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Abstract. The overall objective of this paper is to establish a dynamically substructured 
system (DSS) testing approach for railway vehicle pantographs. In this approach a pilot study 
quasi-pantograph (QP) is tested within a laboratory environment, where the catenary wire, 
contact wire and catenary support (abbreviated as ‘catenary’ in this paper) are modelled as a 
numerical substructure. This is simulated in real time and in parallel with the operation of the 
physical substructure, i.e. the QP rig itself. The entire DSS is driven by parametric excitation 
within the catenary model, whilst the numerical and physical substructures are synchronised at 
their interface via the DSS control technique of [1]. Simulation and physical experimental 
investigations of the pilot QP rig, constructed within the Advanced Control and Test 
Laboratory at the University of Bristol, UK, demonstrate the efficacy of the method when 
subjected to parametric variations, unknown parameter values and parametric excitation. 

1. Introduction 
In recent years, the concept of testing an engineering system using a combination of physical and 
real-time numerical substructures has become a viable alternative to testing entirely physical or 
entirely numerical systems.  Underlying reasons for this move include problems with (i) the cost and 
viability of full-size physical testing of an entire system; (ii) the validation of numerical methods 
when the dynamics of critical elements are unknown or uncertain in terms of parameters and structure; 
(iii) similitude problems associated with nonlinear, scaled physical model testing.  In this new 
approach, the combination of system elements can include more than one substructure of each type - 
physical or numerical.  However, without loss of generality, in this paper we restrict the investigation 
to just one substructure of each type.  In addition, the combination of substructures may be excited 
by external or internal disturbances of one form or another.  Again without loss of generality, we 
examine a specific problem where the excitation is confined to the numerical substructure, in the form 
of a parametric excitation. 

One common method for the implementation of substructured system testing is the hybrid scheme 
(HS). This is also variously known as hybrid simulation or pseudo-dynamic testing [2], and was 
originally formulated by [3], [4] for testing large structural systems.  Since the 1990s, HS 
developments have been extensively used for substructured testing within the fields of structural, 
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earthquake, civil and mechanical engineering.  Very often the scheme has been given the misnomer 
of hardware-in-the-loop simulation (HiLS).  However, the original purpose of HiLS [5], [6] was 
quite different to that of HS and this has led to some confusion over the fundamental objectives and 
the basis of design for each method.  It is possible that this misunderstanding has been further 
exacerbated via the more recent dynamically substructured system (DSS) approach [1].  Thus, in [7], 
one of the main objectives was to remove any confusion between the HiLS, HS and DSS testing 
methods.  General observations from [7] are: 
(i) HiLS is primarily a method for testing a physical controller design, ΣP, against an embedded 

numerical simulation of the controlled plant, ΣN, within a closed-loop configuration; see figure 1.  
Therefore, in its original form, HiLS is not a suitable method for solving general substructured 
test problems. 

(ii) HS combines a physical substructure (or component), ΣP , with a real-time numerical 
substructure, ΣN , in order to emulate a given open-loop system (i.e. plant), ΣE; see figure 2. 
Hence, HS is a bona fide in-series substructure testing method, with an entirely different 
conceptualisation to that of HiLS. Synthesis of the HS is relatively straightforward, essentially 
requiring exact cancellation of the actuator (transfer system) dynamics ΣTS,`via a compensator 
ΣCr, in order to ensure that the response of ΣP, (yP), matches that of ΣN, (yN). Therefore HS suffers 
from the stringent requirements that the transfer system dynamics are (ideally) known precisely 
and also invertible. In addition, the method aims to ensure that the closed-loop dynamics shown 
in figure 2 are the same as those of an emulated system, ΣE. As a consequence, a ΣE with low 
damping (e.g. a structural system) can quite easily result in an HS which exhibits poor relative 
stability, or even instability, given imprecise knowledge of the underlying dynamics. This 
stability problem is compounded by any pure delays in the system, typically due to digital 
computational elements within ΣCr. 

(iii) DSS has exactly the same objective as for HS; however it is achieved via the parallel substructure 
testing method shown in figure 3. Although the synthesis procedure for ΣC is more involved than 
that for ΣCr, the closed-loop dynamics within the DSS structure can be designed to have a high 
level of relative stability - and hence robustness - in the face of parameter unknowns and pure 
delay terms. An analysis of the overall DSS dynamics shows that the characteristic polynomial of 
the required ΣE is quite distinct from that of the closed-loop error (synchronisation) dynamics that 
are highlighted in figure 3; [7]. Hence, by design, a ΣE with low damping will not result in a DSS 
with low levels of relative stability.  

 
 
 
 
 
 
 
 

Figure 1  Hardware-in-the-loop simulation: r: reference; u: control; y: output; 
ΣE: emulated closed-loop control system; ΣP: controller; ΣN: embedded plant simulation 

Given the inherent robustness of the DSS design, the principal objective of this paper is to 
investigate the viability of the method for testing substructured railway vehicle pantographs. This 
includes the dynamic analysis of a typical DSS pantograph system and the experimental testing of a 
quasi-pantograph (QP) pilot study rig that has been constructed in the Advanced Control and Test 
Laboratory (ACTLab) at the University of Bristol, UK. Purely physical catenary-pantograph dynamic 
testing facilities already exist and continue to provide valuable information, but they are often 
restricted in operation.  For example, a sophisticated testing facility at the Railway Technical 
Research Institute (RTRI) facility in Tokyo, Japan, consists of a tracked vehicle, pantograph and 
catenary.  However, the vehicle is limited to a maximum speed of 200 km/h and runs on a track of 
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maximum length 60 m. Smaller, stationary test facilities use an exciter in place of the physical 
catenary, but they do not allow the possibility of true dynamic interaction at the point of contact 
between the pantograph and exciter. For these reasons, DSS testing has become an attractive 
alternative, allowing the possibility of virtual high-speed testing over an extended track length, 
together with realistic dynamical interactions at the point of contact between the pantograph and 
catenary. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2  Hybrid simulation: dN: excitation; u: control; yN: numerical output; yP: physical output; f: interaction constraint; 

ΣE: emulated system; ΣP: physical substructure; ΣN: numerical substructure; ΣTS: transfer system; ΣCr: HS compensator 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3  Dynamically substructured system: dN: excitation; u: control; yN: numerical output; yP: physical output;  
f: interaction constraint; e: error; ΣE: emulated open-loop system; ΣP: physical substructure; ΣN: numerical substructure; 

ΣTS: transfer system; ΣC: DSS controller 

The remainder of this paper is organised as follows.  In §2 a pantograph-catenary model is 
described, together with the associated QP rig and its control systems.  The corresponding DSS 
developments are then described in §3, together with the derivation of the DSS controller itself.  
Stability analysis of the DSS controller design follows in §4, focusing on the effects of parameter 
variations and pure delays due to discrete-time computational elements in ΣC and ΣTS.  Results from 
experimental investigations conducted on the QP rig are presented in §5.  Finally, the main 
conclusions to this work are presented in §6, together with comments on future research in this field. 

 
2. Pantograph/catenary model and the QP pilot study test rig 
Schematics of the pantograph-catenary system are shown in figure 4.  A basic arrangement of the 
power car, pantograph and catenary (with regularly spaced supports) is shown in figure 4(a); the car is 
assumed to be travelling at a constant velocity, v.  The corresponding catenary stiffness in the 
vertical direction, k1, is shown in figure 4(b), with the time axis calibrated for a car velocity 
v = 100 km/h.  A simplified and linearised m-k-c model of the vertical motion dynamics of this 

Required emulated open-loop system: ΣE 

 

f 
 

ΣTS ΣCr ≈ 1 

ΣP 

 

 
 

 

y
N
 

u   

 

 

y
P
 

ΣCr ΣTS 

 

dN 

ΣN 

 

 

- 

e 
 

Closed-loop error 
(synchronisation) dynamics 

+ 
 

Emulated open-loop system: ΣE 

 

f 

 

ΣC ΣTS ≠ 1, in general 

ΣP 

 

 
y

N
 

u   

 

y
P
 

ΣC ΣTS 

 

dN ΣN 

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012204 doi:10.1088/1742-6596/744/1/012204

3



 

 

0 0.5 1 1.5 2
1000

2000

3000

4000

5000

6000

time [s]

st
iff

ne
ss

 [N
/m

]

Catenary stiffness between supports

v 

Pantograph 

Catenary 
support 

Catenary wire 

Contact wire 

mg 

f – m1g 

f + m2g 

Load 
cell 

y2 f 

Servohydraulic 
actuator 

25kN 

servohydraulic 

actuator & LVDT 

Spring (k2) 
Mass (m2) 

25kN load cell 

system is shown in figure 4(c), where parameters are nominally constant, apart from k1, and that 
contact between the catenary (with local mass m1) and the pantograph (mass m2) is maintained.  
Associated damping characteristics of the catenary and pantograph are represented by the viscous 
friction coefficients c1 and c2, respectively.  The vertical motion of the point of contact between the 
catenary and pantograph is y and the corresponding motions of the catenary support and vehicle body 
are d1 and d2, respectively.  In what follows, both d1 and d2 are assumed to be zero and excitation of 
the system will be provided by an internal parametric variation due to continuous change in the 
catenary stiffness, k1. 
 
 
 
 
 
 
 
 
 
 
 

       (a)        (b)        (c) 
Figure 4  Pantograph-catenary schematics; the ‘catenary’ consists of the catenary wire, contact wire and supports 
(a) Basic arrangement  (b) Catenary stiffness (time axis calibrated for v = 100 km/h)  (c) Linearised m-k-c model 

 
Figure 5 shows three of the four components of the proposed QP DSS; the fourth component is the 

DSS controller, ΣC, which is yet to be designed. 
 
 
 
 
 
 
 
 
 

    (a)    (b)   (c) 
Figure 5  QP DSS:  (a) Numerical substructure ΣN  (b) Physical substructure ΣP  (c) Transfer system ΣTS 

 
ΣTS in figure 5(c) consists of an Instron 25kN, ±130mm stroke servohydraulic actuator with 

hydrostatic bearings, complete with a load cell for the measurement of the force, f, and a linear 
variable differential transformer (LVDT) for the measurement of the displacement, y2.  In addition, 
ΣTS incorporates a fixed gain inner-loop controller for y2, implemented via an Instron 8800 digital 
system.  The ΣTS and ΣP hardware, apart from the 8800 system, is shown in figure 6. 
 
 
 
 
 
 
 
 
 
 
 

Figure 6  Principle elements of the ΣTS and ΣP subsystems (the Instron 8800 inner-loop controller is not shown) 
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3. DSS substructure models and linear substructuring controller design 
3.1. DSS substructure models 
Although ΣE is not used in the development of the DSS substructures, or in the synthesis of the DSS 
controller, or in the implementation of the method, its formulation is useful in providing an idealised 
response for the purposes of comparison.  Thus, in figure 4(c), the end deflections d1 and d2 are 
assumed to be zero and the variable catenary stiffness provides an internal parametric excitation to the 
system.  Writing k1 = k1

* + k1t , where k1
* is a nominal value of the stiffness and k1t is an 

instantaneous variation about the nominal (see figure 4(b)), together with m = m1 + m2, k = k1
* + k2 

and c = c1 + c2, the equation of motion of ΣE is *
1 1 2[( ) ]tk k y k y cy mg my− + + − − =  .  Hence, in the 

Laplace domain: 

 2 2

1/ 1:
( / ) / ( / ) /E e

my d g
s c m s k m s c m s k m

   
Σ = − −   + + + +   

 (1) 

where the parametric excitation due to catenary stiffness variations is de = k1t y .  Similarly for ΣN, 
figure 5(a) yields *

1 1 1 1 1 1 1 1[( )]tk k y c y m g f m y− + − − + =  , so that:  

 1 1
1 12 * 2 * 2 *

1 1 1 1 1 1 1 1 1 1 1 1

1/ 1/1:
( / ) / ( / ) / ( / ) /N e

m my d g f
s c m s k m s c m s k m s c m s k m

     
Σ = − − +     + + + + + +     

 (2) 

where de1 = k1t y1 .  Regarding ΣP, figure 5(b) yields 2 2 2 2 2 2 2k y c y m g f m y− − − − =  , so that: 

 2
2 22

2 2 2 2

1/
: ( )

( / ) /P
my m g f

s c m s k m
 

Σ = − + + + 
 (3) 

Finally, experimental evidence shows that ΣTS can be approximated as a first-order transfer 
function over the frequency range of interest, i.e. in figure 5(c): 

 2:TS
ay u

s a
 Σ  + 

  (4) 

where the numerator and denominator adopt the same parameter, a, as a result of combining the 
integral form of the actuator dynamics with the 8800 system proportional controller of gain kp. 
 
3.2. Linear substructure controller synthesis 
Using equations (1)-(4), a straightforward extension to the linear substructure controller (LSC), first 
proposed by [1], is now synthesised for the QP DSS rig. Full analysis and synthesis details of the 
general LSC development can be found in [1], [7]. LSC has the following two degree-of-freedom 
structure: 

 1 1'e e eu K d K e= +  (5) 
where K1e is a feedforward transfer function defined in equation (8) below, Ke is a feedback element 
(often a simple proportional term), de1’ = de1 + mg is the modified parametric excitation that appears in 
equations (6) and (7) below and e = y1 – y2 is the DSS synchronisation error. Manipulation of 
equations (1)-(4) yields the following expression for e in terms of de1’ and u: 

 
2

1 1
1' 2 * 2 *

1 1 1 1 1 1 1 1

1/ [ / ][ ( / ) / ]
;    ;  

( / ) / ( / ) /Ne e u Ne u
m m m s c m s k m ae G d G u G G

s as c m s k m s c m s k m
   + +  = − − = =    ++ + + +     

 (6) 

The corresponding closed-loop error dynamics are therefore determined from equations (5) and (6): 

 1
1'1

Ne u e
e

u e

G G K
e d

G K
 +

= − + 
 (7) 

Hence, in order to ensure that e→0, the following solution for the LSC feedforward term is proposed: 
 1 /e Ne uK G G= −  (8) 

and to provide closed-loop robustness, the feedback term Ke can be determined via classic design 
techniques (e.g. the roots’ loci method) using the closed-loop characteristic equation (CLCE): 

 1 0u eG K+ =  (9) 
A schematic arrangement of the complete DSS is shown in figure 7. 

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012204 doi:10.1088/1742-6596/744/1/012204

5



 

 

-140

-130

-120

-110

-100

-90

-80

-70

M
ag

ni
tu

de
 (d

B
)

10
0

10
1

10
2

10
3

45

90

135

180

225

P
ha

se
 (d

eg
)

Bode plot for K1e

Frequency  (rad/s)
-50 -40 -30 -20 -10 0 10

-30

-20

-10

0

10

20

30

 (seconds-1)

 (s
ec

on
ds

-1
)

 
 
 
 
 
 
 
    (a)         (b) 

Figure 7  (a) Block schematic diagram of the DSS  (b) Detail showing the dSPACE outer-loop controller 
 
3.3. Design for specific parameter values 
The following nominal parameter values were used in the emulated system and DSS substructures: 

m1 = 100 kg; m2 = 7.86 kg; m = 107.9 kg; c1 = 500 Ns/m, c2 = 23.95 Ns/m; c = 524.0 kg; 
k1

* = 3.0 kN/m; k2 = 25.1 kN/m; k = 28.1 kN/m; kp = 15 dB (≡ 5.623); a = 42.4 s-1; v = 100 km/h 
which are used to determine the LSC controller via standard, classical control engineering techniques. 
From (6): 

 
2

2 2

0.01 4.856 260.4 42.4 ;  1.079
42.45 30 5 30Ne u

s sG G
ss s s s

 + +   = =     ++ + + +    
 (10) 

so that the LSC feedforward term is determined from equation (8) as: 

 4
1 2

42.42.187 10
4.856 260.4e

sK
s s

− + = − ×  + + 
 (11) 

yielding the Bode plot of figure 8(a), which shows a resonant frequency of ~15.9 rad/s together with a 
-20 dB/dec high frequency roll-off. 

A proportional control design for the LSC feedback term, Ke, is determined via the roots’ loci 
method.  From equation (9), the corresponding standard form of the CLCE is: 

 
2

2

4.856 260.41 45.75 0
( 5 30)( 42.4)e

s sK
s s s

 + +
+ = + + + 

 (12) 

which generates the roots’ loci plot of figure 8(b).  This shows that the system is unconditionally 
stable for Ke ≥ 0; arbitrarily, a nominal value was chosen as Ke = 2, corresponding to dominant CLCE 
roots at s ≈ -1.86 ± j13.5 .  In practice, it was not necessary to improve closed-loop damping of the 
error dynamics, via the addition of any derivative terms within Ke, for example. 
 
 
 
 
 
 
 
 
 
 
 
    (a)           (b) 
Figure 8  (a) Bode plot for the LSC feedforward term, K1e; (b) Roots’ loci of 1 + Gu Ke = 0 with varying gain Ke ≥ 0 

 
4. DSS stability analysis with and without a pure delay in the transfer system, ΣTS 

4.1. Stability without a pure delay in ΣTS 
Stability and robustness of the DSS system to changes in the parameters within ΣP and ΣTS - which are 
considered to be unknown and cannot be incorporated into the DSS design - can be confirmed via 
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simple classical techniques such as the roots’ loci method. Note that changes in numerical parameters 
are assumed to be known and can be included in the design of stable DSS via suitable synthesis of the 
LSC. For example, rewriting equation (9) in order to analyse the effects of varying m1 ≥ 0 in ΣP leads 
to the following CLCE: 

2

1 2 *
1 1 1 1

2 * *
1 2 1 1 1 2 1 1 2

2
1

( / ) / 11 1 ( / ) 0
( / ) /

(( ) / ( )) ( ) / ( )
. . 1 0

( (1 ))

u e e

e e e e e

e

s c m s k mG K amK m
s as c m s k m

c m aK s c a caK k c m aK s kaK k a c m aK
i e

m s s a K

 + +  + = + =  ++ +   
  + + + + + + + +

+ =   + +  

 

Substituting all nominal parameter values, apart from m1, into the above expression gives: 

 
2

2
1

835.3 82.17 30051 0
( 127.2)

s s
m s s

  + +
+ =  +  

 (13) 

resulting in the roots’ loci, with varying parameter (1/m1) ≥ 0, of figure 9(a). Consequently, the closed 
loop system is unconditionally stable for finite m1, becoming marginally unstable in the hypothetical 
case m1 → ∞. In a similar manner, investigations show that variations in the physical parameters 
{Ke, m1, k1

*} lead to unconditional stability, whereas variations in {kp, c1} lead to conditional stability.  
For example, consider the effect of varying kp, which is tantamount to varying the transfer system 
coefficient, a.  That is, when kp is described in normal units (i.e. not in dB) the linear relationship 
between the two parameters is a = (42.4/5.623)kp = 7.541kp.  Rewriting equation (9) in order to 
analyse the effects of varying a within ΣTS results in the following CLCE: 

2 *
1 1 1 1 1

2 *
1 1 1 1 1

(( ) / ( )) ( ) / ( )
1 0

( ( / ) ( / ))
e e e e em mK s c cK m mK s k kK m mK

a
m s s c m s k m

  + + + + + + +
+ =   + +  

 

so that substitution of the nominal parameter values, apart from a, yields: 

 
2

2

4.902 187.51 3.158 0
( 5 30)

s sa
s s s

 + +
+ = + + 

 (14) 

which generates the loci shown in figure 9(b), indicating that instability occurs if 0.375 < a < 8.23 . 
 
 
 
 
 
 
 
 
 
 

     (a)        (b) 
Figure 9 (a) Roots’ loci plot of 1 + Gu Ke = 0 in equation (13), with varying parameter (1/m1) ≥ 0 

  (b) Roots’ loci plot of 1 + Gu Ke = 0 in equation (14), with varying parameter a ≥ 0 

4.2. Stability with a pure delay in ΣTS 
Pure delays can exist within a DSS and for the QP rig this problem occurs within discrete-time 
elements of the inner-loop 8800 controller, the dSPACE outer-loop LSC controller and also within 
data acquisition/filtering elements of both controllers.  System identification of these components 
yields an aggregate pure delay τ ≈ 0.003 s.  Hence, the purpose of this section is to provide a 
frequency domain investigation of the effect that this delay has on DSS stability. 

Incorporating the pure delay into ΣTS results in the following open-loop transfer function, H, 
within the closed-loop error dynamics: 
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Plots of { }( ) and ( )H j H jω ω∠  from (16) are shown in figure 10, where a family of curves is 
presented for increments in Ke of 0.5 over the range (0.5, 10) together with increments in τ of 0.001 s 
over the range (0, 0.020) s.  For a given case, the corresponding condition for the onset of stability 
can be obtained via application of the simplified Nyquist criterion: ( ) 1H jω =  when 

{ ( )}H jω π∠ = − , [7]. For example, taking the nominal value of τ = 0.003 s, the frequency at which 
the phase reaches –π rads is ~550 rad/s, so that the Ke = 10 curve (say) can be increased by a factor of 
approximately 1/0.83 ≈ 1.20 before the onset of instability occurs.  Hence the limiting gain for 
instability when τ = 0.003 s is Ke ≈ 12.0 .   

A second example considers the maximum allowable delay for the nominal case Ke = 2.  Thus, in 
figure (10), the magnitude of the Ke = 2 curve is unity when ω ≈ 78 rad/s.  Extrapolation of the phase 
curves at the –π crossing point yields an approximate value for the limiting value of delay as 
τ ≈ 0.026 s.  In comparison, the HS scheme can be shown to be unstable if (m2/m1) ≥ 1 when τ > 0 s, 
or if (m2/m1) < 1 when τ > τc, where τc ≈ 0.023s when parameters are set to their nominal values. 

For sufficiently high values of ω, (i.e. ω > 50 rad/s), an approximation can be made for the 
magnitude of H in order to determine a solution for the onset of stability.  Hence, when ω2 
dominates all other parameters, the magnitude of H in equation (16) can be approximated as 

1( ) / ( )eH j maK mω ω , so at the point of instability 1/emaK mω = .  The corresponding phase 
relationship then yields the critical value of τ for instability as: 

 ( ) ( )1
1 1/ tan /e em maK mK mτ π − −   (17) 

Rearrangement of equation (17) generates an iterative solution to the critical value of Ke, as follows: 
 ( ) ( )1 1

1 1/ tan / ; 0, 1, 2,l l
e eK m ma mK m lτ π − − = − =    (18) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10  Magnitude and phase of H for various values of Ke and τ 
(note that magnitude is independent of τ and phase is independent of Ke) 

Returning to the first of the above examples, when τ = 0.003 s, equation (18) yields a steady-state 
critical gain Ke = 12.01 (to 4 significant figures); this is after 4 iterations and with an initial condition 
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Ke
0 = 0.  Clearly, the approximation for critical Ke is close to that obtained from the graphical 

method.  Similarly, the computed value for the critical frequency is 1/emaK mω =  = 549.5 rad/s, 
which is close to the graphical solution of ~550 rad/s. 

5. Experimental studies on the QP pilot rig, with (i) LSC and (ii) LSC plus adaptive control 
This section describes some representative experimental studies that have been conducted on the QP 
pilot rig, with an emphasis on the effects of parameter uncertainty and variation.  §5.1 focuses on the 
performance of LSC alone and §5.2 demonstrates how the addition of a parallel adaptive controller, 
minimal control synthesis with error feedback [1], [8], can improve the DSS synchronization error 
response still further. 

5.1. Experimental studies with linear substructuring control (LSC) 
Tests on the QP rig were conducted with all parameters set to their nominal values, save for the 
parameter under investigation.  Hence, with the vehicle velocity maintained at 100 km/h, the 
resulting parametric excitation due to the variation of stiffness, k1, is shown in figure 11.  The time 
range for tests was maintained at 30 s throughout the investigations. 
 
 
 
 
 
 
 
 
 
 

Figure 11  Catenary stiffness k1; vehicle velocity v = 100 km/h 

The first test results are used to compare the effects of variation in the LSC feedback gain Ke.  
For the nominal case Ke = 2, ΣN and ΣP responses (y1 and y2, respectively) are shown in figure 12(a), 
together with the corresponding synchronisation error in figure 12(b).  Visually, the responses 
demonstrate excellent synchronisation of the substructure displacements, with the root-mean-square 
(RMS) of error being computed as 0.0426 mm over an operating range of ~ 6 mm. 
 
 
 
 
 
 
 
 
 
 
 
 
     (a)        (b) 

Figure 12  LSC responses.  (a) Numerical (y1) and physical (y2) substructure displacements; Ke = 2 (nominal) 
(b) Corresponding synchronisation error, e = y1 - y2 

Comparison of the above results is enhanced by the use of an integral-square-error (ISE) measure. 
Thus, figure 13(a) shows the ISE generated by the error response in figure 12(b). Figure 13(b) shows 
ISE curves for the three cases Ke = {1, 2, 3} and, as might be expected, an increase in gain results in 
smaller errors, smaller ISE amplitudes and smaller RMS values ({0.0635, 0.0426, 0.0360} mm, 
respectively). This trend does not continue indefinitely, due to signal noise propagation at higher 
values of Ke and then ultimate instability due to the 0.003 s pure delay in ΣTS. 
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     (a)       (b) 
Figure 13  LSC ISE curves.  (a) Ke = 2 (nominal);  (b) Ke = {1, 2, 3} 

Similarly, tests on c1 (within ΣN) result in the LSC responses shown in figures 14 and 15.  The 
nominal results, for c1 = 500 Ns/m, are shown in figures 14 and 15(a).  Again, the synchronisation 
response is of excellent quality and the RMS value (0.0424 mm) is virtually identical to that from the 
nominal response obtained previously.  Introducing parameter variations for the three cases 
c1 = {250, 500, 1000} Ns/m results in the ISE curves of figure 15(b), which have corresponding RMS 
values of {0.0749, 0.0424, 0.0283} mm.  Again, an increase in the parameter tends to improve 
responses, but this is limited by sluggish closed-loop responses as c1 approaches very high values. 
 
 
 
 
 
 
 
 
 
 
 

     (a)       (b) 
Figure 14  LSC responses. (a) Numerical (y1) and physical (y2) substructure displacements; c1 = 500 Ns/m (nominal) 

(b) Corresponding synchronisation error, e = y1 - y2 
 
 
 
 
 
 
 
 
 
 
 

     (a)      (b) 
Figure 15  LSC ISE curves.  (a) c1 = 500 Ns/m (nominal);  (b) c1 = {250, 500, 1000} Ns/m 

5.2. Experimental studies with LSC plus adaptive control 
Direct adaptive control in the form of the minimal control synthesis with error feedback (MCSEF) 
algorithm can be used to augment LSC in a straightforward manner [1].  Essentially, the MCSEF 
algorithm provides an additive component to the control signal generated by LSC and, as a 
consequence, the adaptive algorithm is located within the outer-loop controller box shown in 
figure 7(a).  A brief summary of MCSEF follows; full details can be found in [1].  The additive 
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adaptive control signal is given by the following (c.f. equation (5)):  
 1 1'( ) ( )a e e eu K t d K t e= +  (19) 

so that u → u + ua, where the time-varying adaptive gains are: 
 ( ) ( )1 1' 1' 1 1 0 00 0

( ) ; ( ) ; { (0 ) ; (0 ) }
t t

e e e e e e e e e e e eK t y d dt y d K t y e dt y e K K K Kα β α β − −= + = + = =∫ ∫  (20) 
Here, α and β are scalar adaptive weights, where α is selected empirically to yield a compromise 
between adaptive effort and signal noise suppression, β = α/10 and the initial conditions {K1e0, Ke0} 
are chosen as zero. The term ye = (4e/ts) is a generalised output error, where ts is the desired 
settling-time of the adaptive process. In the tests described below, adaptive parameters were chosen as 
α = 10-7 and ts = 0.02 s; the relatively low value of α in this case is a consequence of scaling within 
the DSS loop (e.g. the magnitude of K1e, is typically ~ -90dB or ~ 3×10-5 in normal units). 

Figure 16 shows the LSC+MCSEF responses for the parameter-varied case Ke = 1.  Figure 16(b) 
details the synchronisation error resulting from the responses in figure 16(a), which has an RMS 
value of 0.0246 mm, compared with the LSC-only RMS value of 0.0635 mm.  This implies an 
approximately 2.6-fold improvement due to the action of the adaptive controller.  On comparing the 
Ke = 1 ISE curve resulting from the action of LSC in figure 13(b) with the LSC+MCSEF result in 
figure 17(b), an approximately 6.7-fold improvement is evident; (the difference in performance 
measure ratios is due to the ‘extra square’ within the ISE calculation). 
 
 
 
 
 
 
 
 
 
 

   (a)         (b) 
Figure 16  LSC+MCSEF responses when Ke = 1 in LSC and {α = 10-7, ts = 0.02 s} in MCSEF. 

(a) Numerical (y1) and physical (y2) substructure displacements  (b) Corresponding synchronisation error, e = y1 - y2 
 
 
 
 
 
 
 
 
 
 
 
 

   (a)         (b) 
Figure 17  (a) MCSEF adaptive gains: K1e (top) and Ke (bottom) when Ke = 1 and {α = 10-7, ts = 0.02 s} 

(b) LSC and LSC+MCSEF ISE curves when Ke = 1 and {α = 10-7, ts = 0.02 s} 

6. Conclusions and further work 

The main conclusions to this work are summarized as follows: 
• The principal contribution of this paper has been to take a first step in the development of a 
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practical dynamically substructured system (DSS) for the testing of railway vehicle pantographs. 
• Simplified substructures were developed for this specific application, with the numerical 

substructure representing the catenary and the physical substructure representing the pantograph. 
• Parametric excitation was included in the formulation as the principle driver for the DSS. 
• Linear substructuring control (LSC) yielded excellent synchronisation of substructure 

displacements, with RMS errors of less than 0.1 mm when the output range was ~6 mm. 
• Classical control engineering techniques (roots’ loci, Bode plots and Nyquist stability theory) 

were used to develop LSC and to investigate stability and robustness issues due to parametric 
uncertainty. LSC was found to be robust in the face of uncertainty of all key parameters, 
including pure delays in the discrete-time elements of the control and data acquisition hardware. 

• Adaptive minimal control synthesis with error feedback (MCSEF) was investigated as an 
additive parallel component to LSC. MCSEF was found to improve root-mean-square (RMS) 
errors still further, typically producing a ~3 fold improvement in terms of RMS and ~7 fold in 
terms of integral-square error (ISE), when compared with the use of LSC alone. 

Further development of this work will include the following items: 
• Enhancement of the DSS feedback term Ke(s) via pole-zero cancellation methods.  
• Incorporation of (nonlinear) finite element models (FEM) within the numerical substructure of 

the DSS. Conceptually, an FEM will be used in its full-order form within the numerical 
substructure, but in reduced-order form in the synthesis of DSS synchronizing controller(s). A 
promising preliminary study of this approach is described in [9], using the DSS method as a 
basis for implementation. It can be noted that the proposed reduced-order FEM approach is an 
alternative to the modal superposition method of [10] and the method described in [11]. 

• Synthesis of a state-space description of the proposed FEM-based DSS. 
• Experimental verification of the FEM-based DSS, including development of the physical 

substructure via the use of a standard pantograph mechanism. 
• Comparison of the above with existing hybrid simulation (HS) testing results. 
• Analysis and test of contact and impact problems between the catenary and pantograph. 
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