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Abstract. We quantise the generalised Hawk-Dove Game. By restricting the

strategy space available to the players, we show that every game of this type can

be extended into the quantum realm to produce a Pareto optimal evolutionarily stable

strategy. This equilibrium replaces the inefficient classical one when the entanglement

prepared in the game exceeds a critical threshold value, which we derive analytically.
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1. Introduction

Von Neumann & Morgenstern (1947) introduced a theory of games in their paper

The Theory of Games and Economic Behaviour. Although their intention was to

build a theory for predicting economic variation, the field of game theory has since

found a diverse range of unforeseen applications from political science (Boyd &

Richerson 1992) to evolutionary biology (Nowak & Sigmund 1999). Games such as

the Prisoner’s Dilemma (PD) (Poundstone 2011) and the Hawk-Dove Game (HDG)

(Maynard Smith 1982) have proved successful models in evolutionary biology to explain

the growth of selfish and aggressive behaviours within a population of a species

respectively.

Meyer (1999) inspired the extension of this theory by asking, “What happens if

these games are generalised into the quantum realm?” The field of quantum game

theory was consequentially established by Eisert et al. (1999). They reasoned that

quantum games may already be played on a molecular level where quantum mechanics

dictates the rules. As game theory involves the communication of information (such as

a player communicating their choice of strategy to the game’s arbiter), we can think

about this information as quantum information (as we live in a quantum world), thus

providing a natural link between game theory and quantum information theory. They

also highlight how the presence of phenomena such as entanglement and superposition

can drastically change the observed dynamics in this new framework. Examples include

the original dilemma present in the classical PD being removed under the quantisation

of the game when the two players have access to a specific two-parameter strategy space

(Eisert & Wilkens 2000). Du et al. (2001) have since demonstrated the first physical

realisation of a quantum game using a nuclear magnetic resonance quantum computer.

It is these types of new results that spur the continued interest in the field of quantum

game theory.

In this paper we quantise the generalised Hawk-Dove Game (HDG). By considering

the entanglement of the initial state we show that a unique threshold of entanglement

can be derived for the onset of a Pareto optimal evolutionarily stable strategy (ESS) for

every game of this type. We start with an introduction to the classical HDG, followed

by a quantisation of the generalised HDG following the work of Eisert et al. (1999).

2. The Classical Hawk-Dove Game

This game was originally formulated by Maynard Smith (1982) to model the evolution of

aggressive genes within a species. He imagined a species who meet pairwise to compete

over a resource of value, v. In this contest an individual has the choice of two actions.

It may either be aggressive (hawk), or non-aggressive (dove).

When hawk is played against dove, the dove will flee before risking an injury, leaving

the resource, v, to the hawk. If both choose dove they display to each other with a small

cost, d (effort or time), and one takes the resource. If both choose hawk they attack
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each other, one sustaining a large injury, i, with the other taking the resource, v. This

leads to the symmetric pay-off matrix shown in table 1.

H D

H (v
2
− i

2
, v

2
− i

2
) (v, 0)

D (0, v) (v
2

- d, v
2

- d)

Table 1. The pay-off matrix for the Hawk-Dove Game. The expected pay-offs for the

“row player” are the left-hand entries, the expected pay-offs for the “column player”

are the right-hand entries.

As is standard, and indeed intuitive, we assume the hierarchy of values to be,

0 < 2d < v < i. (1)

These conditions ensure hawks gain a negative expected pay-off when competing against

other hawks, while doves gain a positive expected pay-off when competing against other

doves.

The classical game gives rise to a mixed ESS (p∗, 1−p∗) (Maynard Smith 1982). This

mixed strategy is to play hawk with probability p∗ = v+2d
i+2d

. This equilibrium is inefficient

however, as the average pay-off received per round to an individual in a population with

this resident strategy is
(
i−v
i+2d

) (
v
2
− d
)

which is less than the non-aggressive, cooperative

pay-off of v
2
− d.

2.1. Quantisation

A few quantisations of this game have already been examined, including models by

Nawaz & Toor (2010) and Hanauske et al. (2010). Nawaz & Toor (2010) use a density

matrix quantisation approach to examine the conditions required on the initial state

for a pure strategy NE to exist, but do not investigate the entanglement of these initial

states. Hanauske et al. (2010) also use the model of Eisert et al. (1999) to show that

varying the entanglement in the system can produce non-aggressive ESSs. They only

consider three specific HDGs however, and only a few fixed values of entanglement. We

consider both generalised entanglement, and the most general HDG.

To quantise this game we use an analogous process to Eisert et al. (1999), shown in

figure 1. The process is as follows. We start by associating the states |0〉 and |1〉 with

Figure 1. The process I use to implement the quantum Hawk-Dove game.

the strategies dove and hawk respectively. We then assign one qubit in C2 to each player
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in the dove state. Hence we describe the state of the game at this point as |DD〉. This

allows us to associate quantum strategies with classical strategies. As a player wanting

to use the dove strategy does not want the state of their qubit to change, and a player

choosing the hawk strategy wishes to rotate the state of their qubit from |0〉 to |1〉, the

natural association of operators is,

D̂ ∼

(
1 0

0 1

)
, Ĥ ∼

(
0 1

−1 0

)
. (2)

To generalise the entanglement in this game we use the entangling gate Ĵ(γ) =

eiγĤ⊗Ĥ , where we have absorbed the usual power of 1/2 into gamma for simplicity. This

produces the initial state |ψi〉 = cos(γ)|DD〉+ i sin(γ)|HH〉.
Here γ ∈ [0, π/4] can be viewed as a parameter of entanglement. If γ = 0

the initial state of the game is |ψi〉 = |DD〉, a product state. If γ = π/4, |ψi〉 =
1√
2

(|DD〉+ i|HH〉) which is a maximally entangled state. Thus varying γ between 0

and π/4 allows us to control the prepared entanglement in the initial state.

Once the qubits have been entangled the players select a unitary operator, ÛR ∈
SR ⊂ C2 × C2 (ÛC ∈ SC ⊂ C2 × C2) to apply to their qubit. Here SR (SC) is called

the row (column) player’s strategy space. After the application of these operators the

qubits are disentangled using the gate Ĵ† and the final state, |ψf〉, is measured. By

making a measurement in the computational basis the measured eigenvalues will be

either zero or one. A zero corresponds to the measurement of the state |0〉 = |D〉, i.e.

the corresponding player receives the pay-off for the classical dove strategy. Similarly

the eigenvalue one corresponds to the classical hawk strategy.

For simplicity we rewrite the pay-off matrix as,

H D

H (−a, −a) (b, 0)

D (0, b) (c, c)

Table 2. The simplified version of the pay-off matrix for the HDG shown in table 1,

where a = i
2 −

v
2 , b = v and c = v

2 − d, so a, b, c > 0.

2.2. Two-Parameter Strategy Space

We consider the specific case where each player has access to the two-parameter strategy

space, S. Thus SR = SC = S, where S contains all operators of the form,

Û(θ, φ) =

(
eiφ cos(θ) sin(θ)

− sin(θ) e−iφ cos(θ)

)
(3)

with 0 ≤ θ ≤ π/2 and 0 ≤ φ ≤ π/2. Thus the row (column) player’s choice of strategy

is characterised by their choice of θR and φR (θC and φC).

This strategy space was originally constructed by Eisert et al. (1999) to show the

existence of a Pareto optimal NE for a maximally entangled game in the quantum
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Prisoner’s Dilemma. We now extend this to the quantum HDG to show the analogous

Pareto optimal ESS exists for all HDGs when the entanglement in the initial state, |ψi〉,
exceeds a threshold value which we determine.

It is important to observe that the classical game is necessarily contained within

this quantisation. By restricting the players to the strategies characterised by φ = 0,

a player’s choice of θ ∈ [0, π/2] is a bijection to the choice of classical mixed strategies

characterised by p ∈ [0, 1].

We calculate the expected pay-off for the row player for generalised entanglement

in this two-parameter strategy space using the equation,

$R(θR, φR, θC , φC , γ) = cPDD + bPHD − aPHH , (4)

where Pσσ′ = |〈σσ′ |ψf〉|2 is the joint probability of measuring σ, σ
′ ∈ {D,H}.

These equations yield the expected pay-off to the row player as,

$R(θR, φR, θC , φC , γ) = c| cos(θR) cos(θC)[cos(φR + φC) + i cos(2γ) sin(φR + φC)]|2

+b|2 cos(γ) sin(γ) sin(φR) cos(θR) sin(θC)− cos(φC) sin(θR) cos(θC)[1 + i cos(2γ)]|2

−a| sin(θR) sin(θC) + 2 cos(γ) sin(γ) sin(φR + φC) cos(θR) cos(θC)|2.
(5)

As this game is symmetric, the column player’s pay-off can be found by

interchanging the subscripts “R” and “C”. Note that these pay-offs depend on the

entanglement parameter γ.

We now show that (Q̂, Q̂) becomes an ESS iff, γc ≤ γ ≤ π/4, where,

Q̂ = Û(0, π/2) =

(
i 0

0 −i

)
. (6)

I.e. this strategy Q̂ becomes the game’s new unique ESS when the entanglement in the

game exceeds the critical value, γc, which will be determined.

As this is a symmetric game, we can show (Q̂, Q̂) is a Nash equilibrium by showing

Q̂ is in the set of best responses to itself, B(Q̂), when the entanglement in the game

exceeds γc.

Calculating the pay-off received against the strategy Q̂ using equation 5 and looking

for the critical values of φ and θ that maximise/minimise this pay-off gives the three

strategies D̂, Ĥ and Q̂. From equation 5 the expected pay-offs these strategies yield

against Q̂ are,

$R(D̂, Q̂, γ) = c− 4a cos2(γ) sin2(γ), (7)

$R(Q̂, Q̂, γ) = c, (8)

$R(Ĥ, Q̂, γ) = b cos2(2γ). (9)

Note that Q̂ is a best response to itself iff the pay-off,

$R(Q̂, Q̂, γ) ≥ $R(ÛR, Q̂, γ), ∀ÛR ∈ S. (10)



Pareto optimality in the quantum Hawk-Dove Game 6

Figure 2. The expected pay-off to the row player when playing the strategies

D̂ = Û(0, 0) (dotted line), Ĥ = Û(π/2, 0) (dashed line) and Q̂ = Û(0, π/2) (solid

line) against a column player playing Q̂, shown as a function of the entanglement

parameter γ. Here we have used the specific values v=50, i=100 and d=10, ensuring

0 < 2d < v < i. D̂, Ĥ and Q̂ have been chosen because these are the strategies that

maximise/minimise a player’s pay-off against Q̂. This graph shows that Q̂ becomes

the unique best response to itself when γc < γ ≤ π
4 , and is hence an ESS.

We now see that the best response to Q̂ depends on the prepared entanglement in the

system, as demonstrated in figure 2. As D̂, Ĥ and Q̂ were found from the turning points

of θ and φ for all γ, we need only compare these three strategies. Clearly

c ≥ c− 4a cos2(γ) sin2(γ) ∀γ (11)

⇒ $R(Q̂, Q̂, γ) ≥ $R(D̂, Q̂, γ) ∀γ (12)

as c, a, cos2(γ) and sin2(γ) are all non-negative. However, we only have

$R(Q̂, Q̂, γ) ≥ $R(Ĥ, Q̂, γ) (13)

iff,

c ≥ b cos2(2γ). (14)

This gives the critical point, γc, when c = b cos2(2γc). So,

γc =
1

2
cos−1

(√
c

b

)
=

1

2
cos−1

(√
1

2
− d

v

)
. (15)

Note that under our original formulation we required 0 < 2d < v to ensure the

game remained intuitive, which implies,
π

8
< γc <

π

4
. (16)

As γ ∈ [0, π/4], this implies (Q̂, Q̂) is only an NE iff,

γc ≥ γ ≥ π

4
. (17)

Note that γc always lies strictly within the range of γ, and hence can always be exceeded.

This is shown in figure 2 where we see that playing Q̂ against Q̂ is only the best choice

of strategy when γc ≤ γ ≤ π
4
.



Pareto optimality in the quantum Hawk-Dove Game 7

By the conditions stated by Maynard Smith & Price (1973), (Q̂, Q̂) is also an ESS

in the region γc ≤ γ ≤ π
4
. Indeed, when γ > γc, Q̂ becomes the unique best response to

itself, and is hence an ESS.

As the pay-off received from playing Q̂ against Q̂ is c (the cooperative, non-

aggressive pay-off), this ESS is also Pareto optimal.

3. Summary and conclusions

We have shown that for every intuitive HDG as defined by the conditions 0 < 2d < v < i,

there exists a critical threshold of entanglement, γc ∈ (π
8
, π
4
), such that when the

entanglement prepared in the initial state exceeds this value, a new Pareto optimal ESS

replaces the old, inefficient, classical ESS when the players are restricted to a specific

two-parameter strategy space.

In other words, for high enough levels of entanglement, populations of self-interested

agents will benefit from being non-aggressive when competing over resources if their

strategy space is restricted to the two-parameter set of unitary operators defined in

equation 3.

Few applications of the quantum HDG are currently known, although Hanauske

et al. (2010) speculate that the quantum HDG may be used in aid of the prevention of

the type of economic crisis observed in 2008.

No known applications of this two-parameter strategy space are known. Hence

it may prove more relevant for practical application to examine this game when both

players are free to apply any quantum operator of their choosing. Under these conditions

it would be interesting to investigate whether we still observe an increase in expected

pay-off at the game’s ESS when compared to the classical result.

This original result gives further insight into the intriguing power of entanglement

and the effect of expanding the strategy spaces available to the players in quantum

games.
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