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Abstract: Purpose: The purpose of this study was to develop an alternative, more clinically
relevant approach to susceptibility reporting for implant associated infections. Using 20
staphylococcal isolates, isolated from clinical implant infections, the majority (85%)
demonstrated biofilm-forming capabilities. A significantly increased MBEC compared to
MIC breakpoint was obtained, with MBEC values greater than 256 µg/mL for the
majority of bacteria. Such a vast increase was also demonstrated for isolates defined
as negligible biofilm formers via crystal violet staining, likely due to high protein content
of biofilms confirmed by proteinase-K treatment.

Methodology: This study employed a variety of techniques to assess minimum
inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC)
of isolates tested. In addition, the nature of bacterial biofilm across a range of clinical
isolates was investigated using crystal violet staining, sodium metaperiodate and
proteinase-K treatment and PCR analysis.

Results/Key findings: Infection of medical implants is associated with increased rates of
infection and increased bacterial tolerance to antibiotic strategies. Clinical significance
is due to the presence of pathogens attached to biomaterial surfaces, enclosed in an
extracellular polymeric matrix termed the biofilm. This paper highlights the importance
of defining the clinical susceptibility of implant associated infections in vitro using
methods that are relevant to the biofilm phenotype in vivo, and highlights how current
planktonic-based antimicrobial susceptibility tests are often misleading.

Conclusion: The use of biofilm-relevant susceptibility tests would improve patient
outcomes by enabling correct antimicrobial regimens to be rapidly identified, reducing
treatment failure and halting the spread of antimicrobial resistant strains.
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Abstract 34 

Purpose: The purpose of this study was to develop an alternative, more clinically relevant approach 35 

to susceptibility reporting for implant associated infections. Using 20 staphylococcal isolates, 36 

isolated from clinical implant infections, the majority (85%) demonstrated biofilm-forming 37 

capabilities. A significantly increased MBEC compared to MIC breakpoint was obtained, with 38 

MBEC values greater than 256 µg/mL for the majority of bacteria. Such a vast increase was also 39 

demonstrated for isolates defined as negligible biofilm formers via crystal violet staining, likely 40 

due to high protein content of biofilms confirmed by proteinase-K treatment.  41 

Methodology: This study employed a variety of techniques to assess minimum inhibitory 42 

concentration (MIC) and minimum biofilm eradication concentration (MBEC) of isolates tested. In 43 

addition, the nature of bacterial biofilm across a range of clinical isolates was investigated using 44 

crystal violet staining, sodium metaperiodate and proteinase-K treatment and PCR analysis. 45 

Results/Key findings: Infection of medical implants is associated with increased rates of infection 46 

and increased bacterial tolerance to antibiotic strategies. Clinical significance is due to the presence 47 

of pathogens attached to biomaterial surfaces, enclosed in an extracellular polymeric matrix termed 48 

the biofilm. This paper highlights the importance of defining the clinical susceptibility of implant 49 

associated infections in vitro using methods that are relevant to the biofilm phenotype in vivo, and 50 

highlights how current planktonic-based antimicrobial susceptibility tests are often misleading.  51 

Conclusion: The use of biofilm-relevant susceptibility tests would improve patient outcomes by 52 

enabling correct antimicrobial regimens to be rapidly identified, reducing treatment failure and 53 

halting the spread of antimicrobial resistant strains. 54 

 55 

Keywords: Antibiotic susceptibility; Antibiotic resistance; Biofilms; Biomaterials; 56 

Indwelling devices 57 

 58 

 59 
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Introduction 60 

 61 
Infection of indwelling medical devices are commonly caused by multi-drug resistant pathogens. 62 

The implant surface provides an optimum environment for microbial attachment and growth, with 63 

numerous benefits to microorganisms including increased availability of nutrients; likelihood of 64 

survival, maturation and potential for symbiotic relationships (1). This results in failure of 65 

treatment, increased spread of resistant pathogens, device removal, morbidity and increased 66 

mortality (2). A recent UK government report outlined that without significant investment in new 67 

therapies, deaths due to infection are predicted to rise to more than 10 million deaths by 2050, a 68 

figure greater than cancer (3). Pathogen susceptibility is typically determined by the minimum 69 

inhibitory concentration (MIC) as recommended either by the British Society for Antimicrobial 70 

Chemotherapy (BSAC) or the Clinical and Laboratory Standards Institute (CLSI) guidelines (4). 71 

However, successful treatment of indwelling devices usually requires eradication of the bacterial 72 

pathogens growing in a biofilm. Biofilm associated infection is extremely difficult to eradicate and 73 

as a result, treatment commonly fails. Therefore, despite their high cost to healthcare and the 74 

economy, infections of implants remain unsolved and an ongoing burden (5). 75 

The fundamental function of in vitro antimicrobial susceptibility tests (AST) in clinical 76 

laboratories is to provide the prescriber with accurate information on appropriate antimicrobial 77 

therapy (6). However, although effective against bacteria in vitro, it is well established that 78 

concentrations of antibiotics used in standard AST are not predictive of the concentrations required 79 

to eradicate infections associated with indwelling devices (7,8). In addition, studies have shown 80 

that sub-inhibitory concentration of antibiotics can both stimulate and impede biofilm formation 81 

further confusing the issue of appropriate treatment (9-11). Therefore, certain studies have 82 

suggested that a minimum biofilm eradication concentration (MBEC) would be more indicative of 83 

the antibiotic concentration required to eliminate bacteria in biofilm (12).  84 
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In addition to determining the MBEC, it would be clinically useful to characterise the 85 

degree and nature of the bacterial biofilm and the total biomass present by e.g. crystal violet (CV) 86 

staining (13) and treatment with sodium metaperiodate and proteinase-K respectively (14,15). This 87 

could, in turn, be used to inform the clinician treating the biofilm infection. For example, protease-88 

directed therapy could be used as a means of eradicating those isolates which have been shown to 89 

possess considerable protein-mediated biofilm. Furthermore, using PCR it is also possible to 90 

identify those isolates which possess the ica operon which codes for production of enzymes 91 

required for bacterial adhesion by means of polysaccharide intracellular adhesin (PIA) synthesis.  92 

This study aimed to determine the susceptibility of 20 clinical staphylococcal isolates, 93 

cultured from indwelling human devices, to a range of antibacterial agents when grown 94 

planktonically and in biofilm. In addition, we sought to determine the degree and nature of biofilm 95 

formation of the retrieved isolates and investigate the relationship between degree and mechanism 96 

of biofilm formation, possession of the ica operon and antibiotic susceptibility with a view to an 97 

alternative method of susceptibility reporting. 98 

 99 

 100 

Materials and Method 101 

 102 

Reagents 103 

CV powder, glacial acetic acid, JumpStart® Taq Polymerase, methanol, sodium metaperiodate, 104 

proteinase-K, oxacillin, tetracycline and vancomycin were obtained from Sigma-Aldrich 105 

(Gillingham, Dorset, United Kingdom). Ica primers (16) were obtained from Operon 106 

Biotechnologies (Cologne, Germany). DEPC-treated water was obtained from Ambion 107 

(Warrington, UK). Müeller Hinton Agar (MHA), Müeller Hinton Broth (MHB) and Tryptone Soya 108 

Broth (TSB) were obtained from Oxoid (Basingstoke, UK). E-tests® were obtained from Bio-Stat 109 

(Stockport, UK). Benzylpenicillin as Crystapen® was obtained from Britannia Pharmaceuticals Ltd 110 
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(Redhill, Surrey, UK). Clindamycin as clindamycin hydrochloride was obtained from Taresh Ltd 111 

(Banbridge, Northern Ireland). 112 

 113 

Bacterial Isolates  114 

Nine coagulase-negative staphylococci (CoNS) and three meticillin-sensitive Staphylococcus 115 

aureus (MSSA) clinical isolates (B1-B12) obrained from patient samples were provided by the 116 

Microbiology Department, Belfast City Hospital, Belfast Health and Social Care Trust. A further 117 

eight clinical CoNS isolates (B24-B71) were cultured following surgical removal of catheters as 118 

previously described (17). Details of site of culture are provided in Table 1. Eleven of the twenty 119 

total isolates were chosen to determine susceptibility of both CoNS and S. aureus isolates growing 120 

as biofilm, and isolates cultured from a range of indwelling clinical devices growing as biofilm 121 

(Tables 1 and 4). For all isolates tested, a negative control of sterile TSB was included.   122 

 123 

Planktonic Susceptibility Testing 124 

Antimicrobial susceptibility of all isolates was determined using the CLSI disk diffusion (DD) 125 

method and E-test® strips (18).   126 

 127 

Quantification of Biofilm Formation 128 

Bacterial biofilms were grown and classified in sterile Nunc™ 96-well microtitre plates (VWR 129 

International, Leicestershire, UK) as previously described (13), using TSB as a growth medium. 130 

Sterile TSB was also used as a negative control. Absorbance at 590nm was then measured using a 131 

Tecan Sunrise® plate reader (Tecan, Theale, Reading, United Kingdom). ODc was defined as three 132 

standard deviations above the mean optical density of the negative control (13). 133 

 134 

 135 



  

 

 

7 

 

Biofilm forming ability of the strains was classified as follows: 136 

OD ≤ ODc              =  non adherent (0) 137 

ODc < OD ≤ 2 x ODc             = weakly adherent (+) 138 

2 x ODc < OD ≤ 4 x ODc = moderately adherent (++) 139 

4 x ODc < OD               =  strongly adherent (+++) 140 

 141 

Antimicrobial Susceptibility of Bacterial Isolates in Biofilm 142 

Bacterial biofilms were grown in 96-well trays using TSB as previously described (13). Following 143 

overnight incubation to allow biofilm growth, the 96-well trays were washed gently with sterile 144 

PBS to remove any non-adherent bacteria. Each isolate was then exposed to five antibiotics 145 

(penicillin, oxacillin, clindamycin, tetracycline and vancomycin) ranging in doubling 146 

concentrations from 4 µg/mL – 256 µg/mL. The specific isolates chosen were to allow comparison 147 

of both CoNS and S. aureus isolates and isolates cultured from a range of indwelling clinical 148 

devices. For all isolates tested, positive and negative controls were included.   149 

 150 

Detection of the Mechanism of Biofilm Formation 151 

Bacterial biofilms were grown in 96-well trays using TSB as previously described (13).      152 

Sodium metaperiodate (NaIO4) and proteinase-K have previously been shown to degrade 153 

polysaccharide and protein-mediated biofilms respectively (19,20). Specifically, as demonstrated 154 

by Wang et al. (15), if the polysaccharideb-1, 6-N-acetyl-D-glucosamine mediates biofilm 155 

formation, treatment with metaperiodate will result in biofilm dispersal. In contrast, if biofilm 156 

formation is protein-mediated, treatment with metaperiodate will have no effect, whereas treatment 157 

with proteinase-K will result in biofilm disruption and dispersal. 158 

 159 
Following overnight incubation the plates were washed twice with 150µL sterile PBS. Plates were 160 

then simultaneously treated as follows: 161 
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Plate 1: Following discarding of the supernatant and washing, each well was filled with 200µL 162 

40mM NaIO4 solution and incubated for a further 24 hours at 4°C. After incubation, the NaIO4 163 

solution was discarded and the wells washed thoroughly with PBS. The 96-well plates were dried 164 

and stained with CV as described above. Absorbance was then measured at 590nm. 165 

Plate 2: Following discarding of supernatant and washing, each well was filled with 200µL of a 166 

proteinase-K solution (1mg/mL in 100 mM tris(hydroxymethyl)aminomethane) and incubated for 167 

4 hours at 37°C. After incubation, the proteinase-K solution was discarded and the wells washed 168 

thoroughly with PBS. The 96-well plates were dried and stained with CV as described above. 169 

Absorbance was then measured at 590nm. 170 

 171 

Detection of ica Gene 172 

A polymerase chain reaction (PCR) assay to detect the gene products of the ica operon was carried 173 

out using conditions as previously described (16) . PCR products of the expected size were 174 

visualised using gel electrophoresis and a UV-transilluminator (Gel-Doc, BioRad, Hertfordshire, 175 

UK). In addition to the test isolates, the RP62A (ATCC 35984) S. epidermidis isolate (known to 176 

form biofilms) was used as a reference biofilm-forming organism. 177 

 178 

Statistical analysis 179 

Statistical analysis was conducted where appropriate using a one-way analysis of variance 180 

(ANOVA).  In all analyses, a p value < 0.05 denoted statistical significance. Statistical analysis was 181 

performed using the SPSS® software package. 182 

 183 

 184 
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Results  185 

Planktonic Susceptibility Testing 186 

The antibacterial susceptibility of each isolate to the 10 antibiotics routinely used in the Belfast 187 

City Hospital Microbiology Department is outlined in the antibiogram (Table 2). The number of 188 

isolates sensitive to each antibiotic is also shown in Table 2. Of the 20 isolates tested, two (B1 and 189 

B24) were susceptible to all 10 antibiotics according to CLSI breakpoint guidelines. A further nine 190 

isolates showed resistance to only one antibiotic and in all of these, the antibiotic was either 191 

penicillin or erythromycin. In addition, two of the tested isolates (B37 and B5) were resistant to 192 

two and three antibiotics, respectively. Two isolates (B3 and B9) were resistant to five antibiotics 193 

while a further five isolates were resistant to six of the 10 tested antibiotics. Of the three S. aureus 194 

isolates tested, each was susceptible to all antibiotics with the exception of penicillin. As shown in 195 

Table 2, vancomycin and teicoplanin proved to be most effective with all isolates demonstrating 196 

susceptibility to both antibiotics. Conversely, penicillin was the least effective antibiotic with only 197 

six of the 20 isolates (30%) demonstrating susceptibility. In addition, erythromycin also 198 

demonstrated limited efficacy with only 8 of the 20 isolates (40%) reported as susceptible. 199 

 200 

Quantification of Biofilm Formation 201 

 202 
Results of biofilm detection are shown in Table 3. Sixteen (80%) of the isolates tested were biofilm 203 

formers. Of these 16, 8 isolates proved to be weakly (+) adherent, two isolates moderately (++) 204 

adherent and a further six strongly (+++) adherent. Of the six isolates that demonstrated strongly 205 

adherent biofilm formation all possessed the icaA, icaB and icaC operons (Table 5). 206 

 207 

Antimicrobial Susceptibility of Bacterial Isolates in Biofilm 208 

 209 
The antibacterial susceptibility of 11 of the clinical isolates growing in biofilm to five antibiotics 210 

is shown in Table 4. Of 11 isolates tested, 9 were resistant to all five antibiotics at the highest 211 
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concentration tested (256 µg/mL). Only isolate B1, with MBEC values of 32 µg/mL and 256 µg/mL 212 

for clindamycin and vancomycin respectively, and isolate B11 with an MBEC value of 32 µg/mL 213 

for vancomycin displayed any sensitivity when grown in biofilm. 214 

 215 

Mechanism of Biofilm Formation 216 

 217 
Results of the CV staining after treatment with NaIO4 and proteinase-K are shown in Fig. 1. 218 

Statistical analysis of the results using a one-way ANOVA test revealed a significant reduction (p 219 

< 0.05) in absorbance after treatment with both NaIO4 and proteinase-K, in comparison with 220 

untreated biofilm. Of the 20 isolates tested, 11 showed a decrease in absorbance in comparison with 221 

untreated biofilm, after treatment with sodium metaperiodate. In addition, 15 of the 20 isolates 222 

showed a decrease in absorbance in comparison with untreated biofilm after treatment with 223 

proteinase-K. 224 

 225 

Detection of ica Genes 226 

 227 
Following PCR, the resulting amplicons were observed using UV trans-illumination. Bands 228 

corresponding to the expected size of icaA, icaB and icaC gene products were observed at 814, 526 229 

and 989 base pairs [Fig. 2(a)-2(c)]. Upon analysis of PCR products, 9 out of 20 isolates tested 230 

displayed the icaA gene, 9 out of 20 isolates tested displayed the icaB gene and 9 out of 20 isolates 231 

tested displayed the icaC gene. Notably, the icaABC genes detected were all in the same isolates. 232 

 233 

Discussion 234 

 235 

The colonisation of indwelling medical devices by bacteria growing in biofilm is thought to be the 236 

major contributing factor in the pathogenesis of device-related infections (21). This is in part due 237 

to the high innate resistance of these organisms to antimicrobial therapy and also due to the further 238 

increased resistance to even the highest concentrations of antibiotics when growing as a biofilm, 239 
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notably when the organism possesses an ica operon (22-26). Given this relationship between 240 

bacteria in biofilm and increased resistance to antibiotic therapy, the ability of 20 isolates retrieved 241 

from indwelling devices to form biofilms was investigated, together with their resistance to 242 

conventional antimicrobial therapy.   243 

 244 

It is important to provide information on the MBEC to clinicians for several reasons. Currently lab 245 

reports only show antibiotic sensitivity to planktonic bacteria. Therefore to be accurate they could 246 

include a caveat indicating that this may not be a true reflection of the situation in the biofilm. 247 

Otherwise the lab report is not providing valid information. It could also be a means of educating 248 

the clinical team on interpreting lab results, as this should be done with due consideration of the 249 

clinical situation.  250 

 251 

As expected, the 20 isolates tested demonstrated a scope of planktonic susceptibility to the 10 252 

antibiotics tested; all isolates were susceptible to both glycopeptide antibiotics (vancomycin and 253 

teicoplanin). This is similar to previous studies which have also reported 100% susceptibility of 254 

Gram-positive isolates to vancomycin when tested planktonically (27). Of the remaining 255 

antibiotics, the variation in susceptibility can be explained by inter-species variation. Similar to the 256 

findings in this study, erythromycin resistance in staphylococcal species has previously been 257 

reported as varying from 0% in S. lugdunensis to almost 90% in S. haemolyticus (28). In addition 258 

to planktonic susceptibility as determined by the DD method, 11 of the retrieved isolates were 259 

selected to determine their antimicrobial susceptibility when grown in biofilm. As with other 260 

studies, the results reported here confirm that when in biofilm, staphylococcal isolates display 261 

resistance to antimicrobial concentrations greater than 10-1000 times greater than that of MIC 262 

breakpoints (29,30). It is of clinical significance that the isolates tested in this study were chosen to 263 

reflect typical bacterial isolates from different sites and a range of implanted devices. Therefore, 264 
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the MBEC results reported in this study demonstrate that this greatly elevated MBEC value, in 265 

comparison with established MIC breakpoints, is completely independent of any specific implant 266 

or location. Furthermore, the 11 isolates tested also displayed a variation in degree of biofilm 267 

formation from non-adherent (-) to strongly adherent (+++). As virtually all the isolates in this study 268 

displayed an MBEC of >256 µg/mL, this suggests that, although the previously described CV 269 

method (13) classifies four isolates (B2,B4, B10 and B37) as non-biofilm forming, they are able to 270 

adhere to an implant surface to some extent and subsequently form a biofilm structure. A possible 271 

explanation for this could be that charged CV stain is retained following interaction with negatively 272 

charged teichoic acids in polysaccharide-mediated biofilm but to a much lesser extent in protein-273 

mediated biofilm. Furthermore, studies have reported that protein synthesis plays a role in early 274 

biofilm formation as well as having a role in interactions with an abiotic surface (31). Therefore, 275 

those isolates which reported negligible biofilm could in fact possess a protein-based biofilm 276 

structure which displays minimal CV absorbance. A further explanation could be simply due to 277 

phenotypic variation of different bacteria in biofilm. Previous studies have reported that the amount 278 

of biofilm produced by individual S. epidermidis isolates displayed considerable phenotypical 279 

variation and that this biofilm was regulated by several factors (19,32-34). Therefore, it is possible 280 

that, depending on the degree and constitution of the biofilm, the CV could be physically or 281 

chemically prevented from giving an accurate indication of the true extent of biofilm present. In 282 

addition, the biofilm could become more saccharide (sugary) in nature in the presence of antibiotics 283 

versus a more proteinaceous one when unchallenged. 284 

 285 

Several studies have reported that sub-optimal use of certain drugs, such as tetracycline and 286 

nafcillin may lead to increased biofilm formation by means of upregulation of certain genes 287 

responsible for intracellular adhesion (11,29). As the ability to form a biofilm in microtiter plates 288 

has a strong correlation with the ability of S. epidermidis to cause disease in a clinical setting it also 289 
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is reasonable to assume that these findings would be similar to results encountered in vivo and be 290 

of clinical significance (35,36). Despite the 20 isolates showing variation in biofilm formation, as 291 

determined by CV staining, the MBEC values showed similar levels of resistance. To further 292 

investigate this, the mechanism of biofilm formation was investigated. Numerous studies have 293 

reported that staphylococcal biofilm formation occurs via a cell-surface interaction that is mediated 294 

by a number of factors such as surface proteins (37), extracellular proteins (38), PIA (39) and an 295 

autolysin encoded by the atlE gene (40). Of these factors, it is recognised that, in the majority of 296 

isolates, biofilm formation is mediated by production of PIA, synthesised by enzymes encoded by 297 

the ica operon (41). It is clear from the results of the current study that PIA does play a substantial 298 

role in biofilm formation. However, it is equally apparent that a proteinaceous mechanism also 299 

plays a fundamental role in biofilm formation of certain isolates. These findings are in agreement 300 

with previous studies for both S. epidermidis (42,43) and S. aureus (44-46). Furthermore, it has 301 

also been reported that protein factors are sufficient for biofilm formation in S. epidermidis isolates 302 

(20). In addition, studies have demonstrated that certain clinical staphylococcal isolates are biofilm 303 

positive and ica negative (47) while previous studies have reported the presence of extracellular 304 

DNA as an important factor for biofilm formation in P. aeruginosa, Streptococcus intermedius and 305 

Streptococcus mutans (48,49). In those isolates (e.g. B51 and B71) that displayed absorption (A590) 306 

after both proteinase-K and NaIO4 treatment it may be the case that, as previously reported, 307 

extracellular DNA may contribute to the biofilm formation (47). To date, numerous studies have 308 

reported the importance of PIA, synthesised by icaADBC-encoded proteins, in staphylococcal 309 

biofilm formation. Furthermore, recent studies have found a strong correlation between presence 310 

of the ica operon and strong to intermediate biofilm formation (26). It is therefore unsurprising that 311 

of the six isolates that demonstrated strongly adherent biofilm formation all possessed the icaA, 312 

icaB and icaC operons, confirming the suggestion that icaADBC is widespread in clinically 313 

significant S. epidermidis isolates (16,20,29). In addition to those isolates which were positive for 314 
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the icaA, icaB and icaC operons there are also isolates present which, although negative for these 315 

operons did produce a detectable biofilm. Although unusual, this phenotype has been previously 316 

reported, notably in a nosocomial setting (47). Under antibiotic selective pressure, normal biofilm 317 

negative/ica negative isolates are able to develop the biofilm positive/ica negative phenotype which 318 

subsequently is more resistant to vancomycin than biofilm positive/ica positive isolates. 319 

Conversely, isolates B9 and B11 are ica positive, yet only form weak biofilms. In these instances 320 

it is possible that, although the ica gene is present, for some unknown reason it is not fully 321 

expressed. 322 

 323 

The highly resistant nature of the isolates in biofilm tested in this study indicate that all clinical 324 

isolates associated with indwelling devices, even in the absence of the ica gene, are still able to 325 

form some sort of adherent structure which resists conventional antimicrobial therapy. 326 

 327 

Conclusion  328 

Although limited to 20 clinical staphylococcal isolates, the results of this study clearly indicate that 329 

although these isolates demonstrated MIC susceptibility when exposed to antibiotic therapy, they 330 

displayed a much higher MBEC when grown in biofilm. As biofilms are related to the majority of 331 

infectious diseases (50) and are recognised as playing a fundamental role in infections associated 332 

with indwelling devices, it may be necessary to employ the MBEC as a clinical breakpoint when 333 

treating certain biofilm infections as opposed to current MIC breakpoints.  334 

 335 

Although MBEC tests would incur additional laboratory costs and would be prohibitive on 336 

processing all central venous catheter (CVC) samples it could be offered on a basis of clinical need 337 

where it was imperative to keep the CVC in situ.  This may occur when a patient is seriously ill and 338 
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there is no other means of vascular access. It may also aid clinical decision making to either stop 339 

toxic antibiotics or extend the range of antibiotics tested for the MBEC. In addition, biofilm may 340 

be present while the patient is asymptotic. However, the patient may be starting chemotherapy 341 

which will compromise their immunity and if the MBEC is known it could direct the empirical 342 

antibiotic therapy when infection occurs in the agranulocytosis phase. 343 

 344 

By developing a technique to include degree of biofilm formation in conjunction with mechanism 345 

of biofilm formation, it may be possible to tailor regimens, such as protease therapy, for difficult 346 

to eradicate biofilm-mediated infections. This would serve to more closely replicate clinical 347 

infection in vitro, improving: the ability to diagnose the presence and nature of biofilm infection; 348 

the validity of antibiotic(s) prescribed; clinical outcomes and reducing the threat of antimicrobial 349 

resistance.   350 
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Table 1 Sites from which clinical isolates were cultured, including abbreviations. 

Isolate Abbreviation Location of isolation 

B1, B24, B37, B48, B49, 

B51, B63, B64, B71 

CAPD Continuous Ambulatory Peritoneal 

Dialysis Catheter or Fluid 

B2, B3, B5, B6, B8, B9 CLT Central Line Tip 

B4 PCT PermCath Tip 

B7 ELT Epidural Line Tip 

B10 JLT Jugular Line Tip 

B11 VT Venflon Tip 

B12 FLT Femoral Line Tip 
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Table 2 Antibiogram showing antibiotic susceptibility data for all isolates 

Isolate Organism Penicillin Oxacillin Erythromycin Clindamycin Fusidic 

Acid  

Tetracycline Gentamicin Vancomycin Teicoplanin Ciprofloxacin   

B1 CoNS S S S S S S S S S S 

B2 S.aureus R S S S S S S S S S 

B3 CoNS R R R R R S S S S S 

B4 S.aureus R S S S S S S S S S 

B5 CoNS R R R S S S S S S S 

B6 CoNS R R R R R S S S S R 

B7 CoNS R R R R R S S S S R 

B8 CoNS R R R R R R S S S S 

B9 CoNS R R R R S S R S S S 

B10 S.aureus R S S S S S S S S S 

B11 CoNS R R R R R S S S S R 

B12 CoNS R R R R S S R S S R 

B24 CoNS S S S S S S S S S S 

B37 CoNS R S S S R S S S S S 

B48 CoNS R S S S S S S S S S 

B49 CoNS S S R S S S S S S S 

B51 CoNS S S R S S S S S S S 

B63 CoNS R S S S S S S S S S 

B64 CoNS S S R S S S S S S S 

B71 CoNS S S R S S S S S S S 

 

 

 



Table 3 Source of isolate tested and degree of biofilm formation based on classification 

described by Stepanovic et al. (2000). ODc = 0.255 

Isolate Organism Source Biofilm Formation Absorbance (A590) 

B1 CoNS CAPD + 0.340 

B2 S. aureus CLT - 0.220 

B3 CoNS CLT ++ 0.775 

B4 S. aureus PCT - 0.211 

B5 CoNS CLT + 0.453 

B6 CoNS CLT +++ 2.762 

B7 CoNS ELT + 0.284 

B8 CoNS CLT + 0.308 

B9 CoNS CLT + 0.272 

B10 S. aureus JLT - 0.164 

B11 CoNS VT + 0.261 

B12 CoNS FLT + 0.269 

B24 CoNS CAPD +++ 1.956 

B37 CoNS CAPD - 0.230 

B48 CoNS CAPD + 0.344 

B49 CoNS CAPD +++ 2.169 

B51 CoNS CAPD +++ 2.440 

B63 CoNS CAPD ++ 0.659 

B64 CoNS CAPD +++ 1.242 

B71 CoNS CAPD +++ 3.720 

 

 

 

 

 

 

 

 

 

 



Table 4 MBEC (µg/mL) of bacterial isolates in biofilm 

Isolate Antibiotic 

Penicillin Oxacillin Clindamycin Tetracycline Vancomycin 

B1 >256 >256 32 >256 256 

B2 >256 >256 >256 >256 >256 

B4 >256 >256 >256 >256 >256 

B6 >256 >256 >256 >256 >256 

B10 >256 >256 >256 >256 >256 

B11 >256 >256 >256 >256 32 

B24 >256 >256 >256 >256 >256 

B37 >256 >256 >256 >256 >256 

B48 >256 >256 >256 >256 >256 

B51 >256 >256 >256 >256 >256 

B71 >256 >256 >256 >256 >256 

 

Table 5 Key of isolates in Figures 4a-4c 

Number 1 2 3 4 5 6 7 8 9 10 11 

Isolate B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 

Ica 

operon 

           

Number 12 13 14 15 16 17 18 19 20 21 22 

Isolate B12 B24 B37 B48 B49 B51 B63 B64 B71 +ve -ve 

Ica 

operon 

           
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