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Abstract Although populations of many bat species appear to be recovering in some

European countries, the extrinsic and intrinsic factors driving these increases have not yet

been assessed. Disentangling the benefits of conservation management from other factors

such as climate change is a crucial step for improving evidence-based conservation

strategies. We used the greater horseshoe bat (Rhinolophus ferrumequinum) as a case study

for understanding the recovery of bat populations, as its north-western populations have

increased substantially over the past two decades following severe population declines.

Using summer roost count data from the UK National Bat Monitoring Programme span-

ning an 18 year period from 1997 to 2014, we investigated the effects of (i) landscape

characteristics associated with the implementation of the agri-environment schemes on

colony trends and size, and (ii) meteorological variables on annual colony growth rate. We

also assessed the relationship between colony size and colony growth to investigate

intrinsic factors such as an Allee effect. Our results indicated that colony size was posi-

tively related to a range of landscape features (e.g. amount of broadleaf woodland and

grassland, and density of linear features) surrounding the roost, while the amount of

artificial light at night had a significant negative effect. Spring temperatures and precipi-

tation (the latter with a lag of one year) were associated with annual colony growth. We

also identified a negative density-dependence effect within colonies. Though the conser-

vation of essential landscape elements may have contributed to population increases in the

long-term, we conclude that recent population recovery has also been driven by climate
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change. Finally we recommend that the conservation of photophobic bat species such as R.

ferrumequinum should focus on both the improvement of foraging/commuting habitats and

the creation of dark areas.

Keywords Agri-environment schemes � Climate change � Density-dependence �
Landscape characteristics � Light pollution � Population trend

Introduction

Climate and land-use change are considered to be the main drivers responsible for bio-

diversity change in terrestrial ecosystems (Pimm and Raven 2000; Walther et al. 2002;

Parmesan and Yohe 2003; Foley et al. 2005; Burns et al. 2016; Stephens et al. 2016). While

their combined impacts are often overlooked due to their complex interactions (Brook et al.

2008; de Chazal and Rounsevell 2009), there is clear evidence that these two factors have a

worldwide influence on the presence, abundance and distribution of a wide range of taxa

(Warren et al. 2001; Barbet-Massin et al. 2012). Thus, understanding and disentangling the

simultaneous effects of these two driving forces will be a crucial step for developing and

evaluating adequate biodiversity conservation strategies, especially as both climate and

land-use are changing rapidly (Brook et al. 2008).

Bats can be extremely sensitive to environmental changes (Jones et al. 2009), yet few

studies have assessed the relative importance of both climate and land-use for these

mammals. Bowler et al. (2015) emphasized the weak influence of climate for explaining

local, long-term bat population trends. Similarly, when assessing bat species richness and

community composition at a regional scale Mehr et al. (2011) found a much greater effect

of land-use compared to climate. However, the assessment of bat activity and species

distributions across broader scales, such as across the British range of species has revealed

the great importance of meteorological variables in addition to land-use and landscape

characteristics (Walsh and Harris 1996; Razgour et al. 2011). These results suggest

complex effects of climate and land-use, with bats seeming to respond differently

depending on the spatial scale and the type of climatic indicators studied.

The greater horseshoe bat (Rhinolophus ferrumequinum—Schreber 1774) is an excel-

lent model species for investigating temporal population changes in bats in relation to

climate and land-use changes. Although this insectivorous species is widely distributed in

Europe and considered as Least Concern (LC) on the IUCN Red List, the loss of foraging

areas—mainly due to agricultural intensification—and roosts led to a drastic decline in

western populations during the twentieth century (Stebbings 1988; Hutson et al. 2001).

However, a recent study on its population trends in the United Kingdom (UK) between

1997 and 2012 revealed a significant increase in the overall population size (Barlow et al.

2015), suggesting a population recovery at its northern range margin. The main causes of

this increase have yet to be investigated, but two major factors are suspected to be

involved. The first one regards changes in farming practices resulting from the imple-

mentation of agri-environment schemes (AESs—incentive systems that aim to mitigate the

impact of intensive farming on biodiversity). Indeed, land management options targeting R.

ferrumequinum (e.g. creation and maintenance of permanent cattle-grazed pasture and

broad hedgerows) were first integrated into the Countryside Stewardship Scheme admin-

istered by the UK government department (Defra, the Department of Environment, Food
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and Rural Affairs) between 1991 and 2004 and then into the Environmental Stewardship

schemes. The second factor concerns climate change which may have provided more

favourable climatic conditions for this species: for example warmer springs in the UK may

have supported population recovery by increasing food availability and shifting the timing

of birth to earlier in the year (Ransome and McOwat 1994). Thus, understanding the role of

climate and land-use change in a context of population recovery would (i) increase our

knowledge on R. ferrumequinum population dynamics which will aid in the design of

adequate conservation measures and (ii) provide a relatively unique example for other

conservationists, as previous studies on land use change have mostly focused on habi-

tat/landscape degradation rather than improvements (Selwood et al. 2015). Furthermore,

the potential benefits of AESs on bats have so far been assessed using acoustic indexes (i.e.

bat activity) (Fuentes-Montemayor et al. 2011; MacDonald et al. 2012a, b). Because

relationships between activity and population size are poorly understood, investigating the

relationship between population change over time directly and the implementation of AESs

would provide clearer insights into the value of such schemes.

Besides the extrinsic factors outlined above, intrinsic factors may also have led to the

population increase. While it has received little attention in studies on bat populations, the

demographic Allee effect—defined as a positive relationship between fitness and popu-

lation size or density (Courchamp et al. 1999; Stephens et al. 1999)—could have a strong

influence on population dynamics. The positive relationship may arise from a range of

social behaviours (Gregory and Jones 2010). For instance, because females gather in

maternity roosts during the summer, mothers and their newborn infants may benefit from

social thermoregulation (Willis and Brigham 2007). Moreover, as female relatives forage

together (Rossiter et al. 2002), larger colonies may include more matrilineal relatives,

facilitating social foraging and/or information transfer. However, although the Allee effect

may increase individual fitness while the colony is growing, it may also have a reverse

effect when the colony is decreasing, thus accelerating the decline. Therefore, investigating

the presence of such an effect is important, especially when studying species of special

conservation concern (Gilroy et al. 2012).

In order to fully understand to what extent the effectiveness of species conservation

programmes such as AESs could be masked by other factors such as climate change and

Allee effect, we investigated which extrinsic and intrinsic factors were the most likely to

explain population recovery of R. ferrumequinum in the UK. We used count data from

maternity colonies of R. ferrumequinum inventoried in the UK under the National Bat

Monitoring Programme (Walsh et al. 2001; Barlow et al. 2015). Our first objective was to

investigate the effects of climate and land-use changes on greater horseshoe bat popula-

tions. We tested the hypothesis that targeted AESs would benefit R. ferrumequinum

populations by examining the effects of landscape characteristics and the amount of land

under AESs on two parameters, namely the colony trend (slope of increase) and mean

colony size. We then tested the hypothesis that population increase would be related to

climate change by examining the relationship between annual colony growth rate and time

series meteorological data. Our second objective was to investigate the presence of

intrinsic factors that could influence the colony dynamics. We hypothesised that a

demographic Allee effect may occur in R. ferrumequinum colonies, therefore we tested

whether colony size affected annual growth rate.
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Materials and methods

Greater horseshoe bat monitoring survey

Maternity colonies of R. ferrumequinum have been monitored in the UK by volunteers

since 1997 under the National Bat Monitoring Programme (NBMP) (Walsh et al. 2001;

Barlow et al. 2015). Roosts of R. ferrumequinum were identified by experienced bat

workers/volunteers and confirmed using bat detectors [the echolocation calls of this species

being easily distinguishable from other bat species in the UK (Parsons and Jones 2000)].

Summer roost counts took place at least twice a year, in the first and second half of July

respectively. Individuals were counted during their emergence starting 15 min before

sunset. Double-counting was avoided by counting the individuals returning into the roots

during dusk emergence. Surveys at a given colony roost were mainly conducted by the

same observer throughout the years and only when weather conditions were optimal (i.e.

no precipitation, low wind speed and temperatures at sunset C7 �C). Zero counts were

reported, thus allowing differentiation of missing values from bat absences. In total, 28

colonies covering the established range of the species in the UK (i.e. south-west England

and Wales) were inventoried and monitored between 1997 and 2014 (Fig. 1).

Fig. 1 Location of the seven meteorological stations (black diamonds) matching the distribution of
maternity colony roosts (dot symbols) of Rhinolophus ferrumequinum in the United Kingdom. The red dots
represent the colony roosts used for the analyses conducted over 18 years, while the colonies used for the
analyses conducted over 10 years include sites shown by both red dots and orange dots. (Color
figure online)
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From this database, we selected maternity roosts having at least an average of five

individuals throughout the years surveyed. By doing so, roosts rarely and sporadically

occupied by R. ferrumequinum were not incorporated into the analyses. Furthermore,

although late July generally represents the period of which juveniles become able to fly

(Jones et al. 1995), this period may be advanced or delayed due to spring meteorological

conditions affecting birth timing (Ransome and McOwat 1994). As this year-dependent

effect may bias the colony size comparisons across years, only data arising from the early

July surveys were considered for further analyses as it is highly unlikely that juveniles are

flying then.

Measurements of colony trend, mean colony size and annual growth rate

We used the program Trends and Indices for Monitoring data (TRIM v3.53) to model and

test the long-term trends in colony size (Pannekoek and Van Strien 2001). The trend

measured in this study corresponds to the slope of the trend line of estimated colony size

(hereafter referred to as ‘colony trend’). TRIM implements a log-linear Poisson regression

to analyse time series of count data and corrects for possible over-dispersion of the data

and serial correlation. Because few colonies had been surveyed over the period 1997–2004,

we built two separate models by distinguishing colonies having records from 1997 to 2014

(i.e. 18 years, 8 colonies) from those surveyed between 2005 and 2014 (i.e. 10 years, 19

colonies). Finally, though we were aware that conducting trend analyses on a single colony

may lead to an overfitting of the model and consequently to an underestimation of the

standard errors, trends of each maternity colony were calculated separately in order to

examine variation among colonies and investigate factors influencing this variation.

Mean colony size was calculated only over the period 2005–2014, when most of the

species monitoring data were collected. For each colony, we averaged the colony size

values recorded during this time period to avoid serial correlation when analysing the data.

One colony was excluded from analysis because we identified it as an influential outlier.

We investigated the annual fluctuations in colony size by calculating the annual growth

rate (rt) for each colony:

rt ¼ Nt � Nt�1ð Þ = Nt�1ð Þ � 100 ð1Þ

where N is the number of individuals of a given colony at years t or t - 1.

Environmental and meteorological variables

Landscape characteristics and land-use data

We created three buffers (0.5, 1.5 and 3.0 km radii) around the maternity roosts using

ArcGIS Desktop v10 (ESRI, Redlands, CA) to represent the most relevant spatial scales

when studying R. ferrumequinum. While the small scale (0.5 km) allow us to describe the

near environment of the roost location, the core sustenance zone of juveniles and adults R.

ferrumequinum are represented with the medium (1.5 km) and large scales (3.0 km)

respectively (Duvergé and Jones 1994; Rossiter et al. 2002; Flanders and Jones 2009; Dietz

et al. 2013; Collins 2016). The core sustenance zones for bats is expressed for a given

species as its main foraging area surrounding the roost based on its average-maximum

foraging radius.
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Within each buffer, we extracted data from (i) the Land Cover Map 2007 (LCM2007)

supplied by the Centre of Ecology and Hydrology (CEH; Morton et al. 2011) and (ii) the

AESs established in England spanning the period 2006–2014 which were provided by

Natural England (www.gov.uk/government/organisations/natural-england). The 23

LCM2007 classes representing the UK broad habitats were reclassified in nine aggregate

land classes: broadleaf woodland, coniferous woodland, arable land, grassland, saltwater,

freshwater, coastal land, urban area (excluding small roads) and other (Online Resource 1).

Changes of land-cover that have occurred within the buffer of 3.0 km radius around the

maternity colony roosts between 2000 and 2012 were small enough to consider the

LCM2007 representative for the time scale studied (only 0.40% of the land-cover have

been modified; Online Resource 2). The AESs were redefined according to their specific

tier: (i) Entry Level Stewardship (ELS) and (ii) the more targeted Higher Level Ste-

wardship (HLS). Moreover, we distinguished HLS options focussing specifically on

habitats preferred by R. ferrumequinum (i.e. management of hedgerows, maintenance and

restoration of wood pasture/woodland/grassland; Online Resource 3) from the other

options.

Using the reclassified LCM2007, we calculated the proportion of each land class at each

of the three spatial scales. We then conducted a landscape analysis with Fragstats 4.2

(McGarigal et al. 2002) using the nine land classes to describe the fragmentation,

heterogeneity, and diversity of the landscapes at the largest scale by using the mean patch

area, the patch richness density, and the Shannon’s diversity index respectively (Table 1).

Similarly, we calculated the percentage of total area under (i) AESs independently of the

tier; (ii) ELS; (iii) HLS regardless of the options implemented; and (iv) relevant HLS

options targeting the conservation of R. ferrumequinum. Furthermore, since linear features

(hedgerows and tree lines) constitute part of the main foraging and commuting habitats of

R. ferrumequinum (Duvergé and Jones 1994; Dietz et al. 2013), the density of these linear

features was evaluated for each landscape. Hedgerows and tree lines were digitized using

Google Earth aerial photographs taken between 2010 and 2014. Finally, to consider the

potential negative effect of light pollution on horseshoe bats (Stone et al. 2009), we also

extracted the map of artificial light at night (ALAN) derived from a cloud-free composite

of VIIRS night-time lights (July 2014; 15 arc-seconds resolution) and produced by the

Earth Observation Group, NOAA National Geophysical Data Centre (http://www.ngdc.

noaa.gov/eog/viirs/download_monthly.html). We subsequently quantified the average level

of light pollution at the three spatial scales (Table 1).

Meteorological data

Time series of minimum temperatures and precipitation data spanning 1997–2014 were

obtained at monthly resolution from seven meteorological stations (www.metoffice.gov.

uk) matching the distribution range of R. ferrumequinum within the UK (Table 1; Fig. 1).

Although some maternity roosts were distant from the meteorological stations (mean

geodesic distance: 44 km, ranging from 3 to 95 km), we did not intend to compare climatic

values among sites but rather across years. Hence the data extracted here represent the

broad-scale climatic conditions where the species occurs in the UK. North Atlantic

Oscillation (NAO) indices—defined as the normalized pressure difference between

Gibraltar and Reykjavik (Jones et al. 1997)—were extracted with monthly resolution from

the Climatic Research Unit, University of East Anglia, Norwich (www.cru.uea.ac.uk/

*timo/datapages/naoi.htm). NAO indices may be interpreted as a broad-scale climate

indicator.
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Statistical analyses

All the analyses were performed using the R statistical software (R Development Core

Team 2015).

Extrinsic factors

At each spatial scale we evaluated the effects of landscape characteristics and AESs on

(i) colony trends by fitting multiple linear regression models using the log-transformed data

to respect normality assumptions and (ii) mean colony sizes of R. ferrumequinum using

generalized linear models with a negative binomial distribution for handling overdisper-

sion in the data (‘‘MASS’’ package). The independent variables were standardized

beforehand to obtain the same unit measures and tested for correlations with the Spear-

man’s correlation test. When highly correlated variables were found (|r| C 0.7; Online

Table 1 Variables used to assess the effects of climate, landscape characteristics and AESs on Rhinolophus
ferrumequinum maternity colonies

Category Variable Description Unit

Meteorological
data

Time series
temperature data

Minimum temperatures recorded for the period
1997–2014

�C

Time series
precipitation data

Amount of precipitations recorded for the period
1997–2014

mm

Time series NAO
indices

North Atlantic Oscillation indices calculated for the
period 1997–2014

index

Landscape
characteristics

Landscape
fragmentationa

Mean area of the habitat patches within the
landscape

ha

Landscape
heterogeneitya

Patch richness density within the landscape no/100 ha

Landscape diversitya Shannon’s diversity index: diversity of habitats
within the landscape

index

Density of linear
featuresb

Density of hedgerows and tree lines within the
landscape

m/ha

Amount of artificial
light at night
(ALAN)b

Level of artificial light at night within the landscape nanowatts/
cm2/sr

Proportion of each
land classb

Proportion of a given land class within the
landscape

%

AESs AESs—all options
includedb

Proportion of areas under ELS and/or HLS
management within the landscape

%

ELSb Proportion of areas under ELS management within
the landscape

%

HLSb Proportion of areas under HLS management within
the landscape

%

HLS—R.
ferrumequinumb

Proportion of areas under HLS management within
the landscape with options of potential benefit to
the conservation of R. ferrumequinum

%

a Variables taken within a buffer of 3.0 km radius around the maternity colony roosts considering all land
classes
b Variables taken within a buffer of 0.5, 1.5 and 3.0 km radius around the maternity colony roosts

AESs: agri-environment schemes; ELS: entry level stewardship; HLS: high level stewardship
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Resource 4), we retained the variable having the highest perceived ecological importance

(based on published literature, e.g. Duvergé and Jones 1994, 2003; Flanders and Jones

2009; Dietz et al. 2013). When we found strong correlations between two variables having

similar importance (e.g. the amount of ALAN and proportion of urban area) we assessed

independently each variable in our models and retained the variable having the most

explanatory power (i.e. the largest effect size; Online Resource 5). We tested the spatial

correlation of both mean colony size and colony trend by performing the Mantel test; no

spatial correlation was found (Online Resource 6). Finally, we applied an information-

theoretic approach to select the most parsimonious models, using the second order

information criterion (AICc) in the model selection process (Burnham and Anderson 2002).

In order to obtain robust estimates and corresponding standard errors when equivalent best

models were found (DAICc\ 2), we undertook model averaging over all models within

DAICc\ 2. Following the recommendations of Arnold (2010), the significance of the

effect of each variable present within the best models was assessed through 85% confi-

dence intervals (CI) of their relative estimate, considering the effect as statistically sig-

nificant when CI did not overlap zero.

Temporal synchronies between annual colony growth rate and time series of meteoro-

logical variables for the two periods 1997–2014 and 2005–2014 were assessed using cross-

correlation functions (CCF).We tested the significance of the correlation coefficientswith the

Bartlett’s band ±2/Hn (n being the time series’ length). Because we expected climatic

variables to influence the annual colony growth rate either immediately or with a time lag of a

few years, only correlation coefficients within a maximum of three years lag were taken into

account. Thus, we compared the growth rate values calculated between years ti and ti - 1 to

the meteorological variable values of years ti, ti - 1, ti - 2 and ti - 3. Serial correlation and

its relative significance was tested with the autocorrelation function (ACF) and Bartlett’s

band ±2/Hn respectively, whereas spatial autocorrelation was assessed using the Mantel

test. No evidence of temporal or spatial correlation was found (Online Resource 6).

Intrinsic factors

Given that the dynamics of R. ferrumequinum colonies may exhibit either a negative density-

dependence or a demographic Allee effect (Courchamp et al. 1999; Gregory and Jones 2010),

we assessed the existence of these relationships using the annual colony growth rate as a

surrogate of individual fitness. We used data arising from colonies surveyed for at least two

consecutive years during the period 1997–2014 (22 colonies). The influence of colony size on

the growth rate was fitted using generalized linear mixed models with a negative binomial

distribution to account for overdispersion. Growth rate (rt) was transformed beforehand into a

growth factor g (with g = (rt/100) ? 1) in order to fit the negative binomial distribution. The

linear, as well as the quadratic term of colony size, were included in the models for testing

density-dependence and theAllee effect respectively (Sæther et al. 1996; Angulo et al. 2007).

The year and colony identity were included as random factors to control for pseudo-repli-

cation. We applied the same model selection approach as previously described.

Results

Overall, maternity colonies of R. ferrumequinum showed a significant increase in size

(Fig. 2) regardless of the period surveyed (1997–2014: annual growth rate of

5.40 ± 0.47%, lower 95% CI = 4.44%, upper 95% CI = 6.36%; 2005–2014: annual
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growth rate of 4.38 ± 0.66%, lower 95% CI = 3.09%, upper 95% CI = 5.67%). Of the

eight colonies monitored between 1997 and 2014, seven increased and one exhibited a

stable trend. Similarly, most colonies increased for the 2005–2014 period, with positive

trends observed in 14 colonies, stable trends in four, and a negative trend detected in only

one (Online Resource 7).

Landscape characteristics and AESs

When testing the relationship between colony trend and landscape characteristics and

AESs, none of the explanatory variables were included in the most parsimonious model.

However, when looking at colony size, the best generalized linear models (Table 2)

indicated that variations in mean colony size were significantly explained by the landscape

characteristics surrounding the roosts (Table 3). No variable reflecting the implementation

of AESs appeared in the most parsimonious models. We also found that the significance of

landscape variables was scale-dependent. At the smallest scale (0.5 km), the best models

included the amount of artificial light at night (ALAN), the density of linear features, and

the proportion of broadleaf woodland and urban area. Amongst these variables, only the

amount of ALAN did not have evidence to support its importance since the 85% CI

overlapped zero. At the medium scale (1.5 km), the amount of ALAN, as well as the

proportion of broadleaf woodland and grassland, were retained in the best models. Finally

at largest scale (3.0 km), the most parsimonious models incorporated the amount of

ALAN, the density of linear features and the proportion of grassland. The direction of the

effects were identical regardless of the spatial scales studied: while the amount of ALAN

and the proportion of urban areas were negatively related to colony size, we found a

positive effect of the density of linear features and the proportion of woodland and

grassland (Fig. 3).

Fig. 2 Colony trends of Rhinolophus ferrumequinum based on count data arising from a 8 colonies over the
period 1997–2014 (18 years) and b 19 colonies spanning the period 2005–2014 (10 years). Total annual
count and associated 95% confidence intervals are indicated in black
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Climate

Annual colony growth rate was significantly synchronised with a set of meteorological

variables. For the 2005–2014 period (N = 19 colonies), spring precipitation was nega-

tively correlated with growth rate (r = -0.85) with a lag effect of one year (Fig. 4a).

There was clear evidence for a positive influence of minimum spring temperature on

growth rate (r = 0.84; Fig. 4b), without any lag effect. When investigating temporal

synchronies across a longer period (1997–2014, N = 8 colonies), spring precipitation

displayed a strong significant negative correlation (r = -0.71), again with a lag effect of

one year. Minimum spring temperature was positively and significantly associated with

growth rate (r = 0.52).

Table 2 Results of the stepwise selection of GLMs (Negative Binomial Family) built to assess the rela-
tionships between colony sizes of R. ferrumequinum and landscape features and agri-environment schemes

Scale Model K AICc DAICc AICc
Wt

Cum.
Wt

pseudo
R2a

0.5 km
radius
zoneb

% of urban area 3 226.40 0.00 0.43 0.43 0.33

% of urban area ? % of broadleaf
woodland ? Density of linear features

5 226.54 0.14 0.41 0.84 0.54

% of urban area ? Amount of ALAN 4 228.39 1.99 0.16 1.00 0.38

% of urban area ? % of broadleaf
woodland

4 228.51 2.11 – – 0.37

% of urban area ? Density of linear
features

4 228.69 2.29 – – 0.36

1.5 km
radius
zonec

% of grassland ? Amount of ALAN 4 227.58 0.00 0.29 0.29 0.40

% of grassland ? % of broadleaf
woodland

4 227.65 0.07 0.28 0.57 0.40

% of grassland 3 227.75 0.17 0.27 0.84 0.28

Amount of ALAN 3 228.84 1.26 0.16 1.00 0.23

% of grassland ? Amount of ALAN ? %
of broadleaf woodland

5 229.70 2.12 – – 0.46

3.0 km
radius
zoned

Amount of ALAN 3 227.60 0.00 0.36 0.36 0.28

% of grassland 3 227.99 0.39 0.29 0.65 0.27

Amount of ALAN ? % of grassland 4 228.67 1.07 0.21 0.86 0.36

Density of linear features 3 229.47 1.87 0.14 1.00 0.21

Amount of ALAN ? Density of linear
features

4 229.81 2.21 – – 0.32

Model selection process was based on the second order information criterion (AICc). Models are ranked by
AICc values; only the top five models are shown. The number of parameters (K), the AICc and pseudo R2 are
given for each model. AICc weight (Wt) and cumulative weight (Cum. Wt) are given for the most parsi-
monious models only (DAICc\ 2)
a Pseudo R2 = 1 - (residual deviance/null deviance) (Faraway 2006)
b Near environment of the roost location
c Core sustenance zone of juveniles
d Core sustenance zone of adults

ALAN artificial light at night
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Colony size

When analysing the influence of colony size on annual growth rate, the most parsimonious

model included only the linear effect of the colony size. A significant negative density-

Table 3 Standardized, model-averaged parameter estimates with associated standards errors (SE) and
lower and upper 85% confidence intervals (CI) of the best GLMs (DAICc\ 2) explaining colony sizes of
Rhinolophus ferrumequinum at three spatial scales

Scale Variable Estimate SE Lower 85% CI Upper 85% CI

0.5 km radius zonea Amount of ALAN -0.15 0.14 -0.34 0.04

Density of linear features 0.32 0.15 0.11 0.52

% of broadleaf woodland 0.30 0.14 0.10 0.50

% of urban area -0.41 0.13 -0.59 -0.23

1.5 km radius zoneb Amount of ALAN -0.28 0.15 -0.48 -0.07

% of broadleaf woodland 0.20 0.13 0.02 0.38

% of grassland 0.38 0.14 0.17 0.58

3.0 km radius zonec Amount of ALAN -0.34 0.16 -0.56 -0.12

Density of linear features 0.31 0.14 0.11 0.51

% of grassland 0.31 0.16 0.09 0.53

a Near environment of the roost location
b Core sustenance zone of juveniles
c Core sustenance zone of adults

ALAN artificial light at night

Fig. 3 Positive linear relationships between mean colony size of R. ferrumequinum (period 2005–2014) and
a proportion of grassland (%) within the landscape surrounding the roosts at the medium scale (core
sustenance zone of juveniles); b density of linear features (m/ha) within the landscape surrounding the roosts
at the largest scale (core sustenance zone of adults). The regression line is indicated in black with its 95%
confidence interval in grey
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dependence was found (estimate = -0.04 ± 0.01, lower 85% CI = -0.05, upper 85%

CI = -0.03), suggesting that the largest maternity colonies had a lower annual growth rate

than small colonies (Fig. 5). Larger colonies had less variation in growth rate, with a

relatively constant annual growth rate observed close to zero.

Discussion

As previously demonstrated by Barlow et al. (2015), bat populations of many species seem

to be recovering in the Great Britain as well as in other European countries (Van der Meij

et al. 2015). Using a bat species of special conservation concern—the greater horseshoe bat

(Rhinolophus ferrumequinum)—as a case study for investigating the effects of climate,

landscape characteristics and AESs on changes in maternity colony size, our results pro-

vide ample evidence of the complex effects of both landscape characteristics and climate

on bat populations, but at different extents. While we expected to find a positive associ-

ation between the amount of surrounding land under AESs with colony trend and size, our

results suggest no clear evidence of these relationships. However, colony size was asso-

ciated with landscape features that are a common target of AES prescriptions (e.g.

broadleaf woodland, grassland and linear features such as hedgerows). Regarding our

Fig. 4 Temporal synchronies between the mean annual growth rate of 19 Rhinolophus ferrumequinum
colonies (black solid line) and a the spring precipitation delayed by one year and b the minimum spring
temperatures (black dotted lines; mean values of April, May and June). r represents the correlation
coefficient arising from the cross-correlation functions for the period 2005–2014. Values with a lag effect
(i.e. spring precipitation) were adjusted accordingly for a better visual comparison
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second hypothesis, we found that the annual growth rate of colonies was strongly corre-

lated with spring temperatures and precipitation. Given that spring temperatures, unlike

precipitation, have substantially increased in the past decades in the UK (Online Resource

8), the increase in R. ferrumequinum populations observed may be attributed at least in part

to climate change. Our results also indicate the influence of intrinsic factors on colony

growth rate, as we detected negative density-dependence rather than a demographic Allee

effect within the colonies.

By using the summer roost count data of maternity colonies as a proxy for identifying

patterns of change in R. ferrumequinum populations, we were aware that some limitations

in the data could have biased our interpretations. For example, information on each

individual (e.g. age class, sex, etc.) was not available by employing this non-invasive

method. Thus, while we could distinguish subadult and adult bats from juveniles by

considering only count data undertaken in early July (i.e. when juveniles are unable to fly),

we had to assume that sex ratio of subadult and adult female bats to males was high and

constant over the period surveyed and that no immigration or emigration occurred between

years. Although we acknowledge that variations in these parameters may bias our findings

to some extent, the literature provides strong support towards our assumptions. Ransome

(2008) and Schaub et al. (2007) emphasized the fact that R. ferrumequinum males, unlike

females, present weak philopatry to their summer roost. Though young males may return to

the roost after their first year, this philopatric behaviour tends to disappear in subsequent

years. Ransome (2008) also highlighted that immigrant females are occasionally present

Fig. 5 Negative linear relationship between the annual growth rate between year t and t - 1 of 22
Rhinolophus ferrumequinum colonies and their respective size at year t - 1 over the period 1997–2014
(18 years). The black solid line represents the significant density-dependence with its 95% confidence
interval in grey. The black dashed line corresponds to the null growth rate
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within colonies but are rarely present during the breeding season. Thus, we assume that

changes in sex ratio and immigration/emigration played only a small role in affecting

changes in colony size.

Landscape characteristics affect colony size at different spatial scales

Amongst the landscape elements investigated, the density of linear features and the pro-

portion of broadleaf woodland and grassland in the landscape surrounding the roost were

positively related to colony size. As emphasized by other studies (e.g. Dietz et al. 2013),

landscapes supporting highly connected and structured semi-open habitats (i.e. a mixture of

grassland and broadleaf woodland connected with hedgerows and tree lines) are the most

favourable for R. ferrumequinum. Given that pastures and broadleaved woodland are the

major foraging habitats for juveniles and adults (Duvergé and Jones 1994, 2003), these

results indicate that the availability of foraging areas surrounding the colony roosts may

influence the carrying capacity of the colonies within the landscape (Russo et al. 2010;

Dietz et al. 2013). As observed in other bat species, intraspecific competition for food may

(i) increase flight distances to reach available foraging areas and (ii) reduce prey capture

rates, both of which may reduce individual fitness. We further found light pollution to be

negatively related to colony size. R. ferrumequinum is regarded as a photophobic species

and therefore avoids lighted areas whilst foraging or commuting (Stone et al. 2009).

Interestingly, the size of colonies was better predicted by the amount of artificial light at

night (ALAN) than the proportion of urban area. This finding may arise from the fact that

ALAN within landscapes is not systematically restricted to urban areas and may affect the

adjacent habitats, thus reducing the foraging areas available for bats (Threlfall et al. 2013;

Azam et al. 2016). Furthermore, ALAN—which could also be related to road density—

may act as a barrier to movement by altering gap crossing behaviour (Hale et al. 2015).

While the medium and large spatial scales considered by this study (1.5 and 3 km)

relate to the core sustenance zone required by R. ferrumequinum, the smallest scale con-

sidered (0.5 km) can be interpreted with regard to the roost location itself. At this scale our

results highlight a marked positive effect of the proportion of broadleaf woodland in

addition to the density of linear features on colony size. These findings corroborate several

studies that show that roost locations of bats across the UK are positively associated with

broadleaf woodland (Boughey et al. 2011a; Bellamy and Altringham 2015) and that bats

use hedgerows and tree lines as landmarks for commuting towards foraging areas when

leaving the roost (Limpens and Kapteyn 1991). As well as these positive relationships, our

results indicate a negative effect of the proportion of urban area. Although in Great Britain

R. ferrumequinum mainly uses large old buildings for roosting, the location of the roost

itself must be away from urban areas to support a greater number of individuals (Ransome

2008). Finally, as lighting near colony roosts is known to have detrimental effects on

photophobic bat species (Boldogh et al. 2007), our results regarding the non-significant

effect of ALAN on R. ferrumequinum at the smallest spatial scale (0.5 km) should be

interpreted with caution. The lack of effect found in our study may arise from the low

resolution of the ALAN data at this scale.

The implementation of AESs on land surrounding the colony roosts has been suggested

as one of the most plausible reasons for increasing R. ferrumequinum colony sizes (Lon-

gley 2003), yet we found no relationship between amount of land under AES and colony

size at the spatial scales and time period studied here. The ineffectiveness of AESs for

enhancing bat populations in farmland-dominated landscapes has also been reported

elsewhere in the UK (Fuentes-Montemayor et al. 2011; MacDonald et al. 2012a, b). These
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studies demonstrated that regardless of the species, the level of bat activity is not signif-

icantly different between matched conventional and AES fields. Rather, the amount of

particular habitat types within the surrounding landscape seems to be more important for

bats (Fuentes-Montemayor et al. 2011; Treitler et al. 2016). Nevertheless, we acknowledge

that some limitations in our analysis may have led to this result. The dataset of AESs we

used arise from the period 2006–2014 (i.e. AESs implemented after the Common Agri-

cultural Policy reform of 2005), yet most of the prescriptions favourable to R. ferrume-

quinum were implemented prior to this, between 1998 and 2003 (Longley 2003), as part of

the preceding Countryside Stewardship Scheme (CSS). The apparent lack of effect of

AESs found in our study could also be explained by landscape-moderated effects (Batáry

et al. 2010; Concepción et al. 2012; Tscharntke et al. 2012). Indeed, because we found that

R. ferrumequinum colony size was positively associated with landscape features commonly

targeted by AES prescriptions, such as broadleaf woodland, pasture and hedgerows, it is

likely that the landscapes sampled here have been protected by AESs (and CSS) that were

initiated before the AES data used in this study were collected. In this case, the high degree

of complexity/connectivity of the landscapes may have reduced the effectiveness of AESs

implemented after 2005 (Batáry et al. 2010; Concepción et al. 2012; Tscharntke et al.

2012).

Temporal synchronies between meteorological data and growth rate

When relating annual colony growth rate with time series meteorological data, we found

that higher spring temperatures were associated with a higher growth rate. This finding is

consistent with the study of Ransome and McOwat (1994) who demonstrate that popu-

lation recovery of R. ferrumequinum occurs after favourable spring weather conditions.

Given that we used data from the period before which juveniles are able to fly, the main

driver of colony growth as measured by this study is overwinter survival, particularly of

juveniles. Early spring corresponds to the most vulnerable period for bats as their energy

reserves will be at their lowest following hibernation, and food availability is therefore

critical. Thus, warm springs which cause both an increase in insect food supplies but also

an extended feeding season for bats since prey becomes available earlier in the season may

be highly favourable to the bats (but see Andrews et al. 2016 who suggest that a delay in

insect emergence may favour female pipistrelle bats in gestation/lactation). Considering

the significant increase in spring temperatures in recent decades in the UK (Online

Resource 8), there is strong support that climate warming has contributed to population

growth.

Our results further suggest a strong negative correlation between spring precipitation

and colony growth with a delay of one year, implying that the amount of precipitation will

adversely influence the growth rate of the colony determined during the following year.

Two plausible reasons may explain this result, namely the effect of precipitation on

(i) juvenile mortality and (ii) food availability. Since spring precipitation may considerably

delay the birth timing, juveniles born later in the season are less likely to accumulate

enough energy reserves before hibernation. We consequently hypothesise that the rate of

juvenile mortality during hibernation would be higher after wet spring conditions. Then,

although the influence of precipitation on insects has been overlooked, a recent study by

Esbjerg and Sigsgaard (2014) demonstrated the important impacts of rain on the phenology

of the moth species Agrotis segetum: the number of precipitation days in July was strongly

correlated with the mortality of 1st and 2nd instar larvae with a lag effect of one year, and

soil moisture was probably the principal cause of mortality in the larvae. Given that moths
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are one of the most important food items of R. ferrumequinum (Jones 1990), we hypoth-

esise that when heavy spring rainfall occurs, low prey availability during the following

year would have a strong negative influence on the colony growth (but see Bontadina et al.

2008 who suggest that amount/connectivity of surrounding habitat is more important than

food availability for a Rhinolophus species).

Despite the strong correlations between climatic variables and colony growth found in

this study, these findings may be not extrapolated to other areas where the species occurs.

Indeed, as the British population is at the northwest limit of its range, it may be more

sensitive to climate change than other populations. Furthermore, we acknowledge that

micro-climatic conditions caused by roost management could also have contributed to

some changes in colony growth (Tuttle 1975).

Density-dependence in R. ferrumequinum colonies

Our results based on the examination of a wide range of colony sizes (i.e. from 27 to more

than 700 individuals) support a negative density-dependence effect. We found no evidence

of an Allee effect despite the high degree of sociality in the behaviour of R. ferrumequinum

(e.g. Rossiter et al. 2002). Since all maternity roosts monitored were in large buildings and

in a few cases underground sites, competition among individuals of the same colony may

not be due to roost features, but rather may arise from foraging behaviour. This fits with

our findings highlighting the strong influence of available foraging habitats on colony size.

Thus, individuals of larger colonies may be subject to stronger competition while foraging,

and this may be amplified when few foraging areas are available. Interestingly, our results

also showed that greater variation in colony growth occurs for small colonies whereas large

colonies display a quasi-constant growth rate around zero, thus implying that colonies

become more stable in growth rate after a certain threshold (i.e. 250 individuals). These

findings emphasize that protecting smaller colonies with appropriate conservation mea-

sures may buffer against events that cause sudden decreases in colony size as larger

colonies seem to be more resistant and resilient in the face of unpredicted events (Fig. 5). It

is in some ways encouraging to have found no demographic Allee effect within the

maternity colonies; by reducing the growth rate of populations in decline, the demographic

Allee effect may lead to a rapid local extinction of a species (Courchamp et al. 2008).

Implications for conservation

This study demonstrates the value of long term, standardised monitoring of bat maternity

roosts when assessing the impact of conservation management. In accordance to other

studies (Duvergé and Jones 2003; Longley 2003; Dietz et al. 2013) our findings suggest

that conservation actions to favour R. ferrumequinum populations in farmland-dominated

landscapes should target the restoration and maintenance of key foraging habitats such as

broadleaf woodland and grassland within the core sustenance zone of the species. More-

over, these actions must also promote the creation of a dense and connected network of

green linear features (hedgerows and tree lines) for foraging and commuting purposes.

Given that agricultural intensification has led to a major loss of landscape connectivity and

complexity, which has been unfavourable for bat communities (Frey-Ehrenbold et al.

2013), these recommendations will also be highly beneficial for other bat species (Boughey

et al. 2011b; Ashrafi et al. 2013; Heim et al. 2015). This case study based on a light-

intolerant bat species also highlights another major challenge for bat conservationists: the

impact of light pollution on photophobic species at a landscape scale. Previous studies have
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shown that one of the most common mitigation measures for reducing ALAN, switching

street lights off after midnight, fails to mitigate its negative effect on light-intolerant bat

species including R. ferrumequinum (Azam et al. 2015; Day et al. 2015). Therefore we

recommend that remaining dark flyways within the bat’s core sustenance zone should be

protected and new ones created (Gaston et al. 2012).

Finally we underline the crucial need to consider the impact of climate change when

evaluating conservation actions. Though we acknowledge that population trend may be a

good proxy to determine the success of a conservation program, its relationship with

climate should always be addressed as climate change may play a major role in driving

population change (see Stephens et al. 2016).

Conclusion

Determining whether intrinsic or extrinsic factors influence changes in population sizes of

a species of special conservation concern is a crucial step for (i) understanding the recovery

or decline of its populations and (ii) establishing adequate conservation actions. Our results

suggest that the use of a suite of population parameters is required to investigate these

complex relationships. While annual colony growth rate was shown to be a good proxy to

study the impact of climate, evaluating the influence of landscape features and AES

required knowledge of colony sizes. These two parameters were also crucial for revealing

the presence of a density-dependence effect. Finally, although landscape improvements

prior to 2006 may have benefited R. ferrumequinum, we found no clear evidence to support

the hypothesis of a potential positive effect of actual AESs implemented after 2006 on R.

ferrumequinum populations. Rather, it seems that climate change over this period has

favoured the population recovery of R. ferrumequinum in the UK.
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