i.e.

(13)
|uL

r+1|e
|uL

r |e
≥M, r = 1, 2, 3, . . .

for someM > 1. So, as soon as one checks condition (13) then Lemma 1
from [21] automatically establishes Fact B for the set N(Λ).

4.2. Dual setting. The condition Θ ∈ Bad(k, n,m) is the key to en-
sure that we are able to construct a sequence Λ satisfying (13). That
condition has the following dual reformulation (see [4] Appendix, The-
orem 6, for the proof) in terms of the transposed matrix Θ∗:

(14) Θ ∈ Bad(k, n,m) ⇔ inf
q∈Zn

6=0

max
1≤i≤n

(|qi|
1

mki ) max
1≤j≤m

‖Θ∗
j(q)‖ > γ

for some positive constant γ = γ(Θ). In the sequel we suppose every-
where that

γ < 1.

One can find generalizations of this dual reformulation in [9].

4.3. Subspaces. Without loss of generality we suppose k1 ≥ . . . ≥ kn.
Consider the subspaces

Γ0 = Rn, Γi = {x ∈ Rn : x1 = . . . = xi = 0} (1 ≤ i ≤ n).

It is clear that Γi is an (n− i)-dimensional subspace of Rn and

Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ . . . ⊃ Γn.

Recall that L ⊂ Rn is a d-dimensional linear subspace. We define t
to be the minimal positive integer (d− 1 ≤ t ≤ n− 1) such that

L ⊂ Γn−(t+1), L 6⊂ Γn−t.
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Denote by ℓn−t the coordinate line

ℓn−t = {x ∈ Rn : xi = 0 ∀i 6= n− t}.
Since L ⊂ Γn−(t+1), the first n − (t + 1) coordinates of each point

x ∈ L vanish, so the set N(Λ) has the form

N(Λ) = {x ∈ A : inf
r≥1

‖ur,n−t · xn−t + . . .+ ur,n · xn‖ > 0}.

Hence when we construct the sequence Λ satisfying (13), we only have
to take into account the last t+ 1 coordinates.

In the rest of the proof we will deal with two spaces: the (n +m)-
dimensional space

Rn+m = {(x,y) = (x1, . . . , xn, y1, . . . , ym)}
and the (t+ 1)-dimensional subspace

Rt+1 = Γn−(t+1) = {x = (xn−t, . . . , xn)}.
We identify L, ℓn−t and Γn−t with subspaces in Rt+1, so when we con-
sider the angles between them, we are just considering the angles in
the (t+ 1)-dimensional space Rt+1. For a vector u ∈ Rn we denote by
ũ its projection onto the subspace Rt+1 = Γn−(t+1).

For the clarity of the exposition we distinguish two cases: Case 1

and Case 2.

Case 1. If L = Γn−(t+1), then t = d− 1 and the projections uL
r are

just the projections ũr of ur onto Rt+1. In this case, it is enough for
the property (13) to ensure that the sequence |ũr|e is lacunary.

Case 2. If L 6= Γn−(t+1), then t ≥ d ≥ 1. In this case, we need

to consider the angle ω = L̂, ℓn−t between the subspace L and the
one-dimensional ℓn−t. Here the angle between subspace A and one-
dimensional subspace l is defined as

Â, l = min
a∈A\{0}

â, l.

It is clear that ̂Γn−t, ℓn−t =
π
2
, so as L 6⊂ Γn−t we have

0 ≤ ω = L̂, ℓn−t <
π

2
.

Let us consider an arbitrary vector u ∈ Rn. We denote by uL and
ũ the projections onto L and Rt+1 respectively. We should note that
the Euclidean norms satisfy the equality

|uL|e = |ũ|e cos L̂, ũ.
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So to get the lacunarity condition (13) with a given M > 1 for the se-
quence of Euclidean norms of the projections uL

r for a certain sequence
of vectors ur we should establish two facts:

Fact C. the lacunarity of the sequence |ũr|e, that is

(15)
|ũr+1|e
|ũr|e

≥ M̃, r = 1, 2, 3, . . . ,

Fact D. the additional condition

(16) ̂ℓn−t, ũr =
π

2
− ˜̂ur,Γn−t ≤ σ, r = 1, 2, 3, . . . ,

where the values M̃ and σ must satisfy the inequalities

(17) M̃
cos(ω + σ)

cos(ω − σ)
=M > 1, ω + σ ≤ π

2
, ω ≥ σ.

Indeed, suppose that ℓ̂n−t, ũ < σ. Then by the definition of the angle
and the triangle inequality we have

̂̃u,L = ̂̃u, ũL ≤ ˜̂u, ℓn−t
L ≤ ̂̃u, ℓn−t +

̂ℓn−t, ℓn−t
L ≤ σ + ω.

Of course here ũL = uL. Analogously

̂̃u,L+ ̂̃u, ℓn−t = ̂̃u, ũL + ̂̃u, ℓn−t ≥ ˜̂uL, ℓn−t ≥ L̂, ℓn−t = ω.

So we have
ω − σ ≤ ̂̃u,L ≤ ω + σ.

Now from (15,16) and (17) we deduce

|uL
r+1|e

|uL
r |e

=
|ũr+1|e cos L̂, ũr+1

|ũr|e cos L̂, ũr

≥ |ũr+1|e cos(ω + σ)

|ũr|e cos(ω − σ)
≥M > 1,

and this gives (13).

Now we put M = 2. Then M̃ = 2 cos(ω−σ)
cos(ω+σ)

. So to get (15,17) it is

enough to satisfy the condition

(18)
|ũr+1|e
|ũr|e

≥ 2 cos(ω − σ)

cos(ω + σ)
, r = 1, 2, 3, . . . .

In the next subsection, we construct the sequence Λ by constructing
a sequence of parallelepipeds ΠT in Rn+m and by choosing a certain
integer vector ur in each of them. To ensure (16), we construct the
corresponding parallelepipeds ΠT in Rt+1 very long in the n−t direction
and short in the other directions corresponding to n−t+j, 1 ≤ j ≤ t.
(The precise definitions will be given in the next subsection.) Hence
the vectors ur we choose in each parallelepiped are close to the line
ℓn−t and their projections onto L are close to the line ℓLn−t.
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4.4. Parallelepipeds. First of all we put

σ = min
(ω
2
,
π

4
− ω

2

)
.

Then

0 < σ <
π

4
.

For t ≥ 1 we define

(19) λ =

√
t

tan σ
> 1.

We proceed now to the construction of the sequence Λ. Given T ≥ 1
and a collection of strictly positive real numbers β1, . . . , βn+1, we con-
sider the (n+m)-dimensional parallelepiped

ΠT (β1, . . . , βn+1) = {(x,y) ∈ Rn×Rm : |xi| ≤ βiT
mki (1 ≤ i ≤ n),

max
1≤j≤m

|Θ∗
j(x)− yj| ≤ βn+1T

−1}

and its projection onto Rt+1

ΠT (βn−t, . . . , βn) = {(xn−t, . . . , xn) ∈ Rt+1 : |xi| ≤ βiT
mki (n−t ≤ i ≤ n)}.

By (14) we have

ΠT (1, . . . , 1, γ) ∩ Zn+m = {0}.
As λ > 1 we have

(20) ΠT (1, . . . , 1︸ ︷︷ ︸
n−t

, λ−1, ..., λ−1

︸ ︷︷ ︸
t

, γ) ∩ Zn+m = {0}.

However, the parallelepiped ΠT (1, . . . , 1︸ ︷︷ ︸
n−t−1

, γ−mλt, λ−1, ..., λ−1

︸ ︷︷ ︸
t

, γ) is con-

vex, symmetric, with volume

γ−mλt ·
(

n∏

i=1

2Tmki

)
· 2mγmλ−tT−m = 2n+m

and then, by Minkowski’s Convex Body Theorem, we have

ΠT (1, . . . , 1︸ ︷︷ ︸
n−t−1

, γ−mλt, λ−1, ..., λ−1

︸ ︷︷ ︸
t

, γ) ∩ Zn+m 6= {0}.

Therefore, for each T ≥ 1 there exists at least one integer vector w =
(u,v) ∈ Zn+m such that

w ∈ ΠT (1, . . . , 1︸ ︷︷ ︸
n−t−1

, γ−mλt, λ−1, ..., λ−1

︸ ︷︷ ︸
t

, γ) \ ΠT (1, . . . , 1︸ ︷︷ ︸
n−t

, λ−1, ..., λ−1

︸ ︷︷ ︸
t

, γ).
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Among these integer vectors we choose one with the smallest coordi-
nate |un−t| ≥ 1. If this vector is not unique we choose that for which
max
1≤j≤m

|Θ∗
j(u)− vj| attains its minimal value. We denote this vector by

w(T ) = (u(T ),v(T )) = (u1(T ), . . . , un(T ), v1(T ), . . . , vm(T ))

and define

ψ(T ) = max
1≤j≤m

‖Θ∗
j(u(T ))‖ = max

1≤j≤m
|Θ∗

j(u(T ))− vj(T )|.

Since w(T ) ∈ ΠT (1, . . . , 1︸ ︷︷ ︸
n−t−1

, γ−mλt, λ−1, . . . , λ−1, γ), one has

(21) |ui(T )| ≤ Tmki , 1 ≤ i ≤ n− t− 1,

(22) |un−t(T )| ≤ λt γ−mTmkn−t ,

(23) |ui(T )| ≤ λ−1Tmki , n− t+ 1 ≤ i ≤ n.

Also we have

(24) ψ(T ) ≤ γT−1.

Since w /∈ ΠT (1, . . . , 1︸ ︷︷ ︸
n−t

, λ−1, ..., λ−1

︸ ︷︷ ︸
t

, γ), it is clear that

(25) |un−t(T )| > Tmkn−t

and so

(26) max
1≤i≤n

(|ui(T )|1/(mki)) = |un−t(T )|1/(mkn−t).

By (14) and (26) one has

(27) ψ(T ) ≥ γ(max
1≤i≤n

(|ui(T )|1/(mki)))−1 ≥ λ−t/mkn−t γ1+1/kn−tT−1.

From the definition (19), conditions (23,25) and the condition kj ≥ kj+1

for n− t ≤ j ≤ n we have

(28) ũ(T ) ∈ ΠT (γ
−mλt, λ−1 . . . , λ−1)\ΠTr

(1, λ−1, . . . , λ−1)

and

̂ũ(T ), ℓn−t ≤ arctan



√
t max
n−t+1≤i≤n

λ−1Tmki

Tmkn−t


 ≤ arctan

(√
t

λ

)
= σ.

So all the constructed vectors u(T ) satisfy the condition (16). Now it
turns out to be sufficient to satisfy the lacunarity condition (18), for
both Cases 1 and 2.
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4.5. Lacunarity. Let

(29) Tr = Rr, where R =

(
2
√
t+ 1λtγ−m cos(ω − γ)

cos(ω + γ)

) 1

mkn−t

.

It is clear that

(30) R > γ−1/kn−tλt/mkn−1 .

We put T = Tr and define the sequence of vectors ur ∈ Rn from the
equality

wr = (ur,vr) = w(Tr),

where w(·) is defined in the previous subsection.

Lemma 4.1. The sequence |ũr|e satisfies the lacunarity condition (18).

Proof. From (22,23) we see that

|ũr|e ≤
√
t+ 1λtγ−mTmkn−t

r .

From (25) we have the lower bound

|ũr|e ≥ Tmkn−t

r .

Now
|ũr+1|e
|ũr|e

≥ T
mkn−t

r+1√
t+ 1λtγ−mT

mkn−t

r

≥ 2 cos(ω − γ)

cos(ω + γ)

by (29), and everything is proved. �

4.6. Application of transference identity. Now we establish Fact

A. Let x ∈ N(Λ). So there exists a constant c(x) > 0 such that

‖x1ur,1 + . . .+ xnur,n‖ > c(x) (r ≥ 1).

We define
ψr = ψ(Tr) = max

1≤j≤m
‖Θ∗

j(ur)‖.
For any q ∈ Zm

6=0, consider the equality

ur · x =
m∑

j=1

qjΘ
∗
j(ur)−

n∑

i=1

(Θi(q)− xi)ur,i(Tr).

It follows from the triangle inequality that

c(x) ≤ ‖ur · x‖
≤ m max

1≤j≤m
(‖Θ∗

j(ur)‖ · |qj|) + n max
1≤i≤n

(‖Θi(q)− xi‖ · |ur,i|)

≤ mψr|q|+ n max
1≤i≤n

(‖Θi(q)− xi‖ · |ur,i|).

Here we use the well known inequality ‖az‖ ≤ |a|‖z‖, which holds for
all a ∈ R and all z ∈ Rm.
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It is clear that ψr → 0 as r → ∞. We show that ψr is strictly
decreasing. Indeed,

ψr

(27)

≥ λ−t/mkn−t γ1+1/kn−tT−1
r

(29)
= γT−1

r+1 ·
(
Rλ−t/mkn−t γ1/kn−t

)
(30)
> γT−1

r+1
(24)

≥ ψr+1.

Moreower, from (24,27,30) it follows that

(31)
ψr−1

ψr

≤ λ1/mkn−tγ−1/kn−t
Tr
Tr−1

= λ1/mkn−tγ−1/kn−tR ≤ R2.

Now we can choose r in such a way that

(32) ψr−1 ≥
c(x)

2m|q| > ψr.

Therefore

c(x) ≤ n max
1≤i≤n

(‖Θi(q)− xi‖ · |ur,i|) +m|q| c(x)
2m|q| ,

and so

(33)
c(x)

2n
≤ max

1≤i≤n
(‖Θi(q)− xi‖ · |ur,i|).

From (21,23) we deduce

|ur,i| ≤ Tmki
r , 1 ≤ i ≤ n, i 6= n− t,

and from (22) we have

|ur,n−t| ≤ λtγ−mTmkn−t

r .

So in any case

|ur,i| ≤ λtγ−mTmki
r

(24)

≤ λtγm(ki−1)ψ−mki
r = λtγm(ki−1)ψ−mki

r−1 ·
(
ψr−1

ψr

)mki

and by (31) and the left inequality from (32),

(34) |ur,i| ≤ λtγm(ki−1)

(
2mR2

c(x)

)mki

|q|mki .

Now from (33,34) we get

max
1≤i≤n

(‖Θi(q)− xi‖ · |q|mki) ≥ κ

with some constant κ > 0, independent of q. Since the choice of the
vector q was arbitrary, we have shown that x ∈ BadΘ(k, n,m). Hence
we prove N(Λ) ⊂ BadΘ(k, n,m).
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