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Abstract

In recent work of the authors, it was shown how to use any finite quantum stop time to stop the
CCR flow and its strongly continuous isometric cocycles (Q. J. Math. 65:1145–1164, 2014).
The stopped cocycle was shown to satisfy a stopped form of the cocycle identity, valid for deter-
ministic increments of the time used for stopping. Here, a generalization of this identity is
obtained, where both cocycle parameters are replaced with finite quantum stop times.

1. Introduction

The history of stopping times in non-commutative probability begins in 1979, with Hudson’s work
on stopping canonical Wiener processes [4]. Since then, many authors have contributed to the sub-
ject, and it has developed in various directions and settings: abstract von Neumann algebras, to
produce first exit times in C* algebras and to stop quantum stochastic integrals, for example. A
good introduction for the latter is provided by [5]; see [2] for further references.

In this note, we extend a previous result [2, Theorem 7.2], which itself built upon work of
Parthasarathy and Sinha [7] and Applebaum [1]. Let V be a strongly continuous isometric cocycle
of the CCR flow σ, so that

V V V s tfor all , ,s t s s t s= ( ) Î+ +

where V is the identity-adapted projection of the p-adapted process V. The importance of this iden-
tity in classical and quantum probability is well known; it has an intimate connection with stoch-
astic integral representation and Feynman–Kac formulae [3, 8].

If S is a finite quantum stop time, then Theorem 7.2 of [2] gives the stopped cocycle identity

V V V tfor all . 1S t S S t s= ( ) Î ( )+ +

It is shown below that the following generalization of (1) holds: if T is another finite quantum
stop time and the CCR flow σ has countable rank, then
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V V V ,S T S S T s= ( )

where S T is the convolution of S and T. If V acts on an initial space h, it follows that setting

a V a I V a Bfor allS S S h*a ( ) = ( Ä ) Î ( )

gives a generalized Evans–Hudson flow Sa which satisfies a non-deterministic version of the
mapping-cocycle relation,

.S T S S Ta a s a=  ◦ ◦

A related result was obtained by Hudson [6]; his work considers two-parameter Weyl processes,
which are composed of unitary operators acting on a trivial initial space, and requires the stopping
times to obey a strong form of ordering.

Below, the notation of [2] is followed throughout. In particular, the algebraic tensor product is
denoted byÄ, with ⊗ the Hilbert-space andÄ the ultraweak product.

2. Stopped maps with a non-trivial initial space

In Sections 6 and 7 of [2], certain maps ES, SG and Ss are extended to the case of a non-trivial ini-
tial space, so that the ambient Fock space  is replaced by h Ä , where h is a complex Hilbert
space. In order to familiarize the reader with key ideas and notation from [2], and as the construc-
tion of these extensions is not quite immediate, the details are provided in this section, together
with some further observations.

NOTATION 2.1 Let L ;2 k = G ( ( ))+ + be Boson Fock space over the complex Hilbert space of
square-integrable functions on the half line 0, [ ¥)+ ≔ , with values in the complex Hilbert space
k. Recall the tensor-product decomposition t t  = Ä) [ , valid for all t 0,Î ( ¥), where

L t L t0, ; and , ; ,t t
2 2k k G ( ([ ) )) G ( ([ ¥) ))) + [ +≔ ≔

given by extending the identification of exponential vectors such that f f t0,( ) = ( )Ä[ )ɛ ɛ ∣ f t,( )[ ¥)ɛ ∣
for all f L ;2 kÎ ( )+ . Let I, It) and I[t denote the identity operators on  , t ) and t[ , respectively,
and let  denote the linear span of the set of exponential vectors in  .

DEFINITION 2.2 Let S be a finite quantum stop time, so that S B: 0, [ ¥]  ( ) is a map from
the Borel subsets of the extended half line to the set of orthogonal projections on  , such that

(1) the map A x S A y,á ( ) ñ↦ is a complex measure for all x, y Î ,
(2) the total mass S I0,([ ¥]) = , with S 0({¥}) = , and
(3) identity adaptedness holds, so that S 0 0({ }) = and S t B I0, t t([ ]) Î ( ) Ä) [ for all

t 0,Î ( ¥).

NOTATION 2.3 For all t Î +, let E B1t t0, G ( ) Î ( )+ [ )≔ be the second quantization of the oper-
ator obtained by letting this indicator function act by multiplication, so that Et is the orthogonal
projection onto 0t t, Ä ( )) [ ¥)ɛ ∣ , and let E I¥ ≔ .

2 A. C. R. BELTON AND K. B. SINHA



PROPOSITION 2.4 Let 0 n0 1p p p= { = < < = ¥}+ be a finite partition of 0,[ ¥] and let h be
a complex Hilbert space. If E I ES S, ,h Ä

~
p p≔ , where

E S E, ,S
j

n

j j,
1

1

1 jå ( )p p( ]p p
=

+

-≔

then E ES S, p and E E I ES S S, h Ä
~ ~

p ≔ in the strong operator topology as π is refined, where
ES and ES

~
are orthogonal projections.

Proof. The proof of [2, Theorem 3.7] gives that E ES S, p strongly on  , and thus E ES S, 
~ ~

p
strongly on ;h Ä the result follows by the density of this last space in h Ä . □

NOTATION 2.5 For all s Î +, let Bs s qG G ( ) Î ( )+≔ be the second quantization of the isometric
right shift, such that f t t f t s1s s,q( )( ) = ( ) ( - )[ ¥) for all t Î +, and let E0G¥ ≔ .

PROPOSITION 2.6 Let π and h be as in Proposition 2.4. If IS S, ,hG Ä Gp p ≔ , where

S , ,S
j

n

j j,
1

1

1 jå ( )p pG ( ] Gp p
=

+

-≔

then S S,G  Gp and IS S S, hG  G Ä Gp  ≔ in the strong operator topology as π is refined, where SG
and SG are isometries.

Proof. The claims about S,G p and Γ follow from the proof of [2, Theorem 3.8], which also gives
that

u x u x 0S S S S, ,(G - G ) Ä = (G - G ) p p     

as π is refined, for all u hÎ and x Î . As S,G p and SG are isometries, the same is true for S,G p and

SG . Thus, S S,G  Gp  strongly on h Ä , and so on h Ä , since 1S,G =p  for all π. □

NOTATION 2.7 For all t Î +, let the ultraweakly continuous unital *-homomorphism

B B X I X: ; ,t t t t  *s ( )  ( ) Ä G G)↦

where tG is regarded here as an isometric isomorphism from  to t[ with inverse t*G , and let
idt B ths sÄ( ) ≔ . Recall that t:t s( Î )+ is the CCR flow semigroup with rank dim k.

NOTATION 2.8 Let ES S ( )) ≔ and S S G ( )[ ≔ be the pre-S and post-S spaces, with identity
operators IS) and I[S, respectively.

THEOREM 2.9 Let h and π be as in Proposition 2.4. If

Z Z for all Z Bid ,S B S, , hh s s( ) ( Ä )( ) Î ( Ä )p p( ) ≔

where
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B B X X S: ; , ,S
j

n

j j,
1

1

1j  å ( )s s p p( )  ( ) ( ) ( ]p p
=

+

-↦

then S S,s sp and idS S B S, hs s s Äp ( )  ≔ pointwise in the strong operator topology as π is
refined, where Ss and Ss are ultraweakly continuous unital *-homomorphisms. Furthermore, there
exist isometric isomorphisms

j and: :S S S S S Sh h     Ä  Ä Ä  Ä) [ ) [ȷ

such that

X j I X j for all X B 2S S S S S S * *s ( ) = ( Ä G G ) Î ( ) ( ))

and Z I Z for all Z B . 3S S S S S S h * *s ( ) = ( Ä G G ) Î ( Ä ) ( ))   ȷ ȷ

Proof. The convergence of S,s p to Ss , and the fact that the latter is a unital *-homomorphism,
follows from [2, Theorem 5.2]. The representation (2) is [2, Proposition 5.3], and this shows that
the map X XSs ( )↦ is continuous when B ( ) is equipped with the ultraweak topology, as amplia-
tion gives a normal representation of any von Neumann algebra. In particular, the map Ss is an
ultraweakly continuous unital *-homomorphism such that (3) holds, where the isometric
isomorphism

x u y u j x y: ; ,S S S Sh h  Ä Ä  Ä Ä Ä Ä ( Ä )) [ȷ ↦

because (3) holds if Z is a simple tensor, and both sides are ultraweakly continuous functions of Z.
It remains to prove that S,s p converges to Ss . Working as in the proof of [2, Theorem 5.2], if the

finite partition p¢ is a refinement of π, then, for any u hÎ and any f L ;2 kÎ ( )+ with compact
support,

Z u f

S f Z Z u f s r s

S u f Z

0, sup : 0, , 0,

, 1 ,

S S

n r

n

, ,s s
p s d t
p

( - )( ) ( )
£ ( [ ]) ( ) { ( ( ) - ) ( ( + )) Î [ ] Î [ ]}

+ ( ( ¥)) ( ) ( + )

p p

p

¢ 
  
   

 


ɛ
ɛ ɛ ·

ɛ

where j nmax : 1, ,j j 1d p p{ - = ¼ }p -≔ and f has support contained in 0, 0,t[ ] Í [ ¥).
Using the same argument as in the proof of [2, Theorem 5.2], and noting that r Zrs ( )↦ is

strongly continuous, it now follows that Z u fS,s ( ) ( )p ɛ is convergent, as π is refined, for any u hÎ
and any f L ;2 kÎ ( )+ with compact support; let the limit be denoted by Z u fSl ( ) ( )ɛ and extend
by linearity. Since

Z z Z z Z z zlim for all ,S S c, h l s( ) = ( ) £ Î Ä
p

p      

where c is the linear span of those exponential vectors corresponding to functions with compact
support, there exists a bounded linear operator ZSl ( ) on h Ä which extends the linear map
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z Z zSl ( )↦ . Furthermore, the usual approximation argument gives that Z ZS S,s l( )  ( )p in the
strong operator topology, everywhere on h Ä .

To conclude, we use (3) and argue as the proof of [2, Proposition 5.3]. Using the notation of
that proof and the identity at the top of [2, p. 1158], that

I f g X I f g E f E f g X g, , , , , ,S t S S t S t S t, 0, , , 0, , 0, , 0,sá ( G ( )) ( ) ( ¢ G ( ¢))ñ = á ( ) ( ¢)ñá ( ) ( ¢)ñÇ Ç Ç Çp p p p p[ ] [ ] [ ] [ ]ɛ ɛ ɛ ɛ ɛ ɛ

together with the ultraweak continuity of S,s p , it follows that

u I f g Z u I f g

E f E f u g Zu g

, , ,

, ,

S t S S t

S t S t

, 0, , , 0,

, 0, , 0,

sá Ä ( G ( )) ( ) ¢ Ä ( ¢ G ( ¢))ñ

= á ( ) ( ¢ )ñ á ( ) ¢ ( ¢)ñ
Ç Ç

Ç Ç

p p p

p p

[ ] [ ]

[ ] [ ]

ɛ ɛ
ɛ ɛ ɛ ɛ

for all u, u h¢ Î , f, f ¢, g, g L ;2 k¢ Î ( )+ , t 0,Î ( ¥) and Z B h Î ( Ä ). As π is refined, the
right-hand side converges to

E f u g I Z E f u g, ,S t S S S S S t S, ,
*á ( ) Ä Ä G ( ) ( Ä G G ) ( ¢) Ä ¢ Ä G ( ¢)ñ)  ɛ ɛ ɛ ɛ

by [2, Theorem 3.7], whereas the left-hand side converges to

u j E f g Z u j E f g

E f u g Z E f u g

,

, ,
S S t S S S S t S

S S t S S S S t S

, ,

, ,

l

l

á Ä ( ( ) Ä G ( )) ( ) ¢ Ä ( ( ¢) Ä G ( ¢))ñ

= á ( ( ) Ä Ä G ( )) ( ) ( ( ¢) Ä ¢ Ä G ( ¢))ñ ȷ ȷ
ɛ ɛ ɛ ɛ
ɛ ɛ ɛ ɛ

by [2, Lemma 3.4 and Theorem 3.10]. The result follows. □

REMARK 2.10 The representations (2) and (3) also give that X XSs ( )↦ and Z ZSs ( )↦ are con-
tinuous on bounded subsets of B ( ) and B h ( Ä ), respectively, when these spaces are equipped
with the strong operator topology, since this is true of the ampliation map T I TÄ↦ .

3. The cocycle identity with two stop times

DEFINITION 3.1 ([2, Definition 4.1]) The convolution S T of two finite quantum stop times S and
T is

S T B A S T f A: ; ,1  ( )  ( ) ( Ä )( ( ))+
-↦

where

f x y x y: ; ,  ´  ( ) ++ + + ↦

and

S T B A B j S A T B j: ; .S S S SS   * * Ä ( ´ )  ( ) ´ ( ( ) Ä G ( )G )+ + )↦ ∣
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LEMMA 3.2 Let S and T be finite quantum stop times. Then

S T A B S A T B for all A B, 0, . 4S s( Ä )( ´ ) = ( ) ( ( )) Î [ ¥] ( )

Proof. If t 0,Î [ ¥] then, by Theorems 3.7 and 3.10, together with Lemma 3.4 of [2],

j S t E f x j E f x S s f x

S t S s f x

S t j E f x

0, d

0, d

0,

S S S S S t S
t

s s

s s

S S S

,
0,

0,

0,
0,

ò

ò

( ([ ]) ( ) Ä G ) = ( ( ) Ä G ) = ( ) ( ) Ä G

= ([ ]) ( ) ( ) Ä G

= ([ ]) ( ( ) Ä G )

[ ]
[ )

[ ¥]
[ )

ɛ ɛ ɛ ∣

ɛ ∣

ɛ

for all f L ;2 kÎ ( )+ and x Î . Hence

j S A I j S A Afor all 0, .S S SS  *( ( ) Ä ) = ( ) Î [ ¥][)∣

It follows that

S T A B j S A T B j

j S A I j j I T B j S A T B

S S S S

S S S S S S S S S

S

S




* *

* * * s

( Ä )( ´ ) ( ( ) Ä G ( )G )

= ( ( ) Ä ) ( Ä G ( )G ) = ( ) ( ( ))[ )

)

)

≔ ∣

∣

for all A, B 0,Î [ ¥], where the final identity is a consequence of (2). □

REMARK 3.3

(1) If the quantum stop times S and T are extended by ampliation to act on ,h Ä then the identity
(4) becomes

S T A B S A T B A Bfor all , 0, .S s( Ä )( ´ ) = ( ) ( ( )) Î [ ¥]

This extension will be made when appropriate without further comment.
(2) If p q0 £ < < ¥ and r s0 £ < < ¥, then Theorem 2.9 implies that

S T p q r s S p q T r s

S T r s I B I

, , , ,

st.lim , , ,

S

j

m

j j q s q s
1

1 j h å

s

p p s

( Ä )(( ] ´ ( ]) = (( ]) ( (( ]))

= (( ]) ( (( ])) Î Ä ( ) Ä
p

p
=

- + ) [ +





where p qm0p p p= { = < < = } is a typical finite partition of the interval p q,[ ].

LEMMA 3.4 Suppose S and T are finite quantum stop times, with T discrete, so that there exists a
finite set t t 0,m1{ < < } Í ( ¥) such that T t t I, , m1({ ¼ }) = . Then

S T C S C t T t for all C ,
j

m

j S j
1

 å s( )( ) = (( - ) ) ( ({ })) Î ( )
=

+ +

where C t s s t C:( - ) { Î + Î }+ +≔ for all t Î +.
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Proof. Note first that, by Lemma 3.2,

S T t S T t T t t I, , ,
j

m

j
j

m

S j S m
1 1

1 å å s s( Ä )( ´ { }) = ( ) ( ({ })) = ( ( { ¼ })) =
=

+
=

+

so

S T C S T x y x y C

S T x t x t C

S C t T t

, :

, :

.

j

m

j j

j

m

j S j

2

1

2

1

 

å

å s

( )( ) = ( Ä )({( ) Î + Î })

= ( Ä )({( ) Î + Î })

= (( - ) ) ( ({ }))

+

=
+

=
+

□

REMARK 3.5 If the discrete stopping time T is supported at one point, so that T t I({ }) = for
some t 0,Î ( ¥), then S T S t = + , where S t A S A t( + )( ) (( - ) )+≔ for all A 0,Î [ ¥].

DEFINITION 3.6 Let p B kÎ ( ) be an orthogonal projection and, for all t Î +, let P Bt tÎ ( )[ [ be
the orthogonal projection such that P f pft ( ) = ( )[ ɛ ɛ for all f L t, ;2 kÎ ([ ¥) ), where p acts
pointwise.

A family of bounded operators V V Bt t h = ( ) Í ( Ä )Î + is p-adapted if

V V P tfor every ,t t t = Ä Î) [ +

where V Bt th Î ( Ä )) ) . If p= 0 or p Ik= then p adaptedness is known as vacuum adaptedness or
identity adaptedness, respectively.

Given a p-adapted family of bounded operators V, the identity-adapted projection V is the family
of operatorsV, whereV V It t tÄ) [ ≔ for all t Î +.

A p-adapted family of bounded operators V is an isometric cocycle if Vt
 is an isometry for all

t Î + and

V V V s tfor all , .s t s s t s= ( ) Î+ +

A p-adapted isometric cocycle V is strongly continuous if t V zt↦ is continuous for all z h Î Ä .

THEOREM 3.7 [2, Theorems 6.5 and 7.2, and Corollary 6.6] If S is a finite quantum stop time, V is
a strongly continuous isometric p-adapted cocycle and

V V S ,S
k

n

k k,
1

1

1kå p p( ( ])p p
=

+

-≔

for any finite partition t0 n0 1p p p= { = < < = }+ of t0,[ ], then VS,p is a contraction and
there exists a contraction V BS t, h Î ( Ä ) such that V VS S t, ,p in the strong operator topology
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as π is refined, for all t 0,Î ( ¥). Furthermore, there exists a contraction V BS h Î ( Ä ) such
that V VS t S,  in the strong operator topology as t  ¥, and

V V V for all t .S t S S t s= ( ) Î+ +

Proof. The only thing which not immediate is the assertion, at end of [2, Proof of Theorem 7.2],
that

V Z V ZS t S S t S, 0, , ,s s( )  ( )Çp p[ ]  

as the partition π is refined, for all Z B h Î ( Ä ) and t 0³ . (In fact, a very slightly weaker claim
is made.) It follows from [2, Theorem 6.5] that

V VS t S t, 0, ,Çp [ ] 

in the strong operator topology, and V 1S t, 0, £Çp [ ]  for all π, by [2, Lemma 6.4], so the claim
holds as long as Z ZS S,s s( )  ( )p  in the strong operator topology. However, this is part of
Theorem 2.9. □

LEMMA 3.8 If S and T are finite quantum stop times, with T discrete, then

V V VS T S S T s= ( )

for any strongly continuous isometric p-adapted cocycle V.

Proof. If T is as in the statement of Lemma 3.4 and t tm> , then

V V S T

V S t t T t

st.lim ,

st.lim , ,

S T t
k

n

k k

j

m

k

n

k j k j S j

,
1

1

1

1 1

1

1

k

k

 å

åå

p p

p p s

= ( )(( ])

= (( - - ] ) ( ({ }))

p
p

p
p

=

+

-

= =

+

- + 

where t0 n0 1p p p= { = < < = }+ and x y s x s y, :( ] = { Î < £ }+ + . For j= 1,…, m and
k= 0,…, n 1+ , let

t tif ,

0 otherwise,k
j k j k jp

p p
=

ì
í
ïï
îïï

- ³

so that jp is a partition of t t0, j[ - ]. Then
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V S t t T t

V S T t

V S S V T t

V V T t

,

,

, ,

j

m

k

n

k j k j S j

j

m

k

n

t k
j

k
j

S j

j

m

k

n

k
j

k
j

l

n

l
j

l
j

t S j

j

m

S t t S t S j

1 1

1

1

1 1

1

1

1 1

1

1
1

1

1

1
,

k

k
j

j

k
j

l
j

j

j j

å å

åå

åå å

å

p p s

p p s

p p p p s s

s s

(( - - ] ) ( ({ }))

= (( ]) ( ({ }))

= (( ]) (( ]) ( ) ( ({ }))

 ( ) ( ({ }))

p

p

p p

= =

+

- +

= =

+

+ -

= =

+

-
=

+

-

=
-





 

 





in the strong operator topology as π is refined; for the final identity, note that

V S r s V V S r s V S r s V r s t, , , whenever 0 .s t s s t s s ts s(( ]) = ( ) (( ]) = (( ]) ( ) £ < < < ¥+   

Hence

V V V V T t V Vst.lim st.lim .S T
t

S T t
t j

m

S t t S t j S S T,
1

, j j  å s s= = ( ({ })) = ( )
¥ ¥ =

-   
□

DEFINITION 3.9 (Cf. [7, p. 322]) A sequence of finite quantum stop times Sn n 1( ) ³ is said to
converge to a quantum stop time S, written S Sn  , if S t S t0, 0,n ([ ])  ([ ]) in the strong operator
topology for all but a countable set of points t Î +.

LEMMA 3.10 Let V be a strongly continuous isometric p-adapted cocycle. If Sn n 1( ) ³ is a sequence
of finite quantum stop times such that S Sn  for some finite quantum stop time S, then V VS Sn 
in the strong operator topology.

Proof. The usual approximation argument shows it suffices to prove that V V u f 0S Sn( - ) ( )  ɛ
as n  ¥, where u hÎ and f L ;2 kÎ ( )+ are arbitrary.

From the proof of [2, Corollary 6.6], if S is any finite quantum stop time and s, t Î + are such
that s t£ , then

V V u f S s t u f, .S t S s, ,( - ) ( ) £ (( ]) ( )   ɛ ɛ

Letting t  ¥ and recalling that S 0({¥}) = , it follows that

V V u f S s u f, .S S s,( - ) ( ) £ (( ¥)) ( )   ɛ ɛ

Furthermore, from the proof of [2, Theorem 6.5],

V V u f V V u f r j m S s fsup : , , 0, , 0, ,S S r j j, , 1j p p( - ) ( ) £ { ( - ) ( ) Î [ ] = ¼ } ([ ]) ( )p p p¢ +     ɛ ɛ ɛ

where p¢ is any refinement of the partition s0 ;m0 1p p p= { = < < = }+ refining p¢ shows
that the same inequality holds with VS,p¢ replaced by VS s, . Hence
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V V u f

V V u f r j m f S s u fsup : , , 0, , , .
S S

r j j

,

1j p p
( - ) ( )
£ { ( - ) ( ) Î [ ] = ¼ } ( ) + (( ¥)) ( )

p

p +

 
     

ɛ
ɛ ɛ ɛ

Now fix 0>ɛ , choose s Î + such that S s S s0, 0,n ([ ])  ([ ]) in the strong operator topology
and S s u f,(( ¥)) ( ) < ɛ ɛ, and note that S s u f,n (( ¥)) ( ) < ɛ ɛ for all sufficiently large n.
Therefore,

V V u f V V u f V V u f V V u f

V V u f r j m f

V V u f

V V u f

2 sup : , , 0, ,

2

4

S S S S S S S S

r j j

S S

S S

, , , ,

1

, ,

, ,

n n n n

j

n

n

p p
( - ) ( ) £ ( - ) ( ) + ( - ) ( ) + ( - ) ( )

< { ( - ) ( ) Î [ ] = ¼ } ( )

+ + ( - ) ( )
< + ( - ) ( )

p p p p

p

p p

p p

+

       
   

 
 

ɛ ɛ ɛ ɛ
ɛ ɛ

ɛ ɛ
ɛ ɛ

as long as π is chosen to be sufficiently fine, so that

V V u f r j m fsup : , , 0, , .r j j 1j p p{ ( - ) ( ) Î [ ] = ¼ } ( ) <p +   ɛ ɛ ɛ

Finally, if π is chosen so S S0, 0,n j jp p([ ])  ([ ]) in the strong operator topology as n  ¥, for
j m0, , 1= ¼ + , then, since

V V u f V S S u f, , 0S S
j

m

j j n j j, ,
1

1

1 1n jå p p p p( - ) ( ) £ ( ( ]) - ( ( ]) ( ) p p p
=

+

- -   ɛ ɛ

as n  ¥, and ɛ is arbitrary, the result follows. □

LEMMA 3.11 Let T be a finite quantum stop time, and suppose that the multiplicity space k is
separable. There exists a sequence of discrete quantum stop times Tn n 1( ) ³ such that T Tn  .
Furthermore, S T S Tn  for any finite quantum stop time S.

Proof. As is well known, a spectral measure is strongly right continuous with left limits: if x Î ,
then

S t x S s x S t s xlim 0, 0, lim , 0,
s t s t

([ ]) - ([ ]) = - (( ]) =
 +  +

whereas

S t x S s x S s t x S t xlim 0, 0, lim , .
s t s t

([ ]) - ([ ]) = (( ]) = ({ })
 -  -

In particular, the set of discontinuities x t S t x: 0S ( ) { Î ({ }) ¹ }+≔ is countable.
Now suppose x n: 1n{ ³ } is dense in  and let xS n S n1 È ( )³≔ . An 3ɛ argument shows

that t S t x0,([ ])↦ is continuous on S+⧹ for all x Î , so S is the set of discontinuities of S
on +.

For all n 1³ , let the finite partition 0n n n
n
n

0 1p p p p= { = < < < < ¥} be such that

n
np  ¥ and k nmax : 1, , 0k

n
k
n

1p p{ - = ¼ } - as n  ¥. Define a discrete quantum stop
time
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T B A T T: 0, ; 1 , 1 , ,n
k

n

A k
n

k
n

k
n

A n
n

n
n

1

1

1  å p p p p p[ ¥]  ( ) ( ) ( ( ]) + ( ) ( ( ¥])
=

-

-↦

and note that

T t

t

T t

T t

I t

0,

0 if 0 ,

0, if ,

0, if ,

if .

n

n

n n n

n
n

n
n

n
n

n
n

1

1 1 2

1 1

p
p p p

p p p
p

([ ]) =

ì

í

ïïïïïï

î

ïïïïïïï

£ <
( [ ]) £ <

( [ ]) £ <
£ £ ¥

- -

 

Thus, if x Î and t Î + then tk
n

k
n

1p p> ³ - for some k n1, ,Î { ¼ } once n is sufficiently
large, so

T t x T t x T t x T t x0, 0, ,n k
n

1p([ ]) - ([ ]) = ( ( ])  ({ })-

as n  ¥. This last term equals 0 if t TÎ +⧹ , and thus T Tn  .
For the final claim, let S be a finite quantum stop time. If t Î + and f L ;2 kÎ ( )+ then, by

[2, Corollary 3.5],

I t S T t S T t f

T T t s f f u u S s f

0, 0,

0, exp d d .

n n

t
n s

s

2

0,

2 2 2*

 

( )ò ò

( ) (( )([ ]) - ( )([ ])) ( )

= ( - )([ - ])G ( ) - ( ) ( ) ( )
[ ]

¥

 

     

≔ ɛ

ɛ ɛ

To prove that S T S Tn  , it suffices to show that I t 0n ( )  as n  ¥ for all but countably
many t Î +, by the usual approximation argument.

Now, as n  ¥, so T T t s T t s0,n( - )([ - ])  ({ - }), by the previous working. Thus, the
dominated convergence theorem gives that

I t I t T r f f u u S t r fexp d .n
r t

t r
t r0,

2 2 2


* ( )òå( )  ( ) ({ })G ( ) - ( ) ({ - }) ( )

ÇÎ [ ]
-

-

¥
     ≔ ɛ ɛ

Thus, I t 0( ) = whenever t s r s r: ,S T S T   Ï + { + Î Î }≔ and the result follows. □

REMARK 3.12 If the multiplicity space k is not separable, the statement of [2, Corollary 3.5]
requires strong measurability, not just Borel measurability, of F and G. As t tG↦ and t t*G↦ are
strongly continuous and t S t0,([ ])↦ is strongly right continuous on +, all the subsequent
proofs in [2] remain valid.

REMARK 3.13 It is straightforward to construct on a non-separable Hilbert space a spectral measure
which has an uncountable set of discontinuities. Thus, the separability hypothesis in Lemma 3.11
may not be dropped.

THEOREM 3.14 Let V be a strongly continuous isometric p-adapted cocycle, and suppose that the
multiplicity space k is separable. If S and T are finite quantum stop times, then
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V V V .S T S S T s= ( )

Proof. By Lemma 3.11, there exists a sequence of discrete quantum stop times Tn n 1( ) ³ such that
T Tn  and S T S Tn  . Hence V VS T S Tn  in the strong operator topology, by Lemma
3.10. Furthermore, V V VS T S S Tn n s= ( ) for all n 1³ , by Lemma 3.8, so the result follows from
another application of Lemma 3.10 together with Remark 2.10, that Ss is strong operator continu-
ous on bounded sets. □

The next two theorems show that stopping an isometric cocycle can be used to produce a form
of inner non-unital Evans–Hudson flow.

THEOREM 3.15 Let V be a strongly continuous isometric identity-adapted cocycle. The map

B B a V a I V: ;S S Sh h  *a ( )  ( Ä ) ( Ä )↦

is a *-homomorphism for any finite quantum stop time S. Furthermore, if the multiplicity space k
is separable, the identity

5S T S S Ta a s a= ( ) ◦ ◦

holds for any finite quantum stop times S and T, where

B B X V XV: ; .S S Sh h  *a ( Ä )  ( Ä ) ↦

Proof. Note that V V I IS S h* = Ä , by [2, Proposition 6.8]. Thus if a, b B hÎ ( ), then

a b V a I V V b I V V ab I V ab ,S S S S S S S S S* *a a a( ) ( ) = ( Ä ) ( Ä ) = ( Ä ) = ( )

so Sa is multiplicative. Linearity and *-preservation are immediate.
For the second claim, note that V V= . Hence, by Theorem 3.14, if a B hÎ ( ), then

a V a I V V V a I V V

V V a I V V

a ;

S T S T S T S S T S T S

S S T T S

S S T

* * *

* *
  a s s

s
a s a

( ) = ( Ä ) = ( )( Ä ) ( )

= ( ( Ä ) )
= ( )( )

 

 ◦ ◦

the penultimate equality holds because Ss is unital, so a I a ISs ( Ä ) = Ä . □

THEOREM 3.16 Let V be a strongly continuous isometric vacuum-adapted cocycle. The map

B B a V a E V: ;S S S Sh h  *b ( )  ( Ä ) ( Ä )↦

is a *-homomorphism for any finite quantum stop time S. Furthermore, if the multiplicity space k
is separable, the identity
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6S T S S Tb b s b= ( ) ◦ ◦

holds for any finite quantum stop times S and T, where

B B X V XV: ; .S S Sh h  *b ( Ä )  ( Ä )   ↦

Proof. Note that V V ES S S* =
~
, by [2, Proposition 6.7]. Thus if a, b B hÎ ( ), then

a b V a E V V b E V V ab E V ab ,S S S S S S S S S S S S* *b b b( ) ( ) = ( Ä ) ( Ä ) = ( Ä ) = ( )

so Sb is multiplicative. As above, linearity and *-preservation are immediate.
For the second claim, let a B hÎ ( ) and note that, by Theorem 3.14,

a V a E V V V a E V V

V V a E V V

a ;

S T S T S T S T S S T S T S T S

S S T T T S

S S T

* * *

* *
    b s s

s

b s b

( ) = ( Ä ) = ( )( Ä ) ( )

= ( ( Ä ) )

= ( )( )

 





 

 

 ◦ ◦

for the penultimate equality, note that E ES T S T s= ( ), by [2, Theorem 5.4], which implies
immediately that a E a ES T S Ts ( Ä ) = Ä . □

REMARK 3.17 In the context of Theorems 3.15 and 3.16, note that I V V IS S S Sh h*a b( ) = = ( ). The
former identity is immediate, and the latter holds because V E V V VS S S S S, , , , ,*=

~
p p p p p¢ if V is vacuum

adapted, where π is any finite partition of t0,[ ] and p¢ is its one-point extension to a partition of
0,[ ¥].

REMARK 3.18 If the finite quantum stop time S is deterministic, so that S s I({ }) = for some
s 0,Î ( ¥), then VS= Vs and S ss s=  . It follows that (5) and (6) are the stop-time generalization
of the deterministic mapping-cocycle relation [3]

s tfor all , 0.s t s s ta a s a= ³+  ◦ ◦
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